Scope Determined (D) Versus Scope Determining (G)
Requirements:
A New Significant Categorization of Functional
Requirements

Daniel Berry', Marcia Lucena?, Victoria Sakhnini', and Abhishek Dhakla®

1 Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
{dberry, vsakhnini, adhakla}@uwaterloo.ca

2 Department of Computer Science and Applied Mathematics
Universidade Federal do Rio Grande do Norte
Natal, RN, Brazil
marciaj@dimap.ufrn.br

Abstract. Context: Some believe that Requirements Engineering (RE) for a
computer-based system (CBS) should be done up front, producing a complete
requirements specification before any of the CBS’s software (SW) is written.
Problem: A common complaint is that (1) new requirements never stop com-
ing; so upfront RE goes on forever with an ever growing scope. However, data
show that (2) the cost to modify written SW to include a new requirement is at
least 10 times the cost of writing the SW with the requirement included from the
start; so upfront RE saves development costs, particularly if the new requirement
is one that was needed to prevent a failure of the implementation of a requirement
already included in the scope. The scope of a CBS is the set of requirements that
drive its implementation. Hypothesis: We believe that both (1) and (2) are cor-
rect, but each is about a different category of requirements, (1) scope determininG
(G) or (2) scope determineD (D), respectively. Results: Re-examination of the re-
ported data of some past case studies through the lens of these categories indicates
that when a project failed, a large number of its defects were due to missing D re-
quirements, and when a project succeeded, the project focused its RE on finding
all of its D requirements. Conclusions: The overall aim of the research is to em-
pirically show in future work that focusing RE for a chosen scope, including that
of a sprint in an agile development, on finding all and only the D requirements for
the scope, while deferring any G requirements to later releases or sprints, allows
upfront RE (1) that does not go on forever, and (2) that discovers all requirements
whose addition after implementation would be wastefully expensive, wasteful be-
cause these requirements are discoverable during RE if enough time is devoted
to looking for them.

Keywords: Agile methods, Cost to repair defects, Defect tickets, Empirical stud-
ies, Exceptions and variations, Missing requirement, Requirements specification,
Scope, Scope-determined requirement, Scope-determining requirement, Software
development lifecycle, Sprint, Upfront requirements engineering, Waterfall meth-
ods



2 D.M. Berry, M. Lucena, V. Sakhnini, and A. Dhakla

1 Introduction

The current great debate [3,8,13,15,17,19,22,23,28,29, 36,38] in Requirements En-
gineering (RE) is whether requirements for a computer-based system (CBS)

1. should be identified upfront before design and coding begin, as in the waterfall
lifecycle [30], or

2. should be identified incrementally, interleaved with design and coding of require-
ments identified so far, as in the spiral or agile lifecycles [2, 10].

Here, “identifying requirements for a CBS up front” means “identifying requirements
for the CBS in their entirety”.

The argument for identifying requirements upfront is that catching and fixing a
requirement defect, i.e., a missing or incorrect requirement, during coding costs 10
times the cost of catching and fixing it during upfront RE [9, 31]. Thus, developing a
CBS using waterfall methods, with requirements determined for the entire CBS up front
before beginning any coding, leads to the shortest overall development time [5,6,9, 12,
16,27,34].

The arguments for identifying requirements incrementally are that

— requirements never stop coming [2, 6]; if design and coding do not start until all
requirements are identified, design and coding will never start, and

— many requirements change as more and more of a CBS is developed and as the
world changes as a result of the CBS’s being used [20, 21]; many requirements
that were identified before will be thrown out; and the time spent identifying these
thrown-out requirements is wasted!

Thus, we should develop CBSs using agile methods, with requirements determined for
each sprint of coding only at the beginning of the sprint.

Attempts to settle the debate with empirical data have failed. Empirical studies go
both ways and are overall inconclusive [3,13,19,23,28,36]. Consequently, the choice of
CBS development lifecycle, upfront RE or agile, to use in a CBS development project
is made on the basis of gut feelings informed by experience and a recognition that if a
project does something different from what is established practice, and the project fails,
the heads of the project’s decision makers will roll.

The reason that data have not decided the debate is that each side is right!

Al. Requirements do never stop coming; and many requirements do change, resulting
in wasted effort.

A2. There are a lot of requirements defects that can be found and fixed early if one is
spending enough time doing RE, and a complete requirements specification (RS)
for a CBS dramatically reduces the incidence of expensive-to-fix requirement de-
fects that appear in the code for the CBS.

We believe that the two competing arguments, Al and A2, are talking about two differ-
ent kinds of requirements, respectively:

K1. One kind often cannot be identified until users are trying some version of the CBS
and notice its necessity, and it is best handled incrementally so that when it is iden-
tified, it is less likely to change [2].



D Vs. G Requirements: A New Categorization of Requirements 3

K2. The other kind can be identified before design and coding if enough time is devoted
to RE, and it is wasteful to leave this requirement to be found only later in the
lifecycle when it is more expensive to fix [6].

The empirical studies are inconclusive because none of them distinguishes these partic-
ular different kinds of requirements.

We have identified a new binary categorization of new requirements being consid-
ered for addition to a CBS:

C1. The first category of requirement is a scope determininG (G) requirement, and
C2. the second category of requirement is a scope determineD (D) requirement.

Here, the scope of a CBS is the set of requirements — a.k.a. use cases or features — it
implements. This categorization has been identified in the past under different names.
For example, among use cases, a variation or exception of another use case is a D
requirement, but a new, independent use case is a G requirement. New are the names of
the categories, which are more suggestive of

— how the categorization of a requirement can be done and
— how knowledge of the categorizations of candidate requirements for a CBS can be
used during RE for the CBS and during its subsequent development.

Maybe, the data will be more conclusive for each category of requirements.
This article shows empirical evidence from past case studies, all done for other
purposes, that

— Al =K1 =Cl, and G requirements can be handled incrementally, and
— A2 =K2 =C2, and D requirements are best handled up front.

The article then proposes some empirical studies that validate the preliminary conclu-
sions of this article.

In the rest of this article, Section 2 describes the categories of D and G require-
ments in depth. Section 3 defines the completion of a scope as the scope with all its D
requirements made explicit. Section 4 gives an iterative procedure for discovering all
of a scope’s D requirements, thus building the scope’s completion. Section 5 makes a
few observations about D and G requirements in the wild. Section 6 describes the past
empirical work that directly led to the research reported in this article, and Section 7
describes other related past work. Section 8 predicts future work consistent with the
long term goals of this research. Section 9 concludes the article.

2 G and D Requirements

Suppose we have a simple calculator CBS, C, offering only the four operations: addi-
tion, subtraction, multiplication, and division. Then the set of requirements,
R ={addition, subtraction, multiplication, division},
is a scope of C'. Then, the requirement,
r1 =exponentiation,
is a G requirement with respect to (w.r.t.) R, because exponentiation is not needed



4 D.M. Berry, M. Lucena, V. Sakhnini, and A. Dhakla

for the correct functioning of any of addition, subtraction, multiplication, and division.
Adding r1 to R makes a different calculator. That is, the addition of 71 is determininG
a new scope. However, the requirement,
r2 =checking that the division denominator is not zero,

is a D requirement w.r.t. R, because this checking is needed for correct functioning of
division. Adding 72 to R does not make a different calculator; r2 is implicitly already
in the calculator’s scope because its division will break any time the checking fails. That
is, the so-called addition of 72 is already determineD by the current scope.

More formally, suppose that C' is a CBS. A scope of C is a set R of C’s require-
ments. Each requirement r can be classified into one of two categories w.r.t. R.

1. r is a scope determininG (G) requirement w.r.t. R if r is not needed for correct
functioning in C' of any element of R

2. ris a scope determineD (D) requirement w.r.t. R if r is needed for correct func-
tioning in C of at least one element of R other than r.

When the scope R is understood, “w.r.t. R’ can be elided.

In the rest of this article, (1) “r is needed for correct functioning in C of ¢”, (2) “q
determines r w.r.t C”, and (3) “r is determined w.r.t. C' by ¢” are synonyms. In these
sentences, 7 is a D requirement w.r.t. R.

3 Completion of Scope

That adding to a scope one of its D requirements is not considered changing the scope
says that there is some notion of the completion of a scope, R, as R with all its D
requirements made explicit.

The completion w.r.t. C, Cc(r), of arequirement r, is the set of all requirements
R such that each 7’ in R is determined w.r.t. C by r or by an element of R.

The completion w.r.t. C, Co(R), of a set of requirements, R, is the union of the
completions w.r.t. C' of all of R’s elements.

In principle, the completion of any set of requirements should be the same, no matter
the order in which its elements are considered for completion; testing that this is so is
part of future work.

RE for a CBS, C, typically starts when C’s customers supply to requirements an-
alysts (RAs) an initial set of features, F'. A feature is a requirement, and thus, F'is a
scope, which is taken, at least initially, as defining C'

The distinction between a requirement and a feature is merely a social construct. A
feature of a CBS is a requirement of the CBS that the users of the CBS are aware of.
Generally, it is the scope of a CBS as a set of features that figures in the decision of
customers and users to buy or use the CBS, i.e., what is in the scope and what is not. It
is the scope of a CBS as a set of features to be implemented that the customers describe
to the RAs to begin the development of the CBS.

The RAs flesh F' into its completion, generally requirement by requirement. Be-
cause completion adds to a scope only requirements determined by the scope, this flesh-
ing out is not seen as changing the scope of C. Therefore, F’, F’s completion, and every



D Vs. G Requirements: A New Categorization of Requirements 5

scope generated during the fleshing out are considered as describing the scope of C,
S(C) = S. The goal of this fleshing out is to make S explicit, that is to actually con-
tain specifications of all the elements of the completion of F', and to serve as a written
specification of C.

There will be an iterative procedure for completion:

Initially S = F'. Each iteration considers a candidate new requirement, 7 to add to S, r
being identified by any of a variety of elicitation means.

—Ifris D w.r.t. S, then S U {r} becomes S for the next iteration.

— If r is G w.r.t. .S, then, unless it is explicitly decided to expand the scope with r,
S is unchanged for the next iteration, and r is added to the backlog list.

The iteration is complete when S = Cc (F').

If in any iteration, it is decided to expand the scope of C' with the new r, then the
iteration starts over with S U {r} as the initial scope.

To allow the iterative procedure to be used not only for upfront RE but also for each
sprint of an agile method, the procedure is allowed to start with any scope, any set of
requirements, not just F', which is intended to be for the whole of C.

4 Iterative Procedure for Finding All D Requirements of a Scope

RE for a scope, R, of a CBS is done when all of the D requirements of R have been
found and included in R’s RS, which specifies R’s completion [6]. Thus, a procedure’
for finding all D requirements for a scope is a procedure for carrying out upfront RE for
the scope.

1. Pick a scope for the CBS consisting of some initial set R of requirements for the
CBS.

2. The analysts must ask, using any of a variety of techniques, such as fault-tree anal-
ysis (FTA), failure model and effect criticality analysis (FMECA), hazard analysis
(HAZOP), exceptions analysis, etc. [1, 11, 32,33, 35, 37, 39], what additional re-
quirements are implied by each requirement in R, and by any combination of them.

3. The result is a set of D requirements, R'.

4. If R’ is not empty, repeat Steps 2 through 4 for the new scope, R U R’.

5. Done, with R being the completion of the original scope.

That is, RE for any scope continues until an iteration, despite all efforts, yields no
new requirements, and thus until all requirements determined by any requirement in
the scope are found [6]. Any truly new requirement, independent of the scope, discov-
ered along the way is put into the backlog list for consideration in a new scope to be
developed in the future. Thus, RE for one particular scope of a CBS does not go on
forever.

The reason that the procedure is iterative is that sometimes an exception has its own
exceptions, and Step 2 has to be done to a requirement generated in a previous instance
of Step 2.

! This is a procedure and not an algorithm. It is not guaranteed to find all D requirements of a
scope. Thus, elicitation skill and luck are still needed. The procedure improves requirements
elicitation by focusing on finding requirements essential to the scope.



6 D.M. Berry, M. Lucena, V. Sakhnini, and A. Dhakla

S5 Observations and Implications

The ability to categorize a requirement as either D or G allows focusing the precious RE
effort for any version of a CBS on finding for its scope all and only those requirements,
the scope’s D requirements, that are necessary to have a complete RS for the version
before its implementation begins. The procedure is to chose a scope, i.e., a set of G
requirements, for your CBS. Focus all RE effort on finding all D requirements implied
by the requirements in the chosen scope, while ignoring all other G requirements, i.e.,
those that are orthogonal to the requirements in the chosen scope. While this procedure
sounds like the upfront RE in a waterfall method, it can be the initial steps in an agile
method sprint for the chosen scope. The test cases that serve as the means to verify
the correctness of the code for the sprint can be generated from the requirements that
emerge from the procedure, if it is not desired to produce an actual RS.

Once the distinction between D and G requirements is understood, it becomes clear
that the addition of a D requirement to the scope currently being implemented is not
scope creep, because the D requirement was already in the scope even if it were not
written in the scope’s RS. Only the addition of a G requirement is true scope creep.

Another way to understand a missing D requirement is that it is a case of require-
ments and requirements documentation debt [4] that may not even reflect a conscious
decision to incur the debt.

Still another view arises from use-case-based methods, which distinguish two kinds
of use cases, (1) main use cases or basic use cases and (2) variation and exception use
cases. In retrospect, these kinds of use cases are nothing more than (1) G use cases
and (2) D use cases, respectively. When use cases are classified in this way, it becomes
clear that all of the D use cases of a G use case have to be considered together and be
implemented together with the G use case.

6 Antecedent Work

Some papers that author Berry coauthored in the past show data that are consistent with
and even actively support the claims made in this article. Each paper was written before
the ideas reported in this article crystalized; it is actually another piece of slowly ac-
cumulated evidence leading to these ideas. Nevertheless, since the data were gathered
with no notion of D and G requirements, there is no chance that researcher bias towards
supporting this article’s claims influenced the data gathering or the original conclusions
drawn from the data. In these studies, in each challenged or failed project, a large num-
ber, if not a majority, of its defects were from missing D requirements. In the one highly
successful project, its RE focused on finding all D requirements of its scope.

6.1 Lihua Ou’s Master’s Thesis

Ou’s Master’s thesis, under Berry’s supervision, is a case study of using a user’s manual
(UM) for a CBS as its RS with upfront RE leading to what was to be a complete RS
[5,27]. That is, Ou was not to begin even design of the CBS until she had finished
writing the UM to her customer’s satisfaction. Her customer, Berry, who was also her



D Vs. G Requirements: A New Categorization of Requirements 7

supervisor, had experience with prototypes of the CBS she was to develop and had
very clear ideas about what he wanted. So, he forced her to revise the UM, yet again,
whenever there was something in the UM that he did not like or could not understand
fully. Ou ended up producing eleven versions of the UM before beginning to design
the implementation. There were three more revisions necessitated by discoveries of
new or changed requirements during implementation. All the major revisions of the
manual that affected the CBS’s architecture were among the eleven pre-implementa-
tion versions, and each of the three revisions that occurred during implementation were
relatively minor, focused on specific exceptions to one use case, and had no effect on
the CBS’s architecture.

Ou had built other CBSs in industrial jobs, mainly in commerce. In these jobs, she
had followed the traditional waterfall model, with its traditional heavy-weight SRS.
Based on this industrial experience and her study of previous prototypes, Ou planned a
10-month project schedule:

Duration Step

in months

1 Preparation

2 Requirements specification

4 Implementation

2 Testing

1 Buffer (probably more implementation and testing)
10 Total planned

In this schedule, 1 month was allocated to studying the problem, 2 months were al-
located to the RE to produce the UM/RS, and 7 months were allocated to the design,
implementation, testing, and debugging.

In the actual project, Ou spent a lot more time than planned in RE:

Duration Step

in months

1.0 Preparation

49 Writing of user’s manual = requirements specification, 11 versions

0.7 Design including planning implementation strategy for maximum reuse of
pic code and JAVA library

1.7 Implementation including module testing and 3 manual revisions

1.7 Integration testing including 1 manual revision and implementation changes

10.0 Total actual

The 11 iterations of the UM/RS required nearly 5 months, a nearly 3 month slip-
page, and Ou thought she was hopelessly behind and would be at least 3 months late.
However, the implementation went so smoothly, with almost none of the usual surprises,
that Ou ended up finishing by the end of 10th month, on time, with not only the imple-
mentation on a Solaris machine that her supervisor required, but also a copy for her own
use on a Windows machine. The UM/RS answered nearly every question that Ou, the
implementer had about the CBS. There were no major new requirements discovered.
The 3 UM/RS revisions that occurred during implementation dealt with poor responses
to some input errors for a few use cases. These revisions necessitated redesigning only
the poor responses, very local updates to the UM/RS, and very local updates to the code
being written. So, they slowed the implementation down for only a few hours.



8 D.M. Berry, M. Lucena, V. Sakhnini, and A. Dhakla

Particularly helpful was that Ou and Berry had worked out all the exceptional and
variant cases of every use case that Berry required and had described them in the UM.
Thus, Ou had to flesh out only very few exceptional and variant cases and did not have
to do any subconscious RE during implementation.

As Ou explained [27],

We didn’t save time during the requirement phase by writing the user’s manual instead
of a requirement specification. In fact, I would say that we lost time.

Everything got paid back in the later design, implementation, and testing phases. ...
Implementation went much faster than expected. ...

Compared to projects that I did before, the requirement phase in this case study was
no easier than that in a normal life cycle. I expected that writing a user’s manual would
have been easier than writing a formal requirement specification. However, design, im-
plementation, and testing went much better than expected. The project finished on time
and with the customer’s satisfaction. While in my past experience, of about 5 years,
usually the early requirements and design phases went much more smoothly than in
this project. However, in the past projects, always requirements and design problems
were discovered during implementation and testing. In this project, there were much
fewer problems discovered during implementation and testing, allowing them to go very
quickly.

Using the vocabulary of this article, the first version of the UM/RS identified all the
G requirements. The UM/RS was complete, because the customer Berry had learned
from previous prototypes, i.e., class projects and masters’ theses, what he really wanted.
In retrospect, each revision thereafter focused on exceptions and variations of an exist-
ing requirement, i.e., D requirements. RE continued until it had squeezed out every last
drop of D requirements. So, there were almost no requirements, of any kind, to dis-
cover during implementation. Only a few obscure D requirements with very local effect
were discovered during coding. Thus, coding went very fast, and the implemented CBS
worked right — in the double senses of “building the right system” and “building the
system right” — almost the first time.

6.2 Consulting at Company X

At the invitation of a company X, Berry et al conducted an interview-and-focus-group
study of X’s RE process [6]. The main finding was that in an attempt to follow each
project’s schedule exactly, the RE phase of the project was being stopped on the sched-
uled date and whatever about the requirements for the project was understood and speci-
fied by that date became the RS that the developers implemented the project’s CBS. Not
surprisingly, the RS was incomplete, leaving out many details that developers needed
to know before they could write the code that they were to write. Typically, a developer
faced with an incomplete RS simply invented the needed requirement, based on his
or her understanding of what is needed and often influenced by what made his or her
job easier. Each developer making such decisions independently made for chaos and
incorrect software.

Each developer-initiated change to the RS was perceived negatively as requirements
creep by all other developers. Adding to the chaos was that, to avoid the animosity that
contributing to requirements creep caused, developers stopped reporting changes they



D Vs. G Requirements: A New Categorization of Requirements 9

made to the requirements in their code [7]. As a result, the RS grew more and more
incorrect, i.e., not matching the actual code, and assumed interfaces between modules
could not be relied on.

Berry et al determined that almost all cases of so-called requirements creep were
requirements that were there all along in some of the project members’ minds, but were
just not expressed in the RS because RE was terminated on the due date before it had
finished to produce a coherent complete RS. They called this kind of creep “avoid-
able creep” and the true creep “unavoidable creep”. In retrospect, the avoidable creep
requirements were D requirements and the unavoidable creep requirements were G re-
quirements.

As they said in 2010 [6],

One reason cited for not being willing to spend more time on RE is that there is no ap-
parent end in sight for continuous RE, especially once the need for an iterative approach
is identified to allow X’s software to keep up with the ever-changing market.

On the other hand, it is recognized that a lot more can be done than is currently
done, especially to discover those missing requirement and requirements defects that are
eventually found during coding of the RS and that existed at the time RE was terminated.
These late-discovered requirements are thought to be true creep, but are really avoidable
creep.

The idea is to recognize that there are two kinds of analyses going on during RE:

1. one to determine the scope, i.e., feature set, of the system to be built, and

2. one to determine the details of requirements within any given scope.
There is no end possible for the first kind of RE. One can always add more features
to any scope and one can always find variations of any scope that achieve the same
functionality. However, deciding whether any scope is right requires building that scope
and letting users have a go at it. So, it is necessary to choose a scope based on whatever
information is currently available and to resist temptations to modify it or add to it.

However, there is no excuse to proceeding to implementation until all of the require-
ment defects of the chosen scope have been discovered by thorough RE and until the
RS is such that a programmer can code the software without having to ask questions
or to make requirements decisions. Proceeding before these details have been worked
out creates a situation in which RD [requirements determination] is done by the wrong
people, too many times, redundantly, inconsistently, and taking more time than needed
and in which correcting defects is done at a significantly higher cost than needed.

They had observed in 2010 what this article is claiming now.

6.3 Daniel Isaacs’s Master’s Thesis

Isaacs and Berry [16] describe a case study of RE practices conducted by Isaacs at his
place of employment for his master’s degree at the University of Waterloo under Berry’s
supervision. The case study was conducted at the Ontario office, O, of a Canadian com-
pany, X (different from the company X of Section 6.2).

The typical CBS development project at O followed a so-called agile lifecycle.
However, that agility was very lightweight and in name only. O did not carefully follow
all steps, e.g., continuous customer presence, that ensure wide distribution of require-
ments knowledge in the absence of an RS. As in many places, O’s “Agile” was a fancy



10 D.M. Berry, M. Lucena, V. Sakhnini, and A. Dhakla

name for doing the old-fashioned seat-of-the-pants lifecycle, with no upfront RE, no
documentation at any time, skipping everything that is perceived to waste time, and
with a lot of scrambling near and after the deadline, and finally, a lot of extra work to
fix the inevitable mistakes.

X acquired another Canadian company, Y, whose main product is PY, primarily to
incorporate PY’s functionality into X’s own products. Shortly after the acquisition, O
began a project to build PX, which was to duplicate and extend PY’s functionality. The
main challenge X faced when it started the started the project was its lack of knowledge
of PY’s domain. PY’s developers and other stakeholders, such as end users, were geo-
graphically distant from the PX project team. Also, all PY developers, who had domain
knowledge about PY, quit rather than become X employees.

X’s senior management communicated to the PX developers in O that their job
was to replicate the functionality of PY exactly, i.e., no more and no less functionality
than PY had. X could not just use PY’s code, because PY’s functionality had to be
migrated to a different platform, in order to incorporate the functionality into O’s suite
of software. Consequently, the project manager at O communicated PX’s requirements
as a one-sentence RS:

Mimic this Webpage.

while pointing to the Webpage implemented by PY.

PY’s functionality was not defined or documented anywhere. The acquisition had
failed to obtain sufficient information for a smooth development. As a result, the de-
velopers in the project did not fully understand what was required to build PY. The
implementation of PX ended up relying heavily on each developer’s own interpretation,
a serious problem since each developer’s interpretation was different from those of the
others.

To use this paper’s vocabulary, the scope for the development of PY consisted of
one G requirement, “Mimic this Webpage”. Because the developers had access to the
PX Webpage, they felt that they could answer any question as it came up by just seeing
what the PX Webpage did in the question’s situation. As a result, the developers plunged
directly into implementation without fleshing out any other requirement, which in this
case would be a D requirement, since it was already embodied in the Webpage, in the
current scope, but not made explicit in any RS.

The developers delivered a first version of PX after 24 months, 6 months later than
planned. Most of the developers admitted that the product that they delivered was of
poor quality. The low quality was confirmed by the Quality Assurance (QA) Team.
They compared the behavior of PX, the newly created product, against the behavior of
PY, the original product. If the new system was missing some functionality, or a bug
was found, the QA team opened a ticket in a bug-tracking application. By the end of the
third month after delivery, the QA team had logged 681 tickets, a large number, even
for O.

For the purposes of the case study, Isaacs tried to determine the origins of all 681
tickets. After reviewing only the first 100 tickets, he gave up, confident of saturation.
According to Isaacs’s assessment, 37 of the 100 were from missing requirements, and
the remaining 63 were bugs introduced during programming of known requirements.
Note that Isaacs was an employee of X and worked on the PX project. Thus, he had as



D Vs. G Requirements: A New Categorization of Requirements 11

much knowledge of the domain as anyone else on the project team, and his classifica-
tions of the nature of a defect can be accepted as as accurate as is possible.

In this paper’s vocabulary, it is safe to say that of the first 100 tickets, 37 of the
defects were from missing D requirements, because the meaning of “an input causes a
defect” is that PX did not behave like PY for the input, and that behavior was already
embodied in the Webpage, in the current scope, but not made explicit in the RS. The re-
maining 63 defects were true implementation defects and were not related to any miss-
ing requirements. They were the signs of low quality programming. If they are forced
to be considered as arising from either a D or a G requirement, then they would need
to be considered as arising from a D requirement; they are mistakes in implementing a
requirement that is known to be in the current scope.

6.4 Chantelle Gellert’s Observation

Chantelle Gellert reports a case study of the RE practices of X (different from the com-
panies X of Sections 6.2 and 6.3), a small Ontario software production company [14].
She reports that when a project manager (PM) assigns the implementation of a scope
of requirements to a cooperative student, the student’s mentor intercepts the assignment
and fleshes out the requirements in the assignment with additional detail. Without this
detail, the cooperative student, being a temporary employee for three months at a time,
does not have enough sustained experience with X to be able to write the code correctly.
When the PM assigns the same to a regular employee, the employee is expected to do
the fleshing alone.

In this paper’s vocabulary, the mentors are probably fleshing out the G requirements
of the PM’s scope with D requirements so that the cooperative student receives a com-
plete RS for the scope. They are doing so because they recognize that the cooperative
student does not yet have enough domain knowledge to quickly and reliably find all the
D requirements arising from the G requirements of the PM’s scope

7 Related Work

Some of the relevant literature is cited in Sections 1-5.

The NaPiRE effort [25] has developed a survey instrument by which participants
can identify what pains them about RE, whether they be artifacts, processes, or what-
ever. The effort has spawned a number of studies of software development organizations
in various different places, including Austria, Brazil, and Germany.

The typical report about a survey [26]? lists the top 5 or 10 pains. Among the top
pains that involve RSs are:

implicit requirements not made explicit [40]: D
incomplete and/or hidden requirements [40]: D #1
inconsistent requirements [24]: D

missing completeness check [18]: D

% The data from which the list of pains is obtained are in the papers listed at the cited website
[26].



12 D.M. Berry, M. Lucena, V. Sakhnini, and A. Dhakla

— moving targets (changing goals, business processes and or requirements) [24,40]:
G

— underspecified requirements that are too abstract and allow for various interpreta-
tions [24,40]: D #2

— volatile customer’s business domain [40]: G

The two of these that seem to be consistently listed in the top 2 of the pains that involve
requirements specifications are marked “#1” and “#2”, respectively. The other top pains
involve RE processes and communication among stakeholders.

Some of these RS-centered pains, the ones marked “D”, appear to involve incom-
plete, missing, or wrong D requirements, because they appear to be about requirements
that are already present in the development at hand. Other RS-centered pains, the ones
marked “G”, appear to involve missing G requirements, because they appear to be about
true requirements creep. The pains involving D requirements appear to be more frequent
than the pains involving G requirements.

With regard to RE in agile projects, Wagner et al observe [40]:

Furthermore, also in agile projects, it seems to be problematic to rush too quickly
through defining what needs to be done (“Not enough time spent defining to the level
of detail required”).

In many agile RE approaches, requirements are not meant to be complete but a cause
for discussions with the customer. Hence, incomplete requirements are to be expected.
When does this become a problem? It is a problem if the effect is “Rework or delivery
that does not fully meet the customer’s need.” or “customer dissatisfaction (delivery that
does not meet customer expectations)”. It is caused by “Hidden requirements that are
obvious to the customer” ... Hence, the role of the on-site customer or product owner is
a central one that needs to be filled with a person being able to understand the customers
and elicit all important requirements.

Note that the developers have to think of asking the customer what to do about an excep-
tion. If the developers do not bother to search for exceptions and other D requirements,
then the customer who is present is not different from a customer who is not present.

8 Future Work and Long Term Goals

The long-term goal of our future research is to answer the research question (RQ):

RQ: What is the effect on
1. the development lifecycle of a CBS and
2. the quality of the developed CBS
of an RE that focuses on identifying and specifying upfront, all and only the D
requirements in the CBS’s scope?

A possible answer to the RQ is expressed as falsifiable, testable hypotheses that will be
the subject of future research.

As typically done, an agile development discovers all requirements the same way:
each sprint defines a scope that includes some new requirements, deferring others to



D Vs. G Requirements: A New Categorization of Requirements 13

later sprint. As typically done, a waterfall development tries to discover all requirements
up front before its implementation starts.
The cost observations lead to the testable hypotheses:

H1: Regardless of development model,
1. the quality of a CBS, by any measure, is negatively correlated with and
2. the cost of developing the CBS is positively correlated with
the number of D requirements missing from the CBS’s scope.
H2: Let S be a scope that is missing some D requirements D’. Regardless of develop-
ment model, a development from S U D’ produces a CBS
1. with better quality and
2. with lower cost
than does a development from S.

Some past empirical studies need to be redone taking into account G and D require-
ments to see if they produce more conclusive results.

Support for these hypotheses recommends modifying agile methods so that each
sprint, with a scope, S, begins with upfront RE that continues as long as necessary
to identify all D requirements for .S. This modified agile method is agile globally, but
within each sprint, it is a waterfall for the scope of the sprint. This modified agile method
should produce better CBSs more quickly and with lower cost than do unmodified agile
methods.

9 Conclusions

This article has identified a new significant categorization of functional requirements, D
and G requirements and has offered past case studies showing that focusing a project’s
RE on finding all of its scope’s D requirements has led to higher than expected project
success. If future work shows this observation to be true in general, then each sprint of
an agile method should include full upfront RE for its scope.

Acknowledgements

The authors thank Luiz Marcio Cysneiros, Sarah Gregory, Irit Hadar, Andrea Herrmann,
Mike Panis, and Anna Zamansky for their comments on previous drafts or in oral pre-
sentations of this work.

References

1. Abdulkhaleq, A., Wagner, S., Leveson, N.: A comprehensive safety engineering approach
for software-intensive systems based on STPA. Procedia Engineering 128, 2-11 (2015)

2. Agile Alliance: Principles: The Agile Alliance (2001), http://www.agilealliance.org/

3. Balaji, S., Sundararajan Murugaiyan, M.: WATEERFALLVs [sic] V-MODEL Vs AGILE: A
COMPARATIVE STUDY ON SDLC. JITBM 2(1) (2012)



14

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24,

25.

D.M. Berry, M. Lucena, V. Sakhnini, and A. Dhakla

. Barbosa, L., Freire, S., et al: Organizing the TD management landscape for requirements

and requirements documentation debt. In: Proc. WER (2022), http://wer.inf.puc-rio.br/
WERpapers/artigos/artigos-WER22/WER _2022_Camera_ready paper_28.pdf

. Berry, D., Daudjee, K., ef al: User’s manual as a requirements specification: Case studies.

REJ 9(1), 67-82 (2004)

. Berry, D.M., Czarnecki, K., et al: Requirements determination is unstoppable: An experience

report. In: Proc. RE. pp. 311-316 (2010)

. Berry, D.M., Czarnecki, K., et al: The problem of the lack of benefit of a document to its

producer (PotLoBoaDtiP). In: Proc. SWSTE. pp. 3742 (2016)

. Berry, D.M., Damian, D., et al: To do or not to do: If the requirements engineering payoff is

so good, why aren’t more companies doing it? In: Proc. RE. p. 447 (2005)

. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs, NJ, USA

(1981)

Boehm, B.W.: A spiral model of software development and enhancement. SIGSOFT Softw.
Eng. Notes 11(4), 14-24 (1986)

Dony, C., Knudsen, J.L., et al: Advanced Topics in Exception Handling Techniques.
Springer, Berlin, DE (2006)

Ellis, K., Berry, D.M.: Quantifying the impact of requirements definition and management
process maturity on project outcome in business application development. REJ 18(3), 223—
249 (2013)

Gaborov, M., Karuovié, D., et al: Comparative analysis of agile and traditional methodolo-
gies in IT project management. JATES 11(4), 1-24 (2021)

Gellert, C.: Requirements Engineering and Management Effects on Downstream Developer
Performance in a Small Business Findings from a Case Study in a CMMI/CMM Context.
Master’s thesis, Univ. Waterloo, Canada (2021), http://hdl.handle.net/10012/17777
Greenspan, S.J.: Extreme RE: What if there is no time for requirements engineering? In:
Proc. RE. pp. 282-284 (2001)

. Isaacs, D., Berry, D.M.: Developers want requirements, but their project manager doesn’t;

and a possibly transcendent hawthorne effect. In: Proc. EmpiRE (2011)

Jiang, L., Eberlein, A.: An analysis of the history of classical software development and agile
development. In: Proc. IEEE SMC. pp. 3733-3738 (2009)

Kalinowski, M., Curty, P., et al: Supporting defect causal analysis in practice with cross-
company data on causes of requirements engineering problems. In: Proc. ICSE SEIP. pp.
223-232 (2016)

Kasauli, R., Knauss, E., et al: Requirements engineering challenges and practices in large-
scale agile system development. JSS 172, 110851 (2021)

Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. of the IEEE
68(9), 1060-1076 (1980)

Lehman, M.M.: Laws of software evolution revisited. In: European Workshop on Software
Process Technology. pp. 108—124. Springer-Verlag (1996)

Lucia, A., Qusef, A.: Requirements engineering in Agile software development. Journal of
Emerging Technologies in Web Intelligence 2(3), 212-220 (2003)

Malm, T.: Requirements Engineering in Agile Projects — Comparing a Sample to Require-
ments-Engineering Literature. Master’s thesis, Faculty of Social Sciences, Business and
Economics, Abo Akademi University, Turku, Finland (2020), https://www.doria.fi/bitstream/
handle/10024/177487/malm_tobias.pdf

Mendez, D., TieBler, M., et al: On evidence-based risk management in requirements engi-
neering. In: SWQD: Methods and Tools for Better Software and Systems. pp. 39-59 (2018)
Mendez, D., Wagner, S., ef al: Naming the pain in requirements engineering: Contemporary
problems, causes, and effects in practice. EMSE 22, 2298-2338 (2017)



26.
217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

D Vs. G Requirements: A New Categorization of Requirements 15

NaPiRE: Napire data and publications (Viewed 1 November 2022), http://napire.org/#/data
Ou, L.: WD-pic, a New Paradigm for Picture Drawing Programs and its Development as a
Case Study of the Use of its User’s Manual as its Specification. Master’s thesis, Univ. Water-
loo, Canada (2002), https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/LihuaOuThesis.
pdf

Rasheed, A., Zafar, B., et al: Requirement engineering challenges in agile software develop-
ment. Mathematical Problems in Engineering 2021 (2021)

Rogers, G.: How Agile can requirements engineers really be? RE Magazine (2014), https:
/lre-magazine.ireb.org/articles/requirements-engineers

Royce, W.W.: Managing the development of large software systems: Concepts and tech-
niques. In: WesCon (1970)

Schach, S.R.: Classical and Object-Oriented Software Engineering With UML and Java.
McGraw-Hill, 4th edn. (1998)

Shui, A., Mustafiz, S., et al: Exceptional use cases. In: Briand, L., Williams, C. (eds.) Model
Driven Engineering Languages and Systems. pp. 568-583. Springer, Berlin, DE (2005)
Shui, A., Mustafiz, S., Kienzle, J.: Exception-aware requirements elicitation with use cases.
In: Dony, C., et al (eds.) Advanced Topics in Exception Handling Techniques. pp. 221-242.
Springer, Berlin, DE (2006)

So, J., Berry, D.M.: Experiences of requirements engineering for two consecutive versions
of a product at VLSC. In: Proc. RE. pp. 216-221 (2006)

Society of Automotive Engineers: Fault/failure analysis procedure. Tech. Rep. ARP 926A,
Superseding, SAE, Warrendale, PA, USA (1979), https://www.sae.org/standards/content/
arp926/

Thesing, T., Feldmann, C., Burchardt, M.: Agile versus waterfall project management: De-
cision model for selecting the appropriate approach to a project. Procedia Computer Science
181(01), 746-756 (2021)

Troyan, J.E., LeVine, L.Y.: Ethylene oxide explosion at Doe Run. Loss Prevention 2, 125—
136 (1968)

Van Cauwenberghe, P.: Chapter 18: Refactoring or up-front design? (2002), http://wwww.
agilecoach.net/html/refactoring_or_upfront.pdf

Vesely, W.E., Goldberg, FF., et al: Fault tree handbook. Tech. Rep. ADA354973, Nu-
clear Regulatory Commission, Washington, DC, USA (1981), https://apps.dtic.mil/sti/pdfs/
ADA354973.pdf

Wagner, S., Mendez, D., et al: Requirements engineering practice and problems in Agile
projects: Results from an international survey. In: Proc. CibSE. pp. 85-98 (2017)



