
A Case Study of Software Reengineering

by Harry I. Hornreich

A Case Study of Software Reengineering

Research Thesis

Submitted in partial ful�llment of the requirements

for the degree of Master of Science

in Computer Science

Harry I. Hornreich

Submitted to the Senate of the Technion - Israel Institute of Technology

Adar 5758 Haifa February 1998

The work described herein was supervised by Prof. Daniel M. Berry

under the auspices of the Computer Science committee.

I wish to thank the Technion for the scholarship it has given me during

this thesis

This research is dedicated to my late father Prof. Richard Hornreich

I wish to thank my wife for her great support during this thesis

Contents

Abstract 1

1 Introduction 3

1.1 De�nitions . 3
1.2 Problems in Current Life Cycle Models 5
1.3 Proposed Life Cycle Model . 6
1.4 Transition Method . 8
1.5 Proposed Transition Method . 9
1.6 Thesis Objectives . 12

2 The Experiment 13

2.1 A Case Study . 13
2.2 Case Study Mechanics . 14
2.3 Case Study Validity . 15

3 The �ortid Program 17

3.1 Background . 17
3.2 �ortid Source Files . 19
3.3 Why We Chose �ortid . 21

4 Domain Software Reengineering of �ortid 22

4.1 Software Units . 22
4.1.1 Software Unit Interface and Side-e�ects 23
4.1.2 Software Sub-Units . 24
4.1.3 Service Flow Diagrams . 26

4.2 Reverse Engineering a Software Unit 31
4.3 �ortid Version 3.0 Reverse Engineering 32
4.4 �ortid Version 3.0 Architecture . 37
4.5 Author's Conclusions from Decomposition 40
4.6 The Initial Domain . 41

5 �ortid Version 4.0 43

5.1 SWU Modi�cations . 43
5.2 The New Requirements . 45
5.3 Implementation . 46
5.4 Implementation Comparison . 49

6 �ortid Version 5.0 53

6.1 The New Requirements . 53
6.2 Implementation . 55

7 Experiment Results 57

7.1 Measuring Reuse . 57
7.2 Results . 58
7.3 Conclusions . 60
7.4 Acknowledgments . 61

A SFD Icons 62

B �ortid Ver 3.0 Manual Page 66

C �ortid Ver 4.0 Manual Page 70

D �ortid Ver 5.0 Manual Page 77

Bibliography 87

List of Figures

1.1 Relationship between terms . 4
1.2 The legacy and reuse software life cycle 7
1.3 Overview of the proposed transition method 9
1.4 Augmented method processes . 11

3.1 Stretching connecting letters with a �ller 17
3.2 Example ditro� output not piped through �ortid 18
3.3 Same ditro� output piped through �ortid with stretching o� 18
3.4 Last connecting letters in lines are stretched 18
3.5 Last connecting letters in lines stretched up to maximum amount . . 19
3.6 Stretch distributed between all last connecting letters in words . . . 19
3.7 �ortid example output with combined English, Hebrew and Arabic text 20

4.1 Example scope diagram . 25
4.2 Major icons used in SFDs . 27
4.3 A SFD of the SWU abstracting �ortid 28
4.4 SFD of dump.c SWU with its sub-units 29
4.5 A complex SFD . 30
4.6 First part of �ortid Version 3.0 SWU 1 page 33
4.7 Third part of �ortid Version 3.0 SWU 1 page 34
4.8 Second part of �ortid Version 3.0 SWU 1 page 35
4.9 SWU 16 page in �ortid Version 3.0 decomposition 36
4.10 Overview of �ortid Version 3.0 decomposition 39

5.1 Connecting letters, �llers, and dynamic letters 45
5.2 Overview of �ortid Version 4.0 domain 50

6.1 Stretchable letter connections and �llers 54
6.2 Layout of slanted font words on line 54
6.3 Sample slanted output . 55

7.1 Relationship between original and product application 57

List of Tables

3.1 �ortid version history . 19
3.2 �ortid source �les . 21

4.1 �ortid Version 3.0 software units . 38

5.1 SWU modi�cation types . 44
5.2 �ortid Version 4.0 software units . 51

7.1 Experiment results . 58
7.2 Experiment results analysis . 59

Abstract

The problem of maintaining and enhancing existing systems has been recognized
as a major problem in the �eld of software engineering. Researchers have proposed
solving this problem by organizational changes and methods for systematic software
reuse and automatic program generation.

One method for the transition to this futuristic vision of software engineering is
the Synthesis approach proposed by the Software Productivity Consortium. This
approach prescribes an ordered sequence of steps for the management, analysis,
and speci�cation of a domain which contains the architecture of a product family
of reusable software components, and the decision rules needed for their selection.
The top-down process of creating the domain is called domain engineering. New
applications are constructed by selecting components from the domain, as indicated
by the decision rules, in a process called application engineering.

This approach has so far proved to be very costly and risky. The heavy reliance
on committed experts with extensive knowledge both in the application domain and
in software engineering has a crippling e�ect. It requires these experts to build from
scratch a library of reusable components to answer every possible application in the
domain, a formidable task. Additionally, not a single application can be generated
until the complete process is �nished.

Ahrens and Prywes have proposed to augment the top-down domain engineering
process with a bottom-up domain reengineering process. In this process, automated
tools extract from good quality legacy code, domain and software knowledge that
can be used to de�ne application requirements and their supporting reusable soft-
ware components. Legacy code becomes a key catalyst of the process and reduces
the reliance on domain experts. Combined use of bottom-up reengineering and top-
down engineering reduces the time and risk involved in generating new applications.

This work attempts to evaluate the proposed bottom-up domain reengineering
process by performing a which-is-better type of case study on a real, small scale,
legacy code application. The idea was to perform a controlled experiment of what
happens naturally in real life situations. A software product is released and new
feedback from users, evolving system architectures, and even competition force the
creation of more advanced applications which are based on the original one. How-
ever, this can be a painstaking task with legacy applications because they are so
di�cult to adapt.

There were two roles in the experiment. The author and the control. Both
started from the same legacy code application, but used di�erent methods to cre-
ate two subsequent generations of more advanced applications, each based on the
previous generation.

The author used the domain reengineering process, to create an initial domain.
He then evolved it in an evolutionary manner, to satisfy the new requirements of
the more advanced applications in the domain, generating these new applications in
the process. The control used a method, often called seat-of-the-pants, representing
currently used maintenance methods that do not use any form of reverse or software
reengineering. The control implemented the same two generations of applications

1

using the same requirements as the author.
The hypotheses of the case study were:

Hypothesis 1: The new method requires less time to produce an application than
current maintenance methods.

Hypothesis 2: The new method produces more reusable code than current main-
tenance methods.

Hypothesis 3: The new method requires less code modi�cations to produce an
application than current maintenance methods.

Hypothesis 4: The new method produces smaller applications than current main-
tenance methods.

During the experiment data was collected in order to prove or disprove the
hypotheses. Special measures were taken in order to insure the validity of the
experiment. For example, each generation of applications was tested against the
same set of tests to make sure that despite the di�erent methods used to create the
applications both had exactly the same functionality, at least with respect to the
test data.

The experiment results indicate that only Hypothesis 1, 2, and 4 hold. Only
Hypothesis 3 has been disproved in this experiment. Therefore, the experiment
shows that the new domain reengineering process does have promise in it. However,
additional, formal experiments are necessary in order to strengthen these results.
Additionally, it is the author's view that the domain reengineering process cannot
be performed successfully on large scale legacy projects without dedicated CASE
tools to assist in the process.

The chapters in this thesis follow the course of the experiment steps. The last
chapter presents the results of the experiment. Chapter 4 presents conclusions
reached on the enabling technology required to make this approach feasible on
large scale projects. Additionally, a theory of Software Units was developed to
assist the reverse and reengineering processes, and the adaptation of a domain
according to new requirements. This theory is introduced as applicable throughout
the experiment steps.

2

Chapter 1

Introduction

The problem of maintaining and enhancing existing systems has been recognized
as a major problem in the �eld of software engineering. This thesis deals with
state-of-the-art methods for software engineering, such as software reeengineering,
reverse engineering, domain and application engineering, that are seen as e�ective,
partial solutions to this problem. The widespread use of these and other terms has
caused much confusion in the �eld. The thesis therefore begins with a short section
of de�nitions of the major terms that are used. Other terms will be de�ned as they
are presented.

1.1 De�nitions

This section de�nes and relates the following terms: software maintenance, forward
engineering, reverse engineering, redocumentation, design recovery, restructuring
and reengineering. The de�nitions are based mostly on a taxonomy by Chikofsky
and Cross [1].

Software Maintenance is de�ned by ANSI to be the \modi�cation of a software
product after delivery to correct faults, to improve performance or other attributes,
or to adapt the product to a changed environment" [2]. There are four types of
maintenance activities that can be performed on an existing software product [3]:

� Corrective Maintenance is the correction of software faults, i.e. deviations of
functionality from speci�cations after the product has been delivered to the
users.

� Adaptive Maintenance is the modi�cation of a software system as a result of
environmental changes such as new generations of hardware, new peripheral
equipment, new operating systems, or new releases of old ones.

� Perfective Maintenance is the modi�cation of a software system as a result of
new requirements.

� Preventive Maintenance is the modi�cation of a software system in order to
prolong its lifetime or provide a better basis for future enhancements.

Although the following terms can be applied to any orderly life-cycle model of
software development, for simplicity, Chikofsky and Cross de�ne them using only
three life-cycle stages:

� Requirements (speci�cation of the problem).

� Design (speci�cation of the solution).

3

Requirements Design Implementation

Forward
engineering

Forward
engineering

Reverse
engineering

Reverse
engineering

Design
Recovery Design

Recovery

Reengineering Reengineering

Restructuring Restructuring Redocumentation,
Restructuring

Figure 1.1: Relationship between terms

� Implementation (coding, testing, and delivery of the operational system).

Note that each of these stages is a di�erent abstraction level of the same system.
A subject system may be a code fragment, a single program, a complex set of
interacting programs, etc. Figure 1.1 shows the relationship between the following
terms.

Forward Engineering is the traditional process of moving from high-level ab-
stractions and logical, implementation-independent design to the physical imple-
mentation of a system. Forward engineering follows a sequence of steps going from
requirements through design to implementation.

Reverse Engineering is the process of analyzing a subject system to identify the
system's components and their interrelationships or to create representations of the
system in another form or at a higher level of abstraction. Reverse engineering is
a process of examination, not a process of change or replication. Reverse engineer-
ing cannot capture all lost information, for example, rejected design alternatives.
However, it can discover, for example, side e�ects that were not planned in the
forward engineering process. In general, reverse engineering can be applied at any
level of abstraction, or at any life-cycle stage. Two subareas of reverse engineering
are redocumentation and design recovery:

� Redocumentation is the creation or revision of a semantically equivalent rep-
resentation within the same relative abstraction level. The resulting forms of
representation are usually considered alternate views, for example, data
ow,
data structure and control
ow, intended for a human audience.

� Design recovery is a subset of reverse engineering in which domain knowledge,
external information, and deduction or fuzzy reasoning are added to the obser-
vations of the subject system to identify meaningful higher level abstractions
beyond those obtained directly by examining the system itself.

Restructuring is the transformation from one representation form to another
at the same relative abstraction level, while preserving the subject system's exter-
nal behavior. Restructuring is often used as a form of preventive maintenance to
improve the physical state of the subject system with respect to some preferred
standard.

4

Reengineering is the examination and alteration of a subject system to reconsti-
tute it in a new form and the subsequent implementation of the new form. Reengi-
neering generally includes some form of reverse engineering followed by some form
of forward engineering or restructuring. In most cases, reengineered software reim-
plements the function of the original system, but at the same time, additional
functionality is added or performance is improved in some respect according to new
requirements.

Reverse engineering, restructuring and reengineering are usually all performed
on existing systems and are therefore, by de�nition, a form of maintenance. How-
ever, each of these processes can be used in the development of new systems or
evolutionary system development. Reverse engineering by itself is not maintenance,
however it can be used as part of a maintenance e�ort to help understand an ex-
isting system in order to determine the changes needed to be performed on it.
Restructuring of an existing system is by de�nition preventive maintenance. A
Reengineering e�ort can either be adaptive, perfective, or preventive maintenance,
or a combination of them.

1.2 Problems in Current Life Cycle Models

Most software today is developed using one, or a combination of, well known life-
cycle models such as the waterfall [3], prototyping [3], spiral [4], and what have been
called \fourth-generation techniques" [3]. These and other life-cycle models do not
adequately represent software maintenance and reengineering activities which today
account for the vast majority of software labor costs [5]. Additionally, they do not
adequately represent state-of-the-art concepts for improving software engineering
practices such as domain and application engineering [6] and software reuse [7].

Ahrens et al [5, 8] have identi�ed several underlying assumptions about the
nature of software processes and practices that possibly explain these and other
inadequacies in current life-cycle models:

Assumption 1: Maintenance is a separate life-cycle phase. The view
of maintenance as a separate software life-cycle phase that begins after software is
released, originated with the waterfall model and is still widely accepted, as implied
by the ANSI de�nition given above.1 However, this division is unnatural because
the same tasks of requirements analysis, speci�cation, design, implementation, and
testing are performed both in new software development and in corrective, adap-
tive, perfective, or preventive maintenance. Also, reengineering activities such as
reverse engineering and restructuring which are traditionally seen as maintenance
activities can also be applied during the development stages of new software, either
to produce reusable components from existing software or to develop new software.
Therefore, the unnatural division between development and maintenance is for ad-
ministrative purposes only. A CSTB Report [9] states that this assumption seems
to have legitimized higher costs, poor technological support, and poor management
of maintenance activities. For example, di�erent teams are created for the develop-
ment and maintenance of the same software project.

Assumption 2: New software applications require new software de-

velopment. This assumption is widely regarded as obsolete. The notion of reuse
and the bene�ts to be gained from its use are well known [7]. Creating new applica-
tions completely or partially from reusable software components holds the prospect

1The original view of maintenance was similar to what I de�ned as corrective maintenance, i.e.

correction of faults not found before the software was released. As software systems aged, they

were adapted to new environments and perfected to answer new user needs. The adaptive and

perfective maintenance terms were coined and added to the only life-cycle phase to which they

seemed appropriate { the maintenance phase. As these systems aged even further and became

unmanageable a fourth term, preventive maintenance, was added.

5

of creating higher quality applications more quickly while improving development
productivity.

Assumption 3: New applications based on reusable components can

and should be developed only in a top-down manner. This assumption can
be found in state-of-the-art approaches to software engineering. ARPA's Domain
Speci�c Software Architecture (DSSA) project and the Synthesis approach devel-
oped by the Software Productivity Consortium (SPC) [6] both describe an ordered
sequence of steps for the management, analysis, and speci�cation of a domain which
contains the architecture of a product family of reusable software components, and
the decision rules needed for their selection. The process of creating the domain
is called domain engineering. New applications are constructed by selecting com-
ponents from the domain, as indicated by the decision rules, in a process called
application engineering. This is a very di�cult, time consuming, costly, and there-
fore risky process. Instead of using a top-down approach to the creation of a domain,
it is possible to use a bottom-up approach by reengineering legacy software and se-
lecting from it candidate components for the domain library. Another possibility,
is the use of o�-the-shelf commercial software components (COTS), which can be
modi�ed to �t a certain domain. These alternatives are not disjoint. Part or all of
them can be combined according to available resources and analyzed risks.

Assumption 4: CASE technology for forward software development

can perform almost all maintenance. This assumption, as presented by Fuggeta
[10], implies that software can be maintained more easily by redesigning the soft-
ware and generating new code than by understanding the existing code prior to its
redesign and restructuring. Reverse engineering techniques are seen as necessary
only in speci�c circumstances. This assumption justi�es the current CASE ori-
entation towards forward software development. However, such CASE technology
leaves out the great potential of using legacy software of which we have little or no
design information for the creation of new applications. By using CASE tools that
assist reverse engineering and restructuring, we can understand legacy software and
harness the sometimes vital information in it for the creation of new applications.

1.3 Proposed Life Cycle Model

The obsolete and erroneous assumptions about software engineering processes and
activities in current life-cycle models presented in the previous section have led to
the proposal of a more realistic life-cycle model that seeks to incorporate state-of-
the-art ideas and technologies. Ahrens et al [11, 8] have proposed a new life-cycle
model called the \legacy and reuse software life cycle" (LRSLC). In their own words:

\It is a generalized model of the software life cycle that recognizes
explicitly the critical contribution of legacy software to the attainment
of software production from reusable software components."

The LRSLC is presented in Figure 1.2. Rectangles represent life-cycle prod-
uct and information states. Transformation processes, denoted by arrows, convert
artifacts in one state to information products in a neighboring state. Forward trans-
formations are represented by dashed lines, reverse transformations are represented
by solid lines.

The LRSLC model does not necessarily replace current models; it can be com-
bined with them. For example, the model �ts well into the larger scope of the
risk-oriented, iterative nature of the spiral model. It can also be combined with
other models such as the prototyping model to validate customer requirements.
The model does however have some notable features:

6

Requirements

Component specifications

Architecture

Design

Application/reuse software

Transformed software

Legacy software

Forward Software Engineering Transformations

Reverse Software Engineering Transformations

Software Life Cycle Phase

Requirements—Domain or aplication software requirements defined in terms of functionality, capabilities,
performance, user interface, inputs, and outputs.

Component specifications—Domain or application software requirements specified in terms of capabili-
ties of hardware and software components and interfaces. This state is exemplified by the software
specifications in Department of Defense Military Standard 498, ’’Software Development and Documenta-
tion,’’ December 1994.

Architecture—The hierarchy of software components, rules for component selection, and interfaces
between components.

Design—Program interfaces, control flow, and logic, defined in greater detail.

Application/reuse software—In application software, a unique software product; in software reuse, a li-
brary of adaptable reusable software components. The reuse software components are tested, verified
and validated.

Transformed software—Legacy software restructured and translated, if needed, into a modern program-
ming language.

Legacy software—Application software created in a previous traversal of a software life cycle.

Figure 1.2: The legacy and reuse software life cycle

7

� The model de�nes the information products of the software life cycle, but
leaves the transition processes between them open to various methods. This
is similar to the spiral model which also de�nes the information products
produced at the conclusion of a life cycle phase but leaves open the means of
their attainment.

� The model integrates forward and reverse engineering processes for traversing
the life cycle. Traversal is triggered by new information in one or more states
and concludes when all states become consistent. Both forward and reverse
engineering traversals can be generated from a single trigger.

� The model speci�cally incorporates the use of reverse engineered legacy soft-
ware in the creation of software applications and reuse libraries.

� The model does not have a separate maintenance state. The integrated for-
ward and reverse engineering processes enable the creation, maintenance, and
evolution of software domains, reuse libraries, and applications over long time
spans. The model is therefore of an evolutionary nature.

As an example use of the model, suppose one has already created a domain
and built a �rst application from it. A customer, having used the application, now
has a set of new requirements. To satisfy these requirements we decide to create
some completely new components and to reengineer others from the legacy software.
First, in a reverse traversal of the model, we reengineer the legacy software by ana-
lyzing, possibly translating, restructuring, and redocumenting components from the
legacy software, adding them to our domain. We update the design, architecture,
and component speci�cation information states from the documentation extracted
by the reverse engineering process. Then, forward traversal of the model is used to
create the new domain components, updating in the process, the speci�cations, ar-
chitecture, design, and reuse information states. Finally, a last forward traversal of
the model is used to create the customer's new application by integrating previous,
new, and reengineered software components.

1.4 Transition Method

The LRSLC presented in the previous section is a generalized life-cycle model that
describes information product states rather than the processes for moving between
them. This model is well suited for state-of-the-art software engineering methods
aimed at the development of reusable building blocks of adaptable software compo-
nents from which application software can be constructed. These methods aim to
reach a state in which applications in a speci�c domain can be automatically gen-
erated from a library of reusable components according to customer requirements.

However, transition from present software practice to a state of automatic appli-
cation generation has proved to be very di�cult. The proposed transition methods,
such as the synthesis approach of the SPC, advocate the creation of the domain
from scratch, based on the expertise of domain experts. These experts, based on
their knowledge and experience in the domain and in software engineering, de�ne
a knowledge base of potential application requirements. Software experts build in
a top-down fashion, a library of adaptable, reusable software components to an-
swer these potential requirements. Decision rules and automated processes for the
selection and assembly of these components into applications are de�ned.

The problem with this approach is that their is a large dependency on domain
experts. Also, a complete library of reusable components for a large family of
applications needs to be created from scratch before a single application can be

8

Resources Process Products

Domain
expert

Software
expert

Legacy
software

Augmented
Transition
Method

Domain definition,
specification, and
architecture

Reusable components
(code and documentation)

automatic generation of
new application software
from reuse library

Figure 1.3: Overview of the proposed transition method

generated. This approach has so far proved to be very costly and risky [12, 13].
The initial investment is large and the returns are slow.

Ahrens and Prywes [11] propose a new method for the transition from current
software practices to the LRSLC. It is an augmentation of the top-down synthesis
method by the use of bottom-up legacy code component and knowledge extraction.
Figure 1.3 presents an overview of this approach. Unlike synthesis, legacy software
becomes a key resource in the transition process. It reduces the dependency on
domain experts which are the bottleneck of the process and with the use of appro-
priate reverse engineering CASE technology provides a basis for the creation of a
library of reusable components.

Only legacy software of reasonable quality and of proven reliable performance is
a good candidate for such a process of component extraction. Most legacy software
in day to day use answers these requirements. These are large, complex applica-
tions which have satis�ed their users needs over a long period of time. They are
too di�cult to maintain and too costly to replace by completely new applications.
They are a valuable resource of their organizations and therefore hold invaluable
knowledge and code that can be extracted.

1.5 Proposed Transition Method

As described in Section 1.2, synthesis prescribes an ordered sequence of steps for the
management, analysis, and speci�cation of a domain which contains the architecture
of a family of reusable software components, and the decision rules needed for
their selection. The top-down process of creating the domain is called domain

engineering. Following are the major steps in domain engineering:

1. Domain de�nition

2. Domain speci�cation

3. Domain design

4. Domain veri�cation

5. Domain implementation

9

6. Domain validation

New applications are constructed by selecting components from the domain, as
indicated by the decision rules, in a process called application engineering. The
following are the major steps in application engineering.

1. De�ne customer's application software requirements

2. Use rules in decision model to select reusable components

3. Generate application software

4. Test application software

5. Generate application documentation

Ahrens and Prywes have augmented the top-down domain engineering process
with a bottom-up domain reengineering process that extracts architecture, design,
business rules etc. from legacy software. The major steps in domain reengineering
are

1. legacy application analysis and translation,

2. legacy application conversion to new hardware, operating systems etc,

3. augmentation and adaption of reusable components,

4. domain validation,

5. domain design update,

6. domain speci�cations update,

7. domain de�nition update, and

8. domain veri�cation.

Figure 1.4 illustrates the augmented method which includes both processes.
Application engineering in the augmented method is the same as in synthesis. Either
process can be used to create the initial domain repository. The feedback loop
shown in Figure 1.4 shows that both top-down and bottom-up processes can be
interleaved and applied iteratively, incrementing the domain with each application
of the process. Note that using the two processes in a di�erent sequence will not
necessarily lead to the same reuse library.

When the top-down process alone is selected, it is driven by iterations for des-
ignated domain areas, after which application software may be obtained from these
partial domains. In later iterations, smaller additions to the domain are needed to
produce software for a new application. When combined top-down and bottom up
processes are selected, they are driven by iterations for extracting reusable legacy
applications to produce domain increments. For example, �rst a top-down process
is used to de�ne a high-level architecture. Then a bottom-up process is interleaved
for �lling in the detailed architectural levels.

We can assume that the top-down approach by itself will require signi�cantly
more time than the combined approach to complete the �rst domain increment
of reusable software components for an application for two reasons. First, the
top-down approach requires more input from human domain experts. Second, the
synthesis method requires the complete domain to be speci�ed before applications
are produced. However, the top-down approach by itself has an advantage when

10

Domain repository:
Definition

Specification
Architecture
Reuse library

Documentation

Application engineering
User requirements

Auto. program generation

Application
software

Domain SW
engineering
Top down

Domain SW
reengineering

Bottom up

Domain and
software experts

Legacy
application
software

Customer
Technology
Feedback

Figure 1.4: Augmented method processes

11

developing a domain for which there is su�cient domain expertise but no legacy
applications or when the domain is not overly complex and can be de�ned manually.

The combined approach can more quickly add components from a legacy code
application to the domain architecture, leading to faster and less expensive pro-
duction of new software applications than the top-down approach. The combined
approach also reduces reliance on the scarcer resource of domain experts by relying
more on software experts extracting domain knowledge embedded in good legacy
software. In summary, the combined approach presents an alternative for a faster
and more economical transition to the LRSLC model.

Ahrens and Prywes emphasize the importance of an enabling technology to
make their approach practical. Automated tools complement and help the cognitive
e�ort required on the part of the software and domain experts in the domain and
application engineering phases. They are especially important in the e�ort required
to understand the legacy software in the processes.

1.6 Thesis Objectives

The objectives of this thesis are

� to evaluate the proposed domain reengineering process,

� to reach conclusions on the required enabling technology for the reengineering
process,

� to develop a method for the evolutionary development of a domain according
to external requirements,

� to reach conclusions on the required enabling technology for the new method,
and

� to re�ne the theory of Software Units to support the above processes.

This thesis focuses on the bottom-up domain reengineering transition process
because of the limited time and resources available in a masters thesis. Domain
reengineering is used to create an initial domain and then to create two generations
of applications from the domain, updating it in the process. The issues of creating
adaptable components and the automatic generation of applications from them, are
beyond the scope of this thesis. All processes were performed manually without the
use of any automated tools.

The following chapters explain the course of the experiment and follow its steps,
introducing the theory of Software Units as applicable to the problem. Finally, the
thesis summarizes the experiment results and draws conclusions from their analysis.

12

Chapter 2

The Experiment

2.1 A Case Study

In order to achieve the objectives of this thesis, it was decided to conduct a case

study [14]. In general, a case study can show the e�ects of a technology or method in
a typical situation, but cannot be generalized to every possible situation. Although
case studies are not as scienti�cally rigorous as formal experiments [14], they can
provide us with su�cient information to judge if a method has any promise in
it. It is not claimed that this case study gives a de�nite answer or proof as to
the usefulness of the new method. It does, however, attempt to show that the
new method is applicable to a real application domain and that one can produce
quality applications using it. The intention is that this case study serve as the basis
for further study either by additional case studies or by a fully controlled formal
experiment. Such formal experiments are very di�cult to perform, especially in the
�eld of software engineering, and require careful planning and large resources.

This case study is a \which is better" type of case study in which the author
wanted to examine which is better, the new method for legacy and code reuse or
the common and often used seat-of-the-pants (SOTP) maintenance. SOTP mainte-
nance does not mean maintenance with no method in it. The maintainer can indeed
have a clear method for performing modi�cations to the software. However, such a
method does not involve any form of reverse engineering or reengineering.

In order to perform a successful case study, we must have well de�ned hypothe-
ses. The hypotheses are:

Hypothesis 1: The new method requires less time to produce an application than
current maintenance methods.

Hypothesis 2: The new method produces more reusable code than current main-
tenance methods.

Hypothesis 3: The new method requires less code modi�cations to produce an
application than current maintenance methods.

Hypothesis 4: The new method produces smaller applications than current main-
tenance methods.

13

2.2 Case Study Mechanics

Application of the new method was performed by the author. The control of the
experiment was Daniel Berry who applied his own systematic SOTP maintenance
method. We believe that this method is representative of the maintenance methods
used by most programmers that do not apply any form of reverse or reengineering.
Both the control and the author worked on similar UNIX systems and neither used
any CASE tools. All work was done manually with the help of some common
UNIX commands such as grep. The case study followed the following steps:

1. A valid legacy code program P was selected as the pilot.

2. The author domain reengineered P and created an initial domain architecture
and reusable components.

3. A set of requirements R0 was devised for a new version of P .

4. The control and the author each created individual implementations of P 0

according to the requirements R0. The author used his own method for the
evolutionary development of a domain according to new external requirements
to create his new version of P 0 using the initial domain as his basis. The
control used his own systematic SOTP method of maintenance to create his
new version of P 0 using P as his basis.

5. Both implementations of P 0 were tested against the same set of tests to make
sure they had implemented correctly the requirements R0, and therefore had
the same functionality.

6. A second set of requirements R00 was devised for a new version P 00.

7. Again, the control and the author each created individual implementations of
P

00 according to the requirements R00, each using his own method.

8. Both implementations of P 00 were tested against the same set of tests to make
sure they had implemented correctly the requirements R00, and therefore had
the functionality.

The following measurements were collected during the experiment in order to
validate or invalidate the experiment hypotheses:

� Each recorded the number of implementation hours for each application ver-
sion and for each method.

� Each recorded the number of added, deleted, and modi�ed code lines for each
application version and for each method.

The case study was built to follow the steps of a typical software project in
which one has a legacy code program of which one has very little knowledge, but
must create new versions of the program to satisfy new user requirements. The
�rst method to handle this problem is to use traditional SOTP maintenance. The
second method is to reverse engineer the application, discovering its architecture
and components and documenting them. A domain is created, storing all this
knowledge and reusable components. New application requirements are satis�ed by
updating the domain in an evolutionary manner by improving, adding, and deleting
reusable components as necessary and creating new applications from these reusable
components according to the rules in the domain.

The requirements for both new versions were not known to the author before he
had reached the stage were he had to know them. This is just as in real software

14

projects in which the developers of an application do not usually know beforehand
what are the requirements for the next application version. The performance of two
requirement cycles is really necessary in this experiment because only by implement-
ing the second set of requirements can the two methods used in implementing the
�rst set of requirements be compared.

The actual course of the experiment was very similar to the steps described
above. The di�erence was in the timing of the steps of the control. The actual
legacy program that was selected for the experiment was one of which the control
had already created version P

0 for his own purposes before the experiment had
begun. This was an advantage to the experiment because less e�ort would be
required by the control, and was in no way an impediment to it. It did however
mean that we could not compare the implementation hours for version P 0 because
the control did not record these. This is not really a problem because even if we
could collect these hours for version P 0 it would be wrong to compare them for both
methods because the author was learning and developing his method during this step
and therefore the hours measured would not re
ect only the version implementation
time.

2.3 Case Study Validity

Performing case studies correctly so that they have valid results requires careful
planning. Several steps were taken to insure the validity of the experiment:

1. A typical legacy code program was selected to be the pilot program.

2. The pilot program for the experiment was selected to be one of which the
author had no previous knowledge.

3. The author had no knowledge of the �rst and second sets of requirements
before he reached the steps in which he needed to know them.

4. Only discussion of the requirements themselves was allowed between the au-
thor and the control. Neither discussed his method or encountered implemen-
tation problems with the other.

5. Similar implementation versions were compared against the same set of tests
before proceeding to the next stage in order to make sure they have both
implemented the same functionality. Each devised his own test cases and
both programs were tested against both sets of test cases.

As any experiment in software engineering that involves several programmers,
a possibly wide di�erence in the programmers capabilities can undermine the va-
lidity of the complete experiment. It is necessary to examine carefully how such a
di�erence, if any, can a�ect the experiment.

For example, a 1965 experiment to show that interactive programming is more
e�ective than batch programming failed to produce signi�cant results because the ef-
fect of the independent variable, batch versus interactive programming,was drowned
out by individual di�erences in programmers of equal experience. One program-
mer was found to be 28 times more e�ective than another programmer of equal
experience [15].

In this case both the author and the control are experienced programmers in the
language of the program, C, and both come from a strong programmingbackground.
Although it cannot be determined who is the better programmer, the control has
some clear initial advantages over the author:

� The control has 29 more years of programming experience.

15

� The control has a much deeper understanding of the text processing system
of which the selected program is a part, than the author, who had absolutely
no such understanding before the experiment. The control had been involved
since 1983 in writing and correcting programs in this text processing system.

� The control was the client and worked with all the authors of the previous
versions of the legacy program. He also �xed some of the bugs found in the
program from time to time. He therefore has a clear initial advantage in the
understanding of the program. Needles to say, the author had absolutely no
knowledge of the program, its function, or its source code before the experi-
ment.

� During the course of the experiment, the control had prior knowledge of the
next version's requirements because he was their initiator. The author learned
of these requirements only when the requirements document, the manual page,
was written by the control just before the start of programming.

Taking the above into consideration, it is claimed that if the experiment shows
a clear advantage in the use of the new method over the SOTP method, then
indeed there is promise in the method and it is worthy of further study. If, however
the results are inconclusive or with a clear advantage to the current maintenance
method then, nothing can be concluded.

It must be emphasized however, that even if the new method shows a clear ad-
vantage over the SOTP maintenance method, it is still possible that this is because
the author is a better programmer than the control or that the author is a better
programmer and the method he used is better. Therefore, in any case, further case
studies or formal experiments are required to validate the results of this experiment.

16

Chapter 3

The �ortid Program

3.1 Background

�ortid [16, 17] is a UNIX ditro� [18, 19] (Device Independent Typesetter RunO�)
post-processor. When combined with ditro� and its various pre-processors, it creates
a formatting system that is able to format multilingual scienti�c documents, con-
taining text in Hebrew, Arabic, or Persian, as well as other right-to-left languages,
plus pictures, graphs, formulae, tables, bibliographical citations, and bibliographies.

�ortid takes as input ditro� output which is formatted strictly left-to-right, �nds
occurrences of text in a right-to-left font, such as Hebrew or Arabic, and rearranges
each line so that the text in each font is written in its proper direction. Addition-
ally, �ortid left justi�es lines containing Arabic, Persian, or related languages by
stretching instead of inserting extra white space between the words in the line. The
stretching is achieved by inserting one or more �ller characters between the last
connecting letters of lines or words. Figure 3.1 (a), (b), and (c) show how a �ller is
inserted between pairs of connecting letters.

Figure 3.2 shows the ditro� output of an example combining Arabic, Hebrew, and
English text. Figure 3.3 shows the same output after it is piped through �ortid with
stretching turned o�. Note how the text in Arabic and Hebrew has been reversed
in-place, and justi�cation of the lines is achieved by extra spaces inserted between
the words. Di�erent styles of stretching can be achieved in �ortid by using one
of several stretch options. Figures 3.4, 3.5, and 3.6 are examples of the di�erent
stretch styles of �ortid. In Figure 3.4 connections to last connecting letters in
lines are stretched. In Figure 3.5 connections to last connecting letters in lines are

¼ q
¼q
¼·q

(a)

(b)

(c)

Figure 3.1: Stretching connecting letters with a �ller

17

�¡B ��� �ª���Ö jr¨®¹ B�³­Ö
B�¬¢q¹Ö y¸�Ö �Ê �­� Cw¢
�Ý� ³¹£�Ö)English(jB�¬�¢�Ö .)תירבע(

CÝ��³Ö Bì¬ª�l r¸�Á B�®¢ q¹
jBv � Cy��¹ B��¨®¹ j�
B� ³´� .

Figure 3.2: Example ditro� output not piped through �ortid

Ö­³�B ¹®¨rj Ö���ª� ��� B¡�
¢wC �­� Ê� Ö�¸y Ö¹q¢¬�B

(עברית). Ö�¢�¬�Bj (English) Ö�£¹³ �Ý�
¹q ¢®�B Á�¸r l�ª¬ìB Ö³��ÝC

 �j ¹®¨��B ¹��yC � vBj
. �´³ �B

Figure 3.3: Same ditro� output piped through �ortid with stretching o�

stretched to a maximum amount, with any remainder going to preceding words. In
Figure 3.6 the stretch is distributed between all the connections to last connecting
letters in words in a line.

Figure 3.7 is the �rst page of a technical report [17] describing �ortid and is an
example of �ortid output with combined English, Hebrew, and Arabic text. Note
how the Arabic text at the bottom third of the page is left and right justi�ed by
the third style of stretching.

The �rst author of �ortid was Cary Buchman, an M.Sc. student at UCLA, and
the �rst version was written during the years 1983-1984. That version could handle
only Hebrew although it did have some hooks for Arabic that proved to be useless

Ö ­³�B ¹®¨rj Ö���ª� ��� B¡�
¢ wC �­� Ê� Ö�¸y Ö¹q¢¬�B

(עברית). Ö �¢�¬�Bj (English) Ö�£¹³ �Ý�
¹q ¢®�B Á�¸r l�ª¬ìB Ö³��ÝC

 �j ¹®¨��B ¹��yC � vBj
. �´³ �B

Figure 3.4: Last connecting letters in lines are stretched

18

Ö ­³�B ¹®¨rj Ö���ª� ��� B¡�
¢ wC � ­� Ê � Ö�¸y Ö¹q¢¬�B

(עברית). Ö �¢�¬�Bj (English) Ö�£¹³ �Ý�
¹q ¢®�B Á�¸r l�ª¬ìB Ö³��ÝC

 �j ¹®¨��B ¹��yC � vBj
. �´³ �B

Figure 3.5: Last connecting letters in lines stretched up to maximum amount

Ö ­³�B ¹®¨rj Ö ���ª� � �� B¡ �
¢ wC � ­� Ê � Ö �¸y Ö ¹q¢¬�B

(עברית). Ö �¢�¬�Bj (English) Ö �£¹³ �Ý�
¹q ¢®�B Á�¸r l�ª¬ìB Ö ³��ÝC

 �j ¹®¨��B ¹��yC � vBj
. �´³ �B

Figure 3.6: Stretch distributed between all last connecting letters in words

for later versions. The �rst external customer was the Hebrew University (HU).
Mulli Bahr, a UNIX guru from HU, modi�ed the code to optimize the output in
1986 during a visit to UCLA. Johny Srouji, an M.Sc. student at the Technion,
extended �ortid for Arabic stretching during 1989-1991. Table 3.1 summarizes the
di�erent versions of �ortid.

The �ortid program described above is �ortid version 3.0. The complete manual
page of �ortid version 3.0 can be found in Appendix B.

3.2 �ortid Source Files

�ortid was written in C. It is composed of 11 di�erent source �les, 5 of which are
.c �les, 1 of which is a lex �le, and 5 of which are .h �les. Table 3.2 shows all the
source �les with their respective number of lines and number of functions. Each of
the 5 .c �les is compiled separately to create a module. lex.dit is the lexical parser
de�nitions �le. The UNIX lexical parser generator lex takes lex.dit as input and
generates from it a lexical parser source �le which is included into main.c. This
parser is used to parse the input to �ortid into tokens.

Version Years Author From Major Modificationii
1.0 1983-1984 Cary Buchman UCLA Hebrew
2.0 1986 Mulli Bahr HU Output Optimization
3.0 1989-1991 Johny Srouji Technion Arabicii

Table 3.1: �ortid version history

19

TECHNION TECHNICAL REPORT, MARCH 1993)

Arabic formatting with ditroff/ffortid

JOHNY SROUJI (Õuj¢y Õ�¸u, י סרוג’ (ג’וני AND DANIEL BERRY (k¢¹q f�¹�BN,

ברי (דניאל

Computer Science Department
Technion
Haifa 32000
Israel

SUMMARY

This paper describes an Arabic formatting system that is able to format multilingual scientific
documents, containing text in Arabic or Persian, as well as other languages, plus pictures,
graphs, formulae, tables, bibliographical citations, and bibliographies. The system is an
extension of ditroff/ffortid that is already capable of handling Hebrew in the context of multi-
lingual scientific documents. ditroff/ffortid itself is a collection of pre- and postprocessors for
the UNIX ditroff (Device Independent Typesetter RunOFF) formatter. The new system is built
without changing ditroff itself. The extension consists of a new preprocessor, fonts, and a
modified existing postprocessor.

The preprocessor transliterates from a phonetic rendition of Arabic using only the two
cases of the Latin alphabet. The preprocessor assigns a position, stand-alone, connected-
previous, connected-after, or connected-both, to each letter. It recognizes ligatures and
assigns vertical positions to the optional diacritical marks. The preprocessor also permits
input from a standard Arabic keyboard using the standard ASMO encoding. In any case, the
output has each positioned letter or ligature and each diacritical mark encoded according to
the font’s encoding scheme.

The fonts are assumed to be designed to connect letters that should be connected when
they are printed adjacent to each other.

The postprocessor is an enhancement of the ffortid program that arranges for right-to-left
printing of identified right-to-left fonts. The major enhancement is stretching final letters of
lines or words instead of inserting extra inter-word spaces, in order to justify the text.

As a self-test, this paper was formatted using the described system, and it contains many
examples of text written in Arabic, Hebrew, and English.

Ö� ¯�

Ó······� Ó±´� k¡�Bj Ö¹q¢¬�B Ö­³�B ¼¹�¸�� À���¢q Ì¨� f�¯ìB B¡�
Ö···¹q¢¬��q Æ� ë� Ö�¸��� ,G�­³�B lN ¬�� Ö¹´³� U¸¨� ¼¹�¸r
,Ö········¹��¹q G�··�¸yP ,G�··�¸yP ,m¢··wB G�··­³� Ö··���Û�q Ö··¹yP�®�Bj
Ó··¹¦�r ¸� À���¢��C .�¹�B¢�¸¹³�¹qj ,Ö¹�B¢�¸¹³�¹q PN�¨� ,fjB u
lN ·····¬�� Í···��sj ç Ö···�¢�¬�B Ö···���¬� ë···� háB PN�···¯�B ditroff/ffortid-�
À······��¬� ··¬qj (preprocessor)À··��¬� Ñ··�� Ó··� lP�··�� ditroff/ffortid .G�··­³�B
Device Independent Typesetter) ditroff ,UNIX ç Ì······¨�B À······���¢�� (postprocessor)

Received 10 July 1992
 1993 by Johny Srouji and Daniel M. Berry Revised 1 February 1993

Figure 3.7: �ortid example output with combined English, Hebrew and Arabic text

20

Num File Size (lines) Functionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 lex.h 30 -
2 lex.dit 37 -
3 token.h 34 -
4 macros.h 20 -
5 connect.h 256 -
6 table.h 18 -
7 dump.c 704 10
8 lines.c 296 6
9 main.c 506 1

10 misc.c 129 5
11 width.c 480 10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Total 2510 32

Table 3.2: �ortid source �les

3.3 Why We Chose �ortid

�ortid was chosen as the pilot in the case study. As described in section 2.2, there
are two major criteria for selecting a program as a pilot. It should be a typical
legacy code program, although perhaps on a small scale, and it should be possible
to conduct an unbiased experiment using it. �ortid is a typical legacy code program
because,

� it has been written over a long time span (9 years), by several di�erent au-
thors (3), and had several versions (3). All of the original authors were busy
with their own lives, and therefore none of them were approached for help in
understanding the design and architecture of the program,

� it is in working condition and in current use,

� there are no original design documents; there are some documents describing
the program's external use and general underlying algorithms and motiva-
tion, but none of these documents actually describe the program's design or
architecture,

� the program is reasonably well commented, although certainly not fully com-
mented, and

� it is a real program, answering a real need, and it has real users.

�ortid is a good candidate program for experimentation because

� it is reasonably sized, with 2510 source lines, not too small to be considered
a toy program and not too large for experimentation within the normal time
span of a thesis,

� the author had no previous knowledge of the program; he had never used it
or seen its code before the experiment; in fact, the author also had no prior
experience in using the ditro� text processing system, and

� the control had already written a new version of �ortid using conventional
maintenance methods; this saved some work in the experiment without af-
fecting its results.

For all the above reasons, �ortid was considered a suitable program for the
experiment. The only issue which is not addressed in this analysis is the issue of
scale. This issue will be addressed in Section 4.5 and in Chapter 7 describing the
experiment results.

21

Chapter 4

Domain Software

Reengineering of �ortid

The previous chapter described and justi�ed the selection of �ortid as the legacy
application on which to base the case study. The next step in the experiment,
as described in Section 2.2, is the creation of an initial domain from �ortid. This
domain can be de�ned as the family of ditro� post-processors that can rearrange
text in a right-to-left font so it is written in its proper direction and can stretch
Arabic text so it is left and right justi�ed on the line.

As the author had no previous knowledge of the ditro� text processing system
or the speci�c domain before the beginning of the experiment, it was only natural
to use bottom-up domain reengineering to extract the knowledge and code that
already exists in �ortid about the domain. He used a method of reverse engineering
to discover the architecture and design of �ortid. The method calls for the decom-
position of �ortid into abstractions called software units. These software units will
be the basis of the domain's reusable components library. The following section
de�nes and describes the attributes of software units.

4.1 Software Units

A software unit (SWU) is a well-de�ned component of a software system, that
provides one or more computational resources or services.

This is a de�nition of what most refer to as software components or modules.1

However, SWUs are more general than modules. Any software module is by de�-
nition a SWU, but the SWU de�nition includes software components which would
generally not be regarded as modules. For example, a single statement, a block of
statements, a function, an object oriented class, a single de�nition and a group of
declarations are all SWUs but would conventionally be considered too small to be
modules. On the other hand, a complete program would not generally be considered
a module, but it is a SWU under this de�nition.2

The SWU concept gives a uniform view of software. It crosses traditional bound-
aries of scale, language, storage medium, programming or design technique. It can
be applied successfully to any software in any language because it captures the
essence of software, to provide computational services. It can be applied equally
successfully to machine languages, procedural languages, functional languages, or

1Not necessarily compilation units as in C.
2Here the software system of which the program is a component is the operating system envi-

ronment or alternatively any other program which can invoke it.

22

fourth-generation languages. It can be applied to any software using any program-
ming or design paradigm: functional decomposition, OOP etc. Therefore, the SWU
concept and all the techniques described shortly are applicable to any software.

A SWU provides computational services, including resources, to other SWUs or
to an external user of the software system. It can even provide services to itself, as
in recursion. A SWU can either depend on other SWUs to provide its services or
be stand alone. Clearly, the most basic SWUs in a software system will be stand
alone, however, at least some SWUs must cooperate with other SWUs to provide
their services or else, we will be left with a collection of low-level service providers.
Every SWU has a scope, capabilities, interface, requirements, and type:

� The scope of a SWU is the body of code which it abstracts. The scope does
not have to be contiguous.

� The capabilities of a SWU are the services it provides.

� The interface of a SWU is a description of how its services can be accessed by
its clients, i.e., other SWUs or an external user, and how these services a�ect
or might a�ect other SWUs.

� The requirements of a SWU are the services it needs or depends upon in order
to provide its own services.

� The type of a SWU categorizes the SWU into one of several types of similar
service providers.3

Note that the type of a SWU should re
ect the kinds of services it provides and
not the medium in which it is organized or stored. In some languages the name of
the storage medium is also the name of the type. For example, in C, a �le is both
a storage medium and a type of SWU.

The environment of a SWU is all the software in the context in which it is used
which is not in its scope. The environment of a SWU therefore depends on the
context in which it is used and is di�erent for each use.

When we wish to use or reuse a SWU in a software project, we are mainly
interested in its capabilities, interface, and requirements. Its capabilities tell us
what services it can provide our project. Its interface tells us how we can access
these services and in what way, if any, do these services a�ect the rest of the SWUs
in the project. Its requirements tell us what other services must already exist or be
added to our project if we want to use this SWU. Its requirements can even decide
the method by which the SWU will be included in the project.

If we wish to create a reusable component library, the above information should
be all we need in order to make a successful reuse library. This information should
be documented for each SWU in such a way that it will be easy for the potential
user to �nd the needed SWU, and once found, to know how to include it into his
software project, how to access it, and how it might a�ect the rest of the software
in the project.

4.1.1 Software Unit Interface and Side-e�ects

Every SWU provides a set of services. We can divide the interface of each service
into its access interface i.e. how the service is accessed or initiated and its result
interface i.e. how the service results, if any, are returned.

3The di�erent types are decided upon by the decomposer and are language dependent. Example

types in C are: function, procedure, declaration, de�nition, groups of the above, �le, module and

program.

23

A resource is a SWU service that does not have a result interface, for example,
the de�nition of a new type. Other SWUs that include this de�nition, via the access
interface, can use the newly de�ned type. However, this inclusion does not generate
any result and therefore this SWU has no result interface. Resources are usually
de�nitions or declarations that do not provide computational services.

The result interface itself can be divided into 2 parts, results returned through
the access interface of the service and results not returned through the access in-
terface. The latter are called side-e�ects. In other words, a SWU service side-e�ect
is a change in the SWU environment which is not clearly stated or visible in the
service's access interface.

The problem with side-e�ects is well known. They cause SWUs to be depen-
dent on each other in a non-clear fashion. Once a side-e�ect is generated, it can
propagate through a system and cause unexpected results. Therefore, side-e�ects
are something we generally wish to avoid.

However, not all side-e�ects are bad. Some of them are intentional or unavoid-
able. For example, a printing function that prints to a �xed stream will always have
a side-e�ect, the printing, but this is intended and documented. If the stream to
be printed is passed as a parameter to the printing function, then it is a matter of
interpretation if the printing is or is not a side-e�ect. The hard-liners would argue
that since the printing is an e�ect outside the environment of the program, to a
permanent �le, for example, this is still a side-e�ect. The soft-liners would view the
stream parameter as representing the stream and would therefore argue it is not a
side-e�ect. Personally, I believe the hard-liners are more precise in this case. Some
examples of things that are, and are not, side-e�ects:

1. The value returned by a function call is not a side e�ect because the fact that
a value will be returned is clearly stated in the function de�nition, the access
interface.

2. Accessing an external variable and reading its value is not a side e�ect because
their is no change in the value of the external variable. Note however, that
a declaration of the external variable is necessary for the SWU to function
correctly, but this does not a�ect the access interface of the SWU, just as the
call in the body of one function to another does not add the second function to
the access interface of the �rst. The external variable and the second function
are part of the requirements interface of the SWU because they are necessary
for it to provide its own services.

3. Memory allocation or deallocation inside a function is a side e�ect unless the
allocated memory is deallocated before the function returns.

4.1.2 Software Sub-Units

The SWUs s1; : : : ; sn are the sub-units of a SWU S if and only if the following two
equations hold:

scope(S) =
n[

i=1

scope(si) (4.1)

8 1 <= i; j <= n; i 6= j scope(si)
\

scope(sj) = � (4.2)

Every non-trivial SWU can be decomposed into its software sub-units. A sub-
unit is a SWU in its own right. The scope of each of the sub-units must be mutually
exclusive and the union of the scopes must be equal to the scope of the parent SWU.
As with SWUs, the scope of each sub-unit does not have to be contiguous.

24

ffortid
1

Dump
2

Lines
3

Main
4

Misc
5

Width
6

Figure 4.1: Example scope diagram

The sub-units of a single SWU do not all have to be of the same type or be
recorded in a certain order, such as their scope order. However, the sub-units
should be composed in a de�ned manner in order to create the parent SWU.

The decomposition of a SWU into its sub-units is not unique, and is dependent
on a partitioning criteria provided by the decomposer. Figure 4.1 shows an example
scope diagram, which is a graphical description of the decomposition of a SWU into
its sub-units. It shows that a SWU named �ortid is decomposed into 5 sub-units.
Each SWU in the diagram has a name and an identi�cation number.

Section 4.2 examines partitioning criteria for SWUs. There is however, one rule
which must be followed universally. This rule states that it is not desirable for a
SWU to have more than 7 sub-units. The reason for this is purely psychological.
The human brain has di�culty understanding more than 7 clusters at the same time
[20], and having too many sub-units would therefore impede the understanding of
the architecture of the SWU. If one does have a natural decomposition into more
than 7 sub-units he or she should attempt to logically group some of them into a
single sub-unit. If it does not seem natural to decompose the SWU into less than 7
sub-units, this usually indicates that one has some complexity problem in the SWU
abstraction and it should, perhaps, itself be split into smaller abstractions.

The capabilities of a SWU are not necessarily the sum of the capabilities of its
sub-units. Using the well known information hiding principle, a SWU can hide to
its own clients some of its sub-units' capabilities which are seen to its creator as
internal. This is achieved by also hiding the interfaces of the services we wish to
hide. In this way we can achieve di�erent levels of abstraction, and hide the internal
details and workings of a SWU. Therefore we can de�ne:

� The hidden-capabilities of a SWU are the subset of its capabilities that it does
not to expose to its clients.

� The hidden-interface of a SWU is the subset of its interface that it does not
to expose to its clients.

The requirements of a SWU are also not necessarily the sum of the requirements
of its sub-units. The reason for this is that one sub-unit can answer some or all
of the requirements of its brother sub-units. Therefore, it is quite possible to a
have a stand-alone SWU with sub-units such that some or all of them do have
requirements.

The side e�ects of a SWU are the side-e�ects of its sub-units that a�ect its
environment. Sub-unit side-e�ects that a�ect only other sub-units are not side-
e�ects of the parent SWU.

I can now relate more precisely between the attributes of a SWU and the at-
tributes of its sub-units. Given a SWU S and its decomposition into sub-units
s1; : : : ; sn the following lemmas hold:

capabilities(S) =
n[

i=1

capabilities(si) n hidden-capabilities(S) (4.3)

25

interface(S) =
n[

i=1

interface(si) n hidden-interface(S) (4.4)

requirements(S) =
n[

i=1

requirements(si) n
n[

i=1

capabilities(si) (4.5)

side-e�ects(S) = (
n[

i=1

side-e�ects(si))
\

interface(S) (4.6)

The natural decomposition of a SWU into software sub-units which could them-
selves be decomposed into even smaller sub-units etc, creates a hierarchical map of
SWUs describing the architecture of the root SWU. This gives rise to the following
de�nition:

The Architecture of a Software Unit S is a rooted tree of SWUs, where the root
of the tree represents S and each of the other nodes in the tree is a direct sub-unit
of its parent node. The architecture of a SWU is a tree because, by the de�nition
of sub-units, the scope of all the sub-units in the architecture is mutually exclusive.
Since the decomposition of a SWU into its sub-units is not singular, we can have
di�erent architectures for the same SWU. This is an indication of the di�erent
perceptions di�erent decomposers can have of the same SWU.

SWU architectures are graphically described by using multilayer scope diagrams
(see Figure 4.10). Although they do not look like rooted trees, they are semantically
equivalent and more readable.

4.1.3 Service Flow Diagrams

A Service Flow Diagram (SFD) is a graphical description of the service
ow between
one or more SWUs. Di�erent graphical icons are used to describe the di�erent types
of SWUs and the di�erent kinds of services that they can provide. A summary of
the major icons used is shown in Figure 4.2. A complete list of the SFD icons with
explanations can be found in Appendix A.

As shown in Figure 4.2 a SFD can show three types of service
ow: data, function
call, and declaration/de�nition use. The �rst shows the existence of data
ow from
one SWU to another. The second shows a function call from one SWU to another.
The last shows the use of de�nitions or declarations from one SWU by another.
It is, of course, possible to think of other interesting service
ow types. However,
these types were su�cient for the current experiment.

The precise semantics of a service
ow are not shown in its SFD. If necessary,
these could be documented in the interface section of the SWU.

The SFD of a single SWU can show di�erent service
ow views between the
SWU and its environment. It can show the services that a SWU provides and how
it provides them, i.e., the access and result interface, and/or it can show the services
it requires in order to provide its services, i.e., its requirements. The boundary
between what is internal and what is external to the SWU is shown by a dashed
borderline.

Figure 4.3 shows the SFD of the SWU representing the complete �ortid program.
It shows the interface of �ortid and the services required by it in one diagram. �or-
tid receives input from stdin and from the command-line through argc and argv and
outputs to stdout and stderr. �ortid needs to read in a description �le and several
font �les to provide its services. Note that without reading additional documenta-
tion or providing di�erent views of the SFD one cannot always distinguish between
interface and required services.

26

ii

Software Unit

XXX
n

XXX is the name of the SWU.
n is its number (optional)

IO File

XXX

XXX is the name of the file

Local Variable

XXX

XXX is the name of the variable

ii

Parameter Variable

XXX P

XXX is the name of the variable

Return Variable

XXX R

XXX is the name of the variable

External Variable

XXX E

XXX is the name of the variable

ii

SWU Borderline

XXX

XXX is the name of the SWU

Parameters Group

. ...
..
..
..
..
..
..
.......................................

XXX P

func

Groups parameters of func for
SWU entry point

Data Flow Relationship

A B

Data flows from SWU A to
SWU B

ii

Bi-Directional Data Flow
Relationship

A B

Data flows from SWU A to
SWU B and vice-versa

Call Relationship

A B

SWU A calls a function in
SWU B

Use relationship

A B

SWU B uses declerations or
definitions in SWU A

iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 4.2: Major icons used in SFDs

27

ffortid
1

fontfilen

fontfile1

stdin

stderr

stdout

descfile argc P argv P

...........

Figure 4.3: A SFD of the SWU abstracting �ortid

One can show service
ow between any number of SWUs. It is interesting to
show the SFD of a SWU and its sub-units in one SFD. Such a diagram shows which
of its sub-units provides each service, and what services
ow between the sub-units
themselves. All the sub-units of the SWU are shown in the diagram. However,
some of them could be internal in the sense that they only provide services to other
sub-units and no services to the SWU environment.

Figure 4.4 shows an example of such a SFD. In it we see the SFD of the SWU
abstracting the dump.c �le in �ortid. dump.c has 5 sub-units, one of which, the \re-
calc horiz" sub-unit, is hidden as an implementation detail of the SWU. It provides
function call services to two other sub-units, \dump line" and \reverse line" and no
services outside the SWU. Note how dump.c changes 6 global variables as a side-
e�ect and one can see this side-e�ect originates in the \dump line" sub-unit. Also
note that this SFD does not show the services required by dump.c. For example, we
do not see any services that the \dump line" sub-unit requires in order to provide
its own services that are not in any of the other sub-units. We do, however, see the
side e�ects of any such required services, if there are any.

In the previous sub-section, I stated that it is not desirable for a SWU to have
more than 7 sub-units. The SFD of such a SWU would probably be too complex to
understand. I have observed that there is a correlation between the visual complex-
ity of a SFD and the external complexity of the SWU. A SWU can be internally
very complex. However, if it has a very simple interface, then it usually captures a
very well de�ned concept and is therefore easy to understand by humans. A SWU
that has a very large interface is more di�cult to understand. However, if this large
interface is really a collection of individually simpler interfaces, such as function
calls, then it can more easily be grasped.

A SWU that has side-e�ects is more di�cult to understand than one without
any side-e�ects, especially in the context of the other SWUs. For example, a SWU
that changes many global variables is di�cult to understand. Figure 4.5 shows such
an example SFD which is very di�cult to understand. Perhaps a SFD can serve as
an important indication of the external complexity of a SWU.

28

dump.c

start P

end P

reverse_lr P

start P

end P

paper_width P

start P

end P

out_fontable E out_font E out_horizontal E out_size E out_font_name E

out_vertical E

dump_line
19

recalc_horiz
21

reverse_line
20

print_line
22

stdout

connect E

dump_defin
18

Figure 4.4: SFD of dump.c SWU with its sub-units

29

width.c

width2

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

s P

in_size P

in_font P

width R

. ...
..
..
..................................

width_init

loadfont

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

n P

s P

s1 P

descfile

fontfile1

......

fontfilen

stderr

c P in_size P in_font P width R

width1

. ...
..
..
..
..
..
..
..
..

widthn

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

pn P

width R

width_calc
37

init_dev_font
36

debug_error
38

width_defin
35

indx_1st_spec_font E

char_name E

char_table E

char_indx_table E

size_char_table E

no_of_fonts E

width_table E

unit_width E

basic_font_info E

code_table E

fontdir E

size_char_name E

font_name E

units_per_inch E

no_chars_in_biggest_font E

Figure 4.5: A complex SFD

30

4.2 Reverse Engineering a Software Unit

Reverse Engineering an existing SWU has two major goals [1]: to recreate the
architecture and design of the SWU by decomposing it into sub-units identifying
meaningful higher level abstractions and to assist understanding of the SWU by
documenting the SWU and its sub-units. Additionally, reverse engineering a SWU
has the following sub goals:

� to identify SWUs which are candidates for reusable software components,

� to recover information which is not documented in the source code, for exam-
ple, modi�cations which were performed during maintenance but were never
documented,

� to detect incorrect documentation, errors etc., which exist in the source code,
and

� to detect side e�ects in the SWUs.

Understanding of the structure and functionality of the SWU is facilitated by
providing the engineer with a top-down progression of more detailed information on
the SWU and its sub-units. The capabilities of each SWU are documented with the
aid of comments extracted from the source code. The interface and requirements
of each SWU are also documented from the source code. Graphical representations
of the service
ow between SWUs (SFDs) are generated.

In order to recover the design of a SWU we must decompose it by recursively
partitioning it into smaller and smaller sub-units. As de�ned in section 4.1.2, the
architecture of the SWU is represented by a hierarchical map of SWUs, where
descendant sub-units show an explosion of their parent SWU. All external service

ow between partitioned SWUs are propagated up to a common ancestor SWU.

The decomposer must have some partitioning criteria to guide the decomposition
process. This will usually be the syntactical structure of the code combined with
the principles of cohesion and coupling. For example, a program in C will �rst be
decomposed into its compilation units (modules). If there are too many modules,
we can logically group related modules to create a smaller number of sub-units.
This grouping will follow the principles of cohesion, i.e., strong service relations
inside a SWU, and coupling, i.e., weak service relations between SWUs. Each of
these module groups will be decomposed into its modules. In the next step, each
compilation unit can be partitioned into its source �les, again grouping some of
them if there are too many of them. Source �les will be decomposed into their
global functions etc.

The decomposer must also decide on the desired level of detail and stop parti-
tioning when that level is reached. We want to decompose SWUs down to a level
which holds abstractions which are good reuse candidates. On the other hand, it is
important to obtain SWUs with a granularity that does not clutter the visualization.
The statement level in a function is usually too low to be a good reuse candidate. A
good decomposition level in C is the function or group of functions level. Of course,
sometimes we �nd very large functions from which we can �nd groups of statements
that are good abstractions and therefore good reuse candidates. This implies that
the function was too large to begin with, and should have been split into several
functions in the original design.

As explained in Section 1.1, reverse engineering is a process of examination. We
are trying to recapture the architecture and design of the SWU as understood by
its creators and modi�ers. This is not necessarily the best possible architecture
and reverse engineering is not concerned with improving the design in any way.

31

Any improvements we believe can be inserted into the design can and should be
recorded, but should not be implemented during the reverse engineering process.
In later life-cycle phases, we may be able to justify some or all of these changes and
perform them as necessary.

The process of decomposition is best performed by starting from the SWU to
be decomposed, determining its sub-units and proceeding recursively. However,
the attributes of each sub-unit should be determined in a bottom-up fashion. The
reason for this is that the major attributes of a sub-unit, its capabilities, interface,
and requirements are di�cult to determine accurately without �rst determining the
same attributes of its own sub-units. Section 4.1.2, showed that the capabilities of
a SWU are determined by the capabilities of its sub-units. The side-e�ects of a
SWU are the side-e�ects of its sub-units minus those that do not a�ect the outside
environment of the SWU. The requirements of a SWU are the requirements of its
sub-units that are not satis�ed by any of the other sub-units.

It is therefore natural to view the capabilities, and interfaces, of the SWUs as
being propagated from the most low-level SWUs up through the SWU architecture.
When determining the capabilities of a certain SWU we can decide not to pass on
a certain service, thereby hiding it and creating higher level abstractions. A SWU
requirement will be propagated up until it is satis�ed by a SWU at a certain level,
at which point it disappears. Side e�ects are propagated up from their originating
SWU until they reach a level, if at all, in which they are no longer considered side
e�ects because their e�ect becomes internal to the SWU at the new level.

To summarize, there are 4 major points in reverse engineering a SWU:

1. Partition the SWU into sub-units and continue recursively.

2. Partition the SWU according to the syntactical structure of the SWU and the
principles of coupling and cohesion.

3. Partition the SWU down to the desired abstraction level of good reuse candi-
dates.

4. Determine the attributes of the sub-units in a bottom-up fashion.

4.3 �ortid Version 3.0 Reverse Engineering

The author performed a process of reverse engineering as described above on �or-

tid Version 3.0. The process was performed completely manually using only tradi-
tional methods of text editing and UNIX commands such as grep. All SFDs were
drawn manually using Pic [21]. The whole process was very laborious and it was
completed successfully only because �ortid is a relatively small program.

The following SWU classi�cations were chosen as types: Program, Module,
Source �le, Declarations source �le, De�nitions source �le, Data �le, De�nitions
block, Declarations block, Procedure group, Function group, Procedure, and Func-
tion.

It was decided that the required level of detail will be no smaller than functions
or procedures. It turned out to be unnecessary to carry out all re�nements to this
level.

The partitioning criteria was similar to the one described in the previous sec-
tion. In some cases it was decided to partition a SWU in one way, and later on
after understanding the SWU better, a di�erent partitioning that captured the new
understanding more precisely was used. This is a natural and expected phenomena.
As one learns more about the software and understands it better, one might see the
abstractions of the software di�erently.

32

Software Unit #1 — ffortid

1.1 Software Unit Type

Program. (lex.h, lex.dit, token.h, macros.h, connect.h, table.h, dump.c, lines.c, main.c, misc.c,
width.c)

1.2 Scope Diagram

ffortid
1

Dump
2

Lines
3

Main
4

Misc
5

Width
6

1.3 Capabilities

ffortid takes from its standard input dtroff output, which is formatted strictly from left-to-right, finds oc-
currences of text in a right-to-left font and rearranges each line so that the text in each font is written in its
proper direction. Additionaly, ffortid left and right justifys lines containing Arabic & Persian fonts by
stretching connections in the words instead of inserting extra white space between the words in the lines.

1.4 Interface

command line options:
ffortid [−rfont-position-list] ... [−wpaperwidth] [−afont-position-list] ...

[−s[n|f|l|a]] ...

The -rfont-position-list argument is used to specify which font positions are to be considered
right-to-left. The -wpaperwidth argument is used to specify the width of the paper, in inches, on
which the the document will be printed. The -afont-position-list argument is used to indicate
which font positions, generally a subset of those designated as right-to-left (but not necessarily), contain
fonts for Arabic, Persian or related languages. The -s argument specifies the kind of stretching to be
done for all fonts designated in the -afont-position-list

1. -sn — Do no stretching at all for all the fonts.
2. -sf — Stretch the last stretchable word on each line.
3. -sl — Stretch the last stretchable word on each line up to a maximum length.
4. -sa — Stretch all stretchable words on the line by the same amount.

The default is no stretching at all.

Manual connection stretching can be achieved by using explicitly the base-line filler character \(hy in
the dtroff input. It can be repeated as many times as necessary to achieve the desired connection length.

Side effects:
1. ffortid reads dtroff output from stdin and prints dtroff output to stdout.
2. ffortid prints encountered errors to stderr and halts program.
3. ffortid allocates and frees memory from the heap. If out of heap memory ffortid prints a

``out of memory´´ message to stdout and halts program.

Figure 4.6: First part of �ortid Version 3.0 SWU 1 page

33

1.6 Service Flow Overview Diagram

ffortid - Overview

ffortid
1

fontfilen

fontfile1

stdin

stderr

stdout

descfile argc P argv P

...........

Figure 4.7: Third part of �ortid Version 3.0 SWU 1 page

Each SWU in the decomposition was documented in what is called a Software
Unit Page. Figure 4.6 shows the �rst part of the page documenting the SWU
abstracting the complete �ortid program (SWU 1). The �rst section of the page
titled \Software Unit Type" describes the SWU type and scope. In this case, the
type of the SWU is \Program" and its scope is all the source �les of the program.
Section 2 (1.2) of the page is the scope diagram of the SWU showing graphically
the SWU and its sub-units. The sub-units of �ortid are the 5 modules from which
it is created. This is a natural decomposition which captures the architecture of the
program. Note that each of the sub-units has, of course, its own SWU page which
describes it completely in the same fashion.

The third section of a SWU page, titled \Capabilities", gives a verbal description
of the capabilities of the SWU. This should be a precise and concise description of
the SWU capabilities in a language which is clear to the domain and software expert.
In the case of �ortid, this section describes the capabilities of the complete program.

The fourth section of the SWU page, titled \Interface", gives a precise de-
scription of the interface of the SWU. This is simply a list of the di�erent services
provided by the SWU. The interface section describes, as described in Section 4.1.1,
the side e�ects of the SWU. In the case of �ortid, the interface is the command-line
options of the program. These are described completely in the section.

As de�ned previously, side e�ects are changes in the SWU's environment which
are not clearly visible or stated in the SWU service's access interface. In this
case, the environment of �ortid is the operating system environment. Therefore,
all e�ects which are not clear from the command-line options must be considered
side e�ects, although some or all of them might be part of the normal function
of the program. Reading and writing to �les/streams, allocation and deallocation
of dynamic memory are therefore all side e�ects vis-a-vis �ortid and they are all
recorded in this section.

In most SWU pages, the �fth section, which holds a SFD of the SWU, is the
last section of the page. To SWU 1 it was decided to add a sixth section, titled
\Service Flow Overview Diagram", which is also a SFD describing the services

34

1.5 Service Flow Diagram

ffortid

width
6

dump
2

misc
5

descfile

fontfile1

fontfilen

stdin

argc P

argv P

main
4

lines
3

stdout

stderr

.....

Figure 4.8: Second part of �ortid Version 3.0 SWU 1 page

and side-e�ects of the SWU, but without showing the internal structure or service

ow of the SWU. This SFD is a simpli�cation of the SFD of the previous section
with the intention of showing the SWU as a \black box". It does not add any
information to the previous SFD. In Figure 4.7, we see that �ortid receives input
from the command-line, argc and argv variables, from the standard input stream,
and from a number of �les, and outputs to the standard output and standard error
streams. The allocation and deallocation of dynamic memory is not shown in the
diagram, although with appropriate icons it certainly could have been.

As mentioned previously, the �fth section of a SWU page holds a SFD that
graphically describes the services provided by a SWU to its environment, the side
e�ects of these services, and the service
ow between the sub-units of the SWU.
Figure 4.8 is this SFD of SWU 1. Unlike the SFD in Figure 4.7, it shows in detail the
service
ow between the sub-units of �ortid and their relation to the environment.
For example, in it we can see that the command-line options and the standard
input are read by SWU 4 which abstracts the main module. The other input �les
are read by the width module. Standard output is generated only by the lines and
misc modules, and output to standard error is generated only by the main and width

modules. In the SFD one can see which module calls functions in other modules
and from which modules does data
ow to other modules.

There is no requirements section in our SWU pages. The reason for this is
that the reverse engineering process was performed before the signi�cance of such
a section was realized. Clearly, such a section is needed for the potential user of
a SWU. In it, he or she will �nd what environment must exist for the SWU to
function properly.

As stated previously, each of the SWUs in the decomposition was documented
by a SWU page. Figure 4.9 shows the SWU page of an intermediate SWU in the
decomposition, SWU 16. Note how the function width, SWU 34, is a sub-unit of
SWU 16 but is not part of its interface. The reason for this is that width provides
no services. This can be seen in the SFD of SWU 16, width has no parameters and
returns no value. This function is an archeological relic of some earlier development
phase of �ortid.

35

Software Unit #16 — misc.c

16.1 Software Unit Type

Source file. (misc.c)

16.2 Scope Diagram

misc.c
16

new_font
30

font_info
31

out_of_memory
32

yywrap
33

width
34

16.3 Capabilities

Contains a number of general support routines.

16.4 Interface

Functions:
new_font - adds a new font to the font table.
font_info - extracts a font number and name from a font token string.
out_of_memory - prints an ``out of memory´´ error message and halts execution.
yywrap - standard lex library function called whenever lex reaches an end-of-file.

Side effects:
1. new_font changes values in the passed font_table.
2. font_info returns through font_number the font token number and through font_name the

font token name.
3. out_of_memory prints ``out of memory´´ error message to stdout and causes program to halt.

16.5 Service Flow Diagram

misc.c

font_line P

font_number P

font_name P

font_number P font_name P font_direction P font_table P

stdout

1 R

new_font
30

font_info
31

out_of_memory
32

yywrap
33

width
34

Figure 4.9: SWU 16 page in �ortid Version 3.0 decomposition

36

4.4 �ortid Version 3.0 Architecture

Altogether, �ortid Version 3.0 was decomposed into 41 SWUs of which 28 are low-
level. Each SWU was given a name and identi�cation number. Additionally, the
size of each SWU, and the number of lines in its scope, were recorded. Table 4.1
summarizes this information for all the SWUs in the decomposition.

Figure 4.10 shows the complete decomposition of �ortid into its SWUs in the
form of a scope diagram. Due to the diagram's length, it was broken into 5 scope
diagrams, one for each of �ortid's direct sub-units. They are shown one on top
of the other but should be connected as shown by the dashed arrows. Note that
SWUs abstracting header �les (such as token.h) appear several times in the diagram
because they are included by di�erent SWUs.

The process of reverse engineering �ortid by decomposing it into SWUs, creating
a page documenting each SWUs scope, capabilities, interface, and SFD proved itself
as very e�ective in advancing the author's understanding of the architecture of a
program about which he initially knew nothing.

In general, �ortid's architecture is a rather outdated form of structured program-
ming. There is heavy use of global variables, which in some cases can be justi�ed,
but could always have been avoided to achieve higher independence between mod-
ules. This outdated architecture is exempli�ed in the SWUs which are sometimes
not as reusable as desired, since they are abstractions of the code as is, without any
modi�cation.

The basic idea in �ortid is to read in the ditro� output tokens, convert them to
an internal representation, perform any calculations and alterations to the lines of
tokens as necessary in order to change text direction and/or justify lines, and then
output the token lines in the same format as �ortid input.

ditro� output is a stream of well-de�ned tokens which are device-independent
commands to a typesetter (usually a printer). These commands include such things
as device resolution de�nition, font mounting, character printing, horizontal and
vertical movements etc. This stream of tokens is parsed by SWU 14, which is
generated by Lex based on SWU 27, into lexical tokens, SWU 8. SWU 4, the Main

module, parses the command line options and stores them in global variables. It
then reads in token by token using SWU 14, and depending on the token type
either immediately outputs it as is, or if it is a character token, stores the token in
a token structure, SWU 7, which holds lines of character tokens. Main simulates
the actions of the typesetter by recording its changing state as fonts and point sizes
are changed and movements are performed. Main uses services in Lines, SWU 3,
to create and free token structures, some miscellaneous services in Misc, SWU 5,
and services in Width, SWU 6, that calculate the width of characters according to
their font and point size. This information is needed for line width calculations and
character transformations within lines.

The heart of �ortid is in SWU 2, Dump. In it, lines of character tokens are
transformed according to the command-line options stored in global variables and
then output using services in Lines. For its calculations, Dump needs some width
services fromWidth. Dump reverses characters of the fonts that are speci�ed in the
command-line as those to be reversed and stretches lines that contain characters in
the fonts speci�ed in the command line as those to be stretched. The stretching of
the lines is performed according to the stretch style requested by the -s option, as
described in the SWU 1 page.

The complete decomposition is available in Adobe Acrobat pdf format with
hypertext links between the di�erent SWU pages [22]. This electronic manual can be
read using Adobe's Acrobat reader which is available free of charge. The hypertext
links enable easy traversal between SWU pages, source code and all other relevant
documents.

37

ii
Num Name Type Size (lines) Low-Levelii

1 ffortid Program 3422
2 Dump Module 1044
3 Lines Module 398
4 Main Module 1299
5 Misc Module 201
6 Width Module 480
7 token.h Declarations source file 34 *
8 lex.h Definitions source file 30 *
9 macros.h Definitions source file 20 *

10 connect.h Data file 256 *
11 dump.c Source file 704
12 table.h Declarations source file 18 *
13 lines.c Source file 296
14 lexer Lex generated source file 691
15 main.c Source file 506
16 misc.c Source file 129
17 width.c Source file 480
18 dump_defin Definitions block 34 *
19 dump_line Procedure 103 *
20 reverse_line Procedure 83 *
21 recalc_horiz Function group 463
22 print_line Procedure 21 *
23 lines_defin Definitions block 35 *
24 new_free_token Function group 85 *
25 insert_tokens Procedure group 52 *
26 put_tokens Procedure group 124 *
27 lex.dit Lex source file 37 *
28 main_defin Definitions block 58 *
29 main Function 448 *
30 new_font Procedure 41 *
31 font_info Procedure 41 *
32 out_of_memory Procedure 17 *
33 yywrap Function 13 *
34 width Function 17 *
35 width_defin Definitions block 47 *
36 init_dev_font Procedure group 229 *
37 width_calc Function group 122 *
38 debug_error Procedure group 82 *
39 recalc_horiz_2 Procedure 53 *
40 calc_total Function 48 *
41 stretch Function group 361 *iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4.1: �ortid Version 3.0 software units

38

ffortid
1

D
um

p
2

token.h
7

lex.h
8

m
acros.h

9
connect.h

10
dum

p.c
11

dum
p_defin
18

dum
p_line
19

reverse_line
20

recalc_horiz
21

recalc_horiz_2
39

calc_total
40

stretch
41

print_line
22

L
ines
3

token.h
7

table.h
12

m
acros.h

9
lex.h

8
lines.c

13

lines_defin
23

new
_free_token

24
insert_token

25
put_token

26

M
ain
4

token.h
7

table.h
12

lex.h
8

lexer
14

lex.dit
27

m
acros.h

9
m

ain.c
15

m
ain_defin

28
m

ain
29

M
isc
5

token.h
7

table.h
12

m
acros.h

9
m

isc.c
16

new
_font

30
font_info

31
out_of_m

em
ory

32
yyw

rap
33

w
idth
34

W
idth
6

w
idth.c
17

w
idth_defin

35
init_dev_font

36
w

idth_calc
37

debug_error
38

Figure 4.10: Overview of �ortid Version 3.0 decomposition

39

4.5 Author's Conclusions from Decomposition

Performing a decomposition of a legacy program has a lot in common with archeol-
ogy. One discovers mixed layers of architectures and changes performed by di�erent
programmers at di�erent times and with di�erent programming paradigms. A good
legacy program is one that is relatively homogeneous despite the various changes it
has undergone throughout its lifetime.

As I examined the code during the partitioning phase, I added my own comments
to help me understand what each piece of code was doing. During this phase I had
found several small bugs, erroneous comments, unused code and variables and even
a gross di�erentiation from the documentation in the manual page. Clearly, this
is a result of the many modi�cations performed on the code. In general, the code
was readable and had enough signi�cant names in it to help understand the overall
architecture of the program. I did not however attempt to understand the details
of each and every algorithm, but instead to gain insight into the structure of the
program.

I have found that building the SWU pages was best performed by starting from
the lowest level SWUs and working my way up to higher level SWUs. The reason for
this was that all the capabilities, interfaces and side-e�ects of the SWUs propagate
up from the low level to the high level SWUs. It is simply not possible to document
correctly a higher level SWU without �rst documenting its lower level SWUs.

I found it important to be able to understand the interaction between the di�er-
ent parts of the code. This includes recognizing the use of global variables, function
calls etc. and where these were de�ned. I used grep to do these simple tasks, but
the ability to perform automated queries on the code, just as in a database, and
generate di�erent views of the code, in my view, can greatly advance the software
understanding process.

The SFD were actually the last thing I added to the decomposition. I found
that they were a lot of work and did not help much in the decomposition itself, i.e.,
deciding on the partitioning criteria. Additionally, I have found that they did not
help much in the understanding of SWUs especially in levels lower than function or
procedure. I found it much easier to read statements of code than to understand
a graphical description of these statements. However, the graphical documentation
was very helpful giving a global view of high level SWUs services especially when
you try to understand a SWU you have not worked with in a while.

The manual reverse engineering process I performed, helped me reach conclu-
sions on what functions a dedicated CASE tool should provide to aid this process.
There is much paperwork in this method and without such dedicated CASE tools
no single or group of engineers can be expected to complete it in a reasonable pe-
riod of time on large legacy systems. Fortunately, most of this paperwork can be
automated successfully. In my view, this method of reverse engineering is viable on
real, large volume, complex legacy code systems only with such CASE tools.

In general, a CASE tool should automate everything that can be automated
and leave to the human operator that which cannot be automated well. The same
is true for a reverse engineering CASE tool. It does not need to, and should not,
replace the human decisions needed in the process. The documentation of SWU
interfaces and SWU requirements, extraction of relevant comments, and generation
of SFDs can all be automated. Precise partitioning of a SWU and capabilities
documentation must still be mostly manually performed. Such tools are therefore
semi-automatic reverse engineering tools.

With the use of expert knowledge, a reverse engineering tool can provide sug-
gestions to help the human operator make faster and more knowledgable decisions.
For example, it can suggest one or several options for partitioning a SWU accord-
ing to its syntactic structure and/or the resulting service
ow dependencies between

40

the sub-units. The human operator can then decide to accept one of the suggested
decompositions or provide one of his own. More advanced tools could even try to
learn new partitioning criteria from previous human partition decisions.

To summarize, a CASE tool can help a process of reverse engineering by:

� suggesting criteria, alternatives, implications, and places to partition a SWU,
perhaps using AI knowledge expert technologies,

� generating automatically the SFDs,

� generating automatically all or most of the side-e�ects of a SWU,

� generating automatically the requirements of a SWU,

� handling most of the paperwork involved; a change in one SWU should prop-
agate automatically to all a�ected SWUs,

� extracting or pointing to comments in the code which might be of use in
documenting a SWU,

� building a database of the SWU architecture on which di�erent queries can
be performed, and

� allowing the addition of new comments to the source code as additional com-
ments and not as part of the code.

Such a dedicated CASE tool should not only provide assistance in the reverse
engineering process itself, but it should provide an environment in which the discov-
ered architecture can be traveled through i.e., to move from one SWU to its parent
SWU or to one of its sub-units, to view a SWU's attributes, to transfer between the
abstraction and the source code, and to see di�erent views of the stored informa-
tion such as all uses of a global variable, function calls, etc. The reverse engineering
tool should build a SWU database which can be viewed and easily changed as we
change previous decomposition decisions. This database will later serve as s basis
for changing the source code or SWU structure.

The fact that the complete SWU architecture is stored in a database will greatly
help the following steps of changing the di�erent components and realizing the
e�ects of these changes.

4.6 The Initial Domain

The domain under consideration is the family of applications that are ditro� post-
processors capable of reversing text in right-to-left fonts and capable of left and
right justifying lines by stretching Arabic text.

The author decided to use the architecture of �ortid Version 3.0 as discovered
by the reverse engineering process as the basis of the initial domain architecture.
Each of the SWUs in the decomposition is a reusable component in the domain.
Some of the reusable components are low-level. Others are themselves composed of
lower level reusable components. The SWU pages document the capabilities and
interface of each SWU and therefore of the reusable components.

The initial domain has only one SWU representing an application, SWU 1, and
one way of composing the di�erent reusable components to create it. SWU 1 is
directly composed from 5 high level reusable components:

� SWU 2 - Dump - a module that contains routines to reverse and stretch
internal token lines.

41

� SWU 3 - Lines - a module that contains routines to allocate, free, and output
internal token lines.

� SWU 4 - Main - a module that parses the command-line options and runs the
main �ortid driver routine.

� SWU 5 - Misc - a module that contains some general support routines.

� SWU 6 - Width - a module that contains global variables to store the font
and width tables and routines to initialize them and return character widths
based on them.

The reusable components created from these SWUs are not always very adapt-
able or reusable. Some of them are not as independent from other components as
would be desired. The intention is that they be transformed in an evolutionary
manner to more adaptable components by a continuous
ow of new external re-
quirements for more advanced applications in the domain. It is possible to speed
up this natural process by performing, at selected life-cycle points, a top-down
domain engineering e�ort to refurbish the components for future requirements.

For example, it was possible not to use the architecture and components recov-
ered from �ortid as is, but instead to use them as a basis for a domain with object
oriented reusable components by extracting and analyzing the knowledge and code
in the components. This method is arguably faster and less costly than building a
domain from scratch because the designers have to their advantage the knowledge
and experience of previous generations of programmers embedded in the legacy
code. However, this technique is highly dependent on the domain and quality of
the legacy application being leveraged.

In very complex domains with large legacy applications, such a preventive main-
tenance e�ort would be very costly and risky and therefore di�cult to justify. In
such a case, it is probably better to let the domain evolve in an evolutionary man-
ner. This is the case to be checked in this experiment. Do our reusable components
become better as more applications are created from the domain? How does the
domain adapt under these circumstances?

42

Chapter 5

�ortid Version 4.0

After successfully building an initial domain architecture and reusable components
it was time to proceed to the next experiment stage. According to the experiment
design, a new set of previously unknown requirements must be devised for a new
application in the domain.

Berry had already created, as part of his research, a new version of �ortid accord-
ing to a set of requirements he devised. He used his own systematic maintenance
method to implement these requirements. Only after I had �nished creating the
domain, was I presented with this new set of requirements, so they could not have
a�ected in any way the architecture of the domain I created.

I was to implement these new requirements using the legacy and reuse based life-
cycle model as my basis. As previously described, the intention is that the domain
develop in an evolutionary manner according to external requirements. Therefore,
no modi�cations will be made to the domain unless they can be completely justi�ed
by new requirements, or perhaps, by errors found in existing components. The new
application is named �ortid Version 4.0.

5.1 SWU Modi�cations

All modi�cations to a SWU are performed on its scope, i.e. its source code. A
modi�cation of a SWU can potentially a�ect the 3 major attributes of a SWU: its
capabilities, its interface, and its requirements. All these attributes are orthogonal
and therefore each one of them can either be, or not be, a�ected by each modi�ca-
tion.

The type of a SWU will usually not change by a modi�cation, unless it is a
major modi�cation in which case it is not clear if the new SWU is logically the
same as the old one. A SWU is an abstraction of a concept in the domain. One
can update the abstraction as the domain changes, however, a major change in the
abstraction does not leave us with the same SWU.

Most modi�cations are performed to change a SWU's capabilities and/or inter-
face. Modi�cation of a SWU's requirements is usually a side-e�ect of these changes
unless it is itself the required change. We have categorized the 4 types of modi�-
cations possible looking only at how they a�ect the capabilities and interface of a
SWU (see Table 5.1).

A type I modi�cation of a SWU is simply a reimplementationof the SWUwithout
changing its capabilities or interface. Such a modi�cation will usually be performed
either as part of a preventive maintenance e�ort or in order to increase the perfor-
mance of the SWU in some respect, e.g., time, space, etc. Such modi�cations do
not change any of the services provided by the SWU or how it interacts with its

43

Type Capabilities Interface
Modified Modifiediiiiiiiiiiiiiiiiiiiiiiiiiiii

I no no
II no yes
III yes no
IV yes yesiiiiiiiiiiiiiiiiiiiiiiiiiiii

Table 5.1: SWU modi�cation types

environment.
A type II modi�cation of a SWU does not change any of its services but does

change the way the environment accesses them. Usually such a modi�cation will
result in a simpler, easier to understand, easier to use interface and this is the
main motivation for such a change. A type II modi�cation can include type I
modi�cations as well.

A type III modi�cation of a SWU changes the services of the SWU without
changing its interface. In other words, this is a semantic change of the SWU without
changing its syntax. A semantic change does not necessarily mean the SWU concept
changes. On the contrary, for example, a SWU abstracting a square root calculating
function can be modi�ed to increase the accuracy of its result. The SWU concept
has not changed, we are still providing square root calculating services. Even a local
fault correction, is a type III modi�cation. A type III modi�cation can include type
I modi�cations as well.

A type IV modi�cation of a SWU is a change both in the semantics and in
the syntax of a SWU. This usually occurs when a modi�cation of the services
provided by a SWU also require the change of its interface, either to increase its
input bandwidth for needed new information, or to increase the output bandwidth
for the new services results. A type IV modi�cation can include type I, type II, and
type III modi�cations as well.

Any of the above types of SWU modi�cations can potentially also a�ect the
requirements of the SWU. Modi�cations to a SWU's requirements are either side-
e�ects of other modi�cations or part of a preventive maintenance e�ort. The fewer
requirements a SWU has the more independent it is in terms of how it can be incor-
porated in a project. We should always strive for SWUs that are more independent
and therefore have fewer requirements, however, most low and medium level SWUs
must interact with other SWUs to provide their services and therefore must have a
minimal number of requirements.

Type I and type II modi�cations are normal in preventive maintenance. Type
III and type IV modi�cations are typical in corrective, adaptive, and perfective
maintenance.

Type II and type IV modi�cations are generally to be avoided because they
a�ect not only the speci�c SWU that was modi�ed but also all the SWUs that
use the service whose interface has changed. Modi�cations of type IV that do not
change the current interface of a SWU but instead add to it, do not fall under
the category of modi�cations to be avoided because they do not cause this type of
modi�cation ripple e�ect. We will call these kind of modi�cations type IV*.

We can de�ne in a similar fashion type II* modi�cations. However, it is not
clear why one would add to an existing interface without changing the capabilities
of the SWU. Type III* modi�cations are modi�cations of type III that do not
change current capabilities but instead add completely new services without a need
to change the SWU's interface. This is possible if the SWU interface was de�ned
well enough to allow such future enhancements.

Software modi�cations are a natural phenomenon of software evolution. We

44

¼ q
¼q
¼·q
q
q
q

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.1: Connecting letters, �llers, and dynamic letters

should however, attempt to reach a situation in which we do not have modi�cation
ripple e�ects in which a modi�cation in one SWU causes many modi�cations in
other SWUs. In other words we want to reach a situation in which we perform only
type I, II*, III, III*, and IV* modi�cations. This will occur only when we have
good domain abstractions with carefully planned interfaces that pass high-level
information abstractions.

5.2 The New Requirements

�ortid version 4.0 should have all the functionality of version 3.0 plus the capability
to left and right justify lines containing Arabic, Persian or related languages by
stretching letters and not just by inserting �llers between connecting letters. This
requires the use of dynamic fonts in which letters can actually be stretched. Figure
5.1 (a), (b), and (c) show the current method of inserting a �ller between two
connecting letters, increasing the word's width. Parts (d), (e), and (f) of Figure 5.1
show the new method of stretching a letter in a word to achieve the same e�ect.
Note that not all arabic letters can be stretched. Only those letters with a large,
mostly horizontal stroke, are traditionally stretched in Arabic calligraphy.

The new requirements were speci�ed as precisely as possible by Berry by writing
a new manual page describing the new version of �ortid. It can be found in Appendix
C. From a comparison of the old and new manual pages we created a list of 3
required enhancements:

1. Change the command-line options and add the capability to automatically
stretch letters and/or connections according to these options and the new
stretch information in the width tables.

45

2. Add the capability to manually stretch letters.

3. Add the capability to control automatic stretching of words with manually
stretched letters and/or connections by two new command-line options.

Enhancement 1 modi�es the command-line options to express the new possibili-
ties of automatic stretching created by the use of letter stretching. In �ortid Version
3.0 all stretching was performed by inserting �llers and the stretch style option spec-
i�ed where to stretch. In �ortid Version 4.0 automatic stretching is speci�ed by two
relatively independent dimensions: where to stretch (the stretch place) and how to
stretch (the stretch mode). The stretch place is similar to the previous stretch style.
The stretch mode allows the stretching of only connections, only letters, either letter
or connection, whichever comes later in a word, or both.

This enhancement includes inserting the functionality that performs the actual
stretching of the lines according to the speci�ed options. This includes reading new
width tables �elds that specify the stretchability and connectivity of each character.
This information is needed so �ortid can know which characters are stretchable.

Enhancement 2 adds the functionality needed to accept new input tokens that
specify manual letter stretch commands. These enable the user to manually stretch
speci�c letters by any required amount. The manual stretch information must be
stored in the character token as an integral part of the character.

Enhancement 2 adds the capability to manually stretch letters in words. When
automatic line stretching is enabled, these words can be additionally stretched to left
and right justify a line. In some cases, it would be desirable to prohibit automatic
stretching of words already manually stretched. Enhancement 3 adds two new
command-line options to achieve this e�ect: the -msc option prohibits the automatic
stretching of words containing manual connection stretch commands, and the -msl
option prohibits the automatic stretching of words containing manual letter stretch
commands.

The actual stretching of letters by �ortid is achieved by a new output token that
is preceded by �ortid to every character that it wants stretched. This output token
includes the amount of stretch of the character. An application called psdit that
reads ditro� output and translates it into postscript was modi�ed to accept this
new ditro� command and translate it into postscript commands causing the actual
character stretching. This application is not part of �ortid as such and is therefore
not part of the experiment.

We made sure the 3 enhancements cover all the new requirements by compar-
ing the old and new manual pages. Our main concern in the division of the new
requirements into enhancements was to make each enhancement as independent
from the others as possible from the users point of view. All the enhancements are
independent except for enhancement 3 which depends on enhancement 2. The idea
is that in principle each enhancement could be performed separately and therefore
could be tested separately in an incremental manner.

5.3 Implementation

We now have a domain and a set of requirements which we must implement by
adapting the domain as necessary and generating a new application answering these
requirements. Our new requirements are enhancements to �ortid Version 3.0 on
which our initial domain is based. In the domain's current state, we can generate
only applications with similar architectures because we have only one SWU rep-
resenting an application. Such SWUs tell us how to build applications from our
reusable components. This will not always be the case in more advanced domains
in which applications with completely di�erent architectures could be generated.

46

In such domains, we would have several SWUs each representing an application
architecture.

We propose here a systematic method for domain adaptation according to a new
set of requirements. This method can be used to implement the requirements in an
incremental manner or in a single batch.

Usually requirements are expressed in a user-oriented, high level fashion. Our
�rst step is the expression of the requirements in a more detailed fashion by listing
them at the lower software level as interface and capability changes to the SWU
representing the complete application. In our case this is SWU 1. The interface
changes of SWU 1 are:

I{1 Modify the command-line options.

I{2 Modify the structure of the width table.

I{3 Add the acceptance of input manual stretch commands.

I{4 Add the printing to output of stretch commands.

Note how some of the changes are modi�cations to existing interfaces, I{1 and
I{2, and some are completely new additions to the application interface, I{3 and
I{4. I{1, I{2, and I{3 are all access interface changes and I{4 is the only result
interface change. The capability changes of SWU 1 are:

C{1 Treat manual stretch values in character tokens as part of the character.

C{2 Add the storage of automatic stretch values in character tokens.

C{3 Modify automatic stretching to stretch according to the new command-line
options and width table information.

Note again how some of the capability changes are completely new capabilities,
C{1 and C{2, and some are modi�cations of existing capabilities, C{3.

The next step in our method is the implementation, �rst of the access inter-
face changes, and then of the capability changes, and �nally of the result interface
changes. Capability changes can and usually do depend on new information in the
input interface and must therefore be implemented only after we have designed and
implemented the access interface changes. The result interface changes can and usu-
ally do depend on the new capability changes and must therefore be implemented
after them.

The division of the requirements into application interface and capability changes
serve several purposes. First, it helps separate the internal and external changes to
the application. Secondly, it assists the implementation of the changes using the
method in the previous paragraph.

Each interface or capability change is implemented using the same technique.
Using the domain hierarchy of SWUs, we perform a top-down search for all the
low-level SWUs that should be modi�ed by the change. The search is a focused
search, directed by the interface or capability description of each SWU. If we are
modifying an existing interface, or capability, we search for the current low-level
SWUs that possess the to-be-modi�ed interface or capability. If we are adding a
new interface or capability we search for the SWU to which it should logically be
added.

For example, I-1 is a modi�cation of the current command-line options. Accord-
ing to the SWU Lemmas in Section 4.1.2, there exists a sub-unit of SWU 1 that
provides this interface service. By interface service, we mean that there exists a
sub-unit that reads in, parses, and stores the command-line options for the use of

47

other sub-units. The top-down search
ows from SWU 1 to SWU 4 to SWU 15 and
�nally to SWU 29 (see Figure 4.10). We must therefore modify SWU 29 which is
the main function to implement I-1. This includes modifying the parse mechanism
of the command-line to accept the new options and modifying the global variables
to store the new options.

This modi�cation causes a series of modi�cation side-e�ects. SWU 29 requires
SWU 28 for the de�nition of the global variables holding the command-line options.
These variables need to be changed because of the change in SWU 29. SWU 18
holds external declarations of the same variables for the dump module. Therefore,
SWU 18 requires the de�nitions in SWU 28 and a modi�cation in them requires a
similar modi�cation in SWU 18. These external de�nitions are used only in SWU
41 where automatic stretching is performed according to these options. Therefore,
SWU 41 must also be modi�ed.

A single modi�cation causing such a modi�cation side-e�ect chain reaction is
something we generally wish to avoid. In this case, the interface change in SWU 1
required a capability and interface change in SWU 29. The global variable interface
used to convey the command-line options is not a high level enough abstraction of
this information. If we had used a user-de�ned type that abstracted the command-
line options we would need only have changed this type's capabilities i.e., its �elds,
in SWU 29 and changed SWU 41 to use these �elds. No other SWUs would have
been a�ected. We can see that in some cases modi�cations are bound to have
side-e�ects, but we should keep these side-e�ects to the necessary minimum.

It is interesting that some of the modi�cation side-e�ects can be detected auto-
matically by a CASE tool. For example, if in a SWU, a programmer changes the
de�nition of variables used in other SWUs, the CASE tool can warn the program-
mer that these other SWUs must be modi�ed as a consequence of the de�nition
change. The programmer can then correct the other SWUs, perhaps causing other
modi�cation side-e�ects. Such a tool will help the programmer not to forget to
modify a�ected SWUs in the cases it can detect.

The SWU database should hold a tree of service dependencies between the
SWUs. This tree should be checked by the tool for possible modi�cation ripple
e�ects. If a global variable is not used any more in SWU 28 and it depends on SWU
29 for its de�nition then the tool should notify the programmer of this change. When
the de�nition of a global variable is deleted, as in SWU 29, then the programmer
must be noti�ed of all the SWUs that use this variable, such as SWU 41.

Modi�cation I-2 is an example of a modi�cation causing a change in the domain
hierarchy. The top-down search leads us from SWU 1 to SWU 6 to SWU 17 and
�nally to SWU 36. There, we add the functionality needed to read in the additional
stretch and connectivity �elds in the width tables. Keeping in line with the design
philosophy of the modules we must add global variables to SWU 35 to store this
additional information. We decided however to provide functions that access this
new information so it does not have to be accessed through the global variables.
We grouped these functions in a new SWU 48 called char info, and as they belong
to width.c we made it a sub-unit of SWU 17. New macros needed for the functions
in SWU 48 were added to the macros.h, SWU 9, and it was included in �le width.c
therefore it became a sub-unit of SWU 6, Width.

This modi�cation did not generate any modi�cation side-e�ects, except for SWU
35, largely because it was an addition to the current interface without any changes
to the previous one.

Modi�cation C-1 calls for the viewing of manual stretch values in character
tokens as part of the character. A top-down search of the domain architecture
revealed that there is no character width concept in the domain. The functions in
width return only the font table width of characters. Therefore, we created such a
concept by creating a function tokenBasicWidth and another function which which

48

we thought is an important concept tokenStretch. The former returns the width
of a character token before it is automatically stretched and the latter returns the
total stretch amount of a character token. These were grouped in a new SWU
inquire token, SWU 42, and added as a sub-unit to SWU 13, lines.c. We then had
to examine the complete code looking for calculations based on a character's width
and change them to call the function tokenBasicWidth. This modi�cation caused
no side-e�ects.

Modi�cation C-3, implementing the new automatic stretching according to the
new command-line options, resulted in two fundamental changes to the domain
architecture. The �rst fundamental change was caused by the fact that we realized
SWU 41 which is the heart of the line stretching algorithm would require complete
refurbishing in order to implement the modi�cation because it does not have the
abstractions necessary to represent the new required functionality. We therefore
created a new SWU 43 instead with several sub-units each performing part of the
line stretching algorithm with the new letter stretching functionality inside. Of
course this does not mean we could not use some of the code in SWU 41 in the new
SWUs. We did. However, most of SWU 43's code was completely new.

The second fundamental change in the domain architecture as a result of modi-
�cation C-3 was that of �nding a serious conceptual bug in the original �ortid while
testing the modi�cation. We realized that the original designers of �ortid made a
serious mistake in deciding when to reverse part of the tokens in a line. This mis-
take is only evident in certain test cases. This realization resulted in the deletion
of SWU 21, some modi�cations to SWU 19 and SWU 39 and the alteration of the
domain architecture to re
ect these changes.

Several additional minor bugs were found in the original code but they were
corrected without any ripple e�ects or major domain architecture changes.

Figure 5.2 shows the updated domain architecture of �ortid Version 4.0 after
all the above modi�cations were performed. As �ortid Version 4.0 included only
enhancements over �ortid Version 3.0 we saw no need to preserve SWUs that have
been deleted or replaced by better SWUs. In more advanced domains where one
could have a choice between several components this should be re
ected in the
domain architecture and scope diagram.

Table 5.2 shows all information on the SWUs in the updated domain.

5.4 Implementation Comparison

The initial domain had 28 low-level SWUs with 2510 lines altogether. We deleted
from the domain 3 low-level SWUs (10, 34 and 41) and one high-level SWU (21).
We added 6 low-level SWUs (42, 44, 45, 46, 47, and 48) and one high-level SWU
(43).

The 3 low-level SWUs deleted had altogether 634 lines (lines include comment
lines). Of the 25 low-level SWUs carried on to the modi�ed domain, modi�cations
were made to 18 of them. Altogether 320 lines were added, 50 were deleted and 22
modi�ed. The 6 new low-level SWUs have altogether 649 lines. The new domain
therefore has 31 low-level SWUs and 2795 lines.

Berry implemented the same requirements using the same original �ortid version
as his basis. He used his own SOTP systematic maintenance method to implement
these requirements. The major steps in the his method were:

� Make a list of all the changes.

� Mentally plan the changes to the implementation to achieve these changes,
mainly in data structures and key new algorithms.

49

ffortid
1

D
um

p
2

token.h
7

lex.h
8

m
acros.h

9
dum

p.c
11

dum
p_defin
18

dum
p_line
19

reverse_line
20

recalc_horiz
39

stretch
43

calc_total
40

stretch_a_line
44

stretch_candidates
45

stretch_a_w
ord

46
spread_stretch

47

print_line
22

L
ines
3

token.h
7

table.h
12

m
acros.h

9
lex.h

8
lines.c

13

lines_defin
23

new
_free_token

24
inquire_token

42
insert_token

25
put_token

26

M
ain
4

token.h
7

table.h
12

lex.h
8

lexer
14

lex.dit
27

m
acros.h

9
m

ain.c
15

m
ain_defin

28
m

ain
29

M
isc
5

token.h
7

table.h
12

m
acros.h

9
m

isc.c
16

new
_font

30
font_info

31
out_of_m

em
ory

32
yyw

rap
33

W
idth
6

m
acros.h

9
w

idth.c
17

w
idth_defin

35
init_dev_font

36
w

idth_calc
37

char_info
48

debug_error
38

Figure 5.2: Overview of �ortid Version 4.0 domain

50

ii
Num Name Type Size (lines) Low-Levelii

1 ffortid Program 3803
2 Dump Module 1020
3 Lines Module 493
4 Main Module 1457
5 Misc Module 204
6 Width Module 629
7 token.h Declarations source file 39 *
8 lex.h Definitions source file 31 *
9 macros.h Definitions source file 33 *

11 dump.c Source file 917
12 table.h Declarations source file 18 *
13 lines.c Source file 372
14 lexer Lex generated source file 705
15 main.c Source file 631
16 misc.c Source file 114
17 width.c Source file 596
18 dump_defin Definitions block 30 *
19 dump_line Procedure 125 *
20 reverse_line Procedure 87 *
22 print_line Procedure 21 *
23 lines_defin Definitions block 33 *
24 new_free_token Function group 91 *
25 insert_tokens Procedure group 74 *
26 put_tokens Procedure group 135 *
27 lex.dit Lex source file 38 *
28 main_defin Definitions block 73 *
29 main Function 558 *
30 new_font Procedure 42 *
31 font_info Procedure 42 *
32 out_of_memory Procedure 17 *
33 yywrap Function 13 *
35 width_defin Definitions block 51 *
36 init_dev_font Procedure group 260 *
37 width_calc Function group 151 *
38 debug_error Procedure group 82 *
39 recalc_horiz Procedure 47 *
40 calc_total Function 55 *
42 inquire_token Function group 45 *
43 stretch Function group 607
44 stretch_a_line Function group 182 *
45 stretch_candidates Function group 131 *
46 stretch_a_word Function group 116 *
47 spread_stretch Function group 123 *
48 char_info Function group 52 *iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5.2: �ortid Version 4.0 software units

51

� Add to each change on the list, a list of modules a�ected by the change.

� Make hard copies of each of the modules and write in all the changes by fol-
lowing the list and going to each a�ected module. As you do this, discover
additional changes necessary, so-called ripple e�ects, and either do them im-
mediately if they are small and in the same module or add them to the list of
changes to be done with the right modules listed next to them.

� Desk check the changes by going module by module trying to make sure that
the module is consistent.

� Enter all the changes and recompile after each change.

� If you can see an order to doing the changes, i.e.

{ all changes which do not invalidate current functionality

{ all changes which change current functionality

{ all changes which add new functionality

and each such set makes a testable program, follow that order of adding the
changes and compiling and testing.

Note that this method did not include any form of reverse or reengineering. Us-
ing this method to implement the above requirements Berry found it was possible
to create an order of implementation that enabled the implementation of each mod-
i�cation and its subsequent testing. Berry found that a typical test would expose
two or three bugs and about half of these were unforeseen ripple e�ects.

To the original 2510 line �ortid program Berry added 1997 lines, deleted 784
lines and modi�ed 36 lines. Therefore, his implementation of �ortid Version 4.0 had
altogether 3723 lines. The most striking di�erence between the two implementations
is the number of added lines, 321 by the author compared to 1997 by Berry. This
requires some explanation.

Both implementors had the same goal in mind, to perform the minimumamount
of modi�cations needed to implement the new requirements. However, as happens
so often with programmers, they chose di�erent designs for their implementation.
Berry chose to store any information calculated in appropriate data stores so it will
never need to be calculated twice. This required the addition of new data types
and was not in keeping with the original design of �ortid.

The author on the other hand, as a consequence of the reverse engineering
and modi�cation method used, based his design largely on the original design.
The focused search method used to �nd the SWU to be modi�ed tends to focus
the programmer on the current abstractions when they exist and not on creating
new abstractions. Only when these do not exist in the current architectures must
one justify and then add the new abstractions with as much coherence with the
current design as possible. In other words, the author claims that the di�erence in
the number of added lines between the two implementations is not an accident of
di�erent programming styles but a consequence of the methods used. Clearly one
could have done exactly the same changes as the author had done without reverse
engineering �ortid. However, using this method these changes came naturally and
easily.

As a general remark, we want to point out another lesson we had learned during
this phase of the experiment. The fact that we decided to have a written contract
for the requirements, i.e., the manual page, brought to the surface mistakes and
misconceptions Berry had of his program. The fact that another person, ignorant
at that, had to implement the same manual page, resulted in the clari�cation of
many points which had seemed clear to Berry, but on second thought were not well
de�ned.

52

Chapter 6

�ortid Version 5.0

After we had successfully compared both implementations of the �rst set of require-
ments, we proceeded to the �nal experiment stage. According to the experiment de-
sign, another set of more advanced requirements must be devised and implemented
by the experimenter and control on their latest application versions. Needles to say,
these requirements were not known to the author before reaching this stage.

6.1 The New Requirements

The new requirements were speci�ed as precisely as possible by Berry by writing
an additional manual page describing the new version of �ortid. It can be found in
Appendix D. From a comparison of the previous and new manual pages a list of 7
required enhancements was created:

1. Use new font width table information on type of connection stretching re-
quested and accept new manual connection stretch commands.

2. Arrange words in slantable fonts on a slanted base line.

3. Use new ditro� commands to properly handle embedded text of the the op-
posite direction containing sub-text , e.g., numerals, of the original direction.

4. Add -msw option to prevent the automatic stretching of words containing
manual stretch of any kind.

5. Use new font width table information on type of stretching requested.

6. Allow stretching of all types of characters, not just
N named character.

7. Change -a command-line option to --.

Enhancement 1 allows fonts to specify the type of automatic connection stretch-
ing to be performed when connection stretching is needed according to the current
stretch mode and place command-line options. Their are 3 possible types of con-
nection stretching:

� Fixed �ller | is the type of connection stretching used in �ortid Versions 3.0
and 4.0. Connections are �xed size �llers inserted between connecting letters.

� Stretchable �ller | the use of stretchable letters allows the use of a stretchable
�ller character. This character is usually and normally of width zero but
can be stretched to any needed length and then inserted between connecting
letters.

53

····

(a)

(b)

(c)

(d)

Figure 6.1: Stretchable letter connections and �llers

� Stretchable connections | the connecting portions of all connecting letters
are themselves stretchable in the same way as stretchable letters are. In this
case, to achieve a total connection stretch of size x, one would pass x=2 to each
of the connecting-after portion of the before letter and the connecting-before
portion of the after letter.

The stretchable �ller solves the problems caused by the fact that the amount of a
given connection stretch may not be integrally divisible by the width of the �xed size
�ller. The use of stretchable connections improves the appearance of the connection
stretch by replacing the
at straight �ller with a smooth curved connection.

For example, �gure 6.1 (a) shows two regular connecting letters. Part (b) shows
how their connecting parts are dynamically stretched by a given amount and part
(c) how the stretched letters are joined. Part (d) of the same �gure shows the same
connecting letters stretched by inserting a stretched �ller between the letters. Note
the more pleasing result using the �rst method in (c) than using the second in (d).

This enhancement includes the acceptance of new manual connection commands
for the two new types of connection stretching, i.e., manual stretchable �ller com-
mands and manual letter connection stretch commands.

Enhancement 2 enables �ortid to handle slantable fonts. These fonts have a
�xed character slant which requires special handling in laying out words and lines.
Each word in such a font is printed on a slanted baseline that crosses the original
baseline of the line at the center of the word. Figure 6.2 shows each word's baseline
as a solid arrow and the line's baseline as a dotted arrow.

Figure 6.3 shows a sample slanted output created by �ortid. Note how it handles
correctly a combination of slanted, unslanted, left-to-right, and right-to-left fonts.
All the command-line options and di�erent types of stretching are available with
slanted fonts as well.

Sometimes right-to-left text contains some embedded left-to-right text, such
as a street address in Hebrew that contains a numeral using traditional western

Figure 6.2: Layout of slanted font words on line

54

Ö�¸yÖ¹q¢¬
�BÖ­³�B ¹®¨rj

Ö���ª
� ���B¡�

Ö�¢�¬
�Bj

(English)Ö�£¹³
�Ý� ¢wC �­�Ê�

¹q ¢®�BÁ�¸rl�ª¬ìB Ö³��ÝC.(עברית)

. �´³ �B �j ¹®¨��B ¹��yC � vBj

Figure 6.3: Sample slanted output

digits with the most signi�cant digit to the left. If this right-to-left text were
embedded inside left-to-right text, e.g., an English sentence announcing a Hebrew
street address, inside a left-to-right document, then the numeral, being left-to-right
text, would be treated as left-to-right text that separates two right-to-left chunks
inside a left-to-right document. Enhancement 3 solves this problem by recognizing
two ditro� commands that surround the embedded left-to-right text and cause �ortid
to recognize that the surrounding text should be treated as a single right-to-left unit.

Enhancement 4 adds a new command-line option -msw that prevents the auto-
matic stretching of words containing manual connection or letter stretch commands.
This is useful for preventing the messing up of �nely tuned manual stretch com-
mands by the automatic stretch mechanism.

Enhancement 5 allows better control over the type of stretching fonts provide.
A new line in each font's width table describes the stretchability of the font as
either connections only, letters only, or letters and connections. This enables the
font to limit the type of automatic stretching allowed on the font despite the actual
available stretchability of each character. Therefore, the same font can be mounted
several times, each time with di�erent stretch properties.

�ortid Version 4.0 allowed only the stretching of characters entered by their
numerical code. Enhancement 6 enables the stretching of characters also entered
by their ascii or two letter synonym.

Enhancement 7 is a trivial enhancement which simply changes the syntax of the
-a command-line option, specifying the stretchable fonts, to the more intuitive --
syntax.

6.2 Implementation

The most substantive enhancements in �ortid 5.0 are the two new types of connec-
tion stretching, slanted fonts, and the handling of embedded reversed text. These
enhancements represent completely new functionality in �ortid. The rest of the
enhancements are mostly technical because they only alter or improve current func-
tionality without adding something completely new.

The author implemented these requirements using the same method described
in the previous chapter. He implemented them serially, one by one, testing each
new enhancement as it was implemented, and found no problem in doing this.

Berry implemented the same requirements using his own SOTP method de-

55

scribed in the previous chapter. He had found that unlike the �rst set of require-
ments, it was not possible for him to implement each enhancement separately. He
implemented the whole program all at once. He then tested the old features �rst to
make sure that they have been preserved and then the new features.

56

Chapter 7

Experiment Results

Before giving the results and conclusions from the experiment, it is necessary to
describe how to compare di�erent application versions for their amount of reuse
and modi�cation.

7.1 Measuring Reuse

Figure 7.1 shows as a Venn diagramwhat happens when we create a new application
from some original application. Part of the original code is deleted and is not
included in the product . Another part of the original code is modi�ed and included
in the product application. Finally, part of the code is reused as-is in the product
application. The �nal product application consists of the modi�ed and reused code
from the original application and of completely new code which is added to existing
code. Note that this analysis is true not only of applications but also of any other
type of SWU.

In order to qualitativelymeasure the amount of reuse achieved in a project based
on some original application producing some product application, we have de�ned
three important ratios. These ratios use as the basic unit of their numerator and
denominator, the number of code lines including comments. It is of course possible
to choose some other basic unit such as lines without comments, statements etc.
However, code lines have been shown to be a good estimate of code size over the
years. Additionally, in my view, comments are also reused in projects and not only
program statements; therefore, it is logical to count them as well in program size.

The reuse ratio (see Equation 7.1) measures the number of directly reused lines
in the product application relative to the original application size. This ratio tells
us how much of the original application was reused as-is.1 Clearly, a small reuse
ratio means that we did not reuse a lot of code from the original application. On the

1Some use a reuse ratio which includes not only directly reused lines but also modi�ed lines.

This measures what is known as leveraged reuse.

Deleted Modified Reused Added

Original
Application

Product
Application

Figure 7.1: Relationship between original and product application

57

Reuse Ratio =
reused lines

original lines
(7.1)

Modi�cation Ratio =
modi�ed lines

original lines
(7.2)

Addition Ratio =
added lines

product lines
(7.3)

iii
Del. Mod. Added Final Implementation
Lines Lines Lines Lines Timeii

Experiment 4.0 684 22 969 2795 —
Control 4.0 784 36 1997 3723 —iii
Experiment 5.0 126 23 947 3616 39
Control 5.0 44 82 789 4468 77-94.5iiic
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

Table 7.1: Experiment results

other hand, a large reuse ratio indicates a large amount of reuse from the original
application.

The modi�cation ratio (see Equation 7.2) is similar to the reuse ratio except
that it measures the number of modi�ed lines in the product application relative to
the original application size.2

The addition ratio (see Equation 7.3) measures the number of new lines in the
product application relative to the product application size. This measure is im-
portant because it tells us how much of the �nal application is from completely new
code and how much is from directly reused and modi�ed code (1� addition ratio).
It is possible to have a case with a high reuse ratio and a high addition ratio. This
indicates that although we reused a large proportion of our original application,
this reuse amounts to only a small fraction of our �nal product application and
therefore we cannot say we have reached a high level of reuse altogether. In fact,
such a situation would probably imply that the whole reuse e�ort was futile and
that perhaps it was better to create the complete product application from scratch
as most of it was created so in any case.

Therefore, in order to state that a high level of reuse was achieved in a certain
project we should have a large reuse, or leveraged reuse, ratio and a small addi-
tion ratio. How much is large and small? That depends on the speci�c project
and its goals. If we implement two di�erent versions of the same application, the
comparison is simpler because we can compare the ratios of each version and decide
accordingly which had a higher level of reuse.

7.2 Results

For each application version of the author and the control we recorded the number
of deleted, modi�ed, and added lines from the original application it was derived
from. Additionally, we recorded the �nal number of lines in the product application
and the implementation time in hours, including testing, of the second version. The
results for all the di�erent application in the experiment can be found in Table 7.1.

Both the author's and the control's versions of �ortid 4.0 started from the same
application { �ortid 3.0, which had 2510 lines. Both deleted approximately the same
number of lines and modi�ed nearly the same insigni�cant number of lines. The

2Therefore adding the reuse and modi�cation ratios gives us a leveraged reuse ratio.

58

ii
Reuse Modification Addition
Ratio Ratio Ratioii

Experiment 4.0 72% 1% 35%
Control 4.0 67% 1.5% 54%ii
Experiment 5.0 95% 1% 26%
Control 5.0 97% 2% 18%iic
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

Table 7.2: Experiment results analysis

major di�erence between the versions is the number of added lines. The control
added more than twice the number of lines the author added in order to achieve the
same functionality, and therefore his application version was much larger, almost
1,000 lines more, than the author's (See Section 5.4).

The reason for this wide di�erence is that the control took a design decision
di�erent from that of the author, adding a new complex data structure and all
the code needed to initialize, handle and extract the information in this new data
structure. Clearly, this decision was not mandatory, as the author achieved the
same functionality without adding this new data structure.

Remember that both implementors had the same goal in mind: to perform
the minimum amount of modi�cations needed to implement the new requirements.
However, as happens so often with programmers, they chose di�erent designs for
their implementation. Berry chose to store any information calculated in appro-
priate data stores so it will never need to be calculated twice. This required the
addition of new data types and was not in keeping with the original design of �ortid.

The author, on the other hand, as a consequence of the reverse engineering and
modi�cation method used, based his design largely on the original design. The
focused search method used to �nd the SWU to be modi�ed tends to focus you on
the current abstractions when they exist and not on creating new abstractions. Only
when these do not exist in the current architecture must one justify and then add
the new abstractions with as much coherence with the current design as possible. In
other words, it is claimed that the di�erence in the number of added lines between
the two implementations is not an accident of di�erent programming styles but a
consequence of the methods used. One could have done exactly the same changes
the author had done without reverse engineering �ortid. However, using this method
these changes came naturally and easily.

No implementation time is recorded for either application version of �ortid 4.0
for two reasons: First, the control's version was written before this experiment was
conceived and therefore no time recordings were performed. Secondly, the author
was learning and inventing his method as the application was being created and
therefore it is not possible to objectively compare the two versions implementation
times.

The analysis of these results can be found in Table 7.2. As expected from the
collected data, the direct reuse ratio of both versions was more or less the same, as
both deleted and modi�ed more or less the same number of lines. The modi�cation
ratio of both versions was small and insigni�cant. Finally, the addition ratios of
both versions were quite di�erent. The addition ratio of the author (35%) is much
lower than the addition ratio of the control (54%), because he added signi�cantly
fewer new lines to the product application.

According to the analysis in the previous section, the author's version 4.0 had a
higher level of reuse of the original application, �ortid 3.0, than the control's because
it has a slightly larger reuse ratio and a signi�cantly lower addition ratio. In order
to judge which �ortid 4.0 version was more reusable, i.e. which method resulted in
a more reusable application, we must compare the level of reuse achieved by each

59

method in the second experiment step.
The author and the control both started their versions of �ortid 5.0 from their

individual versions of �ortid 4.0. Both the author and the control deleted very few
lines from their original application although, as shown in Table 7.1, the author
deleted more lines than the control. This indicates that both implementors added
good code to �ortid 4.0 versions because they reused most of it in the their �ortid 5.0
versions. Both the author and the control modi�ed very few lines, with the control
modifying more lines, and both added nearly the same number of new lines. The
�nal application of the control, therefore, still had signi�cantly more lines than the
author's because he started with a larger original application.

Implementation time was recorded in this experiment step. The control recorded
a minimum and maximum implementation time because he could not give exact
hours due to the nature of his working environment. He was interleaving other
professional duties while coding and was continually thinking even while not coding.
Even if we take the minimumhours recorded by the control, they are approximately
twice the implementation hours of the author. I believe this can be attributed to
the fact that the author's original application was documented in the form of a
domain, while the control had only the immediate documentation in the code itself.
This documentation allowed the author to quickly trace where each modi�cation
needs to be performed using the SWU architecture. The control on the other hand
had only the decomposition of his application into modules to guide him. In the
author's view, the overall result of this was better software understanding by the
author and the ability to perform modi�cations quicker.

The analysis of these results using the above ratios can be found in Table 7.2.
The direct reuse ratios of both versions are similar and very high. The modi�cation
ratios of both versions are similar and insigni�cantly small. The addition ratio of
the author is higher than the control's because he added slightly more lines but had
a smaller �nal application size therefore resulting in the higher addition ratio. If
we take the di�erent original application size into account, there is no signi�cant
di�erence between the version's addition ratios.

7.3 Conclusions

There was no signi�cant di�erence between the reuse and modi�cation ratios of
both methods in both experiment steps. There was a signi�cant di�erence in the
addition ratio of the methods in �ortid 4.0. As explained in the previous section,
I believe this shows the advantage of using the proposed method which directs the
implementor to use existing SWUs over creating new abstractions.

Although there was no signi�cant di�erence in the ratios of the di�erent imple-
mentations of �ortid 5.0, if we examine the overall results, the author claims they
indicate clearly that the author's version of �ortid 4.0 was more reusable than the
control's because:

� It took a signi�cantly shorter time to perform the necessary changes on it.

� It has a signi�cantly smaller application size.

� It is better documented.

� It has higher quality code.3

3This conclusion was reached by examining both applications source code and comparing ba-

sic principles of software engineering such as function length etc. This is clearly a subjective

conclusion.

60

It is, however, necessary to put some hedges over these results. Although we
had taken several steps to make sure the results of the experiment are valid and
that we had taken into account the possible di�erence between the implementors
capabilities it is still possible that the author was a much better programmer than
the control and this explains the di�erence in the implementation time, etc. The
author does not believe this to be the case, but in any case further case studies and
formal experiments are needed in order to strengthen these results.

Another point to keep in mind in such experiments, is that there is a possible
di�erence between the actions of an ignorant and knowledgable person. It is well
known that an ignorant person performs better on some tasks because of a lack
of tacit assumptions a knowledgable person makes due to his increased knowledge
[23]. This can also be a possible explanation for the di�erent design decision taken
by the control in his implementation of �ortid 4.0.

The author has shown it is possible to use the proposed domain reengineering
method to produce an initial domain, and has proposed a systematic method for
the implementation of requirements in such a domain. In the current case study,
this method did result in a high level of reuse and low level of modi�cation. This
method can be highly automated using dedicated CASE tools.

Regarding the SWU theory re�ned in the thesis, it has been shown that it is
applicable to real software and that it can be used to document the architecture and
design of existing systems and to advance the systematic implementation of new
requirements. It also allows a high degree of automation of the proposed method
using CASE tools which are a must if we wish to use such methods of reengineering
on large scale systems.

In the author's view, only the use of such methods and automated tools o�er
hope of handling the problem of maintaining and reusing the large number of legacy
systems that exist. Further experiments, perhaps with real, full scale, legacy sys-
tems, using state-of-the-art CASE tools will help re�ne the proposed methods and
advance the technology of software reengineering. Only with such experiments will
we be able to realize the full potential of these technologies.

As a �nal not I would like to quote a remark pointed out by Berry while reading
Section 5.3 \Now I am beginning to understand the advantage you had in tracking
things down to avoid ripple e�ects and to just plain �nd what to change and the
sources of bugs!". This remark recognizes the potential in the methods used in this
experiment.

7.4 Acknowledgments

I wish to thank Prof. Daniel M. Berry who not only performed all the functions of
an advisor in an exceptional way but also performed a vital part of the experiment
itself by acting as its control. I would also like to thank Prof. Noah Prywes for
describing to me his methods on which this thesis is based and for exchanging ideas
during the experiment.

61

Appendix A

SFD Icons

62

XXX

Assignment

a=b+c

XXX is the name of the variable on the left hand side of the assignment.

XXX

Procedure/Function Call

my_procedure(arg1,arg2)

XXX is the procedure name.

XXX

Condition

if (my_var)...else... switch(c)

XXX is either IF or SWITCH.

XXX

Simple Condition

if (my_var)

XXX is always IF without an else.

XXX

IO File

FILE* fd;

XXX is the name of the variable or the name of the file in quotes.

XXX

Loop

for(i=0;i<n;i++)... while (cond) do ... do statement while (cond)

XXX is the type of statment, e.g. FOR, WHILE or DO.

63

XXX
n

Software Unit

A single Software Unit.

XXX is the name of the SWU. If it has a number the number n is shown.

XXX

Local Variable

type name;

XXX is the name of the variable.

XXX P

Parameter Variable

func(type name);

XXX is the name of the parameter variable.

XXX R

Return Variable

type func(arg1, arg2);

XXX is the name of the return variable.

XXX E

External Variable

extern type name;

XXX is the name of the external var;

A

XXX

B Software Unit Borderline

A is internal to SWU XXX. B is external.

XXX is the name of the SWU. All SWU in the scope of XXX are in the box.

. ...
..
..
..
..
..
..
.......................................

YYY P

proc Function/Procedure parameters group

proc is the name of the function/procedure. YYY is a parameter.

Groups function/procedure parameters and return value for SWU entry point.

64

A B
Scope relationship

SWU A precedes SWU B in a block.

Captures precedence of SWU within a block.

A B

Data Flow Relationship

Data flows between SWU A and SWU B.

Relationship between a consumer and producer of data.

A B

Bi-Directional Data Flow Relationship

Data flows between SWU A and SWU B and vice-versa.

Bi-Directional relationship between a consumer and producer of data.

A B

Call Relationship

SWU A calls a function or procedure in SWU B.

Relationship between a function/procedure caller and the callee.

A B

Use relationship

SWU B uses declerations or definitions in SWU A.

Relationship between decleration/definition in a SWU and it’s use in another
SWU.

65

Appendix B

�ortid Ver 3.0 Manual Page

66

NAME
ffortid − in dtroff output, find and reverse all text in designated right-to-left fonts and carry out stretching in
Arabic and Farsi text

SYNOPSIS
ffortid [−rfont-position-list] ... [−wpaperwidth] [−afont-position-list] ...

[−s[n|f|l|a]] [file] ...

DESCRIPTION
ffortid ’s job is to take the dtroff(1) output which is formatted strictly left-to-right, to find occurrences of
text in a right-to-left font and to rearrange each line so that the text in each font is written in its proper
direction. ffortid deals exclusively with dtroff output, it does not know and does not need to know anything
about any of dtroff ’s preprocessors. Therefore, the results of using ffortid with any of dtroff ’s preproces-
sors depends only on the dtroff output generated as a result of the input to dtroff from the preprocessors.
Furthermore, the output of ffortid goes on to the same device drivers to which the dtroff output would go;
therefore, ffortid ’s output is in the same form as that of dtroff.

In the command line, the −rfont-position-list argument is used to specify which font positions
are to be considered right-to-left. A font-position-list is a list of font positions separated by white
space, but with no white space at the beginning. ffortid, like ditroff, recognizes up to 256 possible font posi-
tions (0-255). The actual number of available font positions depends only on the typesetting device and its
associated ditroff device driver. The default font direction for all possible font positions is left-to-right.
Once the font direction is set, either by default or with the −rfont-position-list argument, it
remains in effect throughout the entire document. Observe then that ffortid ’s processing is independent of
what glyphs actually get printed for the mounted fonts. It processes the designated fonts as right-to-left
fonts even if, in fact, the alphabet is that of a left-to-right language. In fact, it is possible that the same font
be mounted in two different positions, only one of which is designated as a right-to-left font position. This
is how a single font can be printed left-to-right and right-to-left in the same document.

In addition to the specified font directions, the results of ffortid ’s reformatting also depends on the
document’s current formatting direction, which can be either left-to-right or right-to-left. The default for-
matting direction is left-to-right and can be changed by the user at any point in the document through the
use of the

x X PL

and

x X PR

commands in the dtroff output. These commands set the current formatting direction to left-to-right and
right-to-left, respectively. These commands are either meaningless or erroneous to dtroff device drivers;
therefore they are removed by ffortid as they are obeyed. These commands can be generated by use of

\X’PL’

and

\X’PR’

escapes in the dtroff input. For the convenience of the user, two macros

.PL

and

67

.PR

are defined in the −mX2 and −mXP macro packages, that cause generation of the proper input to ffortid.
They are defined by

..de PL
\\X’PL’
..
.de PR
\\X’PR’
..

If the current formatting direction is left-to-right, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from left to right. In each dtroff output line, any sequence of contiguous right-to-left
font characters is reversed in place.

If the current formatting direction is right-to-left, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from right to left. Each dtroff output line is reversed, including both the left and right
margins. Then, any sequence of contiguous left-to-right font characters is reversed in place.

The −wpaperwidth argument is used to specify the width of the paper, in inches, on which the document
will be printed. As explained later, ffortid uses the specified paper width to determine the width of the right
margin. The default paper width is 8.5 inches and like the font directions, it remains in effect throughout
the entire document.

It is important to note that ffortid uses the specified paper width to determine the margin widths in the refor-
mated output line. For instance, suppose that a document is formatted for printing on paper 8.5 inches wide
with a left margin (page offset) of 1.5 inches and a line length of 6 inches. This results in a right margin of
1 inch. Suppose then that the text specifies a current formatting direction of right-to-left. Then, ffortid ’s
reformatting of the output line results in left and right margins of 1 and 1.5 inches, respectively. This mar-
gin calculation works well for documents formatted entirely in one direction. However, as a document’s
formatting direction changes, the resulting margins widths are exchanged. Thus, .PL’s right and left mar-
gins end up not being the same as .PR’s right and left margins. The user can make ffortid preserve the left
and right margins by specifying, with the −wpaperwidth argument, a paper width other than the actual
paper width. This artificial paper width should be chosen so that both margins will appear to ffortid to be as
wide as the desired left margin. For example, for the document mentioned above, a specified paper width
of 9.0 inches results in reformatted left and right margins of 1.5 inches each. The resulting excess in the
right margin is just white space that effectively falls of the edge of the paper and does not effect the format-
ting of the document.

There is one exception to these simple rotation rules in that ffortid, at present, makes no attempt to reverse
any of dtroff ’s drawing functions, such as those used by pic(1) and ideal(1) (which are also available
directly to the user). It is therefore suggested that these drawing functions, and thus pic and ideal, be used
only when the current formatting direction is left-to-right. Additionally, due to the cleverness of the dtroff
output generated by most substantial eqn(1) equations, it is suggested that eqn’s use also be limited to a
left-to-right formatting direction for all but the simplest forms of equations. These rules do not in any way
restrict the use of right-to-left fonts in the text dealt with by any of the preprocessors, but simply suggest
that these particular preprocessors be used only when the formatting direction is left-to-right.

An additional point to keep in mind when preparing input both for dtroff ’s preprocessors and for dtroff
itself is that ffortid rotates, as a unit, each sequence of characters of the same direction. In order to force
ffortid to rotate parts of a sequence independently, as for a tbl(1) table, one must artificially separate them
with a change to a font of the opposite direction.

The −afont-position-list argument is used to indicate which fonts positions, generally a subset of
those designated as right-to-left, contain fonts for Arabic, Farsi, or related languages. For these fonts, left
and right justification of a line is achieved by stretching instead of inserting extra white space between the

68

words in the line. Stretching is done on a line only if the line contains at least one word in a −a designated
font. If so, stretching is used in place of extra white space insertion for the entire line. There are several
kinds of stretching, and which is in effect for all −a designated fonts is specified with the −s option,
described below. If it is desired not to stretch a particular Arabic, Farsi, or other font, while still stretching
others, then the particular font should not be listed in the −afont-position-list. Words in such
fonts will not be stretched and will be spread with extra white space if the containing line is spread with
extra white space. The −r and the −a specifications are independent. If a font is in the −afont-
position-list but not in the −rfont-position-list, then its text will be stretched but not
reversed. This independence can be used to advantage when it is necessary to designate a particular Arabic,
Farsi, or other font as left-to-right for examples or to get around the above mentioned limitations in the use
of eqn, ideal, pic, or tbl.

The kind of stetching to be done for all fonts designated in the −afont-position-list is indicated
by the −s argument. The choices are:

−sn
Do no stretching at all for all the fonts.

−sf
Stretch the last stretchable word on each line. A stretchable word is a word containing a stretch-
able character (if the font is dynamic) or a stretchable connection to a character (if the font has a
straight base line). Currently only stretchable connections to characters are handled; a future ver-
sion will deal with dynamic fonts. If no stretchable word exists on the line, then spread the words
in the line as does dtroff.

−sl
Stretch the last stretchable word on each line. If the amount of stretch for that word is longer than
a limit equal to the current point size times the length of the base line filler used to achieve the
stretched connection, then stretch the penultimate stretchable word up to that limit, and if neces-
sary, then stretch the stretchable word before that, etc. If no stretchable word exists on the line, or
some extra stretch is left after stretching all stretchable words to the limit, then spread the words in
the line as does dtroff.

−sa
Stretch all stretchable words on each line by the same amount (different amount for each line). If
no stretchable word exists on the line, then spread the words in the line as does dtroff. This is the
default for all −a designated fonts.

FILES
/usr/lib/tmac/tmac.∗ standard macro files
/usr/lib/font/dev∗/∗ device description and font width

tables

SEE ALSO
Cary Buchman, Daniel M. Berry, User’s Manual for Ditroff/Ffortid, An Adaptation of the UNIX Ditroff for
Formatting Bi-Directional Text,
Johny Srouji, Daniel M. Berry, An Adaptation of the UNIX Ditroff for Arabic Formatting
troffort(l), ptrn(l)

69

Appendix C

�ortid Ver 4.0 Manual Page

70

NAME
ffortid − in dtroff output, find and reverse all text in designated right-to-left fonts and carry out stretching in
Arabic, Hebrew, and Persian text

SYNOPSIS
ffortid [−rfont-position-list] [−wpaperwidth] [−afont-position-list] ...

[−s[n|[[l|c|e|b][f|2|m[amount]|a|ad|al]]] [−ms[c|l] ...

DESCRIPTION
ffortid ’s job is to take the dtroff(1) output which is formatted strictly left-to-right, to find occurrences of
text in a right-to-left font and to rearrange each line so that the text in each font is written in its proper
direction. ffortid deals exclusively with dtroff output, it does not know and does not need to know anything
about any of dtroff ’s preprocessors. Therefore, the results of using ffortid with any of dtroff ’s preproces-
sors depends only on the dtroff output generated as a result of the input to dtroff from the preprocessors.
Furthermore, the output of ffortid goes on to the same device drivers to which the dtroff output would go;
therefore, ffortid ’s output is in the same form as that of dtroff. ffortid reads its input from the standard input
and write to the standard output.

In the command line, the −rfont-position-list argument is used to specify which font positions
are to be considered right-to-left. A font-position-list is a list of font positions separated by white
space, but with no white space at the beginning. ffortid, like ditroff, recognizes up to 256 possible font posi-
tions (0-255). The actual number of available font positions depends only on the typesetting device and its
associated dtroff device driver. The default font direction for all possible font positions is left-to-right.
Once the font direction is set, either by default or with the −rfont-position-list argument, it
remains in effect throughout the entire document. Observe then that ffortid ’s processing is independent of
what glyphs actually get printed for the mounted fonts. It processes the designated fonts as right-to-left
fonts even if, in fact, the alphabet is that of a left-to-right language. In fact, it is possible that the same font
be mounted in two different positions, only one of which is designated as a right-to-left font position. This
is how a single font can be printed left-to-right and right-to-left in the same document.

In addition to the specified font directions, the results of ffortid ’s reformatting also depends on the
document’s current formatting direction, which can be either left-to-right or right-to-left. The default for-
matting direction is left-to-right and can be changed by the user at any point in the document through the
use of the

x X PL

and

x X PR

commands in the dtroff output. These commands set the current formatting direction to left-to-right and
right-to-left, respectively. These commands are either meaningless or erroneous to dtroff device drivers;
therefore they are removed by ffortid as they are obeyed. These commands can be generated by use of

\X’PL’

and

\X’PR’

escapes in the dtroff input. For the convenience of the user, two macros

.PL

and

71

.PR

are defined in the −mX2 and −mXP macro packages, that cause generation of the proper input to ffortid.
They are defined by

..de PL
\\X’PL’
..
.de PR
\\X’PR’
..

If the current formatting direction is left-to-right, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from left to right. In each dtroff output line, any sequence of contiguous right-to-left
font characters is reversed in place.

If the current formatting direction is right-to-left, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from right to left. Each dtroff output line is reversed, including both the left and right
margins. Then, any sequence of contiguous left-to-right font characters is reversed in place.

The −wpaperwidth argument is used to specify the width of the paper, in inches, on which the document
will be printed. As explained later, ffortid uses the specified paper width to determine the width of the right
margin. The default paper width is 8.5 inches and like the font directions, it remains in effect throughout
the entire document.

It is important to note that ffortid uses the specified paper width to determine the margin widths in the refor-
mated output line. For instance, suppose that a document is formatted for printing on paper 8.5 inches wide
with a left margin (page offset) of 1.5 inches and a line length of 6 inches. This results in a right margin of
1 inch. Suppose then that the text specifies a current formatting direction of right-to-left. Then, ffortid ’s
reformatting of the output line results in left and right margins of 1 and 1.5 inches, respectively. This mar-
gin calculation works well for documents formatted entirely in one direction. However, as a document’s
formatting direction changes, the resulting margins widths are exchanged. Thus, .PL’s right and left mar-
gins end up not being the same as .PR’s right and left margins. The user can make ffortid preserve the left
and right margins by specifying, with the −wpaperwidth argument, a paper width other than the actual
paper width. This artificial paper width should be chosen so that both margins will appear to ffortid to be as
wide as the desired left margin. For example, for the document mentioned above, a specified paper width
of 9.0 inches results in reformatted left and right margins of 1.5 inches each. The resulting excess in the
right margin is just white space that effectively falls of the edge of the paper and does not effect the format-
ting of the document.

There is one exception to these simple rotation rules in that ffortid, at present, makes no attempt to reverse
any of dtroff ’s drawing functions, such as those used by pic(1) and ideal(1) (which are also available
directly to the user). It is therefore suggested that these drawing functions, and thus pic and ideal, be used
only when the current formatting direction is left-to-right. Additionally, due to the cleverness of the dtroff
output generated by most substantial eqn(1) equations, it is suggested that eqn’s use also be limited to a
left-to-right formatting direction for all but the simplest forms of equations. These rules do not in any way
restrict the use of right-to-left fonts in the text dealt with by any of the preprocessors, but simply suggest
that these particular preprocessors be used only when the formatting direction is left-to-right.

An additional point to keep in mind when preparing input both for dtroff ’s preprocessors and for dtroff
itself is that ffortid rotates, as a unit, each sequence of characters of the same direction. In order to force
ffortid to rotate parts of a sequence independently, as for a tbl(1) table, one must artificially separate them
with a change to a font of the opposite direction.

The −afont-position-list argument is used to indicate which fonts positions, generally a subset of
those designated as right-to-left, contain fonts for Arabic, Hebrew, Persian, or related languages, whose
fonts support stretching of letters and/or connections. For these fonts, left and right justification of a line

72

can be achieved by stretching instead of inserting extra white space between the words in the line. If
requested by use of the −s argument described below, stretching is done on a line only if the line contains
at least one word in a −a designated font. If so, stretching is used in place of the normal distributed extra
white space insertion for the entire line. The intention is that stretching soak up all the excess white space
inserted by dtroff to adjust the line. If there are no opportunities for stretching or there are too few to soak
up all the excess white space, what is not soaked up is distributed in between the words according to
dtroff’s algorithm. There are several kinds of stretching, and which is in effect for all −a designated fonts
is specified with the −s argument, described below. If it is desired not to stretch a particular Arabic,
Hebrew, Persian, or other font, while still stretching others, then the particular font should not be listed in
the −afont-position-list. Words in such fonts will not be stretched and will be spread with extra
white space if the containing line is spread with extra white space. The −r and the −a specifications are
independent. If a font is in the −afont-position-list but not in the −rfont-position-list,
then its text will be stretched but not reversed. This independence can be used to advantage when it is
necessary to designate a particular Arabic, Hebrew, Persian, or other font as left-to-right for examples or to
get around the above mentioned limitations in the use of eqn, ideal, pic, or tbl.

The kind of stetching to be done for all fonts designated in the −afont-position-list is indicated
by the −s argument. There are two relatively independent dimensions that must be set to describe the
stretching, what is stretched and the places that are stretched. A stretch argument is of the form

−smp
or
−sn

where m specifies the stretching mode, i.e, what is stretched, and p specifies the places that are stretched.
The m and p must be given in that order and with no intervening spaces. The −sn means that there is no
stretching and normal spreading of words is used even in −a designated fonts. The choices for the mode m
are:

l (letter ell)
In the words designated by the p, stretch the last stretchable letter.

c
In the words designated by the p, stretch the last connection to a letter.

e
In the words designated by the p, stretch either the last stretchable letter or the last connection to a
letter, whichever comes later.

b
In the words designated by the p, stretch either the last stretchable letter or the last connection to a
letter, whichever comes later, and if it is a letter that is stretched and it is a connect-previous letter
then also stretch the connection to the letter.

To our knowledge, all Arabic and Persian fonts, have a baseline filler that can be used to achieve the
stretching of connections. It is fairly easy for such a filler to be added to any font definition that does not
have it, and moreover to make it the character that is addressed by \(hy, which is normally the code for
the hyphen character. (Therefore no account is taken of the possibility that stretching connections is not
possible.) Since Arabic and Persian do not have a hyphen and hyphenation is turned off when in an Arabic
or Persian font, it is safe to use \(hy to name the filler. Of course, this requires that the width table for
Arabic and Persian fonts have an entry for hy designating the filler character in the font, for example:

hy 15 0 0267 filler

Giving the filler character an explicit dtroff two-character name allows dtroff to deal with it uniformly
despite that it might be in a different position in each font.

73

On the other hand, stretching of letters requires a dynamic font which, by its very nature of not having a
constant bitmap for a given font name, point size, and character name, cannot be type 1 (in PostScript ter-
minology) and cannot be a bitmapped font. Therefore, not all Arabic, Hebrew, and Persian fonts support
stretching of letters. Moreover, within a dynamic font, not all characters are stretchable. Historically, only
characters with strong horizontal components are stretchable, such as those in the stand-alone and
connect-previous forms of the baa family. Obviously, one cannot stretch totally vertical characters such as
alif. Therefore, it is necessary to specify by additional information in the ditroff width table for a font
which characters are stretchable. In the width table for an Arabic, Hebrew, or Persian font, for each char-
acter that is not also an ASCII character, i.e., not also a digit or punctuation, and thus is neither connected
or stretchable, one specifies after the name, width, ascender-descender information, and code, two addi-
tional fields, the connectivity and the stretchability of the character, in that order. The connectivity is either

N for stand-alone,
A for connect-after,
P for connect-previous,
B for connect-both, or
U for unconnected (because it is punctuation or a diacritical, etc.),

and the stretchability is either

N for not stretchable,
S for stretchable,

Some examples of width table lines are:

% 125 2 045 percent

--- 55 0 0101 U N comma
--- 70 0 0105 U N hamza

--- 129 0 0106 N S baa_SA
--- 36 2 0102 N N alef_SA

--- 113 0 0177 A N sad_CA
--- 66 2 0215 A S caf_CA

--- 43 2 0225 P N alef_CP
--- 120 0 0274 P S baa_CP

--- 53 0 0230 B N baa_CB
--- 73 2 0261 B S caf_CB

Recall that --- in the name field of a character means that it can be addressed only by \N’n’, where n is
the decimal equivalent of the character’s code. Only such lines will have the connectivity and stretchability
fields.

For a Hebrew font, for which there is no notion of connectivity of letters, and therefore, the position of the
letters is irrelevant for deciding stretching, there is only the possibility of stretching letters. Some examples
of width table lines for such fonts are:

% 132 3 045 percent

--- 95 3 0140 U N quoteleft=alef
--- 92 3 0141 U S a=bet

74

Below, “stretchable unit” refers to what is a candidate for stretching according to the mode. The choices
for p, which specifies places of stretching, are:

f
In any line, stretch the last stretchable unit.

2
Assuming that the mode is b (both), in any line, stretch the last two stretchable units, if they are
the connection leading to a stretchable connect-previous letter and that letter, and stretch only the
last stretchable unit otherwise. If the mode is not b, then this choice of places is illegal.

mn or m
In any line, stretch the last stretchable unit by an amount not exceeding n emms. If that does not
exhaust the available white space, then stretch the next last stretchable unit by an amount not
exceeding n emms, and so on until all the available white space is exhausted. If n is not given, it is
assumed to be 2.0. In general n can be any number in floating point format.

a, ad, or al
In any line, stretch all stretchable units. In this case, the total amount available for stretching is
divided evenly over all stretchable units on the line identified according to the mode. Since the
units of stretching are the units of device resolution, the amount available might not divide evenly
over the number of places. Therefore, it is useful to be able to specify what to do with the
remainder of this division. This specification is given as an extension of the stretching argument.
The choices are d or l, with the former indicating that the excess be distributed as evenly as pos-
sible to the spaces between words and the latter indicating that the excess be distributed as evenly
as possible in stretchable letters that were stretchable units according to the current mode and
place. The latter is the default if no choice is specified. The stretched item for the l choice must
be a letter rather than a connection because only a stretchable letter is stretchable to any small
amount that will be the remainder.

In general, the stretch is divided as evenly as possible between all stretchable units in a line. Specificly, in
stretch mode b, if we have a connection leading to a stretchable connect-previous letter and that letter,
then any stretch remainder we have from stretching the connection will be added to the stretch of the letter.

Sometimes, it is desirable to be able to manually stretch connections or letters to achieve special effects,
e.g., more balanced stretching or stretching in lines that are not otherwise adjusted, e.g., centered lines.
Stretching a connection can be achieved by using the baseline filler character explicitly as many times as
necessary to achieve the desired length. Note that the troff line drawing function can be used to get a series
of adjacent fillers to any desired length, e.g.,

\l’2m\(hy’

will draw a string of adjacent base-line fillers of length 2 emms.

To achieve stretching of letters, one should immediately preceed, with no intervening white space, the
letter to be stretched by

\X’stretch’\h’n’

where n is a valid length expression in troff’s input language. ffortid is prepared to deal with the output
from dtroff generated by this input to generate output that will cause the letter immediately following it to
be stretched by the length specified in n. For example,

\X’stretch’\h’1m’\N’70’

will cause the character whose decimal code is 70 to be stretched by 1 emm. The output will fail to have
the desired effect if the letter following is not a stretchable letter.

75

For finer control over stretching, it may be desirable to inhibit automatic stretching on manually stretched
connections and letters. In particular, when manual stretching is done on a letter or its connection for
balancing purposes, one does not want additional automatic stretching to be done on the same to mess up
the balance. Accordingly, two command line flags are provided for this purpose:

−msc
Do not automatically stretch manually stretched connections.

−msl
Do not automatically stretch manually stretched letters.

These flags are understood as eliminating potential stretching places, letters or connections, that were
identified on the basis of the stretch mode, l, c, e, or b. (In the following description, parenthesized text is
a comment stating what is true at this point and not what needs to be done.)

For any letter l that is a candidate for stretching by the mode,

if both the letter itself and its connection to the previous letter are candidates then

if either kind of manual stretch is in the letter and that kind of manual stretch cannot be
stretched additionally, then neither part of l is any longer a candidate;

otherwise (only the letter itself is a candidate OR only its connection to the previous letter is a
candidate)

if the letter itself is a candidate for stretching by the mode,

if there is manual stretching in the letter and manually stretched letters cannot be
stretched more, then l is no longer a candidate;

otherwise (the connection of l is a candidate for stretching by the mode),

if there is manual stretching in the connection of l to the previous letter and manually
stretched connections cannot be stretched more, then l is no longer a candidate.

FILES
/usr/lib/tmac/tmac.∗ standard macro files
/usr/lib/font/dev∗/∗ device description and font width

tables

SEE ALSO
Cary Buchman, Daniel M. Berry, User’s Manual for Ditroff/Ffortid, An Adaptation of the UNIX Ditroff for
Formatting Bi-Directional Text,
Johny Srouji, Daniel M. Berry, An Adaptation of the UNIX Ditroff for Arabic Formatting
troffort(l), ptrn(l)

76

Appendix D

�ortid Ver 5.0 Manual Page

77

NAME
ffortid − in dtroff output, find and reverse all text in designated right-to-left fonts, carry out stretching in
Arabic, Hebrew, and Persian text, and arrange that words in slantable fonts are printed on a slanted base
line.

SYNOPSIS
ffortid [−rfont-position-list] [−wpaperwidth] [−-font-position-list] ...

[−s[n|[[l|c|e|b][f|2|m[amount]|a|ad|al]]] [−ms[c|l|w] ...

DESCRIPTION
ffortid ’s job is to take the dtroff(1) output which is formatted strictly left-to-right, to find occurrences of
text in a right-to-left font and to rearrange each line so that the text in each font is written in its proper
direction. ffortid deals exclusively with dtroff output, it does not know and does not need to know anything
about any of dtroff ’s preprocessors. Therefore, the results of using ffortid with any of dtroff ’s preproces-
sors depends only on the dtroff output generated as a result of the input to dtroff from the preprocessors.
Furthermore, the output of ffortid goes on to the same device drivers to which the dtroff output would go;
therefore, ffortid ’s output is in the same form as that of dtroff. ffortid reads its input from the standard input
and write to the standard output.

In the command line, the −rfont-position-list argument is used to specify which font positions
are to be considered right-to-left. A font-position-list is a list of font positions separated by white
space, but with no white space at the beginning. ffortid, like dtroff, recognizes up to 256 possible font posi-
tions (0-255). The actual number of available font positions depends only on the typesetting device and its
associated dtroff device driver. The default font direction for all possible font positions is left-to-right.
Once the font direction is set, either by default or with the −rfont-position-list argument, it
remains in effect throughout the entire document. Observe then that ffortid ’s processing is independent of
what glyphs actually get printed for the mounted fonts. It processes the designated fonts as right-to-left
fonts even if, in fact, the alphabet is that of a left-to-right language. In fact, it is possible that the same font
be mounted in two different positions, only one of which is designated as a right-to-left font position. This
is how a single font can be printed left-to-right and right-to-left in the same document.

In addition to the specified font directions, the results of ffortid ’s reformatting also depends on the
document’s current formatting direction, which can be either left-to-right or right-to-left. The default for-
matting direction is left-to-right and can be changed by the user at any point in the document through the
use of the

x X PL

and

x X PR

commands in the dtroff output. These commands set the current formatting direction to left-to-right and
right-to-left, respectively. These commands are either meaningless or erroneous to dtroff device drivers;
therefore they are removed by ffortid as they are obeyed. These commands can be generated by use of

\X’PL’

and

\X’PR’

escapes in the dtroff input. For the convenience of the user, two macros

.PL

78

and

.PR

are defined in the −mX2 and −mXP macro packages, that cause generation of the proper input to ffortid.
They are defined by

..de PL
\\X’PL’
..
.de PR
\\X’PR’
..

If the current formatting direction is left-to-right, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from left to right. In each dtroff output line, any sequence of contiguous right-to-left
font characters is reversed in place.

If the current formatting direction is right-to-left, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from right to left. Each dtroff output line is reversed, including both the left and right
margins. Then, any sequence of contiguous left-to-right font characters is reversed in place.

The −wpaperwidth argument is used to specify the width of the paper, in inches, on which the document
will be printed. As explained later, ffortid uses the specified paper width to determine the width of the right
margin. The default paper width is 8.5 inches and like the font directions, it remains in effect throughout
the entire document.

It is important to note that ffortid uses the specified paper width to determine the margin widths in the refor-
mated output line. For instance, suppose that a document is formatted for printing on paper 8.5 inches wide
with a left margin (page offset) of 1.5 inches and a line length of 6 inches. This results in a right margin of
1 inch. Suppose then that the text specifies a current formatting direction of right-to-left. Then, ffortid ’s
reformatting of the output line results in left and right margins of 1 and 1.5 inches, respectively. This mar-
gin calculation works well for documents formatted entirely in one direction. However, as a document’s
formatting direction changes, the resulting margins widths are exchanged. Thus, .PL’s right and left mar-
gins end up not being the same as .PR’s right and left margins. The user can make ffortid preserve the left
and right margins by specifying, with the −wpaperwidth argument, a paper width other than the actual
paper width. This artificial paper width should be chosen so that both margins will appear to ffortid to be as
wide as the desired left margin. For example, for the document mentioned above, a specified paper width
of 9.0 inches results in reformatted left and right margins of 1.5 inches each. The resulting excess in the
right margin is just white space that effectively falls of the edge of the paper and does not effect the format-
ting of the document.

There is one exception to these simple rotation rules in that ffortid, at present, makes no attempt to reverse
any of dtroff ’s drawing functions, such as those used by pic(1) and ideal(1) (which are also available
directly to the user). It is therefore suggested that these drawing functions, and thus pic and ideal, be used
only when the current formatting direction is left-to-right. Additionally, due to the cleverness of the dtroff
output generated by most substantial eqn(1) equations, it is suggested that eqn’s use also be limited to a
left-to-right formatting direction for all but the simplest forms of equations. These rules do not in any way
restrict the use of right-to-left fonts in the text dealt with by any of the preprocessors, but simply suggest
that these particular preprocessors be used only when the formatting direction is left-to-right.

An additional point to keep in mind when preparing input both for dtroff ’s preprocessors and for dtroff
itself is that ffortid rotates, as a unit, each sequence of characters of the same direction. In order to force
ffortid to rotate parts of a sequence independently, as for a tbl(1) table, one must artificially separate them
with a change to a font of the opposite direction.

79

The −-font-position-list argument is used to indicate which fonts positions, generally a subset of
those designated as right-to-left, contain fonts for Arabic, Hebrew, Persian, or related languages, whose
fonts support stretching of letters and/or connections. For these fonts, left and right justification of a line
can be achieved by stretching instead of inserting extra white space between the words in the line. If
requested by use of the −s argument described below, stretching is done on a line only if the line contains
at least one word in a −- designated font. If so, stretching is used in place of the normal distributed extra
white space insertion for the entire line. The intention is that stretching soak up all the excess white space
inserted by dtroff to adjust the line. If there are no opportunities for stretching or there are too few to soak
up all the excess white space, what is not soaked up is distributed in between the words according to
dtroff’s algorithm. There are several kinds of stretching, and which is in effect for all −- designated fonts
is specified with the −s argument, described below. If it is desired not to stretch a particular Arabic,
Hebrew, Persian, or other font, while still stretching others, then the particular font should not be listed in
the −-font-position-list. Words in such fonts will not be stretched and will be spread with extra
white space if the containing line is spread with extra white space.

The −r and the −- specifications are independent. If a font is in the −-font-position-list but not
in the −rfont-position-list, then its text will be stretched but not reversed. This independence can
be used to advantage when it is necessary to designate a particular Arabic, Hebrew, Persian, or other font
as left-to-right for examples or to get around the above mentioned limitations in the use of eqn, ideal, pic,
or tbl.

The kind of stetching to be done for all fonts designated in the −-font-position-list is indicated
by the −s argument. There are two relatively independent dimensions that must be set to describe the
stretching, what is stretched and the places that are stretched. A stretch argument is of the form

−smp
or
−sn

where m specifies the stretching mode, i.e, what is stretched, and p specifies the places that are stretched.
The m and p must be given in that order and with no intervening spaces. The −sn means that there is no
stretching and normal spreading of words is used even in −- designated fonts. The choices for the mode m
are:

l (letter ell)
In the words designated by the p, stretch the last stretchable letter.

c
In the words designated by the p, stretch the last connection to a letter.

e
In the words designated by the p, stretch either the last stretchable letter or the last connection to a
letter, whichever comes later.

b
In the words designated by the p, stretch either the last stretchable letter or the last connection to a
letter, whichever comes later, and if it is a letter that is stretched and it is a connect-previous letter
then also stretch the connection to the letter.

Not all modes are available for all fonts. For example, fonts for Hebrew, whose letters are not connected do
not support connection stretching. While Arabic, Hebrew, and Persian traditionally do have letter stretch-
ing, not all fonts for them support letter stretching. ffortid attempts to stretch all −- designated fonts in the
specified modes, but in any text, ends up doing only those stretches that are possible given in the text’s
current font. To allow ffortid to know what stretches are possible, the width tables for stretchable fonts
have some additional lines that must come somewhere after the name line and before the charset line.

stretchable: letters connections
stretchable: connections letters

80

stretchable: connections
stretchable: letters

Each such stretchable font must have one of the first four lines. We now discuss the various ways that
different kinds of stretch are achieved in the available fonts and how ffortid deals with each.

To our knowledge, all Arabic and Persian fonts, have a baseline filler that can be used to achieve the
stretching of connections. It is fairly easy for such a filler to be added to any font definition that does not
have it, and moreover to make it the character that is addressed by \(hy, which is normally the code for
the hyphen character. Since Arabic and Persian do not have a hyphen and hyphenation is turned off when
in an Arabic or Persian font, it is safe to use \(hy to name the filler. Of course, this requires that the width
table for Arabic and Persian fonts have an entry for hy designating the filler character in the font, for
example:

hy 15 0 0267 filler

Giving the filler character an explicit dtroff two-character name allows dtroff to deal with it uniformly
despite that it might be in a different position in each font.

On the other hand, stretching of letters requires a dynamic font which, by its very nature of not having a
constant bitmap for a given font name, point size, and character name, cannot be type 1 (in PostScript ter-
minology) and cannot be a bitmapped font. Therefore, as mentioned, not all Arabic, Hebrew, and Persian
fonts support stretching of letters. Moreover, within a dynamic font, not all characters are stretchable. His-
torically, only characters with strong horizontal components are stretchable, such as those in the stand-
alone and connect-previous forms of the baa family. Obviously, one cannot stretch totally vertical charac-
ters such as alif. Therefore, it is necessary to specify by additional information in the dtroff width table for
a font which characters are stretchable. In the width table for an Arabic, Hebrew, or Persian font, for each
character, one specifies after the name, width, ascender-descender information, and code, two additional
fields, the connectivity and the stretchability of the character, in that order. The connectivity is either

N for stand-alone,
A for connect-after,
P for connect-previous,
B for connect-both, or
U for unconnected (because it is punctuation or a diacritical, etc.),

and the stretchability is either

N for not stretchable,
S for stretchable,

Some examples of width table lines are:

% 125 2 045 percent

--- 55 0 0101 U N comma
--- 70 0 0105 U N hamza

--- 129 0 0106 N S baa_SA
--- 36 2 0102 N N alef_SA

--- 113 0 0177 A N sad_CA
--- 66 2 0215 A S caf_CA

--- 43 2 0225 P N alef_CP

81

--- 120 0 0274 P S baa_CP

--- 53 0 0230 B N baa_CB
--- 73 2 0261 B S caf_CB

Recall that --- in the name field of a character means that it can be addressed only by \N’n’, where n is
the decimal equivalent of the character’s code.

For a Hebrew font, for which there is no notion of connectivity of letters, and therefore, the position of the
letters is irrelevant for deciding stretching, there is only the possibility of stretching letters. Some examples
of width table lines for such fonts are:

% 132 3 045 percent

--- 95 3 0140 U N quoteleft=alef
--- 92 3 0141 U S a=bet

In a dynamic font, there are two additional, alternative ways that stretching of connections can be achieved.

g
The filler is a stretchable letter, normally of width zero, to which the total width of the filler is
passed as the stretch amount.

g
The connecting portions of all connecting letters are themselves stretchable in the same way as the
stretchable letters are. In this situation to achieve a total connection stretch of x, one would pass
x/2 to each of the connecting-after portion of the before letter and the connecting-before portion
of the after letter.

The use of the first of these solves the problems caused by the fact that amount of a given connection
stretch may not be integrally divisible by the width of the filler. A stretchable filler can be stretched to any
amount. The use of the second improves the appearance of the connection stretch. While letter stretching is
done with nice, smooth curves, connection stretching using the very straight filler is noticeably flatter and
there are observable corners where the filler meets the generally curved connecting parts of its adjacent
letters. While the fixed-size filler seems to be available on all Arabic and Persian fonts, stretchable fillers
and stretchable connecting parts are available only with type 3 PostScript fonts, although it would be possi-
ble to provide a stretchable filler as the only locally defined character in a type 3 font that falls to another
type 1 font for all the other characters, which are only virtual in the type 3 font.

The dtroff width table for any font providing a stretchable filler or stretchable connecting parts must have
an additional line to specify the nature of the connection stretch in the font, which must be one of the fol-
lowing.

connection stretch: fixed filler
connection stretch: stretchable filler
connection stretch: stretchable connections

This line must come somewhere after the name line and before the charset line. If none is specified, it
is assumed to be the first. Therefore, it is not necessary to say anything new for the typical type 1 or bit-
mapped font with a fixed-sized filler. Note that if a font allows different kinds of connection stretching,
only one can be specified per mounting of the font specified in a single width table. If one wants to use the
same font with different ways of stretching connections, one must mount the same font under different
names in different width tables, each specifying a different kind of connection strecthing.

ffortid implements the connection stretching that is requested by the −s command-line arguement as well
as it can using the kind of connection stretching available for the font being used. Thus, if one is not using
fixed-sized fillers, ffortid ignores the various options put in to deal with the fact that an integral number of

82

fillers may not fulfill the needed stretch.

Below, “stretchable unit” refers to that which is a candidate for stretching according to the mode. The
choices for p, which specifies places of stretching, are:

f
In any line, stretch the last stretchable unit.

2
Assuming that the mode is b (both), in any line, stretch the last two stretchable units, if they are
the connection leading to a stretchable connect-previous letter and that letter, and stretch only the
last stretchable unit otherwise. If the mode is not b, then this choice of places is illegal.

mn or m
In any line, stretch the last stretchable unit by an amount not exceeding n emms. If that does not
exhaust the available white space, then stretch the next last stretchable unit by an amount not
exceeding n emms, and so on until all the available white space is exhausted. If n is not given, it is
assumed to be 2.0. In general n can be any number in floating point format.

a, ad, or al
In any line, stretch all stretchable units. In this case, the total amount available for stretching is
divided evenly over all stretchable units on the line identified according to the mode. Since the
units of stretching are the units of device resolution, the amount available might not divide evenly
over the number of places. Therefore, it is useful to be able to specify what to do with the
remainder of this division. This specification is given as an extension of the stretching argument.
The choices are d or l, with the former indicating that the excess be distributed as evenly as pos-
sible to the spaces between words and the latter indicating that the excess be distributed as evenly
as possible in stretchable letters that were stretchable units according to the current mode and
place. The latter is the default if no choice is specified. The stretched item for the l choice must
be a letter rather than a connection because only a stretchable letter is stretchable to any small
amount that will be the remainder. Of course, if the method of stretching a connection is dynamic,
then a connection could be stretched to any amount, but then there would not be a remainder in
the first place.

In general, the stretch is divided as evenly as possible between all stretchable units in a line. Specificly, in
stretch mode b, if we have a connection leading to a stretchable connect-previous letter and that letter,
then any stretch remainder we have from stretching the connection will be added to the stretch of the letter.

Sometimes, it is desirable to be able to manually stretch connections or letters to achieve special effects,
e.g., more balanced stretching or stretching in lines that are not otherwise adjusted, e.g., centered lines.

If fixed-sized fillers are used to achieve connection stretching, then one can use the filler character expli-
citly as many times as necessary to achieve the desired length. Note that the troff line drawing function can
be used to get a series of adjacent fillers to any desired length, e.g.,

\l’2m\(hy’

will draw a string of adjacent baseline fillers of length 2 emms.

How to manually stretch connections that are done by a stretchable filler or by stretchable connection parts
is described after describing how to manually stretch letters themselves.

To achieve stretching of letters, one should immediately preceed, with no intervening printable text, the
letter to be stretched by the escape sequence

\X’stretch’\h’n’

where n is a valid length expression in troff’s input language. ffortid is prepared to deal with the output
from dtroff generated by this input to generate output that will cause the letter immediately following it to
be stretched by the length specified in n. For example,

83

\X’stretch’\h’1m’\N’70’

will cause the character whose decimal code is 70 to be stretched by 1 mm. The output will fail to have the
desired effect if the letter following is not a stretchable letter.

If connection stretching is achieved by having a stretching filler, then one manually stretches the filler char-
acter by the desired amount as if it were a letter.

\X’stretch’\h’n’\(hy

Here, though the stretch parameter n is the total length of the filler, as the filler is of length zero if it is not
stretched.

To stretch the connecting parts of letters, two additional escape sequences are provided that may be placed
before, with no intervening printable text, the letter to which they apply,

\X’BCstretch’\h’nb’ \X’ACstretch’\h’na’

where nb and na are valid length expressions in troff’s input language. These specify the amounts of stretch
in the before and after connecting parts of the immediately following letter. The order in which the
\X’stretch’\h’n’, \X’BCstretch’\h’nb’, and \X’ACstretch’\h’na’ for a letter appear
is irrelevant, but in between them and after the last of them, there is no printable text, including white space
(including new lines), and the letter to which they apply immediately follows the last. Suppose that two
consecutive, in logical order, letters have decimal codes 70 and 80. Suppose also that 70 connects after to
the connecting before 80. Suppose finally that this connection from 70 to 80 is to be stretched by 1 emm
and the letter 80 is to be stretched by 2 emms. Then the input would look as follows:

\X’ACstretch’\h’.5m’\N’70’\X’BCstretch’\h’.5m’\X’stretch’\h’2m’\N’80’

Note that the connection stretch of 1 emm was split into two stretches of .5 emm for each of the connecting
after and the connecting before parts.

For finer control over stretching, it may be desirable to inhibit automatic stretching on manually stretched
connections and letters. In particular, when manual stretching is done on a letter or its connection for
balancing purposes, one does not want additional automatic stretching to be done on the same to mess up
the balance. Accordingly, three command line flags are provided for this purpose:

−msc
Do not automatically stretch manually stretched connections.

−msl
Do not automatically stretch manually stretched letters.

−msw
Do not automatically stretch any word containing any manual stretching.

These flags are understood as eliminating potential stretching places, letters or connections, that were
identified on the basis of the stretch mode, l, c, e, or b. (In the following description, parenthesized text is
a comment stating what is true at this point and not what needs to be done.)

For any letter l that is a candidate for stretching by the mode,

if l is in a word containing a manually stretched letter or connection and −msw is set, then l is no
longer a candidate

otherwise

if both the letter itself and its connection to the previous letter are candidates then

84

if either kind of manual stretch is in the letter and that kind of manual stretch cannot be
stretched additionally, then neither part of l is any longer a candidate;

otherwise (only the letter itself is a candidate OR only its connection to the previous letter is a
candidate)

if the letter itself is a candidate for stretching by the mode,

if there is manual stretching in the letter and manually stretched letters cannot be
stretched more, then l is no longer a candidate;

otherwise (the connection of l is a candidate for stretching by the mode),

if there is manual stretching in the connection of l to the previous letter and manually
stretched connections cannot be stretched more, then l is no longer a candidate.

ffortid is able to arrange that text in slantable fonts is printed with each word in a line of text in a slanted
baseline that crosses the baseline of the line at the center of the word. The figure below shows each words
baseline as a solid arrow and the line’s baseline as a dotted arrow.

figure baselines.ps
Observe that in this style of printing the beginning of a non-first word is directly over the end of its previ-
ous word. Moreover, within a word there will generally be stretching to allow this property to hold; that is,
if there were no stretching to achieve left justification, it might be necessary to have a horizontal gap
between two consecutive words.

For ffortid to implement this slanted-baseline printing for a font, it is necessary that some non-standard
information be supplied in the dtroff width table for the font. First, there is a line that specifies the slant in
degrees.

slant 22.0

The argument can be a floating point number. This line must come somewhere after the name line and
before the charset line. The argument should be the slant in degrees and should match the slant implied
by the first two values in the FontMatrix of the font. Specifically the ratio of the second to the first
should be the tangent of the slant. ffortid uses this slant value to know by how much to displace the begin-
ning of a word vertically so that as it flows downward in the right-to-left direction, the center of the word
crosses the line’s baseline.

In addition, in order that there appear to be no horizontal white space between words, the spacewidth of
the font must be set to one.

spacewidth 1

Actually, the spacewidth should be zero, but dtroff refuses to set the it to zero, setting it to an emm width if
you tell it zero. To the human eye, at the typical resolutions specified in the DESC files, in the mid hun-
dreds, a spacewidth of one is close enough.

A few suggestions to the user are in order. While dtroff supports font changes in the middle of words,
ffortid does not support and reports as an error font changes that change the slant in the middle of words,
either to another nozero slant or to no slant at all. Besides it being a pain to implement, it is not clear what
the behavior should be in such a situation. Recall also that there is typically no horizontal separation
between slanted words; all the separation comes from the end of one word being separated vertically from
the beginning of the next. If words are too short, there may not be enough vertical clearance between con-
secutive words. To insure adequate vertical clearance, it may be necessary to combine several words into
what dtroff and ffortid consider one word. For this purpose, each such slantable font should have a special

85

character called \(ps (for “permanent space”, whose width is set to what would normally be the spa-
cewidth and which can be used as an unpaddable blank between two words that are to be treated as a sin-
gle, unbreakable word by dtroff and ffortid.

ps 72 0 040 permanent space

Note that the normal dtroff unpaddable space, “\ ”, cannot be used, because its width is defined to be that
of the regular space, i.e., the spacewidth, and would end up being one in this case. If one wants the
guaranteed white space, but wants to allow a word break, one can make the \(ps the last character or the
first character in a regular, white-space-delimited word.

FILES
/usr/lib/tmac/tmac.∗ standard macro files
/usr/lib/font/dev∗/∗ device description and font width

tables

SEE ALSO
Cary Buchman, Daniel M. Berry, User’s Manual for Ditroff/Ffortid, An Adaptation of the UNIX Ditroff for
Formatting Bi-Directional Text,
Johny Srouji, Daniel M. Berry, An Adaptation of the UNIX Ditroff for Arabic Formatting
troffort(l), ptrn(l)

86

Bibliography

[1] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design
recovery: A taxonomy. IEEE Software, 7(1):13{17, January 1990.

[2] ANSI/IEEE. IEEE standard glossary of software engineering terminology.
IEEE, 1983. ANSI/IEEE standard 729.

[3] Roger S. Pressman. Software Engineering: A Practitioner's Approach.
McGraw-Hill, 3rd edition, 1992.

[4] Barry W. Boehm. A spiral model of software development and enhancement.
Computer, 21(5):61{72, May 1988.

[5] Judith D. Ahrens, Noah S. Prywes, and Evan Lock. Software process reengi-
neering: Toward a new generation of case technology. Journal of Systems and
Software, 30(1 and 2):71{84, July{Aug 1995.

[6] Software Productivity Consortium. Reuse-driven software process guidebook.
Technical Report SPC-92019-CMC, Version 02.00.03, Software Productivity
Consortium, Herndon, Virginia, 1993.

[7] Software Productivity Consortium. Software reuse: The competitive edge.
Technical Report SPC-91047-N, Software Productivity Consortium, Herndon,
Virginia, 1991.

[8] Judith D. Ahrens and Noah Prywes. Reengineering the software life cycle
and enabling technology. Technical report, Computer Command and Control
Company, July 20 1994.

[9] CSTB Report. Scaling up: A research agenda for software engineering. Com-
munications of the ACM, 33(3):281{293, March 1990.

[10] Alfonso Fuggeta. A classi�cation of case technology. Computer, 26(12):25{38,
December 1993.

[11] Judith D. Ahrens and Noah S. Prywes. Transition to a legacy and reuse-based
software life cycle. Computer, 28(10):27{36, October 1995.

[12] Rebecca Joos. Software reuse at motorola. IEEE Software, 11(5):42{47,
September 1994.

[13] Wayne C. Lim. E�ects of reuse on quality, productivity, and economics. IEEE
Software, 11(5):23{30, September 1994.

[14] Barbara Kitchenham, Lesley Pickard, and Shari Lawrence P
eeger. Case stud-
ies for method and tool evaluation. IEEE Software, 12(4):52{62, July 1995.

87

[15] H. Sackman,W.J. Erickson, and E.E. Grant. Exploratory experimental studies
comparing online and o�ine programming performance. Communications of
the ACM, 11(1):3{11, January 1968.

[16] Cary Buchman and Daniel M. Berry. User's Manual for ditro�/�ortid, An
adaption of the UNIX Ditro� for formatting bi-directional text. Berry Com-
puter Scientists, Los Angeles, CA, 1987.

[17] J. Srouji and D. M. Berry. Arabic formatting with ditro�/�ortid. Electronic
Publishing, 5(4):163{208, December 1992.

[18] B. W. Kernighan. A typesetter-independant TROFF. Computing Science 97,
Bell Laboratories, Murray Hill, NJ, March 1982.

[19] J. F. Ossana. NROFF/TROFF user's manual. Technical report, Bell Labora-
tories, Murray Hill, NJ, October 11 1976.

[20] G.A. Miller. The magical number seven, plus or minus two: Some limits on
our capacity for processing information. The Psychological Review, 63:81{97,
March 1956.

[21] B.W. Kernighan. Pic | a graphics language for typesetting, revised user
manual. Computing Science 116, Bell Laboratories, Murray Hill, NJ, December
1984.

[22] Harry I. Hornreich. �ortid version 3.0 decomposition manual. Available from
ftp://csgo.cs.technion.ac.il/pub/misc/dberry/hornreich.work, April 1996. In
Adobe Acrobat pdf format.

[23] D.M. Berry. The importance of ignorance in requirements engineering. Journal
of Systems and Software, 28(2):179{184, February 1995.

88

����� �� ���� ������ ���� ����

�������� ���

����� �� ���� ������ ���� ����

����� �� �����

������ ������ ���� ����� ������� �� ���� ����� ���
����� �����

�������� ���

������ �������� ���� - ������� ���� ����
1998 ������ ���� �''���� ���

����� ������� ��� .� ����� .���� ������� ���� ����� �� �����
�����

�� ���� ����� �� ������ ������ �� ������� ���� ������ ������

�"� �������� ��'��� '���� ��� �� ����� ����� �� ����

�� ���� ����� ���� ������ �� ����� ������ ������

������ ����

1 �����

3 ���� 1
3 : ������ 1.1
5 : : : : : : : : : : : : : : : : : : ����� ������ ������ ������� ����� 1.2
6 : ����� ������ ���� ���� 1.3
8 : ���� ����� 1.4
9 : ������ ����� ���� 1.5
12 : ����� ����� 1.6

13 ������ 2
13 : ���� ���� 2.1
14 : ����� ���� ���� 2.2
15 : ����� ���� ���� 2.3

17 �ortid ������� 3
17 : ��� 3.1
19 : �ortid �� ����� ���� 3.2
21 : �ortid � ����� ��� 3.3

22 �ortid �� ���� ���� ����� 4
22 : ����� ������ 4.1
23 : : : : : : : : : : : : : : : : : �� ������� ����� ����� ����� 4.1.1
24 : ����� �� ����� ������ 4.1.2
26 : ������� ����� �������� 4.1.3
31 : ����� ����� �� ����� ����� 4.2
32 : : : : : : : : : : : : : : : : : : : 3.0 ����� �ortid �� ����� ����� 4.3
37 : : : : : : : : : : : : : : : : : : : 3.0 ����� �ortid �� ����������� 4.4
40 : ������� ����� ������ 4.5
41 : ������� ����� 4.6

43 4.0 ����� �ortid 5
43 : ����� ������ ������� ����� 5.1
45 : ������ ������� 5.2
46 : ������ 5.3
49 : �������� ������ 5.4

53 5.0 ����� �ortid 6
53 : ������ ������� 6.1
55 : ������ 6.2

57 ������ ������ 7
57 : ���� ����� ����� 7.1
58 : ������ 7.2
60 : ������ 7.3
61 : ����� 7.4

62 ������� ����� ��������� ������ �

66 3.0 ����� �ortid ���� �� �

70 4.0 ����� �ortid ���� �� �

77 5.0 ����� �ortid ���� �� �

87 �����������

������ �����

4 : ������� ��� ������ 1.1
7 : : : : : : : : : : : : : ����� ������� ���� ������ ����� ����� ���� 1.2
9 : ������ ����� ���� �� �� ��� 1.3
11 : ������� ����� �������� 1.4

17 : : : : : : : : : : : : : : : : ���� ���� �� ������� ������ ����� 3.1
18 : : : : : : : : : : : : : : : : : �ortid ��� ���� ��� ditro� �� ����� 3.2
18 : : : : : : : : : : : : : : : �ortid ��� ������� ditro� ����� ���� 3.3
18 : : : : : : : : : : : : : : : ������� ����� ������� ������� ������ 3.4
19 : : : : : ������� ���� �� ������� ����� ������� ������� ������ 3.5
19 : : : : : ����� �������� �������� ������� �� ��� ������ ������ 3.6
20 : : : : : : : : : : : ������� ����� ,����� ������ �ortid ���� ����� 3.7

25 : ������ ���� ������� 4.1
27 : : : : : : : : : : : : : : : ������ ����� �������� ������� ������ 4.2
28 : : : : : : : : : : : : : : : : : : : �ortid �� ������ ����� ������� 4.3
29 : : : : : : : : : ����� ������ �� dump.c �� ������ ����� ������� 4.4
30 : ������ ������ ����� ������� 4.5
33 : : : : : : : : : 3.0 ����� �ortid �� 1 ����� ����� �� �� ����� ��� 4.6
34 : : : : : : : : : 3.0 ����� �ortid �� 1 ����� ����� �� �� ����� ��� 4.7
35 : : : : : : : : : : 3.0 ����� �ortid �� 1 ����� ����� �� �� ��� ��� 4.8
36 : : : : : : : : : : : : : 3.0 ����� �ortid �� ������ 16 ����� ����� �� 4.9
39 : : : : : : : : : : : ����� ������� 3.0 ����� �ortid ����� �� �� ��� 4.10

45 : : : : : : : : : : : : ������� ������� ���� ����� ,������� ������ 5.1
50 : : : : : : : : : : : : : : : : : : : 4.0 ����� �ortid ����� �� �� ��� 5.2

54 : : : : : : : : : : : : : : : : : : ���� ������ ������� ������ ������ 6.1
54 : ����� ����� ����� ���� ����� 6.2
55 : ����� ����� ���� ����� 6.3

57 : : : : : : : : : : : : : : ������� ���� ������ ����� ����� ��� ����� 7.1

������ �����

19 : �ortid �� ��������� 3.1
21 : �ortid �� ����� ���� 3.2

38 : : : : : : : : : : : : : : : : : : : 3.0 ����� �ortid �� ������ ������ 4.1

44 : ����� ������� �������� ���� 5.1
51 : : : : : : : : : : : : : : : : : : : 4.0 ����� �ortid �� ������ ������ 5.2

58 : ������ ������ 7.1
59 : ������ ������ ����� 7.2

�����

����� �� ����� ������ ����� ����� ������ ������ ������ ������ �� �����

���� ���� ����� �� ����� ����� ����� ������� ������ ������ �� ���� .�����

���� ��� ������ ������ �� �������� .������ �� ��� �������� �� ������ �����

���� ���� ���� ����� �� ���� ��� ����� ����� ������ ����� ������� ����� ,�''��

����� ����� ��� ,����� ����� ����� �� ��� ������ ���� ,��� ��� .����� ����

���� ������ ����� ������ ���� ������� ������ �� ����� ���� �� ��� .������ �����

����� �"�� �������� ������� �"� �� ���� ����� ����� ������ .����� ������� ���� ��

.����� �� �������� ������ ������ ���� ������

������ ������� ���� ��� ����� ����� �� �� ������ ����� ����� ��� ����

����� ����� ���� ����� �� ���� .�''���� Software Productivity Consortium � �"�

����� ����� �� ������������ �� ����� ���� �� ������ ������ ����� ,������

������� ����� ��� ������� ������ ���� ��� ,������� ������ ���� ������

����� ������� .���� ����� ���� ���� ������ ���� ����� �� �� ����� .������

.����� ����� ����� ������ ,������ ���� �''�� ,������ ������ ����� �''� ������

�� ������ ��� ����� .������� ���� ����� �� �� ���� �� ������ �� ����

�� ���� .��� ���� ���� ����� ������ ��� ������ ����� �� ���� ��� �� ������

������ ���� ������ ������� ����� ����� �� ����� ,���� ����� ��� ������� �����

����� ���� �� ,����� .����� ��� ����� ��� ,����� ����� ����� �� �� ������ ��

.������ ���� ������ ��� ���� ��� ����� ���

����� ����� ,���� ������ ����� ����� ������ ������ ����� ������� �����

���� ������ ������� ��������� ���� ,�� ������ .���� ���� ����� ����� �����

������ �� ������ ��� �� �� ������ ���� ��� ������� ����� ��� ,���� ������

���� ����� ,�� ����� .���� ������ ���� ��� ������ ����� ��� ����� ��������

�� ����� .����� ������� ����� �� ������� ������ ����� ���� ����� �����

����� ������� ���� �� ������ ,����� ����� ���� ������ ���� ������ �����

.����� ������� ������

����� �"� ����� ����� ���� ������ ������ ����� �� ������ ���� �� ����

����� ���� ��� ������ .��� ����� ���� ����� ����� ����� �� ������� ���� ����

,�������� ����� ������ ��� ����� ����� .���� �� ������� ����� �� �� �����

������� ������� ������ ����� �� ������ ,����� ������ ,������ ����� ������

������� ����� ������ ��� ����� ���� �� ����� .������ ������ �� �������� ����

.������� ��� ���� ��� ����� ���� �����

,��� ����� ����� ������ ����� .��� '���� ����� ����� :������ ������� ��� ���

i

��� �� .���� �������� �� ����� ������ ��� �� ������ ����� ������ ������ ���

.��� ����� ���� �� ����� ��� ,���� �� ����� �''� ����� ������ ��

�� ���� ��� ,��� ���� .������ ���� ����� ��� �� ���� ������ ����� �����

�������� �������� �� ������ ������� �� ����� ��� �� ����������� ����� �����

����� ���� .������� ������ �������� �� ��� ��� �� ��� ���� ,����� ����

�� ����� ���� ��� ����� ����� ,���� ������� ������� ����� �� ������� �����

������� �� ����� ��� ���� �� ���� ���� .���� ������ �� ����� ������ �����

.������ ���� �''�� ����� ����

:��� ����� ��� �� �������

.������� ������ ���� ���� ��� ���� ������� ����� ����� ����� :1 �����

.������� ������ ���� ���� ������ ����� ��� ���� ����� ����� ����� :2 �����

���� ����� ������ ��� �� ������ ������� ���� ����� ����� ����� :3 �����

.������� ������

.������� ������ ���� ���� ����� ������� ����� ����� ����� :4 �����

.���� ���� ���� �������� ����� ��� �� ����� ����� ���� ���� ���� �����

:�� ������ ��� ����� ��� �� ����� ����� ����

.����� ������ ��� ����� ���� �

.����� ������ �� ����� ��� �� ��� �� ����� �

������ �� ������� ���� ���� �� ������� ����� �� ��� �� ��� �� ����� �

.���� ���� ���� ���� ����

������ ���� �� ��� ���� ������� �� ��� �� ������ ����� ����� ����� �

.����

,��� ���� ��� ������� ���� ������ ����� ���� ���� ����� ��� ����� ������� �

.���� ����������� ��� ����� ��� ��

������ ������ ������ ,������� ���� ���� ��� ����� ������ ����� ��� ���

�� ���� ��� ����� �� ,�� ����� .���� ������ ���� �� ���� ���� ��������

���� ������ �� ����� ���� ��� ����� .C ������ ���� �� ������ ���� �������

���� ������ ���� 29 �� �� .����� �� ������ ������� ���� ����� ���� ���� ,����

������� �������� ����� ����� �� ���� ����� ���� �� �� .����� ���� ����

����� ��� ���� .���� ���� �� ���� �� ����� ����� ,���� ��� ��� ������ �����

����� ����� ������ �� ������ ������ ������� ������ ����� ,������ 1983 ��� ���

��� ������ ���� ������� �� ����� ��� ��� ���� ,������ ����� ,�� ��� .������

����� ����� ���� ����� ���� ������ ������ �� ,����� .���� ����� ��� ���� �����

����� �� .���� ����� ����� ���� ������ ����� ���� �� ��� ,���� ���� ��� ��

����� ���� �� ��� ,���� ����� ���� ����� �� �� ������� �� ���� ������� ���

.���

ii

����� ������ ��� ����� �� ����� .�ortid ���� ������ ����� ����� ������

����� ������ ����� �� ����� ���� .ditro� ������ UNIX �� ������� ��������

�� ����� ,����� ������� ���� ����� ������ ������ ����� ����� ��� ,��������

�������� ������ ,������� ,����� ,������ ���� ����� ����� ����� ���� ��� �����

���� �� ��� ����� ������� 3 ��� �� ���� 9 ����� ���� �� ����� .������������

.��� ������ ����� �� ����� �� ��� �� ,������ ����� ���� ������ .��� ������

����� ��� ����� ������ ������ ��� ���� ���� ���� ����� 2510 ����� ��� ������

.����� ����� ����� ���� ����

�� �� ��� ,���� ��� �� ����� ��� ����� ������ �� ��� �� ��� �� ������ �����

����� ���� �� ������ ��� �� ����� ����� ���� ����� ������ ������ ����

������ ����� ����� �� ����� ����� ����� .����� �� ������ ���� ��� ����

������ ,�� ����� .������ �� ������� ����������� �� ����� ��� �� ,������ �����

����� �� ���� ��� ����� ������ .����� ������ ������� ������� ������� ������ ��

��� �� ���� ����� ������ ������ �� �� ���� ����� .����� �� ������� ��������

.������ ���� �� ������ �������� ����� ������� ������� ���� ������ �����

����� ����� ����� ��� ����� ����� �� ���� ����� ���� ��� ����� �����

�� ����� ������� ,����� ,������� ,����� ������� ����� .��� ������ ���� ��

������ ������� ������� ��� ������� ������ �� ������� �� ��� .����� �����

��� ����� ����� �� ���� ������ �� �� ���� ����� ����� .����� ����� ������

����� .��� ����� ������ �� ��� ���� ����� ����� �� �"�� ������� �� ��� ����

����� ���� ���� ������� ������� ����� �������� ������� ������ ����� ����

����� .������ ��� ������ ��������� ����� ������ �� ������ ������ �� �����

.�� ����� ���� ���� ����� ����� ������� ����� ����� ������ ������ ���� ������

�� ��� ��� ��� �� .�ortid ������ �� ����� ��� ���� ����� ����� ,�����

����� ����� ����� �� ��� .������ �� ��� ��� ������ ���� ,������ ������ ����

.������ ���� ������� ������ ����� ����� ��� ��� ������ ��

����� ������ ��� ��� ����� ����� ������ ���� �� ������ ����� ��� ��

:�����

����� ����� ���� ����� ��� ����� ������ ���� �� ���� ����� ������ ��� �

���� ������ ������� ���� ���� �� ��� .������ �� ������ ������ �����

.���� ��� ���� �����

����� ������ ���� �� ���� ���� ��� ����� ������ ���� ���� ������ ��� �

.������ �� ������ ������ ����� ����� �����

������ ����� ����� ����� ������������ ������ ���� �� ���� ������ ��� �

���� ���� ����� ������ ��� ��� ���� ���� ����� ���� �� ��� .����� �����

.��������� ���� ������ ���� ���� ���� ���� ���� ������� ���

���� ������ ������� ����� ���� ����� �� ����� ���� ���� ��� �� ,�����

��� �� �� ���� ���� ���� ����� ��� .���� ����� ���� ���� ���� ����� ��� �����

������ ���� �� �� ���� ���� ����� ��� .������ ������� �� ��� ����� ���� ���

.��� ���� ��� ���� ���� ���� ����

��� ������ ����� ����� ������ ���� ����� ���� ��� ��� ����� ������ ������

iii

���� ������ ���� ����� ���� ��� ,��� ����� .������ ������ ����� ������ ���

��� ����� ������ ������ ������ �� ����� �� ���� ����� ���� .������ �� ������

����� .����� ������ ����� ��� ������ ����� ������� ������ ������ �� ������

���� ������� ��� �� ���� ,���� ������ ���� ������ ������ ����� ���� ��� ���

������ ���� ��� ��� ����� �� ������ �� ������ ����� �� �� ������� ��� �����

� ����� ���� �� ���� ����

,�� ����� �� ������� ���� ��� ���� �������� ��� �

,���� ��� �������� ��� ������ ���� �

,���� ��� ����� ��� ��� �

.���� ����� ������ ��� ��� ����� �

���� ��� �� ������ �������� �������� ���� ���� ������� ������ �� ,��� ��

.������ ������ �� ������� ������ �������� ������ ����� ��� ������

�� ����� ����� ������ ������ ����� ������ ����� ,����� ���� ,�� �����

,��������� ���� ����� �� ����� ������ ����� ���� ������ ������ ���� ����� ���

���� ���� ������ ���� ����� ������� �� �� ����� ������ ����� ���� ��� ����

�� ����� ����� ������ ��� ����� ������ ����� �� ,����� ���� .����� ������

������� ,������ ������� .�������� ����� ������� ����� ������� ������� �����

����� ,������� ������ �������� ���� ������ ������� ������ ������ �� ������

������ �� ��������� �� ��������� ���� �� ������ ������� ������ �� ����

.�����

iv

	A Case Study of Software Reengineering
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Definitions
	1.2 Problems in Current Life Cycle Models
	1.3 Proposed Life Cycle Model
	1.4 Transition Method
	1.5 Proposed Transition Method
	1.6 Thesis Objectives

	2 The Experiment
	2.1 A Case Study
	2.2 Case Study Mechanics
	2.3 Case Study Validity

	3 The ffortid Program
	3.1 Background
	3.2 ffortid Source Files
	3.3 Why We Chose ffortid

	4 Domain Software Reengineering of ffortid
	4.1 Software Units
	4.1.1 Software Unit Interface and Side-effects
	4.1.2 Software Sub-Units
	4.1.3 Service Flow Diagrams

	4.2 Reverse Engineering a Software Unit
	4.3 ffortid Version 3.0 Reverse Engineering
	4.4 ffortid Version 3.0 Architecture
	4.5 Author's Conclusions from Decomposition
	4.6 The Initial Domain

	5 ffortid Version 4.0
	5.1 SWU Modifications
	5.2 The New Requirements
	5.3 Implementation
	5.4 Implementation Comparison

	6 ffortid Version 5.0
	6.1 The New Requirements
	6.2 Implementation

	7 Experiment Results
	7.1 Measuring Reuse
	7.2 Results
	7.3 Conclusions
	7.4 Acknowledgments

	A SFD Icons
	B ffortid Ver 3.0 Manual Page
	C ffortid Ver 4.0 Manual Page
	D ffortid Ver 5.0 Manual Page
	Bibliography
	Hebrew Version

