
The Development of Multimedia Hypermedia Applications as
Evolutionary, Prototyping-Based Requirements Engineering

by

Karin Sequerra-Breitman*
(sequerra@cos.ufrj.br)

Daniel M. Berry
(dberry@cs.technion.ac.il)

Faculty of Computer Science
Technion

Haifa 32000, Israel

Abstract

It is hypothesized (1) that the problem in building multimedia hypermedia applications is that
of understanding what is needed, i.e., of understanding the requirements and (2) that the
development of multimedia hypermedia is essentially the engineering of requirements for one
particular class of highly dynamic software-based computing systems. Moreover, because of
the stability of the libraries for multimedia and hypermedia systems, the development of a
prototype for validation of multimedia hypermedia requirements yields a system which is
essentially of production quality. The hypothesis is supported by comparing properties of
multimedia hypermedia and software systems and development in general and comparing the
Hiper Autor method for multimedia hypermedia development with the spiral model for
software development. Rigorous testing of the hypothesis is left for future work.

hhhhhhhhhhhhhhh
* visiting from COPPE Sistemas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

1 Introduction

The history of this paper is instructive about its thesis. Berry has been working in require-
ments engineering for software-based computing systems [Berry83, Berry95]. Sequerra has
been working in the problems of building multimedia hypermedia for educational purposes
[Sequerra93, Sequerra94, Sequerra95]. As a result of their joint discussions about their work,
it became clear to them that there is a lot of similarity in the processes of devising require-
ments for general software-based systems and for multimedia hypermedia. In both of these
areas, there is a two-way communication problem between the clients, who understand their
domain but not multimedia hypermedia or software, and the developers, who understand mul-
timedia hypermedia or software but not any client’s domain.

Sequerra had devised a method, Hiper Autor, to develop educational multimedia hyper-
media applications. For multimedia hypermedia, the programming libraries for using the vari-
ous media are well developed, so that once it is understood what to do, the programming of a
particular multimedia hypermedium application is quite straightforward, much the same as
generating applications in domains for which there are well-developed application generators.
An examination of the Hiper Autor method shows a strong resemblance to a spiral model,
evolutionary approach to engineer requirements for software-based systems, particularly
since so little of the effort of the Hiper Autor method is focused on implementation.

Thus, it is hypothesized that the problem in building multimedia hypermedia applications
is that of understanding what is needed, i.e., of understanding the requirements. Moreover,
because of the stability of the libraries, unlike in some other problem areas, the development
of a prototype for validation of multimedia hypermedia requirements yields a system which is
essentially of production quality.

The rest of this paper attempts to support this hypothesis by showing

1. how development of multimedia hypermedia, in general, is essentially the engineering
of requirements for one particular class of highly dynamic software-based computing
systems and

2. how the Hiper Autor multimedia hypermedia development method resembles the
spiral model [Boehm88], a requirements engineering process for software-based sys-
tems.

2 Multimedia Hypermedia Systems

Multimedia systems can be defined as those which combine in one application, different
kinds of media, e.g., text, images, video, sound, etc. A Hypertext is a system in which

g the text of a document is divided into named nodes, each containing some of the text,

g it is possible to address individual items inside nodes, where an item may be an indivi-
dual character, word, phrase, etc., and

g it is possible to create links, each of which points from an item in a node to another
node or to another item in the same or another node.

Hypermedia are a generalization of hypertext in which the contents of nodes are not restricted
to being text. Multimedia hypermedia are hypermedia systems in which the contents of nodes
can be in any media supported by current multimedia system technology.

3 Roles in Multimedia Hypermedia Development

In a multimedia hypermedium, the domain is the subject of the contents of the hyper-
medium. That is, if an educational hypermedium about the art of Michelangelo is being
developed, then the domain is Michelangelo and it includes art, history, biography, the topics
about which he made art, etc.

As with most software development, various kinds of experts are needed to help specify
and construct multimedia hypermedia. These include experts about

1. the domain,

2. multimedia,

3. hypermedia, and

4. software development.

Typically, the client provides the domain experts, and the developers provide all the rest, pos-
sibly via subcontractors for the various of the multimedia for which the developing company
does not have experts in its employ. For an educational hypermedium in which knowledge
from many disciplines will be incorporated, there may be many domain experts, each an
expert on one or more subject areas in a very wide domain. As in many requirements gather-
ing situations, the developer-supplied experts may be represented by a single analyst,
although in many cases, more than one analyst participates, and some of them may have
expertise in the media.

4 Multimedia Hypermedia and Software

This section compares and contrasts properties of multimedia hypermedia and general
software-based systems that have an impact on their requirements engineering and develop-
ment.

For both multimedia hypermedia and software in general, as for other artifacts with artis-
tic aspects, e.g., commercial art, movies and videos, buildings, etc., the client typically has
only a vague idea of what he or she wants and does not have a full understanding of what is
possible and impossible with the media or technology. The designer is typically an expert in
the technology or medium but does not have a full understanding of the client’s needs or
domain. For both, there is a two-way communication problem.

Moreover, for both, what needs to be discovered by the designer is not entirely in the
minds of the client [Goguen94]. There are things that need to be considered that are only in
the environment and social situation of the client. There are tacit assumptions that will not be
expressed unless someone happens to think of them or a situation using them happens to arise
during the requirements gathering and design processes.

In all of this similarity, as observed by Sequerra, there is a key factor that separates
software and hypermedia on one hand from all of the others. Commercial art, movies and
videos, buildings, etc. do not change once they are published or constructed. However, both
software and hypermedia undergo changes by virtue of their use, a use that changes the situa-
tion of their application in a way that changes their requirements. In other words, hypermedia
have all the earmarks of E-type software systems [Lehman80]. They can get to be very large
in order to cover vast amounts of material. Their very use leads to discovery of new connec-
tions that have to formalized in the form of links. Their very use leads also to pushing the
envelope of the scope of the material as new related topics are discovered. Just adding all
these new links and topic nodes begins to degrade the structure of the hypermedia and
increases the chance that users get lost in hyperspace and the managers lose track of the con-
tents of the hypermedia in a big messy bowl of spaghetti. It is necessary to undergo sys-
tematic evolutionary maintenance in order to add the new links and nodes in a manner that
preserves the structure of the hypermedia and sometimes it is necessary to restructure the
hypermedia to accommodate the changes in a coherent fashion. If one were to replace “hyper-
media” with “software”, “nodes” with “procedures”, “contents” with “lines of code”, and
“links” with “invocations and accesses”, the above can be read as a description of a typical
large evolving E-type software system.

It is well-known that software development is labor intensive rather than technology
intensive* [Wegner84]. As a software development exercise, it is the observation of these
authors that development of multimedia hypermedia is more client intensive than most other
software systems, which tend to be more developer intensive. For a multimedia hyper-
medium, the client stays with and participates in the development far longer into the lifecycle
and in a greater percentage of the lifecycle than for other software, e.g., operating systems,
spread sheets, formatters, process controllers, air traffic controllers, etc., in which the
developers tend to go off and work by themselves once they believe that they understand the
requirements.

Finally, Vincent Quint, in an editorial for an issue of the journal Electronic Publishing—
Origination, Dissemination, and Design devoted to active documents, observes this same
essential similarity between programs and documents [Quint94].

5 Hiper Autor Development Method

The Hiper Autor development method helps the educational multimedia hypermedia
development team organize and discipline both its thought and its work. Hiper Autor pro-
vides specific tools and supports techniques for each phase of the hypermedium development
process. Hiper Autor is composed of two graphical languages and specific documentation
forms. Both the languages and the forms are used by multimedia hypermedia programming

hhhhhhhhhhhhhhh
* In 1984, Wegner stated that in its youth, software development is labor intensive, and expressed the hope that
it will become more capital intensive as tools are applied and reuse is practiced more universally. Sadly, even
though it is now ten years later, software development is still highly labor intensive. In a sense, it is inevitable
and expected also that multimedia hypermedia development remain labor intensive, despite the availability of
well-developed libraries and development toolkits. After stripping away the difficulties overcome by the use of
the libraries and tool kits, one is left with only the problem of understanding the domain of the hypermedium. No
amount of technology and reuse will help here, because this understanding requires delving into clients’ minds
and social situations and charting new territory for which there is nothing yet to reuse!

experts during successive interactions with the domain experts to organize the interaction and
to document the product.

The Hiper Autor development process follows the spiral lifecycle model, and evolves
successive versions of the product in successive sweeps of requirements specification and
design. The phases of the method, and thus of each sweep, are initial requirements elicitation,
elaboration of the global content scheme, elaboration of the node network, evaluation of the
node network, detailed design specification, implementation of the next version, and evalua-
tion of the version. Figure 1 shows the spiral model adapted to multimedia hypermedia
development.

ANALYSIS
INITIAL

VIABILITY

VERSION 1

VERSION 2

VERSION n
PHASE 1: Initial Requirements Elicitation

PHASE 2: E
laboration of G

lobal C
ontent Scheme

PHASE 3: Elaboration of Node Network

PHASE 4: Evaluation of Node Network

PH
A

SE 5: D
etailed D

esign Specification

PH
A

SE
 6

: I
m

pl
em

en
ta

tio
n

of
 V

er
sio

n

PHASE 7: E
valuation of V

ersio
n

Figure 1: Boehm’s Spiral Model Adapted to Hypermedia Development

Each of the phases is described in greater detail in a section of its own.

5.1 Initial Requirements Elicitation

The goals of the initial requirements elicitation phase are to establish the scope of the
application’s database and to identify the educational goals. The topics that will be covered in
the application must be chosen and the depth to which they will be covered has to be deter-
mined. This activity must be carried out by domain experts and at least one analyst. The
analyst begins with an elicitation session with the domain experts. Elicitation consists of col-
lecting, validating, and specifying the requirements of the software to be built. If a require-
ment is considered a necessary condition in order to attain a goal, the first part of require-
ments specification can be defined as “... [translated from Portuguese] a process in which
what must be done is elicited and modeled. This process should deal with various points of

view and uses a combination of methods, tools, and actors. The final product of this process is
a model from which a document, the requirements specification, can be extracted” [Leite91].

Elicitation encompasses fact collection, validation, and communication; modeling encom-
passes organization and representation. During elicitation, the universe of information to be
included in the application is first acquired in order to be modeled in a later phase.

Modeling is responsible for characterizing the results obtained during elicitation. During
modeling, contexts are defined. Contexts are the partitioning of the database into large groups
of related topics. It is considered reasonable to address up to five contexts in a single data-
base, because a greater number would not be easily generated or managed. In the event that a
database seems to require more than five contexts, it is suggested to group some of them
together into single contexts. In some cases, some contexts may be further partitioned into
sub-contexts. Both domain experts and analysts are needed in order to determine the best pos-
sible consistency-maintaining partitioning of the application database, which also attains the
previously determined educational goals. The product of this phase is the context diagram
(diagrama do contexto) form. The context diagram form consists of two parts; part 1 is the
diagram itself in a graphical notation summarized in Figure 2; part 2 is a natural language
statement of the objectives of the hypermedium.

number given to context

number given to subcontext,
 is preceeded by the number
 of the parent context

where:

N

n

Context

Subcontext

N

N.n

Arc context
sub-
context

Figure 2: Graphical Notation for the Context Diagram

5.2 Elaboration of the Global Content Scheme

The goal of this phase is for the analysts and the domain experts to divide the contexts and
subcontexts identified during elicitation into topics, each of which will be given a node in the
hypermedium, and then to make a rough draft of the contents of these topic nodes. During
this phase, there should be no concern about the format and details of multimedia objects, i.e.,
images, video, or sound, that will appear in the nodes. The domain experts should offer a gen-
eral description of what they have in mind and would like to be included. The feasibility of
the inclusion of these objects will be determined later.

During this phase, it is not necessary to completely elaborate the contents of the nodes.
Instead, it is necessary only to sketch how the chunks of information are going to connected
in the hypermedium via links [Gay91] originating at buttons [Berk91]. The analysts meet
with the domain experts to identify the links between topics that help promote information
accessibility, augment usability, and augment user satisfaction [Glushko89]. The results are
documented in the simplified form, depicted in Figure 3, one for each node.

F2 - Formulário Simplificado HiperAutor
Nome do Nó: Número:
Contexto:

Texto

C
on

te
úd

o

Ligações (Nome Botão - Número Nó Destino)

A - E -

B - F -

C - G-

D - H -

O
bs

:/

Som

D
e

sc
ri

çã
o

:

Imagem/Vídeo

D
e

sc
ri

çã
o

:

® Coppe Sistemas 1993

Figure 3: Simplified Form

The rules to fill the simplified form for a node follow.

g Nome/Name: Give a unique and compatible name to the topic at hand in the node.

g Número/Number: Repeat the number of the context or subcontext from which the

node is derived and give it a positive integer extension. This way, each node is
guaranteed to have a unique number that can serve as a distinguishing identifier.

g Texto/Text: Give a brief description of the topics to be discussed. The dialogue should
be of no concern at this moment.

g Ligações/Links: Determine the links from this node to others, without concern for
whether the referred to nodes have already been created. The information given for
each link consists of a description, a number, and a destination. The description
uniquely identifies the place in the contents of the node, as it is displayed on the
screen, where the link’s hot spot (button) is located. The number is that of the contain-
ing node, extended by a unique number for the link within the node. The destination is
denoted by the number of the node that that is referred to by the link; this number is
filled in as it becomes known.

g Som/Sound: Give a brief description of the sound (voice or music) that is to be
included in the application. It is not necessary at this point to specify the source of the
sound or details of its digitization.

g Imagem/Vı́deo/Image/Video: Give a brief description of the images to be included in
this node. The possible current nonexistence of the image is not a limiting factor.
Images yet to be created can, and should, be specified.

g Observação/Observation: This field can be used to capture any suggestion or com-
ments that any participant thinks fit to include.

The set of filled forms provides a first estimate of the number of nodes of the application to be
developed, but do not fully specify the contents of any individual node.

5.3 Elaboration of the Node Network

During the previous phase, the database was divided into smaller partitions, called nodes,
each of which covers a specific topic [Leite91]. Each node also represents the smallest part
of a hyperdocument that can be addressed by a link [Berk91].

The set of simplified forms generated in the previous phase constitutes a draft of the con-
cepts to be fleshed out in the future application, separated into small nodes and related to each
other by links. Even with this set, it is difficult to visualize the whole database and the links
among the nodes. On the other hand, this visualization is essential to permit evaluating
whether the organization of the application will allow attaining the goals established for the
product. In order to aid visualization, Hiper Autor models the database with the information
contained in the forms. The model provides a graphical representation of the nodes contained
in the application as well as the links among them.

Based on the previous forms and further interactions with the domain experts, the analysts
prepare a node network in which all navigational options are explicit. As the node network
diagram is completed, it becomes clear which nodes have options and which do not because it
can be seen how many links leave a node. In building this network, it is essential to keep the
defined educational goals in mind. In order to document the node network, Hiper Autor pro-

vides a form for the node network diagram (diagrama de nòs) whose notation is described in
Figure 4.

Terminal

Node

Obligatory

Node

Link

Path

Windows

Node

Simple

Figure 4: Node Network Diagram Notation

Using the graphical notation, it is possible to represent all the nodes and their links, thus
providing a global view of the system. The graphical notation distinguishes three kinds of
node, the simple node, the obligatory node, and the terminal node. This classification allows
the authors to control movement to and from nodes according to their contents and the educa-
tional objectives of the hypermedium. A simple node is one with no restriction on movement
to or from the node; it is not even required that the reader visit it. An obligatory node is one
which the reader is obliged to visit independently of the chosen path. A terminal node is one
from which leaving the system is legal and will not break a stream of thought or interrupt an
explanation. Even though the existence of obligatory nodes appears to limit the reader’s navi-
gational freedom, precluding some exploration and the serendipity effect, they do guarantee
that the application favors attainment of its defined educational objectives. Many authors con-
demn the creation of networks with nodes linked without any defined criterion. De Young
considers arbitrary linking to be dangerous because it is conducive to the construction of
“spaghetti type node networks”, whose effect is very similar to those of the GOTO statements
in programming [DeYoung88].

Currently, the tendency is to employ the metaphor of excursions [Nielsen90], presenting
to the user a number of pre-defined paths through the body of information. Using excursions,
it can be guaranteed that the user will have orderly access to all essential chunks of informa-
tion, organized in a clear manner that provides for a good learning environment [Shneider-
man91].

5.4 Evaluation of the Design

Once the node diagram is complete, it is necessary to evaluate the design so far. The sys-
tem analysts, together with the domain experts, evaluate the system as a whole, taking into
account all possible paths, the organization of the information, the complexity of each node,
and conformance of their classifications to the established educational goals. During this pro-
cess, one of the analysts is designated to take written notes of the mistakes, incompleteness,
and inconsistencies found, together with the modifications desired by the domain experts.
Thus, this evaluation can be thought of as an inspection [Fagan76] and would benefit from as
much formality as is used in standard software development document inspections. This
document, the evaluation report, serves as the basis for revising the system design.

5.5 Detailed Design Specifications

After domain experts have evaluated and approved the node diagram, it is time to begin
writing a final draft of the contents of the nodes. Specific attention should be paid to avoid
putting an excess of information being put into any one node [Shneiderman91]. According to
Wurman, information that has not been digested amounts to no information at all, and it only
creates the illusion that the user was capable of accessing it, but in fact he or she did not
benefit from it at all. The same holds for information in the database which, if not well organ-
ized, will be lost [Wurman89]. In order to minimize the contents of nodes, Ben Shneiderman
[Shneiderman91] proposes the following node-writing rules. Let n be the node whose con-
tents are being written.

g Instead of discussing a subsidiary topic in n, different from the main topic of n, one
should only allude to the subtopic, designate a sentence that refers to it, and create a
link pointing to another node, whose contents discuss the subtopic.

g The same technique should be applied to details. Instead of including the detail in one
node, one should make a small reference leading to another node containing the
details.

The domain experts should write the final draft of the contents of the nodes, following these
rules. This information should be organized in the detail form depicted in Figure 5. The
analysts should also allow for the possibility that during this process, the domain experts opt
for decomposing nodes, resulting in the creation of many new nodes each with less informa-
tion than the decomposed node. The immediate consequence of this procedure is a revision to
the node diagram in order to accommodate the changes.

The rules to fill the detail form follow.

g Nome/Name: The name should be identical to the one used in the simplified form. If
the node at hand is a new one, the rules for the naming of nodes given for the filling of
the simplified form should be used.

g Número/Number: The number should be identical to the one used in the simplified
form. If the node at hand is a new one, the rules for the numbering of nodes given for
the filling of the simplified form should be used.

g Conteúdo/Contents: The contents are the final draft of the text to be included in the

nodes. The words and expressions that represent buttons should be represented using
all caps or some distinctive font or color.

g Alinhamento/Justification: Specify whether the text is left-justified, right-justified, or
centered.

g Ligações/Links: Indicate the word, expression, or area that will serve as buttons and
the number of the target node.

g Observação/Observation: This field can be used to register any comments relevant to
the node.

g Som/Sound: Describe the text or sound to be digitized. Indicate the sound’s source
and the person who will make the final recording.

g Nome do Arquivo/File name: Give the unique name of the file that stores or will store
the representation of the sound.

g Imagem/Vı́deo/Image/Video: Describe the image or video to be inserted. In case it
already exists in digitized form, specify the source. In case the image or video does
not exist, provide the necessary details for its creation.

g Nome do Arquivo/File Name: Give the unique name to the file that stores or will store
the representation of the image or video.

g Localização/Location: Give the coordinates of the image or video on the screen if it
does not occupy the whole screen.

It is essential that this form is filled taking the node diagram into account because the diagram
provides a global view of the nodes in the application.

During the detailed design specification, the software package to be used to implement the
application is chosen. For details on the criteria to choose educational hypermedia software
packages, refer to Mendonça [Mendonça93].

5.6 Implementation of the First Version

The process of specification and design ends when the revisions of the detailed design
specification phase yield mutually consistent detail forms and node network diagram and the
implementing hardware and software are chosen.

During the implementation of the first version of the product, the abstract specifications
are transformed into an operational product. If the all the previous phases were completed
properly, implementation should be mechanical and straightforward [Pressman92].

We believe that the documentation generated by using Hiper Autor is sufficient to
encourage the implementation quality and, therefore, of the final product. It should be noted,
though, that the ideal situation is to have an implementation team familiar with both the
hardware and software to be used in the implementation.

5.7 Evaluation of Implementation

The developed product is to be evaluated according to the quality attributes proposed by
Mendonça [Mendonça93] and extended for hypermedia systems by Campos [Campos92].

F4 - Formulário Detalhado HiperAutor
Nome do Nó: Número:
Contexto:
Background:

Texto

C
on

te
úd

o

Alinhamento: Esquerda Centro Direita Justificado
Ligações (Nome Botão - Número Nó Destino)

1 5
2 6
3 7
4 8

O
b

s:
/

Som
Tipo: Voz Humana Música
Nome do Arquivo:

D
es

cr
iç

ão
:

Imagem/Vídeo
Extensão: PCX BMP GIF AVI Outras:
Nome do Arquivo:
Localização: Centro Esquerda Direita

® Coppe Sistemas 1993

Figure 5: Detail Form

5.8 New Versions

Unless the application is a total disaster, the inexorable pressures [Lehman80] for mainte-
nance will set in. Maintenance is the set of activities performed to the software after it is
handed to its user [Ghezzi91]. Basically, there are two kinds of maintenance, corrective and
evolutionary. Corrective maintenance is modifying the system to fix observed problems, i.e.,
errors, while evolution is the addition of new nodes to the application. As with other software,
maintaining the consistency of the design documents with the software is essential to permit
future maintenance. To insure the faithfulness of the design documents, it is suggested that
maintenance be carried out by first modifying the forms and graphs and then following
through on the method described above, so that it appears that the new implementation were
derived from the new forms, rather than having been obtained by modifying the old imple-
mentation.

The literature says that the maintenance phase consumes the largest share of software
development. Most of its changes are due to mistakes in the requirements specifications
[Pressman92, Ghezzi91]. We believe that the use of Hiper Autor may contribute to reducing
the maintenance costs.

5.9 Completed Description

This completes the description of the Hiper Autor method. It is now time to turn back to
considering the main hypothesis that is the subject of this paper.

6 Support for Hypothesis

Examination of both the general process of multimedia hypermedia construction and the
specific Hiper Autor method shows clearly that most of the development of a multimedia
hypermedium is focused on dealing with client-or-domain-expert-supplied information and
with validating with the client and domain experts the conclusions drawn by the analysts.
Consequently, it is fair to say that multimedia hypermedia development is a grand exercise in
requirements elicitation, analysis, specification, and validation, i.e., of requirements engineer-
ing and that the hypothesis is supported.

One preliminary case study, such as the contents of this paper, is not enough to validate
any hypothesis [Potts93]. However, enough has been described to make it possible for us and
others to conduct more complete and rigorous studies in the future. Moreover, we and others
can be on the lookout for counter-examples and variations.

There was another hypothesis stated in passing, which one of the anonymous referees
identified as possibly worth examining in detail on its own, namely that libraries for using the
various media in multimedia systems are well-developed and stable enough that implementa-
tion of multimedia systems are indeed tantamount to application generation. Further examina-
tion of this issue is also left for future work.

7 Conclusion

This paper has contended that development of multimedia hypermedia strongly resembles
requirements engineering of general software-based systems. It has tried to demonstrate this

contention by comparing properties of multimedia hypermedia systems and more general
software-based systems and has shown that a specific multimedia hypermedia development
method is essentially a spiral model of successive mainly requirements engineering efforts
yielding a series of ever increasingly more complete client-validated prototypes. It has also
recognized that more studies are needed to properly validate this contention.

What can be derived from this conclusion? It should be that any successful requirements
engineering method, such as contextual inquiry [Holtzblatt93] can be applied to the design of
multimedia hypermedia. Moreover, it should also be that the process of developing any
software system can be reduced to focusing nearly only on requirements if one is able to case
and develop the application as a multimedia hypermedium. In other words, reduce the imple-
mentation problem to one of thoroughly exercising a well-developed program library or an
application generator.

Acknowledgments

The authors thank the anonymous referees for their comments and new ideas.

References

[Berk91] Berk, E., “A Hypertext Glossary,” in Hypertext and Hypermedia Hand-
book, ed. E. Berk, McGraw-Hill, New York, NY (1991).

[Berry83] Berry, D.M. and Berry, O., “The Programmer-Client Interaction in Arriv-
ing at Program Specifications: Guidelines and Linguistic Requirements,”
in Proceedings of IFIP TC2 Working Conference on System Description
Methodologies, ed. E. Knuth, Kecskemet, Hungary (1983).

[Berry95] Berry, D.M., “The Importance of Ignorance in Requirements Engineer-
ing,” Journal of Systems and Software 28(2), p.179–184 (1995).

[Boehm88] Boehm, B.W., “A Spiral Model of Software Development and Enhance-
ment,” IEEE Computer 21(5), p.61–72 (1988).

[Campos92] Campos, F.C.A. et al, “Autoria e Trabalho Cooperativo: Reflexões sobre
um Experiência em Hipertexto,” in Workshop em Trabalho Cooperativo,
Pensamento Crı́tico e Software Educacional, COPPE/UFRJ, Rio de
Janeiro, Brasil (1992).

[DeYoung88] DeYoung, L., “Linking Considered Harmful,” in Hypertexts: Concepts,
Systems, and Applications, ed. A. Ritz, N. Streitz, and J. André, Cam-
bridge University Press (1988).

[Fagan76] Fagan, M.E., “Design and Code Inspections to Reduce Errors in Program
Development,” IBM Systems Journal 15(3), p.182–211 (1976).

[Gay91] Gay, G., “Structuring Interactive Multimedia Fiction,” in Hypertext and
Hypermedia Handbook, ed. E. Berk, McGraw-Hill, New York, NY
(1991).

[Ghezzi91] Ghezzi, C., Jazayeri, M., and Mandrioli, D., Fundamentals of Software
Engineering, Prentice Hall, Englewood-Cliffs, NJ (1991).

[Glushko89] Glushko, R., Hypertext ’89 Course Notes #3: Turning Text into Hyper-
text, ACM, Inc. (1989).

[Goguen94] Goguen, J.A., “Requirements Engineering as the Reconciliation of
Technical and Social Issues,” pp. 165–199 in Requirements Engineering:
Social and Technical Issues, ed. J.A. Goguen and M. Jirotka, Academic
Press (1994).

[Holtzblatt93] Holtzblatt, K. and Jones, S., “Contextual Inquiry: A Participatory Tech-
nique for System Design,” in Participatory Design: Principles and Prac-
tice, ed. A. Namioka and D. Schuler, Erlbaum, Hillsdale, NJ (1993).

[Lehman80] Lehman, M.M., “Programs, Life Cycles, and Laws of Software Evolu-
tion,” Proceedings of the IEEE 68(9), p.1060–1076 (1980).

[Leite91] Leite, J.C.P., “Validação de Requisitos: O Uso de Pontos de Vista,”
Revista Brasileiro de Compuatação 6(2), p.39–52 (1991).

[Mendonça93] Mendonça, L.F. and Rocha, A.R., “Critérios de Qualidade para Avaliação
de Sistemas de Hipertexto,” in Encontro França Brasil de Informática na
Educação, Rio de Janeiro, Brasil (1993).

[Nielsen90] Nielsen, J., Hypertext and Hypermedia, Academic Press, New York, NY
(1990).

[Potts93] Potts, C., “Software Engineering Research Revisited,” IEEE Software
10(5), p.19–28 (1993).

[Pressman92] Pressman, R.S., Software Engineering: A Practitioner’s Approach,
McGraw-Hill, New York, NY (1992).

[Quint94] Quint, V., “Editorial,” Electronic Publishing—Origination, Dissemina-
tion, and Design 7(2), p.53–54 (1994).

[Sequerra93] Sequerra-Breitman, K., “Hiper Autor: a Method for Specification and
Design of Hypermedia Systems,” M.Sc. Thesis, COPPE/Federal Univer-
sity of Rio de Janeiro, Rio de Janeiro, RJ, Brazil (1993).

[Sequerra94] Sequerra-Breitman, K., “Authoring Considerations in the Imaginary
Museum Project: The Sistine Chapel — A Case Study,” in Proceedings of
the ED Media 94, Vancouver, BC, Canada (1994).

[Sequerra95] Sequerra-Breitman, K., “Using Hypermedia as a Interdisciplinary Learn-
ing and Exploration Tool: a Case Study of the Development of Solar,”
Technical Report, Faculty of Computer Science, Technion, Haifa, Israel
(1995).

[Shneiderman91] Shneiderman, B. et al, “Editing to Structure a Reader’s Experience,” in
Hypertext and Hypermedia Handbook, ed. E. Berk, McGraw-Hill, New
York, NY (1991).

[Wegner84] Wegner, P., “Capital-Intensive Software Technology,” IEEE Software
1(3), p.7–45 (1984).

[Wurman89] Wurman, R.S., Information Anxiety, Doubleday, New York, NY (1989).

