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Abstract—This extended abstract discusses the tradeoffs be-
tween recall and precision in assessing tools for finding defects
in natural language requirements specifications.

I. NLP TOOLS FOR DEFECT DETECTION

In the late 1980s, some authors, e.g., Fickas [1], began
working on problems related to the use of natural language
(NL) in requirements engineering (RE) and on using NL
processing (NLP) to automate RE processes involving NL.
In 1993, Ryan observed that NLP “does not now, nor will it
in the foreseeable future, provide a level of understanding [of
NL requirements] that could be relied upon, . . . it is highly
questionable that the resulting [NLP] system would be of
great use in requirements engineering.” [2]. Nevertheless, Ryan
saw that NLP could be useful for a variety of specific RE
tasks involving NL requirements specifications (RSs), such as
tracing and entity identification.

Thus, since then, NLP has been applied to a variety of
such tasks, including requirements tracing [3], [4], requirement
classification [5], app review analysis [6], model synthesis
[7], RS ambiguity finding [8], and its generalization, RS
defect finding [9]. The rest of this short paper is couched in
terms of one representative task, RS defect finding, which has
received attention from the early 2000s [9] through to now
[10], including from these authors. Nevertheless, much of the
discussion is applicable to the other tasks.

The RE field has often adopted Information Retrieval (IR)
algorithms for use in developing tools for finding defects in NL
RSs [11]. Quite naturally, the RE field has adopted also IR’s
measures, i.e., precision, recall, and the F -measure, to assess
the effectiveness of these tools. Precision, P , is the probability
that a tool-reported possible defect is in fact a defect; recall,
R, is the probability that a defect is reported by the tool; the
F -measure, is the harmonic mean of P and R. There is a
weighted version of the F -measure, Fβ which weights R by
β2 in the harmonic mean formula.

Precision is negatively influenced by the number of de-
fects wrongly identified, also called false positives. Recall is
negatively influenced by the number of undetected defects,
also called false negatives. Precision and recall can usually be
traded off in an IR algorithm: when you increase recall, you
tend to decreas precision, and vice versa.

Historically, IR, such as for search engines, has valued pre-
cision more than recall. For example, when you are searching
for an Italian restaurant near you, all you require is one true
positive for a recall of 1

n , where n is the possibly large number
of correct answers the search engine could give you. However,
you are very annoyed with low precision, when you have
to wade through many false positives to get to the one true
positive that you seek.

However, the situation in RE for finding defects in NL
RSs is different [12]. On a small scale, deciding whether
a particular RS sentence has a defect is easy. However, in
the context of the typical large collection of large NL RS
documents accompanying the development of a computer-
based-system (CBS), the task becomes unmanageable. So we
are motivated to develop a tool to assist in the task, particularly
in cases, such as for safety-critical CBSs, in which all defects
must be found. On this basis, it seems clear that for such
a tool, recall is going to be more important than precision,
and that the value of β to use in Fβ will be greater than 1.
However, the annoyance factor of having to wade through the
many false positives arising from low precision is real, and it
could totally discourage users from using the tool.

This extended abstract adopts the Hegelian structure of
thesis, antithesis, and synthesis in describing how a tool for
finding defects in an RS should be assessed. The thesis,
presented in Section II is that recall is more important than
precision. The antithesis, presented in Section III is that pre-
cision is more important than recall. The synthesis, presented
in Section IV, goes beyond the precision–recall dispute, and
suggests an empirically sound way to evaluate any given tool.

II. THESIS: ARGUMENTS IN FAVOR OF RECALL

The first argument that recall is more important than pre-
cision for the defect finding task is based on the costs of
the task. Manually finding a true positive, an RS sentence
with a defect, in the large collection of large input documents
takes significantly more time than manually rejecting a false
positive, an RS sentence with no defect after all, among the
RS sentences that the tool claims to have defects. Furthermore,
if the tool is not able to achieve 100% recall, or at least better
recall than is humanly possible, the tool is effectively useless.
The user will be compelled to search for defects manually in
the entire set of inputs, because he or she cannot determine



from the tool’s output what parts of the input do not have to
be examined.

The second argument is based on the costs of undetected
defects. Particularly in the context of a safety-critical CBS,
the cost of an undetected, false negative defect is much higher
than the cost of an incorrectly identified, false positive defect.
Very high recall is required to avoid an undetected defect that
can lead to a life-threatening run-time error.

III. ANTITHESIS: ARGUMENTS IN FAVOR OF PRECISION

The first argument that precision is more important than
recall for the defect finding task is based on a paradox. A tool
that gives 100% recall could be the tool that simply reports
every input sentence as having a defect. This tool saves the
user no work at all, because he or she will have to inspect
the entire input manually to weed out all the false positives.
Therefore, recall cannot be the only measure to assess the
performance of a defect finding tool, and precision must be
taken into account.

The second argument concerns the perception that users
have of an automated tool. An automated tool is not expected
to fail, and, if it fails too often, the user will cease to use it. A
false positive defect — an RS sentence reported as defective,
but actually not defective, as the user can plainly see — is
regarded as a failure by the user and as a reason to distrust
the tool. It is therefore important that a tool give some value
to precision.

IV. SYNTHESIS: A NEW METHOD TO EVALUATE TOOLS

Notwithstanding the need to favor recall over precision, the
thesis and antithesis show that that both measures need to
be considered when assessing a defect-finding tool. Thus, the
question is “What are the measures’ relative importance, i.e.,
what is the correct value of β to use in Fβ?” Nevertheless,
we have actually ignored the underlying question, “How can
we know whether it is better to use a defect finding tool, or
to find the defects entirely manually?” The answers to both of
these questions can come only empirically, e.g., by adapting
IR’s cost-based evaluation measures [13] to the RE context.

For determining the relative importance and thus the value
of β, we will need to determine empirically [12] :

1) the average time that an average human needs to
manually find a defective RS sentence among all RS
sentences, and

2) the average time that an average human needs to man-
ually vet any RS sentence marked as defective by the
tool, which is less than or equal to the average time that
an average human needs to manually determine whether
or not any RS sentence is defective.

The value of β is the ratio of the first to the second.
For determining whether to find defects manually, with a

tool, or with some mixture of both, we need to determine
empirically [12]:

• the criticality of achieving 100% recall on the task, by
estimating the cost of an undetected defect,

• the criticality of high precision, by estimating the tool-
use deterrence created by each false positive reported by
the tool,

• the average recall that the tool achieves on the task, and
• the average recall that humans achieve when they do the

task manually.
Some of all of these data can be computed by keeping track

of (1) time and (2) individual results (1) during a multi-person
construction of a gold standard with which to evaluate any tool
constructed to find RS defects and (2) during the test of the
tool at hand against the gold standard. These data allow us to
answer the second, underlying question.

V. CONCLUSION

This paper has briefly reviewed the use of NLP in RE. It
has focused on the task of finding defects in RSs in order to
discuss the use of recall and precision to assess tools developed
for NLP in RE. The conclusion is that for any NL RE task,
empirical studies are needed to allow recall and precision to
be valued correctly for the task. We hope that this paper will
trigger deeper discussions of way the RE field assesses its
NLP tools.
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