
WD-pic,
a New Paradigm for Picture Drawing Programs

and

its Development as a Case Study of

the Use of its User’s Manual as its Specification

by

Lihua (Lizzy) Ou

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2002

c©Lihua Ou, 2002

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I authorize the University of Waterloo to reproduce this thesis by photocopying or other means,

in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

ii

The University of Waterloo requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

iii

Acknowledgements

Thanks are given to many people for their help on this thesis. First of all, I would like to thank my

supervisor Dr. Daniel M. Berry, who made the whole thesis possible and gave me many excellent

suggestions. I would also like to thank my readers Dr. Joanne M. Atlee and Dr. Michael W.

Godfrey for their great help on modifying the thesis. Jo also gave me plenty of encouragement

and support to do the first presentation of the work at an early stage. Michael lent me his PC

for the testing at the last stage. Thanks to Dr. Andrew J. Malton for his valuable suggestions.

Thanks to Steve and Shelly Rose for proofreading the manual. Last, but not the least, thanks

to my family and friends, including my boy friend, without whom this thesis would have been

much harder to write. Thank you.

iv

Abstract

Thepic language is a graphics language for specifying line drawings to be typeset. Thepic pro-

gram is a pre-processor oftroff that runs in batch mode onUnix environments. In this work,WD-

pic, aWYSIWYG Direct-manipulationpic, is developed.WD-pic operates on a new paradigm

for WYSIWYG, direct-manipulation picture drawing in which mouse movement is minimized

by use of natural defaults being used for information normally provided by the mouse, and in

which the internal representation is directly editable in the program. The work is also a case

study of using the user’s manual for a Computer-Based System (CBS) as its requirement specifi-

cation. The result of the case study indicates that along several dimensions, user’s manual makes

an excellent requirement specification for CBSs. The user’s manual not only specifies the what

not how of the CBS at the users level, but it also serves as a useful requirements elicitation and

validation tool, as a repository of use cases, and as a useful source of covering test cases.

v

Contents

1 Introduction 1

1.1 A new paradigm for picture drawing programs. 1

1.1.1 Motivation and goals. 1

1.1.2 Basic design idea. 4

1.1.3 Related work. 5

1.2 Case study of using a user’s manual as a requirements specification. 9

1.2.1 Motivation and goals. 9

1.2.2 Related work. 9

1.3 Conventions. 12

1.3.1 Notational conventions. 12

1.3.2 Terms. 13

1.3.3 Abbreviations. 16

1.3.4 Organization of this document. 16

2 Picture Drawing 17

2.1 Basic paradigm and requirements. 17

2.2 User interface. 18

2.2.1 Screen layout. 18

2.2.2 Menu bar. 20

2.2.3 Pop-up menu. 21

2.2.4 Tool bar. 22

2.2.5 Palette. 22

2.2.6 Canvas . 22

vi

2.2.7 Edit window . 23

2.2.8 Status bar. 23

2.3 High level design (modules). 23

2.3.1 User Interface. 25

2.3.2 File . 25

2.3.3 ExternalEditor . 25

2.3.4 EditWindow . 26

2.3.5 Canvas . 27

2.3.6 PICObject. 27

2.3.7 PICCompiler . 28

2.3.8 Grid . 29

2.3.9 Gravity . 30

2.3.10 History . 30

2.3.11 Font. 31

2.3.12 Help. 31

2.4 Implementation. 31

2.4.1 pic code reuse. 31

2.4.2 Data structures and algorithms. 34

2.4.3 Miscellaneous implementation details. 40

2.5 Evaluation. 43

2.5.1 Evaluation ofWD-pic relative to the pros and cons of batch and WYSIWYG44

2.5.2 Future work. 44

3 Case study 46

3.1 Project plan. 46

3.2 Results and introspection. 48

3.2.1 Requirements. 50

3.2.2 Design . 52

3.2.3 Implementation. 52

3.2.4 Testing . 53

3.3 Author’s feelings during the life cycle. 53

vii

4 Conclusions 55

A pic source code of figures in the thesis 57

A.1 Figure 1.1 . 57

A.2 Figure 1.2 . 58

A.3 Figure 1.4 . 58

A.4 Figure 2.3 . 59

A.5 Figure 2.4 . 60

A.6 Figure 2.5 . 61

A.7 Figure 2.6 . 61

A.8 Figure 2.7 . 62

A.9 Figure 2.11 . 63

A.10 Figure 3.1 . 64

A.11 Figure 3.2 . 65

B Sequence diagrams 66

B.1 Opening a file. 66

B.2 Inserting an object. 66

B.3 Selecting an object. 66

B.4 Defining & activating grid . 66

B.5 Setting font and size of text. 66

C WD-pic user’s manual 72

viii

List of Figures

1.1 WD-pic usage. 3

1.2 Execution steps inWD-pic . 5

1.3 A sample drawn bydot . 7

1.4 A sample drawn bypic . 7

1.5 dot code of Figure 1.3 . 7

1.6 pic code of Figure 1.4. 7

2.1 Screen layout ofWD-pic . 18

2.2 Screen layout withbox attribute buttons. 19

2.3 WD-pic system architecture. 24

2.4 PICObject class diagram. 28

2.5 Corners of an ellipse. 29

2.6 Compiling process. 32

2.7 Euclidean coordinate & the screen coordinate. 35

2.8 gravitate to . 37

2.9 Adjust text position. 39

2.10 A sample of font setting. 41

2.11 Font related data structure. 41

3.1 WD-pic project plan . 47

3.2 WD-pic development process. 49

B.1 Sequence diagram of file open. 67

B.2 Sequence diagram of inserting an object. 68

ix

B.3 Sequence diagram of selecing an object. 69

B.4 Sequence diagram of defining and activating grid. 70

B.5 Sequence diagram of setting font and size. 71

x

Chapter 1

Introduction

This thesis has two main goals:

1. the investigation of a new paradigm for picture drawing programs, and

2. the investigation of the use of a program’s user’s manual as its requirement specification.

1.1 A new paradigm for picture drawing programs

1.1.1 Motivation and goals

Line diagrams are widely used in today’s computer science technical documents, especially in

software engineering documents. They are used through out the whole process of software devel-

opment, from requirements specification, system design, testing and maintenance. Flow charts,

state diagrams, system structure graphs, program call graphs, and object-to-object dependency

graphs are some commonly used line diagrams. Therefore, it is important to have some good

tools to draw the diagrams. Many researchers are working on picture drawing tools. Each of

most of these tools can be classified into one of two categories1:

• WYSIWYG (What You See Is What You Get) direct manipulation,e.g., xfig, Paint, Mac-

Draw, and

1This dichotomy is used by the customer ofWD-pic, Berry, to motivate the requirements and to provide goals.

1

• batch,e.g., pic [9, 10, 18], dot [13].

Shpilberg discusses the advantages and disadvantages of these categories [17]. The advan-

tages of WYSIWYG picture-drawing programs are as follows:

• The user can see the whole picture while composing.

• It is easier for the user to decide the objects’ shapes, sizes, positions,etc. Therefore, obvi-

ous errors can be avoided.

Most of the WYSIWYG picture-drawing programs have the following disadvantages:

• Changing one object in the picture might destroy the whole picture, because the layout of

each object in the picture is done manually by the user. For example, if the user changes the

size or position of one object, the size or position of the other objects which are connected

to the changed one have to be changed as well.

• It is not easy to manipulate the objects of a category as a group,e.g., changing all the boxes

in the picture to circles and changing the sizes of all the boxes in the picture.

Programs in batch mode, on the other hand, have advantages which are lacking in WYSI-

WYG mode programs. The advantages of batch mode programs are as follows:

• Inserting or deleting an object or changing its size or location does not destroy the entire

picture. The batch program recalculates the layout of the whole picture and redraws it

automatically.

• It is easy to manipulate objects of a category as a group. For example, if the user wants

to change all the boxes in the picture to circles. Since the description of whole picture is

stored in a plain text file, the user can search for each “box” in the picture and replace it

with a “circle”.

The disadvantages of the batch mode programs are as follows:

• The user cannot see the picture while composing its description.

• It is easier to make an error.

2

document WD-pic pic file pic troff picture

picture

Figure 1.1:WD-pic usage

Our motivation is to develop a picture drawing program that gets the best of both batch and

WYSIWYG modes.

The pic program is atroff [11] preprocessor. It is ideally suited for drawing diagrams in

computer science documents. The internal representation of a picture inpic language is easily

understood by a human. Based on these facts, we builtWD-pic on top of thepic program. Our

goal is to keep thepic program’s batch defaults and additionally, make it possible for users to

compose pictures through a graphic user interface,i.e., by mouse clicking or by typing from the

keyboard. For example, to draw a picture with a circle in it, the user can use any text editor to

compose apic file with “circle" in it, as with the batchpic program. Alternatively, inWD-pic,

the user can either type “circle” from the keyboard, or simply click thecircle button on the

palette. Either way, a circle is drawn onWD-pic’s canvas. What the user sees on the canvas is

what the user gets.

WD-pic can be run as an independent program on aUnix Solaris or aWindows 95/98/2000

environment, or as a preprocessor of thepic program. It draws pictures on its built-in canvas.

Its internal representation can be made into apic file, and then passed to thepic program, which

outputs totroff, as illustrated in Figure 1.1. What is printed finally is what was shown on the

canvas inWD-pic.

The reader should be aware that all the line-drawing figures in this thesis were produced by

the author usingWD-pic. The producedpic file was then processed, as suggested in Figure 1.1,

by pic and troff to produce aPOSTSCRIPT file that is included into the LATEX source for this

thesis.

3

1.1.2 Basic design idea

Like other WYSIWYG picture drawing programs,WD-pic has a Graphic User Interface (GUI),

which provides menus, palette, canvas, and a built-in text editor to users for directly manipulating

pictures or textually composing and editing picture descriptions. The canvas provides a graphical

view of the picture, while a textual view of the picture is shown in the editor window. The basic

design ideas are as follows:

1. WD-pic is made up of a GUI and apic interpreter built from thepic program, which is

effectively apic compiler, thus obtainingpic code reuse. They are connected by a bridge.

2. The GUI consists of standard components,e.g., menu bar, tool bar, and a palette which

contains all thepic primitive tokens, a canvas for graphical view of the picture and direct

manipulations, and a text editor window (EW) for a textual view of the internal represen-

tation (IR) of the picture.

3. All the mouse clicking and keyboard typing events from the GUI are classified into two

categories:

• affecting the IR, and

• affecting the session.

4. After an event of the former kind, the current complete IR is sent to thepic interpreter.

5. Thepic interpreter builds from the IR a data structure describing each picture element and

its size, location, and other attributes.

6. The GUI gets the picture information from the data structures and draws the entire picture

on the canvas.

Figure 1.2 illustrates the process of howWD-pic works.

Some other design goals of the user interface ofWD-pic are the following:

• All styles of input, i.e., by mouse or by keyboard, are fully interchangeable, without the

need to inform the application from where its next input is coming.

4

keyboard

mouse

GUI
input

affecting IR
events

IR
pic

compiler
GUI

output

affecting session
events

WD-pic

Figure 1.2:Execution steps inWD-pic

• There is no need to move the mouse to the canvas or the EW except to explicitly and

directly identify a point or an object; therefore, the mouse movement is minimized.

• The internal representation should be as much as possible what a human would write in

the pic language to achieve the picture shown on the canvas.

• When inputting text that is expected and that has a definite end, there is no need to move

the mouse to a text window and to confirm at the end.

1.1.3 Related work

Most picture drawing programs come in either WYSIWYG mode or batch mode. Shpilberg

discussed a few of each in [17]. A famous diagram visualization system with both WYSIWYG

and textual views of the pictures isGraphviz [1, 2]. It was developed by AT&T research lab.

Graphviz is a set of graph drawing tools, includingdot [13], neato [15], lefty [12], dotty [14],

etc., which are similar in construction toWD-pic.

dot & pic

Like pic, dot is a batch picture drawing program. It accepts input in thedot language and makes

hierarchical layouts of directed graphs. Undirected graphs are handled byneato, which shares

with dot the input file format and the graphics drivers. Figure 1.3 is a simple graph generated

5

from thedot code in Figure 1.5. It has four nodes connected by three edges. Figure 1.4 is a graph

generated from thepic code in Figure 1.6, showing the same layout.

We can see the main differences betweendot andpic from the above sample. Indot, the

user specifies the nodes and their attributes including shape; label, which by default is the node’s

name; and the edges and their attributes including the source and the target nodes. The sizes

and positions of nodes and edges are calculated automatically. The picture drawing orientation

by default is from top to bottom. Inpic, nodes and edges are equally treated as objects. The

user has to specify the length and path of the line object that connects two node objects. The

drawing orientation by default is from left to right. Therefore,dot is more powerful in drawing

complex graphs,i.e., graphs with lots of nodes. However, it draws directed, acyclic graphs only

hierarchically.pic is more suitable for drawing simple directed or undirected graphs.

There are some other advantages ofdot. It has color and font attributes and outputs in com-

mon graphics languages,e.g., ps, gif, andpng, while pic, being atroff pre-processor, does not

have these features.

lefty

lefty [8, 12] is a two-view graphics editor: WYSIWYG view and textual view. The user can edit

the picture from any of the views. From the WYSIWYG view, a node can be added or relocated

by mouse movement. An equivalent result can be obtained by entering expressions in the editor’s

language in the textual view.

A unique feature oflefty is its use of a single language to describe all aspects of picture han-

dling. Picture descriptions consist of two parts: data structure that hold information about the

picture,e.g., objects in the picture and their locations and sizes, and functions that implement op-

erations on the data structure,e.g., functions to insert, delete, move, draw objects. The language

was inspired by the language in theEZ system [8]. It is similar to AWK andC, not as easy to

read as thepic language.

Another prominent feature oflefty is its programmability,i.e., a user can program and cus-

tomize lefty to the way he or she likes by using its programming language. For example, by

default, a left mouse click on the canvas inserts a new node. The user can change the program

to insert a new node by a middle mouse click. However, with only a simple split window for

WYSIWYG view and text view and a long pop-up menu, which is invoked by a right mouse

6

a

b

c

event

Hello World

Figure 1.3:A sample drawn bydot

a

...........

b

event

c Hello World

Figure 1.4:A sample drawn bypic

digraph G {

a [shape=box];

a –> b [style=dotted];

c [shape=circle];

b –> c [label="event"];

d [label="Hello World"];

b –> d;

}

Figure 1.5:dot code of Figure 1.3

down

box "a"

arrow dotted

B:ellipse "b"

arrow left down "event"

below rjust

circle "c"

arrow from B.s right down

ellipse wid 1 "Hello World"

Figure 1.6:pic code of Figure 1.4

7

click on the canvas,lefty is not convenient to use. It does not have a menu bar, a tool bar, a

paletteetc. as most GUI picture drawing tools have.

lefty’s ability to communicate with other processes allows it to use existing tools to compute

specific picture layouts and allows external processes to use it as a front end to display pictures’

data structures graphically.

dotty

dotty is built on top ofdot and lefty. Like lefty, it can be customized and controlled by a

WYSIWYG interface and a textual interface.dotty loads the picture file in thedot language.

lefty starts updot as a separate process to compute layouts. When the user asks for a new

layout, lefty sends the graph todot. dot has very good auto-layout algorithms. So it does the

computation, and sends the new layout information, such as coordinates, sizes,etc., back tolefty.

lefty then redraws the graph.

As with lefty, dotty is intended to be programmed to act as a front end for other applications.

It can run also stand alone. However, becausedotty is built on top ofdot andlefty, its features

are limited to the features thatdot and lefty provide. The same aslefty, it has only a simple

window as the canvas and a pop-up menu which can be invoked by a right mouse click on the

canvas. This GUI is not as user friendly asWD-pic’s. However,dotty usesdot to do layout. So

dotty is more suitable for drawing a complex picture with lots of nodes or to be used a font end.

Rational Rose

Rational Rose is UML-based, model-driven tool, which can generate diagrams for object-

oriented analysis, modeling and design [3, 4]. Laying aside its analysis and designing function,

we only discuss its function to draw diagrams here.Rose has a standard GUI which contains

a menu bar, a tool bar, a browser, a documentation window , and a diagram window. The dia-

gram window is actually the canvas as inWD-pic. Rose has a limited set of elements for the

purpose of design and analysis, the user can generate only class, use-case, state machine, in-

teraction, component and deployment diagrams. Working with these diagrams, the user can do

move, resize, copy, paste, cut,etc. direct manipulations in the diagram window.Rose does not

have a textual view of the diagram. The documentation window is only for showing and editing

8

information of a selected object. Unlike most other WYSIWYG picture drawing tools,Rose has

partially auto-layout. For example, in a class or use case diagram, if the user changes the size or

location of one node, the edges that are connected to that node are adjusted automatically. There-

fore, the layout of the entire picture might be still good. The most prominent feature ofRose

in drawing diagrams is that the diagrams of the same system share elements. All the diagrams

actually describe the same system in a different view.

As we can see,Rose does a good job in drawing diagrams that it is supposed to draw. It is

widely used in designing software systems, but it cannot draw other kind of diagrams as the user

likes.

1.2 Case study of using a user’s manual as a requirements

specification

1.2.1 Motivation and goals

Berry et al discuss the motivation to use user’s manual as requirements specification [6]. The

motivation to do the case study in this work is to find out how well a user’s manual works as

a requirements specification and how effectively the manual can be used as a reference in each

phase of software development.

For case study of this thesis, Berry, the supervisor, worked as the customer. The author of this

thesis was the software engineer. Berry helped the author to make the user’s manual ofWD-pic

capture his requirements. The author wrote the design document based on the user’s manual and

implemented the features described in the user’s manual. Finally, the user’s manual was used as

the plan for testingWD-pic. During the whole process, the manual was kept up to date.

1.2.2 Related work

Previous work of WD-pic

Shpilberg in the Technion designed and implemented the first prototype ofWD-pic with Berry as

her customer [6, 17]. The prototype established the basic requirements and proved the concept,

but the customer was not happy with the user interface. The profusion of pop-up windows in this

9

prototype was inundate. For example, if the user wants to draw a box with a specified size and

location. The user has to do the following steps:

1. Click thebox button on the palette.

2. Click thesize button on the palette. TheSize dialog shows up.

3. Input the size of the box.

4. Click theOK button.

Then the user has to do the similar steps to change the location of the box.

This causes lots of mouse movement, and the click of theOK button to confirm the correct-

ness of inputting text is actually not necessary. It would be much nicer if the user can just click

thebox button and type from the keyboard the size and location of the box without moving the

mouse.

The UI problem in Shpilberg’s prototype is not fixable because she used standard widgets.

These widgets require bringing up an interaction window when it is desired to input from the key

board and these windows require confirmation of the input. To fix this problem actually means

rewrite all the code.

Still later, four students, Daudjee, Dong, A. and T. Nelson, at the University of Waterloo

wrote improvements of the user’s manuals forWD-pic. Because of time limits, they did not

implement the specified systems.

The documents of the previous work ofWD-pic were given to the author at the beginning

of the project for her to get familiar with the project. She laid these documents aside when she

started to design the program. Shpilberg’s prototype was developed inX-windows environment

usingC. In the newWD-pic, the idea of re-use of thepic compiler is the same. But the author

did not reuse any of Shpilberg’s code. The newWD-pic was coded inJava from scratch. Major

improvements and new features added in the newWD-pic are as the follows:

• Mouse movements are minimized. Pop-up windows are used only when necessary.

• A built-in text editor is added.

• It is able to report all the syntax errors.

10

• More direct manipulations are added. The user can now specify an object to be drawn

anywhere on the canvas by a mouse-click at the desired point.

• The use can preview font settings.

• Recently opened file history is added.

• Grid is added. The user can define as many grids as he or she like. Gravity supports three

levels.

• The user can see current values of thepic variables as well as change these values.

• A tool bar and a status bar are added.

• Preference setting is added.

• The program can run onWindows as well asUnix environments.

As we can see the GUI of the newWD-pic is much more user-friendly. The customer is very

happy with the product.

Development offlo

Wolfman designed and developed the programflo by using user’s manual as the requirements

document [6]. flo is apic preprocessor. It translates a flowchart specification that is embedded

inside a file containingditroff input into apic specification. In this project, Wolfman was the soft-

ware engineer. Berry was the customer. The project was research in electronic publishing. They

started from writing the user’s manual because of the batch nature of the program. Later, they

realized that this user’s manual became the requirement specification and the whole development

was centered on the production of the user’s manual.

Industrial case study

Finestein did a case study of using user’s manual as a requirements specification in the devel-

opment ofExpressPath [6, 7]. ExpressPath is a natural language speech recognition system

developed by LGS, an IBM company. Finestein participated in the entire requirements analysis

11

and system design. The results of the case study show that it was easier than normal to work

with the customer to address potential human-computer interface issues with a user’s manual

form of requirements specification. The user’s manual reduced the learning curve of new devel-

opers by at least 50% over having a traditional SRS. The customer was satisfied with the fact that

the requirements processes allowed the customer to detect and readily address human-computer

interaction problems that arose during the requirement specification.

1.3 Conventions

1.3.1 Notational conventions

The following text conventions are used in the manual:

• Times Roman is used for normal text.

• Times Italicsis used for emphasis and new terms in normal text.

• Times Bold is used for section names.

• Helvetica is used for program, file, class, module, and method names except in command

lines.

• Helvetica Oblique is used for widget and key name variables.

• Helvetica Bold is used for widget and key name constants.

• Courier is used for internal representation contents.

• Courier Oblique is used for variables ofpic internal representation syntax.

• Courier Bold is used for constants ofpic internal representation syntax.

• Computer Modern Sans Serif is used for command code and use case names.

12

1.3.2 Terms

The following terms are used throughout the manual:

• WD-pic — the name of the program.

• user — the person who usesWD-pic, addressed by “you”.

• pic primitive — abbreviate as “primitive”, defined by thepic grammar,e.g., box , line ,

arrow , circle , ellipse , arc , spline , andmove.

• pic object — abbreviate as “object”, apic primitive together with its attributes.

• pic token — abbreviate as “token”, a smallest semantically meaningful syntactic unit in

thepic language,e.g., box , line , arrow , circle , ellipse , arc , spline , move,

up , down, left , right , ; , : , " , and variable identifiers.

• attribute — used to give more information about a primitive, consisting of a keyword,

perhaps followed by a value,e.g.,

h(eigh)t expr , wid(th) expr ,

rad(ius) expr , diam(eter) expr ,

up opt-expr , down opt-expr ,

right opt-expr , left opt-expr ,

from position , to position ,

at position , with corner ,

by expr , then ,

dotted opt-expr , dashed opt-expr ,

chop opt-expr , -> <- <-> ,

invis , solid ,

fill opt-expr , same,

text-list , expr .

In these attributes, the parenthesized text describes an optional full spelling of the contain-

ing token.

13

• internal representation — abbreviate as “IR”, the text file containing thepic code corre-

sponding to the picture drawn on the canvas.

• session — an invocation ofWD-pic.

• edit window — abbreviate as “EW”, the window used to view and edit the IR.

• external editor — your preferred text editor, not part ofWD-pic, indicated to your operat-

ing system by setting a shell variable,e.g., setenv EDITOR vi.

• canvas — used for displaying the picture corresponding to the IR.

• palette — used for causing input to the IR, made up of thebox , circle , ellipse , line ,

arrow , spline , arc , ;, " , Constructs , Copy , Macros , Label , andVariables buttons,

and an attribute area, whose content changes to provide the attributes for the object that

was most recently inserted.

• menu bar — used for operating and adjusting current session, made up of theFile , Edit ,

Tools , andHelp menus.

• menu item — a unit of a menu.

• tool bar — shortcuts to some menu items, made up of theNew, Open , Save, Copy ,

Paste , Undo , Redo , Grid , andHelp buttons.

• screen layout — made up of a menu bar, a tool bar, a palette, a canvas and an EW, as shown

in Figure 2.1.

• left mouse click — abbreviate as “LMC”, a left mouse click.

• right mouse click — abbreviate as “RMC”, a right mouse click.

• double click — two LMCs not more than 1 second apart.

• current insertion point — abbreviate as “CIP”, the point in the IR in which the next object

will be inserted, indicated by the cursor on the canvas and the cursor in the EW; normally,

it is after the last inserted object.

14

• the picture corresponding to an IR — the picture generated bypic when it interprets the

entire IR from start to end, regardless of where in the IR the CIP is.

• current file name — a name for the file into which aSave would cause writing of the entire

IR.

• basic interpretation cycle — abbreviate as “BIC”, the process starts with inputting into

the IR, and ends with the picture on the canvas being redrawn. For example, following

sequenced steps illustrate a BIC:

1. LMC apic token on the palette.

2. The token is added to the IR.

3. The picture on the canvas is redrawn.

• pop-up menu — a menu that is opened by a RMC on the canvas.

• grid — a network of horizontal and vertical lines that provide coordinates for locating

points on the canvas; a grid is determined byCenter , dX , anddY values, whereCenter

is the origin; dX is the distance between any two adjacent horizontal lines;dY is the

distance of any two adjacent vertical lines.

• grid point — a point in a grid at which a horizontal line and a vertical line cross.

• gravity — used to control the restriction of positioning points; it has no effect on the IR.

• gravity tightness radius — abbreviate as “tightness radius”, the radius of the area around a

grid point or an object corner around which gravity is effective.

• approximate point — the point on the canvas that you LMCed.

• indicated point — the point corresponding to an approximate point that is finally indicated

by WD-pic by use of gravity and inserted into the IR.

• typexxx — typexxx from the keyboard without concern for the location of the cursor;

xxx is added to the IR at the CIP and is shown also in the EW.

15

• typexxx into the EW — make sure the cursor is in the EW; typexxx from the keyboard;

xxx is added to the EW at the CIP.

• type xxx into the external editor — make sure the cursor is in the external editor, type

xxx from the keyboard;xxx is added to the to-be-edited file, which is taken as the IR

after you save and quit the external editor.

• type xxx into theyyy field of zzz dialog — make sure the cursor is in theyyy field of

zzz dialog; typexxx from the keyboard;xxx is added to theyyy field of zzz dialog.

1.3.3 Abbreviations

• BIC — BasicInterpretationCycle

• CIP — CurrentInsertionPoint

• EW — Edit Window

• GUI — GraphicUserInterface

• IR — InternalRepresentation

• LMC — Left MouseClick

• RMC — Right MouseClick

• WD — WYSIWYG Direct-manipulation

• WYSIWYG — WhatYouSeeIs WhatYouGet

1.3.4 Organization of this document

Chapter 2 describesWD-pic’s requirements, user interface, high-level design, implementation,

and evaluation. Chapter 3 gives the details of the case study, the project plan, results and intro-

spection, and future work. Chapter 4 is a conclusion.

16

Chapter 2

Picture Drawing

2.1 Basic paradigm and requirements

Compared to other picture drawing programs, the major advantage ofWD-pic is its GUI. Not

only does this GUI provide both WYSIWYG and textual views of the picture to users, but also it

provides grid and gravity, external and internal text editors, syntax checking,etc. The novel UI

requirements ofWD-pic are that:

• All styles of input, i.e., by mouse or by keyboard, are fully interchangeable, without the

need to inform the application from where its next input is coming.

• There is no need to move the mouse to the canvas or the EW except to explicitly and

directly identify a point or an object; therefore, mouse movement is minimized.

• When inputting text that is expected and that has an algorithmically detectable end, there

is no need to move the mouse to a text window to input the text and to confirm at the end.

• The internal representation should be as much as possible what a human would write in

thepic language to achieve the picture shown on the canvas.

The first three are achieved by virtue of the fact that the user is viewed as inputting internal

representation rather than building a picture per se. This view permits the grammar of the internal

representation to guide the program’s acceptance of the user’s input.

17

Figure 2.1:Screen layout ofWD-pic

2.2 User interface

2.2.1 Screen layout

WD-pic starts up with the screen layout illustrated in Figure 2.1.

The main window is made up of six main parts:

• the menu bar

• the tool bar

• the palette

18

Figure 2.2:Screen layout withbox attribute buttons

• the canvas

• the edit window (EW)

• the status bar

The red star on the canvas represents the current insertion point (CIP).

The attribute area is empty in the start up screen layout. It is filled with attribute token buttons

when the CIP is at some object. These attribute buttons change according to the object where the

CIP is at. Figure 2.2 illustrates the screen layout when the CIP is just afterbox .

19

2.2.2 Menu bar

The menu bar is used for operating and adjusting current session, made up of theFile , Edit ,

Tools , andHelp menus. Details on each of these are found in the manual in the appendix.

File menu

TheFile menu has the following items:

• New - to start a new picture file,

• Open - to open an existing file, which is assumed to containpic code,

• Save - to save the current complete file,

• Save As - to establish a new current file name and save the current complete IR in the

named file,

• Recent File - to re-open a recently opened file without specifying the full path of the file,

• Exit - to exit the program.

Edit menu

TheEdit menu has the following items:

• Undo - to undo the last action in the edit window,

• Redo - to redo the last action in the edit window,

• Copy - to copy the selected content in the edit window to the clipboard,

• Paste - to paste the content in the clipboard to the edit window,

• Cut - to cut the selected content in the edit window,

• Change Attribute - to change the attributes of the selected object,

• Reset Font - to reset the font of the selected object,

20

• Set CIP - to set CIP after the selected object,

• Run External Editor - to run the external editor.

Undo andRedo are not always available.Undo is enabled only when there has been some

change made to the IR,e.g., adding, deleting text. The user can widUndo to the beginning of the

session.Redo is enabled whenUndo has been done.

Tools menu

TheTools menu has the following items:

• Font - to change the font of the selected text on the canvas,

• Set External Editor - to set the external editor to an accessible text editor on the user’s

system,

• Define Grid - to define a new grid or modify an existing grid,

• Activate Grid - to activate a previously saved grid,

• Set Gravity - to set the gravity values,

• Preferences - to set the preferences ofpic objects.

Help menu

TheHelp menu brings up the help information ofWD-pic. It hasContents andAbout items.

2.2.3 Pop-up menu

The pop-up menu is made up of theSet CIP, Change Attribute , Reset Font , Activate Grid
andSet Gravity items. These menu items are shortcuts to the same items in the menu bar.

21

2.2.4 Tool bar

The tool bar is made up of theNew, Open , Save, Copy , Paste , Cut , Undo , Redo , Grid
Activate andHelp buttons. These buttons are shortcuts to the related menu items. Tips are

provided for users who are not sure about the usages of buttons. By moving the mouse over a

button, a small tip of what the button is for shows up.

The tool bar can be dragged out of the current position and floated horizontally or vertically

in the main window.

2.2.5 Palette

The palette is used for causing input to the IR. Thebox , circle , ellipse , line , arrow , spline ,

arc , ;, " , Constructs , Copy , Macros , Label , andVariables buttons are always available in

the palette. If the name of a button begins with a lower-case letter,e.g., box andcircle , it is apic

token. LMCing this button inserts the token into the IR at the CIP. LMCing a button beginning

with an upper case letter,e.g., Constructs andMacros , invokes a dialog for inputting the parts

of thepic statements not beginning withpic primitives, such as conditionals, loops, and macros.

The attribute buttons are available when the CIP is at some object. As shown in Figure 2.2,

there are three kinds of attribute buttons in the attribute area:

• an independent button,e.g., fill andinvis . LMCing one of these buttons will add its token,

e.g., fill andinvis , to the IR at the CIP.

• a button with a value field,e.g., wid andht . After filling in the corresponding value field,

LMCing one of these buttons causes the addition of both the selected token and the value

shown in its value field to the IR.

• a button in a set of buttons connected with‖s, e.g., solid ‖ dashed ‖ dotted . LMCing

one of them to add its token to the IR. At most one of these buttons can be selected.

2.2.6 Canvas

The canvas is used for displaying the picture corresponding to the complete current IR and di-

rectly manipulating objects, such as selecting an object and indicating a point. The CIP is always

22

shown on the canvas. It helps the user to track the location of the CIP in the IR.

The objects are painted in two colors on the canvas: black and light purple (RGB 204x204x255).

Black is for normal objects. Light purple is for selected objects. In order that the user easily lo-

cate the selected objects on the canvas and in the edit window, the same selection color is used

in the edit window.

The divider between the canvas and the edit window is adjustable. It can be moved up and

down to adjust the sizes of the canvas and the edit window.

2.2.7 Edit window

The edit window (EW) is implemented as a text editor, with which the user can view and edit

the IR, copy, paste, cut, undo, redo like a normal text editor. It also helps the user to do syntax

checking. The text in EW is shown in three colors: black, light purple, and red. Normal text is

in black. Selected text is in light purple. Text with a syntax error is in red.

2.2.8 Status bar

The status bar is used for displaying error information and the coordinates of the point, if any,

on the canvas at which the mouse is pointed. If a user runs some session command and does not

see any change on the canvas, there might be some error message shown in the status bar. For

example, if a user activates a grid, but the grid is not drawn on the canvas, there might be some

information in the status bar telling the user what is wrong.

The coordinates of the mouse’s position on the canvas might be displayed as a grid point or

as an object’s corner, if it is available. Otherwise, it is shown in a pair of real numbers, the (x, y)

coordinates of the mouse’s position.

2.3 High level design (modules)

Figure 2.3 illustrates the system architecture ofWD-pic. It is made up of the following modules:

UI, File, ExternalEditor, EditWindow, Canvas, PICObject, PICCompiler, Grid, Gravity,

History, Font, andHelp.

23

External Editor Help

File UI Gravity

EditWindow Canvas

Grid

Font

PICObjectPICCompiler

History

Legend

navigate

reference
. ...

..

..

..

..

..

..

..

..

..

...

Figure 2.3:WD-pic system architecture

24

2.3.1 User Interface

TheUI module is responsible for the user interface ofWD-pic, including the screen layout men-

tioned in Section 2.2 and all the dialogs that the user sees. It consists of theWDPic class, the

AttrPane package, and theMyDialog package.WDPic implements the main frame ofWD-pic.

AttrPane contains the attribute pane for eachpic primitive. MyDialog contains all the dialogs.

Each element,e.g., a menu item and a button, on the user interface is assigned an action

command. If two elements implement the same function, they are assigned the same action com-

mand.WDPic itself implementsActionListener, which is a standard class inJava. Therefore,

whenWDPic hears an action, it checks the action command and calls the related method. Thus,

it does not need to care whether the action is from a menu item or a tool button. For example,

both theNew item in theFile menu and theNew button in the tool bar create a new file. They

are assigned the same actionfile.new . If a user selectsNew from theFile menu,WDPic

gets thefile.new action, thenew() method of theFile class is called. If the user LMCs the

New button in the tool bar,WD-pic also gets thefile.new action and calls thenew() method.

2.3.2 File

The File module handles all the actions that are invoked by theFile menu, including creating

a new file, opening an existing file, saving current complete file, establishing a new current file

name, saving the current complete IR in the named file, and exiting the program. These actions

are done bydoNew(), doOpen(), doSave(), doSaveAs(), anddoExit().

doOpen() calls EditWindow to import the file as to-be-edited IR. It also looks up in the

history database file to see whether there are previously saved grids. If so, it retrieves the grid

information and activates the grid. It then updates and saves the history database file, records the

just opened file as the most recently opened file.

doSave() callsHistory to update and save the history database file.

For details ofHistory, please refer to Section 2.4.2.

2.3.3 ExternalEditor

TheExternalEditor module handles actions of the external editor, including getting the name of

the system default editor, setting a specific editor that is accessible from the system to be the ex-

25

ternal editor, and running the specified external editor. These actions are done bygetExtEditor(),

setExtEditor(editor), andrunExtEditor().

Because theRuntime class inJava cannot run non-windowed application,e.g., pico and

vi, from a GUI program, aC program is written for theUnix version ofWD-pic to run non-

windowed programs in a standard terminal window. For details, please refer to Section 2.4.3.

2.3.4 EditWindow

The EditWindow module handles actions of the IR,e.g., composing, importing and exporting

the IR, sending the IR to thepic compiler to compile, and actions of the built-in text editor,

includingcopy, paste, cut, undo, andredo, as well as checking syntax and setting the CIP.

The main methods of this class areimportIR(file), exportIR(file), insertPrimitive(s),

insertModifier(s), isAtPosCtlPhrase(), isAtObjectPhrase(), setSelected(idx), setCIPAfterS-

elected(), andrenewLooking().

importIR(file) is used for importing the filefile as the IR to the edit window.expor-

tIR(file) is used for exporting the IR to a file namedfile . These two methods are mainly

used byFile when the user opens and saves a file.

insertPrimitive(s) is called when a user LMCs thepic primitive tokens,e.g., box , circle ,

ellipse , arc , line , spline , arrow , andmove , on the palette. It first calculates the CIP. Then, it

inserts the strings at the beginning of a new line into the IR and callsrenewLooking() to renew

the look of the EW and the canvas.

insertModifier(s) is similar toinsertPrimitive(s). It is used to insertup , down , right , left ,

" , ;, and the attribute tokens. The difference is that when the strings is added to the IR, it is not

added in a new line, but following the previous existing text and with a white space in the front

and after.

isAtPostCtlPhrase() is used to check whether the CIP is after anat , from , or to .

setSelected(idx) sets the object with the indexidx to be selected.idx is restored for

future use. The related text in the IR is marked in selection color. The canvas is repainted.

setCIPAfterSelected() is called when a user selects an object on the canvas and runs the

setCIP action. This method first retrieves the index of the selected object and calculates the

position of the text of the object in the IR. It then sets the caret in the EW to point to the end of

the selected object’s text. Finally, the canvas is repainted.

26

renewLooking() is called whenever there is any change in the IR. It renews the look of the

text in the EW, calls the canvas to adjust and update the attribute area in the palette. Refer to

Section 2.4.3.

2.3.5 Canvas

TheCanvas module handles all the painting actions and the mouse events. Because “Canvas"

is a key word inJava, “MyCanvas" is used instead as the class name. The main methods in

MyCanvas arepaint(), processMouseEvent(e), processMouseMotionEvent(me), andad-

justCavnas().

paint() draws everything on the canvas, including the picture, grid, and CIPetc.

All the mouse events can be classified into two categories:

• MouseEvent, including MOUSE_CLICKED, MOUSE_PRESSED,

MOUSE_EXITED, and MOUSE_RELEASED.

• MouseMotionEvent, including MOUSE_MOVED and MOUSE_DRAGGED.

processMouseEvent(e) handles the former category.e is one of the four mouse events.

processMouseMotionEvent(me) handle the later.me is one of the two mouse motion

events.

adjustCanvas() is used to adjust the overall layout of the picture in the canvas.

2.3.6 PICObject

The PICObject module is responsible for allpic objects. The architecture of thePICObject

module is illustrated in Figure 2.4.PICObject is the base class ofPICBoundObject, PICLine,

PICArc, andPICText. PICBox, PICCircle, andPICEllipse are subclasses ofPICBoundOb-

ject. PICSpline is a subclass ofPICLine. These classes handle the attribute values ofpic objects

as well as other information that is needed when drawing.

The main methods inPICObject areset(attr), distance(p), draw() andgetCorner().

Theset(attr) method is invoked by thePICCompiler module. After the IR is compiled,

all the information of the picture is stored in an object array. Refer to Section 2.4.1. When

27

PICText PICObject PICArc

PICBoundObject PICLine

PICBox PICEllipse PICCircle PICSpline

Figure 2.4:PICObject class diagram

PICCompiler is requested for the information of an objecto, it callso.set(attr) to assign the

attribute valuesattr of the specific objecto.

distance(p), draw(), andgetCorner() are implemented in different subclasses ofPICOb-

ject. o.distance(p) calculates the distance from a specific pointp to the objecto. The distance

between a pointp and an objecto is defined as the shortest distance fromp to any point on the

objecto. If p is on the objecto, then the distance is 0.

o.draw() draws the objecto on the canvas.

o.getCorner() gets the coordinates of a specific corner of an objecto. Each object inpic

has 9 cornersc , n, ne , e, se , s , sw, w, andnw. Lines and arrows have astart , anend and a

center in addition to corners. Figure 2.5 illustrates an ellipse and its corners.

2.3.7 PICCompiler

PICCompiler is thepic compiler. The originalpic source code is converted into a library file

working with otherJava code.PICCompiler is responsible for compiling the IR and calculating

the values of variables and grids. The main methods inPICCompiler are native methodscom-

pile(ir , center , dx , dy), getGrid(idx , center , size), andgetVariable(idx , var).

compile(ir , center , dx , dy) compiles the IR, stores the objects’ information in a list

for future use. Refer to Section 2.4.1. A grid’s determinantsi.e., center , dx anddy , are

28

E.c E.e

E.ne

E.se

E.s

E.n

E.sw

E.w

E.nw

Figure 2.5:Corners of an ellipse

pic expressions made of constants, object attributes, and variables. When the IR changes, the

determinants’ values change too. Therefore, every time when the IR is compiled, the values of

the currently active grid is calculated and stored.

getGrid(idx , center , size) gets the grid values at the object whose index in the object

list is idx , and stores the values intocenter andsize .

There are 20 variables inpic [10], e.g., boxwid andboxht . getVariable(idx , var) gets

the value of variablevar at the objectidx .

getAttributes(obj) gets the attributes of an objectobj from the IR and stores them into a

hashtable. Finally, it returns the hashtable.

getLabel(obj) gets the label of an objectobj . The method first gets the text phrase in the

IR of the object, then searches for “:” in the phrase. If there is a “:" in the phrase, the method

returns the text before the “:” as the label. Otherwise an empty string is returned.

2.3.8 Grid

The Grid module deals with the actions of grids, including defining and activating a grid. It

consists ofGridAction andGridElement. In WD-pic, a session can have as many grids as the

user likes, but only one is active at a time. These grids are stored in a grid list. Refer to Section

2.4.2. Each grid has a unique name and is determined by itscenter , dx , anddy .

The main methods in this module aredefineGrid(), activateGrid(), andgetActiveGrid().

29

defineGrid() invokes theGrid Define dialog for the user to define new or existing grids.ac-

tivateGrid() invokes theGrid Activate dialog for the user to activate an existing grid. If there

is no previously saved grid, it shows a warning message.getActiveGrid() gets the name of the

active grid.

2.3.9 Gravity

TheGravity module is responsible for the gravity settings,e.g., on and off, the gravity tightness

radius, gravitating to a grid point, and gravitating to apic corner. The main methods in this

module areenableGravity(rad , grid , corner), disableGravity(), andgravitateTo(p).

enableGravity(rad , grid , corner) enables gravity with the tightness radiusrad . The

parametersgird andcorner are Booleans, specifying whether to gravitate to grid points and

to gravitate topic corners, respectively.disableGravity() disables gravity. If gravity is disabled,

a pair of real numbers is taken as the indicated point.

If gravitate to grid point andgravitate to pic corner in theGravity Setting dialog

are selected,gravitateTo(p) returns the grid point or the object corner that is closest top. p

is the point at which the mouse was LMCed. If the object is not labeled, theLabel dialog is

invoked for the user to enter a label for the object. Refer to Section 2.4.2 for details.

2.3.10 History

History is programmed to record the last four recently opened files history and the files’ grids.

Refer to Section 2.4.2. Since there is no grid information in the IR, these grids are saved in a

.wdpicrc file. Therefore, the next time that the user opens the same picture file, the grids are not

lost.

When WD-pic is first launched, the file.wdpicrc is created in the user’s home directory.

The created file,.wdpicrc, serves as the recently-opened-file history database. The names of the

recently opened files and their grids, if any, are stored. TheHistory class maintains this history.

It hasloadHistory(), saveHistory(), lookupHistory(), andupdateHistory().

WhenWD-pic opens a file,loadHistory() is called. It retrieves the history information from

the database file and updates theRecent File list in theFile menu.

saveHistory() saves the history information into the database file.

30

lookupHistory() looks in the database file to see if the most recently opened file is in the

database. If so, it gets the grid information from the database.

updateHistory() keeps the recently-opened-file list up to date and makes sure that there is no

duplicate records in the list. When the just opened file is in the list, it deletes the oldest record,

adds a new one as the most recently opened file, and re-orders the remaining records by creation

time.

2.3.11 Font

The Font module deals with font setting. There are two classes in this module,PICFont and

PICFontString. As there is no font information in the IR, all the font information is stored in a

list of PICFontString. Refer to Section 2.4.2.

PICFont handles the font settings,e.g., setting the font, style, and size. The main methods in

this class aresetFont(font), setStyle(style), setSize(size), andsetInvisible().

PICFontString deals with the relationship between the position of text in the IR and its font.

When the IR is changed, the positions of some characters are changed too.revalidate() is used

to keep the positions of the text in the font list updated.

2.3.12 Help

TheHelp module is responsible for the help information.

2.4 Implementation

2.4.1 pic code reuse

The originalpic code is reused with some modifications. The originalpic code works fine when

there is no syntax error in the IR, but if there are errors in the IR, it stops at the first error without

compiling the rest of the IR. We changed the code to make the compiler work in a way that it can

finish compiling an IR with errors, and it returns a correct IR. Then by comparing this IR and

the original one, we report the errors to the user. When the IR is sent to the compiler, instead of

compiling the whole IR at once, the compiler compiles it phrase by phrase. If an error occurs,

31

IR

Calculate number
of phrases (num)

i = 0

i < -num ?

Y

compile phrase i

error ?

N
i++

N
done

Y
reset compiler

recompile phrase
0 to i-1

Figure 2.6:Compiling process

the compiler replaces the error phrase with white spaces, and then restarts the compilation from

the beginning. Figure 2.6 illustrates how the compiler works.

These changes are implemented in the newly added files in thepic source code package:

Compiler.c, Compiler.h, Variables.h and PICObjects.h. These files together withCom-

piler.java implement the following functions:

1. converting the object array generated by thepic compiler to aJava format object data

structure for the GUI to use, and

2. getting the current values of the 20pic variables and grid determinants.

32

Variable o_srcFrom and o_srcTo are added to theobj structure inpic.h to indicate

which piece of text in the IR generated the object. The following is theC codeobj structure:

typedef struct obj {

int o_type;

int o_count; /* number of things */

int o_nobj; /* index in objlist */

int o_mode; /* hor or vert */

float o_x; /* coord of "center" */

float o_y;

int o_nt1; /* 1st index in text[] for this object */

int o_nt2; /* 2nd; difference is #text strings */

int o_attr; /* HEAD, CW, INVIS, etc., go here */

int o_size; /* linesize */

int o_nhead; /* arrowhead style */

struct symtab *o_symtab; /* symtab for [...] */

float o_ddval; /* value of dot/dash expression */

float o_fillval; /* gray scale value */

/* Liz: indicate which piece of text in the IR generated this object */

int o_srcFrom;

int o_srcTo;

ofloat o_val[1]; /* actually this will be > 1 in general */

/* type is not always FLOAT!!!! */

} obj;

A new structureVarSet is defined inVariables.h to store the grid and the 20 variables

values. The following is theC codeVarSet structure.

typedef struct _VarSet

{

double picVar[20];

33

double gridX0, gridY0, gridDX, gridDY;

int idx0, idx1;

struct _VarSet *next;

} VarSet;

We mentioned before that the IR is compiled phrase by phrase, so when the compiler com-

piles an IR phrase, it generates and adds an object to the object list. At the same time, it also gets

the grid and variable values and adds an element to the variable list.idx0 andidx1 are used to

locate the start and the end of the phrase in the IR. When the CIP moves in the IR, we search in

the variable list, to get theVarSet whereidx0 ≤ cip < idx1 .

For details of otherpic data structures, please refer to [17].

2.4.2 Data structures and algorithms

pic data structures

Two variables are added to the originalpic obj structure and a new structureVarSet is added,

as mentioned in Section 2.4.1.

Euclidean coordinate & screen coordinates

Thepic compiler calculates a position,(xp, yp), by Euclidean coordinates. However, whenWD-

pic draws the position on the canvas, screen coordinates(xc, yc) are used. The difference between

the Euclidean coordinates and the screen coordinates is illustrated in Figure 2.7. The origin of

the screen coordinates is at the top left corner of the screen, while the origin of the Euclidean

coordinates is at the center. Furthermore, the Y axis in the screen coordinates goes down, while

the Y axis in the Euclidean coordinates goes up.

The following formulae are used to do the translation:

xc = xp ∗ Zx + x0,

yc = yp ∗ Zy + y0.

Zx, Zy, x0, y0 are constants.|Zx| and |Zy| are used to adjust the length of unit on the canvas.

Since the Y axis in the Euclidean coordinates goes in the direction opposite of that of the Y axis

in the screen coordinates,Zy < 0.

34

X

+

Y

+

(0,0)

X

+
Y

+

(0,0)

Screen coordinate

Euclid coordinate

Figure 2.7:Euclidean coordinate & the screen coordinate

A unit in pic is 1 inch. A unit on screen is 1 pixel. To make a unit inpic look like a unit on a

17 inch monitor with 1024x768 resolution,

Zx = −Zy =
√

10242 + 7682/17 = 75.294117647

x0, y0 are used to adjust the position on the canvas. In this version ofWD-pic,

x0 = canvasWidth/2,

y0 = canvasHeight/2.

History

The recently opened files names and their grid information are stored in a vector. In order to keep

the information whenWD-pic exits, it is saved into the.wdpicrc file on the disk. Then the next

timeWD-pic launches, it retrieves the history information from the.wdpicrc file. The following

is a sample record in the.wdpicrc file:

E:\WDpic\PicObject.pic

Grid1;(0,0);movewid;moveht

The first line is the full path name of the file. A grid’sname, center , dX , anddY are

separated by “;” in the second line.

35

Grid

A hashtableGridList is used to store the grids of a picture file. It is defined as following.

GridList ::= Hashtable(GridName, GridDef);

GridName ::= String;

GridDef ::= (Center, dX, dY);

Center ::= pic expression;

dX ::= pic expression;

dY ::= pic expression

The name of the grid is the key of the hashtable.

WhenactivateGrid() is called, it searches for the contents ofGridName in theGridList ,

then callsEditWindow.renewLooking(). EditWindow.renewLooking() sends the grid deter-

minants together with the IR to compile and callsMyCanvas to repaint. MyCanvas.paint()

callsCompiler.getGrid() to get the grid values from theVarSet list and draws the grid lines.

Refer to Section 2.4.1.

Gravity

The following is the pseudocode of the algorithm in the key methodgravitateTo() in Gravity:

1. If gravity is off, return the pair of real numbers as the indicated point.

2. If gravitating topic corner is selected,gravitateTo(p) does the following :

minDis = ∞ ;

q = p;

for each object o in the object list do

{

for each corner c of o do

{

dis = p.distance(c);

if dis < minDis

{

36

Figure 2.8:gravitate to

q = c;

minDis = dis;

}

}

if p.distance(c) > gravity tightness radius

return p

else return q }

3. If gravitating to grid point is selected, the pointp that the user LMCed on the canvas must

be located in some grid cell, as illustrated in Figure2.81.

To figure out the values ofmandn, we get the following inequalities from Figure2.8,

{
x0 + n ∗ dx ≤ xp < x0 + (n + 1) ∗ dx

y0 + m∗ dy ≤ yp < y0 + (m+ 1) ∗ dy

p (xp, yp) is the point that the user LMCed on the canvas.(x0, y0) is the center of the grid.

The other two determinants of the grid aredx anddy .

1Figure2.8was not produced byWD-pic, because it shows grid lines, whose specifications are not stored in the

IR. Instead, the figure is a portion of a screen snapshot.

37

Therefore, we can get the following formula:
{

n = bxp−x0

dx
c

m= byp−y0

dy
c

The four corners of the grid cell, in which(xp, yp) is located, are the closest grid points to

p. Their coordinates are,

(x0 + n ∗ dx, y0 + m∗ dy), (x0 + n ∗ dx, y0 + (m+ 1) ∗ dy)

(x0 + (n + 1) ∗ dx, y0 + m∗ dy), (x0 + (n + 1) ∗ dx, y0 + (m+ ∗dy)

The distances from(xp, yp) to the four points are calculated. The closest point is chosen.

If the distance fromp to the closest grid point is greater than the gravity tightness radius,

thenp is returned as the indicated point. Otherwise the expression of the grid point is

returned.

The returned grid point expression is optimized to be more natural. For example, it is more

natural to write expressionx0 + 1 ∗ dx asx0 + dx.

4. If both gravitating topic corner and grid point are selected, choose the closerpic corner or

the grid point.

Adjusting the position of text

By default, the alignment attribute of text inpic is center , which can be changed toabove ,

below vertically, or ljust , rjust horizontally. enter means the text is centered at the

geometric center of the object it is associated with. The attributeljust causes the left end to

be at the specified point(which means that the text lies to the right of the specified place), and

rjust puts the right end at the place.above andbelow center the text one half line space in

the given direction.

There are several horizontal lines indicating the position of a text item, as illustrated in Fig-

ure2.92.
2Figure2.9was produced from a screen clump rather than byWD-pic, because it involves graphics not specified

in the IR.

38

Figure 2.9:Adjust text position

In Java, the position of a text item is indicated by its base line. If the text attribute iscenter ,

yc is given bypic. To draw a text item whose center line is atyc, the following formula is used

to calculate the base line y (all the calculations in this section are in the screen coordinates):

y = yc + (
TextHeight

2
− dsc) = yc + (

asc + dsc

2
− dsc) = yc +

asc− dsc

2

If the text attribute isabove , yb is given. So to draw a text item whose bottom line is atyb,

y = yb − dsc

If the text attribute isbelow , yt is given. To draw a text item whose base line is atyb,

y = yt + asc

The value ofasc and dsc are given by aJava standard API.yc, yb, yt are as shown in

Figure2.9.

The horizontal attributescenter , ljust , and rjust are similar. TheJava default is

ljust . Instead of usingasc anddsc , we calculate the width of the text layout. To draw a text

item whose center is atxc,

x = xc − wid/2

To draw anrjust text item,

x = xc − wid

Font

A vector is used to store the font information of a picture file. The structure is defined as follows.

39

FontList ::= vector of FontElement

FontElement ::= (Font, from, to)

Font ::= (font, style, size)

from ::= document position

to ::= document position

FontElement is implemented asPICFontString. Thefrom andto record the positions

where this font setting starts and ends. Figure2.103 illustrates a sample picture on the canvas.

Letter “e” is set to font Arial Bold, size 18. Letter “o” is set to Font Courier Oblique, size 24.

“World” is set to Times Italic, size 10. The rest text is in default font, default size. The related

data structures of this picture are shown in Figure2.11.

Every time there is a change in the IR, the positions of the text items change. Therefore, the

FontList needs to be updated.

2.4.3 Miscellaneous implementation details

Run external editor

BecauseJava Runtime cannot run a non-windowed application,e.g., pico, andvi, from a GUI

program, the approach forrunExtEditor() depends on the underlying operating system. If the

current operating system isWindows, Java Runtime.exec(editor) is called to run the exter-

nal editoreditor . If the current operating system isUnix, Java JNI is used to run the external

editor code inC, which is built into a library file. TheUnix system callsfork() andexec() are

used [5, 16].

When runExtEditor() method is called, it first creates a temporary filefile in the sys-

tem’s default temporary folder. Then it callsEditWindow.exportIR(file) to copy the cur-

rent complete IR to the temporary filefile . It then callsexec to run the external editor with

the temporary file as the to-be-edited file. After the external editor finishes, it callsEditWin-

dow.importIR(file) to copy the contents of the temporary file back to the edit window as the

IR.
3Figure2.10was produced from a screen clump rather than byWD-pic, because it involves graphics not specified

in the IR.

40

Figure 2.10:A sample of font setting

PICFontString List

PICFontString

Arial Bold, size=18

from
to

PICFontString

Courier Oblique, size=24

from
to

PICFontString

Times Italic, size=10

from
to

PICObject List

PICBox

PICString

rjust

Hello

PICString

World

PICArrow

PICString

above

test

PICCircle

Figure 2.11:Font related data structure

41

Edit window renewlooking

renewLooking() is a very important method inEditWindow. It executes in the following steps:

1. get the active grid,

2. send the IR and grid values to compile,

3. update the font list,

4. informMyCanvas to adjust ,

5. set the text in the EW to one of the three different attributes: normal, erroneous, and

selected,

6. get the position of the CIP and callisAtObjectPhrase() to determine which kind of object

the CIP is in,

7. update the attribute area by showing different attribute panes for different objects.

The syntax error checking is implemented based on the result of compiling IR. The compiler

compiles IR phrase by phrase, and returns a correct IR with error phrases set to white spaces.

The original IR is gotten directly from the edit window, and is stored in the variableir0 . Com-

piler.compile() returns a syntax-error-free IR and stores it in the variableir . The differences

between their0 andir are marked as syntax errors.

Canvas repaint

paint() is an important method inMyCanvas. It first callsdrawGrid() to draw the grid.draw-

Grid() checks whether there is an active grid. It then gets the grid values by callingCom-

piler.getGrid() with CIP as a parameter and draws the grid. Next,paint() callsPICObject.draw()

to draw different objects. Finally,paint() callsdrawSelected() to draw the selected objects, and

drawCIP() to draw the CIP on the canvas.

42

2.5 Evaluation

pic is targeted to draw diagrams in computer science documents. As an enhancement ofpic,

WD-pic certainly does better thanpic. The author usedWD-pic to draw all the diagrams in this

thesis except those containing screen shots. Thepic code of the figures are listed in the appendix.

The author did not know too much aboutpic grammar. But she found out thatWD-pic was very

easy to use without too much knowledge ofpic. The token buttons and the attribute buttons on

the palette are very straightforward. Furthermore, the internal representation of the diagrams are

very similar to what a human would write.

Shpilberg did a comparison betweenWD-pic andxfig in [17]. It shows thatWD-pic is more

comfortable to use to draw simple flow diagrams. This occurs because by defaultpic produces

chains of drawing elements with default sizes and positions. Furthermore, once the flow diagram

is drawn, it is easier to edit. On the other hand,WD-pic is more limited thanxfig in drawing

complex non-regular pictures.WD-pic’s set of primitive elements is poorer. It doesn’t have the

full set of element manipulations thatxfig has.

Compared todotty, which was mentioned in Section 1.1.3,WD-pic is more user-friendly.

You have to know thedot language well in order to draw a desired picture. Butdotty does a

better job on the layout of hierarchical diagrams.

On the other hand, besides the limitations ofpic, the current version ofWD-pic has the

following shortcomings:

1. One cannot change the sizes of objects by direct mouse manipulations, but one can change

the sizes of objects in the edit window.

2. One cannot change the locations of objects by direct mouse manipulations, but one can

change the locations of objects in the edit window.

3. Copy, paste, cut, undo, andredo do not work with the canvas, but they work with the

edit window.

4. One cannot dosearch andreplace in the edit window, but one can dosearch andreplace

in an external editor.

5. Font information of the text is not saved, but the user can add the font command manually

in the IR and pass the IR topic.

43

6. One cannot directly manipulate constructs,e.g., for , if , and block, on the canvas.

7. One cannot output pictures in a standard graph format,e.g., gif andpng, or print from

WD-pic.

2.5.1 Evaluation of WD-pic relative to the pros and cons of batch and

WYSIWYG

WD-pic fixes the disadvantages of most of the WYSIWYG picture drawing program as we men-

tioned in Section 1.1.1.

• Changing one object in the picture will not destroy the entire picture. Because the layout

is done bypic.

• It is now easy to manipulate the objects of a category as a group. For example, the user

can use an external editor to search all the “box" in the IR and replace with “circle".

WD-pic also fixes the disadvantages of the batch programs.

• The user can now see the picture while composing its description.

• Instant feedback on the canvas reduces the errors.

2.5.2 Future work

WD-pic has met all the requirements of the customer, the author’s advisor. However, it still has

certain shortcomings. Some of them are easy to eliminate. Some are difficult, given the current

implementation ofWD-pic.

More direct manipulations to the objects on the canvas can be added to the program, such as

copy, past, cut, changing sizes and locations. They are not very difficult to implement based

on the current implementation ofWD-pic, since we can track the objects on the canvas and their

related positions in the IR.

Search andreplace are not difficult to add to the built-in text editor in the edit window. This

would be a nice feature forWD-pic to have.

44

pic does nothing on font settings. There is no font information in the internal representation

of a picture. Because in different systems, the same font could have different names, this made

saving font information inWD-pic difficult. Direct manipulating the constructs is difficult too,

because there can be nested construct in a construct. To output pictures in standard formats such

as .ps, .jpg requires good knowledge of these formats. These are the challenging features to

implement.

45

Chapter 3

Case study

As mentioned in Section 1.2.1, one goal of this thesis is for it to be a case study in the use

of a user’s manual of a software product as requirements specification. The goal of the case

study is to see how well the user’s manual ofWD-pic works as the requirement specification and

how effectively the manual can be used as a reference in the design, implementation and testing

phases. In this case study, Berry worked as the customer ofWD-pic. The author of this thesis

was the software designer, developer and tester.

3.1 Project plan

The project started in the beginning of October, 2001. It was planned to be finished by the end of

July, 2002, for a total duration of 10 months. The project schedule was planned as a classic wa-

terfall, as illustrated in Figure3.1. The rest of this section quotes the project plan as it was written

in September, 2001, including the project schedule, requirements, design, implementation, and

testing plans.

Schedule

• preparation 1 month, from October 1 to October 31, 2001

• requirement 2 months, from November 1 to December 31, 2001

• design 1 month, from January 1 to January 31, 2002

46

preparation

requirement

design

implementation

testing

10/1/01

11/1

1/1/02

2/1

5/1

6/31

Figure 3.1:WD-pic project plan

• implementation 3 months, from February 1 to April 31, 2002

• testing 2 months, from May 1 to June 31, 2002

• others 1 month

During the whole development process, the manual will be kept up to date.

The preparation phase is to study Shpilberg’s prototype ofWD-pic and all the

existing documents, and to get familiar withpic, its features, its source code,Java

Swing, andJni.

One month flexible time is left to deal with unexpected events.

Requirements

No formal requirements specification will be written. Instead we will start by writing

a user’s manual, which will be used as the requirements specification. The software

engineer will discuss with the customer all the features and document them in the

manual. The user’s manual will be organized by use cases. It will describe all the

fundamental concepts as well and is not to be ambiguous.

47

Design

All the features in the manual will be designed. High-level design modules should be

given. The design should be clear enough to show how the modules work together.

Implementation

All the features in the manual will be implemented.Java Swing will be used to

code the GUI.Java Jni will be used to communicate between theJava coded GUI

and theC codedpic compiler.

The project will be carried out on aUnix Solaris environment.

Testing

Both black-box testing and white-box testing will be used to test the program. The

user’s manual will be used as a source of test cases for black-box testing. All the use

cases in the manual should be covered.

Unit-testing will be done on every class.

3.2 Results and introspection

The project was carried out, not exactly matching the schedule that was planned. The following

is a list of the actual milestones:

• October 2, 2001, project started

• November 1, manual started

• March 28, 2002, manual final (design started)

• April 20, design final (implementation started)

• April 22, manual first update

• May 15, first demo (basic features done)

48

preparation

requirement

design

implementation

testing

10/2/01

11/1

3/28/02

4/20

6/11

7/31

Figure 3.2:WD-pic development process

• May 16, manual second update

• June 11, second demo (all features done)

• July 31, testing end

Figure3.2 illustrates the whole development process.

Some phases in the software development process are not exactly bounded to the clear time-

line. The spare time in the previous phases of implementation was used to do research, such as

writing proof of concept (POC) code. The implementation phase was counted from writing the

main frame code ofWD-pic.

White-box testing was actually combined with the implementation phase. Whenever a class

was developed, it was white-box tested. Whenever a feature was implemented, it was tested

against the use case in the manual. Thus, the testing phase in Figure3.2was for only black-box

testing after all the features were implemented,i.e., integration testing and system testing.

49

3.2.1 Requirements

The requirement phase took longer time than that was planned, totaling 4 months, from writing

the outline to finishing up all the features. Writing the manual was actually the process of re-

quirements elicitation. Sometimes, a feature was proposed in a very early version, but it took

several revisions to capture what the customer really wanted. In some cases, the customer did

not know exactly what he wanted until he had seen the manual description of what he thought he

wanted. We had 11 revisions before the implementation started, and 3 more revisions later when

the author decided to change the manual fromMS Word format to LATEX format. Some revisions

had only minor changes, to correct mostly grammar mistakes.

To avoid ambiguity, the final version ofWD-pic user’s manual has a glossary defining 34

fundamental concepts including the program name “WD-pic”, “user”, “grid”, and “gravity”. The

main part of the manual was organized by use cases, from basic use cases to advanced features.

A step-by-step sample run was given for each use case.

Later, after implementation started, we had the following several updates.

• We planed to play an alert sound if there was a syntax error when the user tying in the edit

window. We decided to use a different color, red, to mark out the text with errors, as this

would help the user better than the sound, which is unfocused.

• A status bar was added at the bottom of the main frame to show session command errors.

The advantage of using status bar is that the user does not have to click theOK button in

the warning dialog as in other applications. The coordinates of the cursor on the canvas

can always be shown in the status bar as well.

• Selected object is high-lighted in the same selection color as the selected text in the editor

window. Then the user can easily see the relationship between the selected object on the

canvas and in the edit window.

• It was said in the manual that when the user selected an object on the canvas, the attributes

of that object would be shown in the attribute area. But in the implementation, the attribute

area is made up of attribute buttons. So it is difficult to show all the values of the attributes

in the attribute area. So we changed the attribute buttons to be used for insertion only,i.e.,

50

no matter what the existing values are, LMCing an attribute button always resets the value

of the attribute in the internal representation.

• There is no grid information in the internal representation. But the customer wants grid to

be saved. We need save the grid in a file on the hard disk. During the implementation, we

realized that we can further use this file to create a recently opened file history, which is a

popular feature in most GUI applications.

• It was said in the manual that preference setting effected inputting from the palette the same

as inputting from the keyboard. In the implementation, it is difficult to let the program

know what the token is just input from the keyboard. So we changed the preference setting

only effects the input from palette. Refer to the user’s manual for details.

• We planed to develop and executeWD-pic in a Unix environment. Because the code was

written inJava, we built aWindows version without too many changes in the code.

The first three updates actually could have been avoided if we do a better review of the manual,

but not the last four. They are related to implementation details.

Compared to writing traditional requirements specification, writing the user’s manual at the

requirement phase has the following advantages.

• The user’s manual is written at the user’s level, so it is easy for the user or the customer to

see and to tell what he or she wants. It helps requirements elicitation.

• It is also easier for the software engineer to capture what the customer wants. By writing

a use-cases-centered user’s manual, what the user inputs to the CBS and how the CBS

responds to the user are clear to the software engineer.

• By reading the use cases, the customer can verify whether these are what he or she wants.

Berry, the customer’s previous experience being a requirement engineer and a customer is

relevant to this case study because he learned how to be a demanding customer. But his previous

experience withWD-pic was irrelevant, because each time he does this, he goes for what he

believes are correct requirements. The fact that he has doneWD-pic before changes only set of

features not the software engineer’s job to find out what he wants and to specify and implement

it.

51

3.2.2 Design

WD-pic user’s manual was used as the guideline for design. It is actually a repository of use

cases, from basic to advanced. By reading all the use cases, it is not difficult for the designer

to figure out the main modules. Then each key use case was visualized to aUML sequence

diagram. Last, the user’s manual was used to verify whether the designed modules working

together to carry out all the use cases. Some of these sequences diagrams are given in Appendix

B.

The user’s manual helps the design in the following ways.

• The use cases are already there, it is easy for the designer to generate the use case diagrams.

• Because a use case in the manual describes in each step what the user inputs to the CBS

or what the CBS responds to the user, it is easy for the designer to construct the sequence

(scenario) diagrams.

• The manual helps the designer to verify whether the design covers all the features in the

manual by verifying each use case.

3.2.3 Implementation

The user’s manual was used as the guideline to implement all the features. Lots of research was

done during the process of preparation and requirement, such as studying thepic source code and

Shpilberg’s prototype code and getting familiar withJava Swing andJni. POC code was written

in the requirement and design phases. For instance, a small piece ofJava code was written to

show that theC-codedpic compiler works with a simpleJava-coded GUI program. Therefore,

once the design was fixed, the software engineer could write a main frame and put everything

together to make a rough working version, then implement the use cases and abstracted features

in the manual one by one. From this rough working version to all features done, it took about

two months. Totally, there are 24,091 lines of code (LOCs) inWD-pic. Among all the source

code, 13,524 LOCs are GUI code inJava, 10,464 LOCs arepic compiler code inC, and 103

LOCs are external editor code inC. Among thepic compiler code, 9,567 LOCs are reused code

from the originalpic compiler. 897 LOCs are newly coded. Implementation went much faster

than expected.

52

WD-pic was planned to run only onUnix Solaris systems. However, the result shows that

after compiling thepic source code into a dynamic link library onWindows, it works with the

GUI in Java onWindows as well. So aWindows version ofWD-pic was implemented as well,

with slightly different code for font setting and invoking the external editor.

3.2.4 Testing

White-box, unit testing was done to every class during the implementation phase. The user’s

manual was used as the test plan and the source of black-box test cases. Results show that the

user’s manual works as a good test plan and source of test cases. The user’s manual has all

the information that a normal test plan and test cases have, including the system requirement of

the program, the execution steps, and the correct results. Once a feature was implemented, the

software engineer did black-box testing by following the exact steps in the manual to make sure

the program worked as expected.

Most of the testing was done during implementation. Later, more black-box testing was done

when the author usedWD-pic to draw all the line diagrams in this thesis. The author realized that

it was very convenient and fast to useWD-pic to draw the line diagrams if the user had the layout

of the whole diagram in mind. Users of the traditional batchpic reported the same phenomenon.

To summarize, the user’s manual helps testing by serving as the test plan and providing test

cases.

3.3 Author’s feelings during the life cycle

When I first heard the idea of using a program’s user’s manual as its requirement specification,

the idea sounded a little bit strange, because in a normal life cycle, the user’s manual is the

last document to be written. Furthermore, a user’s manual and a requirement specification have

different readers. They have different focuses on the content.

During the preparation phase, as I was getting to know more about thepic program, I was not

sure how much this GUI we were going to built on top ofpic could enhance thepic program’s

functionalities. Even if a user knows thepic language well, the flexibility that thepic program

gives to the user is limited because of the limitations of the batch mode program.

53

The requirement phase was the hardest phase during the whole life cycle. The requirement

elicitation was hard. Describing the requirement to capture what the customer really wanted

was hard too. I felt that writing a good user’s manual which is to be used as a requirements

specification is as hard as writing a normal requirement specification. We didn’t save time during

the requirement phase by writing the user’s manual instead of a requirement specification. In fact,

I would say that we lost time.

Everything got paid back in the later design, implementation, and testing phases. Having

walked through the requirement elicitation process, I knew exactly what I was supposed to im-

plement. Testing became very easy too, as the use-case-oriented manual itself was a source

of covering test cases. Implementation went much faster than expected. When I did the first

demonstration to the customer, the customer was really impressed.

When I was usingWD-pic to draw the diagrams in this thesis, I realized that this software

turned out to be much better than I expected. The GUI gives users much more flexibility to draw

diagrams than the originalpic program. Without too much knowledge of thepic language, I was

able to draw all kinds of line drawings easily.

Compared to projects that I did before, the requirement phase in this case study was no

easier than that in a normal life cycle. I expected that writing a user’s manual would have been

easier than writing a formal requirement specification. However, design, implementation, and

testing went much better than expected. The project finished on time and with the customer’s

satisfaction. While in my past experience, of about 5 years, usually the early requirements and

design phases went much more smoothly than in this project. However, in the past projects,

always requirements and design problems were discovered during implementation and testing.

In this project, there were much fewer problems discovered during implementation and testing,

allowing them to go very quickly.

54

Chapter 4

Conclusions

In this work, two contributions are that,

1. WD-pic was implemented and

2. a case study of using a program’s user’s manual as the program’s requirement specification

was carried out.

We have the following conclusions.

First,WD-pic follows a new paradigm for WYSIWYG direct-manipulation picture drawing

programs. It has the following advantages.

• It inherits all the advantages that the batch modepic program has and it fixes the disadvan-

tages of the batch and most WYSIWYG picture drawing programs.

• It provides convenient direct manipulations and directly editing the internal representation

of picture to users.

• Input by mouse or by keyboard are fully interchangeable. The user does not have to inform

the application where its next input is coming from.

• It minimizes the mouse movement.

However, becauseWD-pic is built on top of thepic program, its features are limited to the

features thatpic can provide. Besides this, the current implementation ofWD-pic also has some

other shortcomings that are independent ofpic.

55

• Changing the sizes and locations of objects cannot be done by direct mouse manipulations.

• Copy, paste, cut, undo, andredo do not work with the canvas.

• Changing attributes of constructs cannot be done by direct manipulations.

• Pictures cannot be output in a standard graph format.

The first two are not real limitations. They can be overcome by using the built-in text editor.

They are not difficult to fix based on the current implementation. The later two are the challenges

for the designer of the next version.

Second, the result of our case study shows it is useful to write the user’s manual at the

requirement phase. A non-ambiguous, use-case-centered user’s manual helps the whole process

of the software development.

• The user’s manual makes an excellent requirement specification for CBSs. It specifies the

what-not-how of the CBS at the users level.

• It helps requirements elicitation by helping both the customer and the software engineer to

see what is wanted. But it cannot solve the problem that sometimes, the customer does not

know what he or she want.

• The user’s manual is a good validation tool; it helps the customer to verify the requirements

specification, and helps software engineer to verify the design and implementation.

• The user’s manual as a repository of use cases, and a useful source of a test plan and

covering test cases.

• There is no need to write the user’s manual again after the development finished! The one

used by the software engineer a lot is also easy to be read by users.

There is no completely satisfactory way to validate any SE method, but at best, our re-

sult shows that using a program’s user’s manual as its requirement specification is a promising

method. It is worth additional case studies.

56

Appendix A

pic source code of figures in the thesis

A.1 Figure 1.1

ellipse "document"

arrow

A:box "WD-pic"

arrow

ellipse "pic file"

arrow

box "pic"

arrow

box "troff"

arrow

circle rad .28

circle "picture" at last circle.c

down

arrow from A.s

circle rad .28

circle "picture" at last circle.c

57

A.2 Figure 1.2

down

A: box invis "keyboard"

B: box invis "mouse"

arrow from A.e right down boxht/2

arrow from B.e right up boxht/2

right

C: ellipse "GUI" "input"

arrow "affecting IR" "events" right 1

D: box "IR"

arrow

ellipse "pic" "compiler"

E: arrow

ellipse "GUI" "output"

line from C.se right down

line to (E.c.x-movewid, C.se.y-moveht) "affecting session" "events"

arrow to E.c

box dashed at D.e wid 5.5 ht 2

"WD-pic"above at last box .n

A.3 Figure 1.4

down

box "a"

arrow dotted

B:ellipse "b"

arrow left down "event" ljust below

circle "c"

arrow from B.s right down

ellipse wid 1 "Hello World"

58

A.4 Figure 2.3

EE: box wid 1.2 "External Editor"; move

Help: box "Help"

File: box "File" at (EE.x,-1); move boxwid

UI: box "UI"; move boxwid

Gravity: box "Gravity"

EW: box wid 1 "EditWindow" at (1.2, -2.5); move .5

Canvas: box "Canvas"

Grid: box "Grid" with .sw at Canvas.ne + (1, 0)

Font: box "Font" with .nw at Canvas.ne + (boxwid, -boxht)

left

Object: box "PICObject" with .ne at Font.sw + (0, -.3); move

Compiler: box wid 1 "PICCompiler"; move

History: box "History" at (.5, -4.2)

arrow from UI.w to EE.s

arrow from UI.n to Help.s

arrow from UI.w to File.e

arrow from UI.e to Gravity.w

arrow from UI.e to Grid.w

arrow from UI.s to EW.n

arrow from UI.s to Canvas.n

arrow from UI.s to Font.n

line from EE.s to File.n

line from File.s to EW.n

line from File.s to History.n

line from EW.e to Canvas.w

line from EW.s to Compiler.n

line from EW.s to Object.n

line from Canvas.s to Compiler.n

line from Canvas.s to Object.n

line from Canvas.e to Font.w

59

line from Canvas.e to Grid.w

line from Compiler.e to Object.w

line from History.e right 4 then up 1.5 to Grid.s

line from Grid.n to Gravity.s

line from Font.s to Object.n

line from Object.e right 1.5 then up 2 then to Gravity.e

"Legend" at (3.75, .5)

move down .3

arrow right; move; "navigate"

line at (3.75, -.15); move; "reference"

box at (4.2, 0.2) wid 1.8 ht 1 dotted

A.5 Figure 2.4

Text: box "PICText"; move .75

Object: box "PICObject"; move .75

Arc: box "PICArc"

Bound: box wid 1.2 "PICBoundObject" at (1, -1); move 1

Line: box "PICLine"

Box: box "PICBox" at (0, -2); move .5;

Ellipse: box "PICEllipse"; move .5

Circle: box "PICCircle"; move

Spline: box "PICSpline"

arrowhead = 7

arrow from Text.e to Object.w

arrow from Arc.w to Object.e

arrow from Bound.n to Object.s

arrow from Line.n to Object.s

arrow from Box.n to Bound.s

arrow from Circle.n to Bound.s

arrow from Ellipse.n to Bound.s

60

arrow from Spline.n to Line.s

A.6 Figure 2.5

E: ellipse wid 2 ht 1 "E.c"

" E.e" at E.e ljust

" E.ne" at E.ne ljust

" E.se" at E.se ljust

"E.s" at E.s below

"E.n" at E.n above

"E.sw " at E.sw rjust

"E.w " at E.w rjust

"E.nw " at E.nw rjust

A.7 Figure 2.6

down; lineht = 0.3

ellipse "IR"

arrow

box wid 1.5 "Calculate number" "of phrases (num)"

arrow

box "i = 0"

arrow

L1: line to (.7, -2.7)

line to (0, -3.0)

line to (-0.7, -2.7)

L4: line to last arrow.s

"i < -num ?" at (0, -2.7)

arrow from (0, -3.0) " Y" ljust

box wid 1.2 "compile phrase i"

arrow

61

L5:line to (.7, -4.4)

line to (0, -4.7)

line to (-0.7, -4.4)

line to last arrow.s

"error ?" at (0, -4.4)

arrow from (0, -4.7) " N" ljust

left

A: arrow 1

B:box "i++"

line from B.n up 2.05 to L4 ->

right

arrow from L1.s "N" above

circle "done"

arrow from L5.s "Y" above

box wid 1.1"reset compiler"

arrow

box ht .5 wid 1.3 "recompile phrase" "0 to i-1"

line from last box.s down .35 then to A.s ->

A.8 Figure 2.7

arrowhead = 5

L1: arrow 2

" X" at L1.end

"+" at (1.8, -0.9)

arrow from L1 down 2

"Y" rjust at last arrow.end

"+" at (-0.1, -1.8)

"(0,0)" above at (0,0)

arrow dashed from (-0.2, -1) to (2, -1)

" X" at last arrow.end

62

"+" at (1.8, 0.1)

arrow dashed from (1, -2) to (1, 0.2)

"Y" at last arrow.end rjust

"+" at (1.1, 0.1)

"(0,0)" at (1.2,-0.9)

line right from (2, -1.6)

"Screen coordinate" at (3.2, -1.6)

line dashed from (2, -1.9)

"Euclid coordinate" at (3.2, -1.9)

A.9 Figure 2.11

down

"PICFontString List" ; move .2

box wid 2 ht 1

box same

box same

x=-.25; y=-.4

"PICFontString" at (x, y)

"Arial Bold, size=18" at (x+.3, y-0.25)

"from" at (x+.2, y-0.46)

"to" at (x+.2, y -.65)

"PICFontString" at (x, y-1)

"Courier Oblique, size=24" at (x+.3, y -1.25)

F1: "from" at (x+.2, y -1.46)

T1: "to" at (x+.2, y-1.65)

"PICFontString" at (x, y-2)

"Times Italic, size=10" at (0.1, -2.65)

"from" at (0, -2.86)

"to" at (0, -3.05)

x=2.5; y=.8

63

"PICObject List" at (x, y); move .2

box wid 1.5 ht 2.2

box wid 1.5 ht 1.2

box wid 1.5 ht .75

"PICBox" at (x-.4, y-.4) ; move .2

box wid 1 ht .7 at (x, y-0.9); move .2

box same; move.6

box same ;

"PICString" at (x-.1, y-0.7); move .2

"rjust"; move .2

"Hello"

"PICString" at (x-.1, y -1.6); move .3

"World"

"PICArrow" at (x-.3, y-2.6)

"PICString" at (x-.1, y-2.9); move .2

"above"; move .2

"test"

"PICCircle" at (x-.3, y-3.8)

line from (0.2, -0.85) to (2.37, -0.38) ->

line from (0.2, -1.05) to (2.37, -0.38) ->

line from (0.2, -1.85) to (2.5, -0.38) ->

line from (0.2, -2.05) to (2.5, -0.38) ->

line from (0.2, -2.9) to (2.25, -1.2) ->

line from (0.2, -3.06) to (2.55, -1.2) ->

A.10 Figure 3.1

boxwid=1; boxht=.4

A: box fill .2 "preparation"

B: box fill .2 ht 1.6 with .nw at last box.se "requirement"

C: box fill .2 ht .3 with .nw at last box.se "design"

64

D: box fill .2 ht .7 wid 1.2 with .nw at last box.se "implementation"

E: box fill .2 ht .7 with .nw at last box.se "testing"

line 4.6 from A.ne; " 10/2/01 "

line 3.7 from B.ne; " 11/1"

line 2.7 from C.ne; " 3/28/02"; move;move

line 1.5 from D.ne; " 4/20"

line from E.ne; " 6/11"

line from E.se; " 7/31"

spline from D.w left 3 then to B.w ->

spline from E.w left 2 to D.w ->

A.11 Figure 3.2

boxwid=1; boxht=.4

A: box fill .2 "preparation"

B: box fill .2 ht .8 with .nw at last box.se "requirement"

C: box fill .2 ht .4 with .nw at last box.se "design"

D: box fill .2 ht 1.2 wid 1.2 with .nw at last box.se "implementation"

E: box fill .2 ht .8 with .nw at last box.se "testing"

line 4.6 from A.ne; " 10/1/01 "

line 3.7 from B.ne; " 11/1"

line 2.7 from C.ne; " 1/1/02"; move;move

line 1.5 from D.ne; " 2/1"

line from E.ne; " 5/1"

line from E.se; " 6/31"

spline from C.w left 1.35 to B.w ->

spline from D.w left 2.8 then to B.w ->

spline from D.w +(0, .1) left 2 to C.w ->

spline from E.w -(0, .1) left 4.8 to B.w ->

spline from E.w left 2 to D.w ->

65

Appendix B

Sequence diagrams

B.1 Opening a file

B.2 Inserting an object

B.3 Selecting an object

B.4 Defining & activating grid

B.5 Setting font and size of text

66

Figure B.1:Sequence diagram of file open

67

Figure B.2:Sequence diagram of inserting an object

68

Figure B.3:Sequence diagram of selecing an object

69

Figure B.4:Sequence diagram of defining and activating grid

70

Figure B.5:Sequence diagram of setting font and size

71

Appendix C

WD-pic user’s manual

72

Bibliography

[1] http://www.research.att.com/sw/tools/graphviz/.

[2] http://www.graphviz.org/.

[3] http://www.omg.org.

[4] http://www.rational.com.

[5] System Calls and Library Routines, volume 2 ofUnix programmer’s manual. CBS College

Publishing’s Unix System Library, 1986.

[6] Daniel M. Berry, Khuzaima Daudjee, Jing Dong, Maria Augusta Nelson, and Torsten Nel-

son. User’s Manual as a Requirement Specification.Technical Report CS2001-17, May

2001.

[7] Igor Finestein. Requirements specification for a large-scale telephony-based natural lan-

guage speech recognition system. Master’s thesis, School of Computer Science, University

of Waterloo, Waterloo, ON, Canada, 2002.

[8] C.W. Fraser and D.R. Hanson. High-level languages facilities for low-level services.12th

ACM Symp. on Prin. of Programming Languages, pages 217–224, 1985.

[9] Narain Gehani.Document Formatting and Typesetting on the Unix System second edition.

Silicon Press, Summit, NJ, 1987.

[10] Brian W. Kernighan. PIC - A Graphics Languages for Typesetting.Bell Laboratories,

Computer Science Technical Report No.116, December 1984.

73

[11] B.W. Kernighan. A Typesetter-independent TROFF.Computer Science Technical Report

No.116, Bell Laboratories, March 1982.

[12] Eleftherios Koutsofios. Editing Pictures with lefty. June 1996.

[13] Eleftherios Koutsofios and Stephen North.Drawing graphs with dot. AT&T Bell Labora-

tories, Murray Hill, NJ, February 2002. http://www.research.att.com/sw/tools/graphviz/.

[14] Eleftherios Koutsofios and Stephen C. North. Editing graphs with dotty. June 1996.

[15] Stephen C. North.Drawing graphs with NEATO, April 2002.

[16] Marc J. Rochkind.Advanced Unix Programming. Prentice-Hall, Englewood Cliffs, NJ,

1985.

[17] Faina Shpilberg. WD-pic, A WYSIWYG Direct-Manipulation pic. Master’s thesis, Faculty

of Computer Science, Technion, Haifa, Israel, July 1997.

[18] B. Srinivasan.Unix Document Processing and Typesetting. World Scientific, Singapore,

New Jersey, London, 1993.

74

