A Case Study of Software Reengineering

by Harry I. Hornreich

A Case Study of Software Reengineering

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science
in Computer Science

Harry I. Hornreich

Submitted to the Senate of the Technion - Israel Institute of Technology
Adar 5758 Haifa February 1998

The work described herein was supervised by Prof. Daniel M. Berry
under the auspices of the Computer Science committee.

I wish to thank the Technion for the scholarship it has given me during
this thesis

This research is dedicated to my late father Prof. Richard Hornreich

I wish to thank my wife for her great support during this thesis

Contents

Abstract

1 Introduction
1.1 Definitions
1.2 Problems in Current Life Cycle Models.
1.3 Proposed Life Cycle Model
1.4 Transition Method 0
1.5 Proposed Transition Method
1.6 Thesis Objectives

2 The Experiment
2.1 ACaseStudy
2.2 Case Study Mechanics
2.3 Case Study Validity

3 The ffortid Program
3.1 Background
3.2 ffortid Source Files
3.3 Why We Chose ffortid

4 Domain Software Reengineering of ffortid

4.1 Software Units

4.1.1 Software Unit Interface and Side-effects

4.1.2 Software Sub-Units

4.1.3 Service Flow Diagrams
4.2 Reverse Engineering a Software Unit
4.3 ffortid Version 3.0 Reverse Engineering
4.4 ffortid Version 3.0 Architecture
4.5 Author’s Conclusions from Decomposition
4.6 The Initial Domain Lo

5 ffortid Version 4.0
5.1 SWU Modifications
5.2 The New Requirements
5.3 Implementationo
5.4 Implementation Comparison

6 ffortid Version 5.0
6.1 The New Requirements
6.2 Implementation L0

7

g a &8 »

Experiment Results

7.1 Measuring Reuse L o
7.2 Results.
7.3 Conclusions
7.4 Acknowledgments

SFD Icons

ffortid Ver 3.0 Manual Page
ffortid Ver 4.0 Manual Page
ffortid Ver 5.0 Manual Page

Bibliography

57
57
58
60
61

62

66

70

77

87

List of Figures

1.1
1.2
1.3
1.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2

6.1
6.2
6.3

7.1

Relationship between terms 4
The legacy and reuse software lifecycle 7
Overview of the proposed transition method 9
Augmented method processes 11
Stretching connecting letters with afiller 17
Example ditroff output not piped through ffortid 18
Same ditroff output piped through ffortid with stretching off 18
Last connecting letters in lines are stretched 18
Last connecting letters in lines stretched up to maximum amount . . 19
Stretch distributed between all last connecting letters in words . . . 19

ffortid example output with combined English, Hebrew and Arabic text 20

Example scope diagramo 25
Major icons used in SFDso 27
A SFD of the SWU abstracting ffortid 28
SFD of dump.c SWU with its sub-units 29
Acomplex SFD 30
First part of ffortid Version 3.0 SWU 1 page 33
Third part of ffortid Version 3.0 SWU 1 page 34
Second part of ffortid Version 3.0 SWU 1 page 35
SWU 16 page in ffortid Version 3.0 decomposition 36
Overview of ffortid Version 3.0 decomposition 39
Connecting letters, fillers, and dynamic letters 45
Overview of ffortid Version 4.0 domain 50
Stretchable letter connections and fillers 54
Layout of slanted font words on line 54
Sample slanted outputo 55

Relationship between original and product application 57

List of Tables

3.1
3.2

4.1

5.1
5.2

7.1
7.2

ffortid version historyo 19
ffortid source files oo 21
ffortid Version 3.0 software umits 38
SWU modification types 44
ffortid Version 4.0 software umits 51
Experiment results Lo 58

Experiment results analysis 59

Abstract

The problem of maintaining and enhancing existing systems has been recognized
as a major problem in the field of software engineering. Researchers have proposed
solving this problem by organizational changes and methods for systematic software
reuse and automatic program generation.

One method for the transition to this futuristic vision of software engineering is
the Synthesis approach proposed by the Software Productivity Consortium. This
approach prescribes an ordered sequence of steps for the management, analysis,
and specification of a domain which contains the architecture of a product family
of reusable software components, and the decision rules needed for their selection.
The top-down process of creating the domain is called domain engineering. New
applications are constructed by selecting components from the domain, as indicated
by the decision rules, in a process called application engineering.

This approach has so far proved to be very costly and risky. The heavy reliance
on committed experts with extensive knowledge both in the application domain and
in software engineering has a crippling effect. It requires these experts to build from
scratch a library of reusable components to answer every possible application in the
domain, a formidable task. Additionally, not a single application can be generated
until the complete process is finished.

Ahrens and Prywes have proposed to augment the top-down domain engineering
process with a bottom-up domain reengineering process. In this process, automated
tools extract from good quality legacy code, domain and software knowledge that
can be used to define application requirements and their supporting reusable soft-
ware components. Legacy code becomes a key catalyst of the process and reduces
the reliance on domain experts. Combined use of bottom-up reengineering and top-
down engineering reduces the time and risk involved in generating new applications.

This work attempts to evaluate the proposed bottom-up domain reengineering
process by performing a which-is-better type of case study on a real, small scale,
legacy code application. The idea was to perform a controlled experiment of what
happens naturally in real life situations. A software product is released and new
feedback from users, evolving system architectures, and even competition force the
creation of more advanced applications which are based on the original one. How-
ever, this can be a painstaking task with legacy applications because they are so
difficult to adapt.

There were two roles in the experiment. The author and the control. Both
started from the same legacy code application, but used different methods to cre-
ate two subsequent generations of more advanced applications, each based on the
previous generation.

The author used the domain reengineering process, to create an initial domain.
He then evolved it in an evolutionary manner, to satisfy the new requirements of
the more advanced applications in the domain, generating these new applications in
the process. The control used a method, often called seat-of-the-pants, representing
currently used maintenance methods that do not use any form of reverse or software
reengineering. The control implemented the same two generations of applications

using the same requirements as the author.
The hypotheses of the case study were:

Hypothesis 1: The new method requires less time to produce an application than
current maintenance methods.

Hypothesis 2: The new method produces more reusable code than current main-
tenance methods.

Hypothesis 3: The new method requires less code modifications to produce an
application than current maintenance methods.

Hypothesis 4: The new method produces smaller applications than current main-
tenance methods.

During the experiment data was collected in order to prove or disprove the
hypotheses. Special measures were taken in order to insure the validity of the
experiment. For example, each generation of applications was tested against the
same set of tests to make sure that despite the different methods used to create the
applications both had exactly the same functionality, at least with respect to the
test data.

The experiment results indicate that only Hypothesis 1, 2, and 4 hold. Only
Hypothesis 3 has been disproved in this experiment. Therefore, the experiment
shows that the new domain reengineering process does have promise in it. However,
additional, formal experiments are necessary in order to strengthen these results.
Additionally, it is the author’s view that the domain reengineering process cannot
be performed successfully on large scale legacy projects without dedicated CASE
tools to assist in the process.

The chapters in this thesis follow the course of the experiment steps. The last
chapter presents the results of the experiment. Chapter 4 presents conclusions
reached on the enabling technology required to make this approach feasible on
large scale projects. Additionally, a theory of Software Units was developed to
assist the reverse and reengineering processes, and the adaptation of a domain
according to new requirements. This theory is introduced as applicable throughout
the experiment steps.

Chapter 1

Introduction

The problem of maintaining and enhancing existing systems has been recognized
as a major problem in the field of software engineering. This thesis deals with
state-of-the-art methods for software engineering, such as software reeengineering,
reverse engineering, domain and application engineering, that are seen as effective,
partial solutions to this problem. The widespread use of these and other terms has
caused much confusion in the field. The thesis therefore begins with a short section
of definitions of the major terms that are used. Other terms will be defined as they
are presented.

1.1 Definitions

This section defines and relates the following terms: software maintenance, forward
engineering, reverse engineering, redocumentation, design recovery, restructuring
and reengineering. The definitions are based mostly on a taxonomy by Chikofsky
and Cross [1].

Software Maintenance is defined by ANSI to be the “modification of a software
product after delivery to correct faults, to improve performance or other attributes,
or to adapt the product to a changed environment” [2]. There are four types of
maintenance activities that can be performed on an existing software product [3]:

e Corrective Maintenance is the correction of software faults, i.e. deviations of
functionality from specifications after the product has been delivered to the
users.

e Adaptive Maintenance is the modification of a software system as a result of
environmental changes such as new generations of hardware, new peripheral
equipment, new operating systems, or new releases of old ones.

e Perfective Maintenance is the modification of a software system as a result of
new requirements.

e Preventive Maintenance 1s the modification of a software system in order to
prolong its lifetime or provide a better basis for future enhancements.

Although the following terms can be applied to any orderly life-cycle model of
software development, for simplicity, Chikofsky and Cross define them using only
three life-cycle stages:

e Requirements (specification of the problem).

e Design (specification of the solution).

Requirements Design Implementation
Forward Forward
T engineering | engineering | | ”
Reverse Reverse
.o OVEISE g NeVelse] |
engineering engineering
Design I
Recovery ™ |7 Design
Recovery
e I T N
,,,,,,,,,,,,,,,,,,,,,,,, |
Reengineering Reengineering

Redocumentation,

Restructuring documents
estructuring

Restructuring

Figure 1.1: Relationship between terms

e Implementation (coding, testing, and delivery of the operational system).

Note that each of these stages is a different abstraction level of the same system.
A subject system may be a code fragment, a single program, a complex set of
interacting programs, etc. Figure 1.1 shows the relationship between the following
terms.

Forward Engineering 1s the traditional process of moving from high-level ab-
stractions and logical, implementation-independent design to the physical imple-
mentation of a system. Forward engineering follows a sequence of steps going from
requirements through design to implementation.

Reverse Engineering is the process of analyzing a subject system to identify the
system’s components and their interrelationships or to create representations of the
system in another form or at a higher level of abstraction. Reverse engineering is
a process of examination, not a process of change or replication. Reverse engineer-
ing cannot capture all lost information, for example, rejected design alternatives.
However, it can discover, for example, side effects that were not planned in the
forward engineering process. In general, reverse engineering can be applied at any
level of abstraction, or at any life-cycle stage. Two subareas of reverse engineering
are redocumentation and design recovery:

e Redocumentation is the creation or revision of a semantically equivalent rep-
resentation within the same relative abstraction level. The resulting forms of
representation are usually considered alternate views, for example, data flow,
data structure and control flow, intended for a human audience.

Design recovery is a subset of reverse engineering in which domain knowledge,
external information, and deduction or fuzzy reasoning are added to the obser-
vations of the subject system to identify meaningful higher level abstractions
beyond those obtained directly by examining the system itself.

Restructuring is the transformation from one representation form to another
at the same relative abstraction level, while preserving the subject system’s exter-
nal behavior. Restructuring is often used as a form of preventive maintenance to
improve the physical state of the subject system with respect to some preferred
standard.

Reengineering 1s the examination and alteration of a subject system to reconsti-
tute it in a new form and the subsequent implementation of the new form. Reengi-
neering generally includes some form of reverse engineering followed by some form
of forward engineering or restructuring. In most cases, reengineered software reim-
plements the function of the original system, but at the same time, additional
functionality is added or performance is improved in some respect according to new
requirements.

Reverse engineering, restructuring and reengineering are usually all performed
on existing systems and are therefore, by definition, a form of maintenance. How-
ever, each of these processes can be used in the development of new systems or
evolutionary system development. Reverse engineering by itself is not maintenance,
however it can be used as part of a maintenance effort to help understand an ex-
isting system in order to determine the changes needed to be performed on it.
Restructuring of an existing system is by definition preventive maintenance. A
Reengineering effort can either be adaptive, perfective, or preventive maintenance,
or a combination of them.

1.2 Problems in Current Life Cycle Models

Most software today is developed using one, or a combination of, well known life-
cycle models such as the waterfall [3], prototyping [3], spiral [4], and what have been
called “fourth-generation techniques” [3]. These and other life-cycle models do not
adequately represent software maintenance and reengineering activities which today
account for the vast majority of software labor costs [5]. Additionally, they do not
adequately represent state-of-the-art concepts for improving software engineering
practices such as domain and application engineering [6] and software reuse [7].

Ahrens et al [5, 8] have identified several underlying assumptions about the
nature of software processes and practices that possibly explain these and other
inadequacies in current life-cycle models:

Assumption 1: Maintenance is a separate life-cycle phase. The view
of maintenance as a separate software life-cycle phase that begins after software is
released, originated with the waterfall model and 1s still widely accepted, as implied
by the ANSI definition given above.! However, this division is unnatural because
the same tasks of requirements analysis, specification, design, implementation, and
testing are performed both in new software development and in corrective, adap-
tive, perfective, or preventive maintenance. Also, reengineering activities such as
reverse engineering and restructuring which are traditionally seen as maintenance
activities can also be applied during the development stages of new software, either
to produce reusable components from existing software or to develop new software.
Therefore, the unnatural division between development and maintenance is for ad-
ministrative purposes only. A CSTB Report [9] states that this assumption seems
to have legitimized higher costs, poor technological support, and poor management
of maintenance activities. For example, different teams are created for the develop-
ment and maintenance of the same software project.

Assumption 2: New software applications require new software de-
velopment. This assumption i1s widely regarded as obsolete. The notion of reuse
and the benefits to be gained from its use are well known [7]. Creating new applica-
tions completely or partially from reusable software components holds the prospect

I The original view of maintenance was similar to what I defined as corrective maintenance, i.e.
correction of faults not found before the software was released. As software systems aged, they
were adapted to new environments and perfected to answer new user needs. The adaptive and
perfective maintenance terms were coined and added to the only life-cycle phase to which they
seemed appropriate — the maintenance phase. As these systems aged even further and became
unmanageable a fourth term, preventive maintenance, was added.

of creating higher quality applications more quickly while improving development
productivity.

Assumption 3: New applications based on reusable components can
and should be developed only in a top-down manner. This assumption can
be found in state-of-the-art approaches to software engineering. ARPA’s Domain
Specific Software Architecture (DSSA) project and the Synthesis approach devel-
oped by the Software Productivity Consortium (SPC) [6] both describe an ordered
sequence of steps for the management, analysis, and specification of a domain which
contains the architecture of a product family of reusable software components, and
the decision rules needed for their selection. The process of creating the domain
is called domain engineering. New applications are constructed by selecting com-
ponents from the domain, as indicated by the decision rules, in a process called
application engineering. This is a very difficult, time consuming, costly, and there-
fore risky process. Instead of using a top-down approach to the creation of a domain,
it 1s possible to use a bottom-up approach by reengineering legacy software and se-
lecting from 1t candidate components for the domain library. Another possibility,
is the use of off-the-shelf commercial software components (COTS), which can be
modified to fit a certain domain. These alternatives are not disjoint. Part or all of
them can be combined according to available resources and analyzed risks.

Assumption 4: CASE technology for forward software development
can perform almost all maintenance. This assumption, as presented by Fuggeta
[10], implies that software can be maintained more easily by redesigning the soft-
ware and generating new code than by understanding the existing code prior to its
redesign and restructuring. Reverse engineering techniques are seen as necessary
only in specific circumstances. This assumption justifies the current CASE ori-
entation towards forward software development. However, such CASE technology
leaves out the great potential of using legacy software of which we have little or no
design information for the creation of new applications. By using CASE tools that
assist reverse engineering and restructuring, we can understand legacy software and
harness the sometimes vital information in it for the creation of new applications.

1.3 Proposed Life Cycle Model

The obsolete and erroneous assumptions about software engineering processes and
activities in current life-cycle models presented in the previous section have led to
the proposal of a more realistic life-cycle model that seeks to incorporate state-of-
the-art ideas and technologies. Ahrens et al [11, 8] have proposed a new life-cycle
model called the “legacy and reuse software life cycle” (LRSLC). In their own words:

“It is a generalized model of the software life cycle that recognizes
explicitly the critical contribution of legacy software to the attainment
of software production from reusable software components.”

The LRSLC is presented in Figure 1.2. Rectangles represent life-cycle prod-
uct and information states. Transformation processes, denoted by arrows, convert
artifacts in one state to information products in a neighboring state. Forward trans-
formations are represented by dashed lines, reverse transformations are represented
by solid lines.

The LRSLC model does not necessarily replace current models; it can be com-
bined with them. For example, the model fits well into the larger scope of the
risk-oriented, iterative nature of the spiral model. It can also be combined with
other models such as the prototyping model to validate customer requirements.
The model does however have some notable features:

‘ r--r——>—>">"~>"~>"~>">"~>"=>"=>"=7=7=777 A

‘ Requirements ‘
t ¥
<—ﬁ Component specifications H 77777777777 >
T |
b 3
<—ﬂ Arch|tecture‘ H 77777777777 -
b |
<—ﬂ Design | H 77777777777 ﬁ
i v 3
|
|

—ﬁ Application/reuse software ‘
? Lo ______ g

‘ Transformed software ‘

? - - — -p» Forward Software Engineering Transformations

——» Reverse Software Engineering Transformations

‘ Legacy software ‘ [] software Life Cycle Phase

Requirements—Domain or aplication software requirements defined in terms of functionality, capabilities,
performance, user interface, inputs, and outputs.

Component specifications—Domain or application software requirements specified in terms of capabili-
ties of hardware and software components and interfaces. This state is exemplified by the software
specifications in Department of Defense Military Standard 498, "Software Development and Documenta-
tion,” December 1994.

Architecture—The hierarchy of software components, rules for component selection, and interfaces
between components.

Design—Program interfaces, control flow, and logic, defined in greater detail.
Application/reuse software—In application software, a unique software product; in software reuse, a li-
brary of adaptable reusable software components. The reuse software components are tested, verified

and validated.

Transformed software—Legacy software restructured and translated, if needed, into a modern program-
ming language.

Legacy software—Application software created in a previous traversal of a software life cycle.

Figure 1.2: The legacy and reuse software life cycle

e The model defines the information products of the software life cycle, but
leaves the transition processes between them open to various methods. This
is similar to the spiral model which also defines the information products
produced at the conclusion of a life cycle phase but leaves open the means of
their attainment.

e The model integrates forward and reverse engineering processes for traversing
the life cycle. Traversal is triggered by new information in one or more states
and concludes when all states become consistent. Both forward and reverse
engineering traversals can be generated from a single trigger.

e The model specifically incorporates the use of reverse engineered legacy soft-
ware in the creation of software applications and reuse libraries.

e The model does not have a separate maintenance state. The integrated for-
ward and reverse engineering processes enable the creation, maintenance; and
evolution of software domains, reuse libraries, and applications over long time
spans. The model is therefore of an evolutionary nature.

As an example use of the model, suppose one has already created a domain
and built a first application from it. A customer, having used the application, now
has a set of new requirements. To satisfy these requirements we decide to create
some completely new components and to reengineer others from the legacy software.
First, in a reverse traversal of the model, we reengineer the legacy software by ana-
lyzing, possibly translating, restructuring, and redocumenting components from the
legacy software, adding them to our domain. We update the design, architecture,
and component specification information states from the documentation extracted
by the reverse engineering process. Then, forward traversal of the model is used to
create the new domain components, updating in the process, the specifications, ar-
chitecture, design, and reuse information states. Finally, a last forward traversal of
the model is used to create the customer’s new application by integrating previous,
new, and reengineered software components.

1.4 Transition Method

The LRSLC presented in the previous section is a generalized life-cycle model that
describes information product states rather than the processes for moving between
them. This model 1s well suited for state-of-the-art software engineering methods
aimed at the development of reusable building blocks of adaptable software compo-
nents from which application software can be constructed. These methods aim to
reach a state in which applications in a specific domain can be automatically gen-
erated from a library of reusable components according to customer requirements.

However, transition from present software practice to a state of automatic appli-
cation generation has proved to be very difficult. The proposed transition methods,
such as the synthesis approach of the SPC, advocate the creation of the domain
from scratch, based on the expertise of domain experts. These experts, based on
their knowledge and experience in the domain and in software engineering, define
a knowledge base of potential application requirements. Software experts build in
a top-down fashion, a library of adaptable, reusable software components to an-
swer these potential requirements. Decision rules and automated processes for the
selection and assembly of these components into applications are defined.

The problem with this approach is that their is a large dependency on domain
experts. Also, a complete library of reusable components for a large family of
applications needs to be created from scratch before a single application can be

Resources Process Products

. Domain definition,
Domain .
——= specification, and
expert !
architecture
Software AuQm?med Reusable components
expert Transition (code and documentation)
P Method
automatic generation of
Legacy A
= new application software
software .
from reuse library

Figure 1.3: Overview of the proposed transition method

generated. This approach has so far proved to be very costly and risky [12, 13].
The initial investment is large and the returns are slow.

Ahrens and Prywes [11] propose a new method for the transition from current
software practices to the LRSLC. It is an augmentation of the top-down synthesis
method by the use of bottom-up legacy code component and knowledge extraction.
Figure 1.3 presents an overview of this approach. Unlike synthesis, legacy software
becomes a key resource in the transition process. It reduces the dependency on
domain experts which are the bottleneck of the process and with the use of appro-
priate reverse engineering CASE technology provides a basis for the creation of a
library of reusable components.

Only legacy software of reasonable quality and of proven reliable performance is
a good candidate for such a process of component extraction. Most legacy software
in day to day use answers these requirements. These are large, complex applica-
tions which have satisfied their users needs over a long period of time. They are
too difficult to maintain and too costly to replace by completely new applications.
They are a valuable resource of their organizations and therefore hold invaluable
knowledge and code that can be extracted.

1.5 Proposed Transition Method

As described in Section 1.2, synthesis prescribes an ordered sequence of steps for the
management, analysis, and specification of a domain which contains the architecture
of a family of reusable software components, and the decision rules needed for
their selection. The top-down process of creating the domain is called domain
engineering. Following are the major steps in domain engineering:

1. Domain definition

2. Domain specification
3. Domain design

4. Domain verification

5. Domain implementation

6. Domain validation

New applications are constructed by selecting components from the domain, as
indicated by the decision rules, in a process called application engineering. The
following are the major steps in application engineering.

1. Define customer’s application software requirements

2. Use rules in decision model to select reusable components
3. Generate application software

4. Test application software

5. Generate application documentation

Ahrens and Prywes have augmented the top-down domain engineering process
with a bottom-up domain reengineering process that extracts architecture, design,
business rules etc. from legacy software. The major steps in domain reengineering
are

1. legacy application analysis and translation,

2. legacy application conversion to new hardware, operating systems etc,
3. augmentation and adaption of reusable components,

4. domain validation,

5. domain design update,

6. domain specifications update,

7. domain definition update, and

8. domain verification.

Figure 1.4 illustrates the augmented method which includes both processes.
Application engineering in the augmented method is the same as in synthesis. Either
process can be used to create the initial domain repository. The feedback loop
shown in Figure 1.4 shows that both top-down and bottom-up processes can be
interleaved and applied iteratively, incrementing the domain with each application
of the process. Note that using the two processes in a different sequence will not
necessarily lead to the same reuse library.

When the top-down process alone is selected, it is driven by iterations for des-
ignated domain areas, after which application software may be obtained from these
partial domains. In later iterations, smaller additions to the domain are needed to
produce software for a new application. When combined top-down and bottom up
processes are selected, they are driven by iterations for extracting reusable legacy
applications to produce domain increments. For example, first a top-down process
is used to define a high-level architecture. Then a bottom-up process is interleaved
for filling in the detailed architectural levels.

We can assume that the top-down approach by itself will require significantly
more time than the combined approach to complete the first domain increment
of reusable software components for an application for two reasons. First, the
top-down approach requires more input from human domain experts. Second, the
synthesis method requires the complete domain to be specified before applications
are produced. However, the top-down approach by itself has an advantage when

10

Customer
Technology
Feedback

|

Domain and Legacy
software experts application
software

S

Domain SW Domain SW
engineering reengineering
Top down Bottom up

Domain repository:
Definition
Specification
Architecture
Reuse library
Documentation

Application engineering
User requirements
Auto. program generation

Application

software

Figure 1.4: Augmented method processes

11

developing a domain for which there 1s sufficient domain expertise but no legacy
applications or when the domain is not overly complex and can be defined manually.

The combined approach can more quickly add components from a legacy code
application to the domain architecture, leading to faster and less expensive pro-
duction of new software applications than the top-down approach. The combined
approach also reduces reliance on the scarcer resource of domain experts by relying
more on software experts extracting domain knowledge embedded in good legacy
software. In summary, the combined approach presents an alternative for a faster
and more economical transition to the LRSLC model.

Ahrens and Prywes emphasize the importance of an enabling technology to
make their approach practical. Automated tools complement and help the cognitive
effort required on the part of the software and domain experts in the domain and
application engineering phases. They are especially important in the effort required
to understand the legacy software in the processes.

1.6 Thesis Objectives

The objectives of this thesis are

e to evaluate the proposed domain reengineering process,

e to reach conclusions on the required enabling technology for the reengineering
process,

e to develop a method for the evolutionary development of a domain according
to external requirements,

e to reach conclusions on the required enabling technology for the new method,
and

e to refine the theory of Software Units to support the above processes.

This thesis focuses on the bottom-up domain reengineering transition process
because of the limited time and resources available in a masters thesis. Domain
reengineering is used to create an initial domain and then to create two generations
of applications from the domain, updating it in the process. The issues of creating
adaptable components and the automatic generation of applications from them, are
beyond the scope of this thesis. All processes were performed manually without the
use of any automated tools.

The following chapters explain the course of the experiment and follow its steps,
introducing the theory of Software Units as applicable to the problem. Finally, the
thesis summarizes the experiment results and draws conclusions from their analysis.

12

Chapter 2

The Experiment

2.1 A Case Study

In order to achieve the objectives of this thesis, 1t was decided to conduct a case
study [14]. In general, a case study can show the effects of a technology or method in
a typical situation, but cannot be generalized to every possible situation. Although
case studies are not as scientifically rigorous as formal experiments [14], they can
provide us with sufficient information to judge if a method has any promise in
it. It is not claimed that this case study gives a definite answer or proof as to
the usefulness of the new method. It does, however, attempt to show that the
new method is applicable to a real application domain and that one can produce
quality applications using it. The intention is that this case study serve as the basis
for further study either by additional case studies or by a fully controlled formal
experiment. Such formal experiments are very difficult to perform, especially in the
field of software engineering, and require careful planning and large resources.

This case study is a “which is better” type of case study in which the author
wanted to examine which is better, the new method for legacy and code reuse or
the common and often used seat-of-the-pants (SOTP) maintenance. SOTP mainte-
nance does not mean maintenance with no method in it. The maintainer can indeed
have a clear method for performing modifications to the software. However, such a
method does not involve any form of reverse engineering or reengineering.

In order to perform a successful case study, we must have well defined hypothe-
ses. The hypotheses are:

Hypothesis 1: The new method requires less time to produce an application than
current maintenance methods.

Hypothesis 2: The new method produces more reusable code than current main-
tenance methods.

Hypothesis 3: The new method requires less code modifications to produce an
application than current maintenance methods.

Hypothesis 4: The new method produces smaller applications than current main-
tenance methods.

13

2.2 Case Study Mechanics

Application of the new method was performed by the author. The control of the
experiment was Daniel Berry who applied his own systematic SOTP maintenance
method. We believe that this method is representative of the maintenance methods
used by most programmers that do not apply any form of reverse or reengineering.
Both the control and the author worked on similar UNIX systems and neither used
any CASE tools. All work was done manually with the help of some common
UNIX commands such as grep. The case study followed the following steps:

1. A valid legacy code program P was selected as the pilot.

2. The author domain reengineered P and created an initial domain architecture
and reusable components.

3. A set of requirements R’ was devised for a new version of P.

4. The control and the author each created individual implementations of P’
according to the requirements R’. The author used his own method for the
evolutionary development of a domain according to new external requirements
to create his new version of P’ using the initial domain as his basis. The
control used his own systematic SOTP method of maintenance to create his
new version of P’ using P as his basis.

5. Both implementations of P’ were tested against the same set of tests to make
sure they had implemented correctly the requirements R’, and therefore had
the same functionality.

6. A second set of requirements R” was devised for a new version P".

7. Again, the control and the author each created individual implementations of
P according to the requirements R’ each using his own method.

8. Both implementations of P” were tested against the same set of tests to make
sure they had implemented correctly the requirements R”, and therefore had
the functionality.

The following measurements were collected during the experiment in order to
validate or invalidate the experiment hypotheses:

e Each recorded the number of implementation hours for each application ver-
sion and for each method.

e Each recorded the number of added, deleted, and modified code lines for each
application version and for each method.

The case study was built to follow the steps of a typical software project in
which one has a legacy code program of which one has very little knowledge, but
must create new versions of the program to satisfy new user requirements. The
first method to handle this problem is to use traditional SOTP maintenance. The
second method is to reverse engineer the application, discovering its architecture
and components and documenting them. A domain is created, storing all this
knowledge and reusable components. New application requirements are satisfied by
updating the domain in an evolutionary manner by improving, adding, and deleting
reusable components as necessary and creating new applications from these reusable
components according to the rules in the domain.

The requirements for both new versions were not known to the author before he
had reached the stage were he had to know them. This is just as in real software

14

projects in which the developers of an application do not usually know beforehand
what are the requirements for the next application version. The performance of two
requirement cycles is really necessary in this experiment because only by implement-
ing the second set of requirements can the two methods used in implementing the
first set of requirements be compared.

The actual course of the experiment was very similar to the steps described
above. The difference was in the timing of the steps of the control. The actual
legacy program that was selected for the experiment was one of which the control
had already created version P’ for his own purposes before the experiment had
begun. This was an advantage to the experiment because less effort would be
required by the control, and was in no way an impediment to it. It did however
mean that we could not compare the implementation hours for version P’ because
the control did not record these. This i1s not really a problem because even if we
could collect these hours for version P’ it would be wrong to compare them for both
methods because the author was learning and developing his method during this step
and therefore the hours measured would not reflect only the version implementation
time.

2.3 Case Study Validity

Performing case studies correctly so that they have valid results requires careful
planning. Several steps were taken to insure the validity of the experiment:

1. A typical legacy code program was selected to be the pilot program.

2. The pilot program for the experiment was selected to be one of which the
author had no previous knowledge.

3. The author had no knowledge of the first and second sets of requirements
before he reached the steps in which he needed to know them.

4. Only discussion of the requirements themselves was allowed between the au-
thor and the control. Neither discussed his method or encountered implemen-
tation problems with the other.

5. Similar implementation versions were compared against the same set of tests
before proceeding to the next stage in order to make sure they have both
implemented the same functionality. Each devised his own test cases and
both programs were tested against both sets of test cases.

As any experiment in software engineering that involves several programmers,
a possibly wide difference in the programmers capabilities can undermine the va-
lidity of the complete experiment. It is necessary to examine carefully how such a
difference, if any, can affect the experiment.

For example, a 1965 experiment to show that interactive programming is more
effective than batch programming failed to produce significant results because the ef-
fect of the independent variable, batch versus interactive programming, was drowned
out by individual differences in programmers of equal experience. One program-
mer was found to be 28 times more effective than another programmer of equal
experience [15].

In this case both the author and the control are experienced programmers in the
language of the program, C, and both come from a strong programming background.
Although it cannot be determined who is the better programmer, the control has
some clear initial advantages over the author:

e The control has 29 more years of programming experience.

15

e The control has a much deeper understanding of the text processing system
of which the selected program is a part, than the author, who had absolutely
no such understanding before the experiment. The control had been involved
since 1983 in writing and correcting programs in this text processing system.

e The control was the client and worked with all the authors of the previous
versions of the legacy program. He also fixed some of the bugs found in the
program from time to time. He therefore has a clear initial advantage in the
understanding of the program. Needles to say, the author had absolutely no
knowledge of the program, its function, or its source code before the experi-
ment.

e During the course of the experiment, the control had prior knowledge of the
next version’s requirements because he was their initiator. The author learned
of these requirements only when the requirements document, the manual page,
was written by the control just before the start of programming.

Taking the above into consideration, it is claimed that if the experiment shows
a clear advantage in the use of the new method over the SOTP method, then
indeed there is promise in the method and it is worthy of further study. If, however
the results are inconclusive or with a clear advantage to the current maintenance
method then, nothing can be concluded.

It must be emphasized however, that even if the new method shows a clear ad-
vantage over the SOTP maintenance method, it is still possible that this is because
the author is a better programmer than the control or that the author is a better
programmer and the method he used is better. Therefore, in any case, further case
studies or formal experiments are required to validate the results of this experiment.

16

Chapter 3

The ffortid Program

3.1 Background

ffortid [16, 17] is a UNIX ditroff [18, 19] (Device Independent Typesetter RunOff)
post-processor. When combined with ditroff and its various pre-processors, it creates
a formatting system that is able to format multilingual scientific documents, con-
taining text in Hebrew, Arabic, or Persian, as well as other right-to-left languages,
plus pictures, graphs, formulae, tables, bibliographical citations, and bibliographies.

ffortid takes as input ditroff output which is formatted strictly left-to-right, finds
occurrences of text in a right-to-left font, such as Hebrew or Arabic, and rearranges
each line so that the text in each font is written in its proper direction. Addition-
ally, ffortid left justifies lines containing Arabic, Persian, or related languages by
stretching instead of inserting extra white space between the words in the line. The
stretching is achieved by inserting one or more filler characters between the last
connecting letters of lines or words. Figure 3.1 (a), (b), and (c) show how a filler is
inserted between pairs of connecting letters.

Figure 3.2 shows the ditroff output of an example combining Arabic, Hebrew, and
English text. Figure 3.3 shows the same output after it is piped through ffortid with
stretching turned off. Note how the text in Arabic and Hebrew has been reversed
in-place, and justification of the lines is achieved by extra spaces inserted between
the words. Different styles of stretching can be achieved in ffortid by using one
of several stretch options. Figures 3.4, 3.5, and 3.6 are examples of the different
stretch styles of ffortid. In Figure 3.4 connections to last connecting letters in
lines are stretched. In Figure 3.5 connections to last connecting letters in lines are

(@

(b)

©

{HE!

Figure 3.1: Stretching connecting letters with a filler

17

pil azl] dhaled g Ui
lapd it ap ke e
SWCLopi DEnglisn(yllae o&) vawn(,
Nedd Uakals Sgorm Ui, aney SO
slea e el ok gea
I
Figure 3.2: Example ditroff output not piped through ffortid
Sl Cidasy, el e (e
S R R
Cmmay) Soadly (Engis) O SIS
B oo oAl mos slhall s
sy hdad Ll e asl
AN

Figure 3.3: Same ditroff output piped through ffortid with stretching off

stretched to a maximum amount, with any remainder going to preceding words. In
Figure 3.6 the stretch is distributed between all the connections to last connecting
letters in words in a line.

Figure 3.7 is the first page of a technical report [17] describing ffortid and is an
example of ffortid output with combined English, Hebrew, and Arabic text. Note
how the Arabic text at the bottom third of the page is left and right justified by
the third style of stretching.

The first author of ffortid was Cary Buchman, an M.Sc. student at UCLA, and
the first version was written during the years 1983-1984. That version could handle
only Hebrew although it did have some hooks for Arabic that proved to be useless

Ll iy, Glb) ke lia
s> wld e e Lol
) ol (Englisn) O SIS
J= o ol — slasll ZLeoYi
ey idadl LT e as

AN

Figure 3.4: Last connecting letters in lines are stretched

18

sl s el e e

s—> sl e L &5 Al
) sl (Englisn) O SV
J= o ol —e slasdl ZLeoYi
ey ciaad] CJlT e s

AN

Figure 3.5: Last connecting letters in lines stretched up to maximum amount

Gl s, el Lo s

SN QREN Y R SN S|
(Y o ally (Englis) i SV
J o oA mos slhall Y]
dey ciiad] codlll e oy

NEAN(S]

Figure 3.6: Stretch distributed between all last connecting letters in words

for later versions. The first external customer was the Hebrew University (HU).
Mulli Bahr, a UNIX guru from HU, modified the code to optimize the output in
1986 during a visit to UCLA. Johny Srouji, an M.Sc. student at the Technion,
extended ffortid for Arabic stretching during 1989-1991. Table 3.1 summarizes the
different versions of ffortid.

The ffortid program described above is ffortid version 3.0. The complete manual
page of ffortid version 3.0 can be found in Appendix B.

3.2 ffortid Source Files

ffortid was written in C. It is composed of 11 different source files, 5 of which are
.c files, 1 of which is a lex file, and 5 of which are .h files. Table 3.2 shows all the
source files with their respective number of lines and number of functions. Each of
the 5 .c files 1s compiled separately to create a module. lex.dit is the lexical parser
definitions file. The UNIX lexical parser generator lex takes lex.dit as input and
generates from it a lexical parser source file which is included into main.c. This
parser is used to parse the input to ffortid into tokens.

Version Years Author From Major Modification
1.0 1983-1984 Cary Buchman UCLA Hebrew
2.0 1986 Mulli Bahr HU Output Optimization
3.0 1989-1991 Johny Srouji Technion Arabic

Table 3.1: ffortid version history

19

TECHNION TECHNICAL REPORT, MARCH 1993)

Arabic formatting with ditroff/ffortid

JOHNY SROUN (g5 s 52, 10 7)) AND DANIEL BERRY (5~ JL3lo,
a2 900 = 3 =

Computer Science Department

Technion

Haifa 32000

Israel

SUMMARY

Thispaper describesan Arabic formatting system that is able to format multilingual scientific
documents, containing text in Arabic or Persian, as well as other languages, plus pictures,
graphs, formulae, tables, bibliographical citations, and bibliographies. The system is an
extension of ditroff/ffortid that is already capable of handling Hebrew in the context of multi-
lingual scientific documents. ditroff/ffortid itself is a collection of pre- and postprocessors for
the UNIX ditroff (Device Independent Typesetter RunOFF) formatter. The new system isbuilt
without changing ditroff itself. The extension consists of a new preprocessor, fonts, and a
modified existing postprocessor .

The preprocessor tranditerates from a phonetic rendition of Arabic using only the two
cases of the Latin alphabet. The preprocessor assigns a position, stand-alone, connected-
previous, connected-after, or connected-both, to each letter. It recognizes ligatures and
assigns vertical positions to the optional diacritical marks. The preprocessor also permits
input from a standard Arabic keyboard using the standard ASMO encoding. In any case, the
output has each positioned letter or ligature and each diacritical mark encoded according to
the font’s encoding scheme.

The fonts are assumed to be designed to connect letters that should be connected when
they are printed adjacent to each other.

The postprocessor is an enhancement of the ffortid program that arranges for right-to-left
printing of identified right-to-left fonts. The major enhancement is stretching final letters of
lines or wordsinstead of inserting extrainter-word spaces, in order to justify the text.

As a self-test, this paper was formatted using the described system, and it contains many
examples of text written in Arabic, Hebrew, and English.

o St Wl Topell Wl g by iy JULI L
Lol o o Loow bl Booase Lule oond o
ol o, cobogm, « gpnl wll BLeYL Lo, i,
o s bl Wl (KalEady ol slos
Boaate 356y 3 ol ol Lo VI 5Ll ditoffifortid-)
C_JLM NPT (prepFocmr) C_JLM J._,J o= E)L?,c ditroff/ffortid . <= LslJ|
Da/icelndependmtTypaetter) ditroff « UNIX& o]l HL} JJ (postprocessor)

Received 10 July 1992
[1993 by Johny Srouji and Daniel M. Berry Revised 1 February 1993

Figure 3.7: ffortid example output with combined English, Hebrew and Arabic text

20

Num File Size (lines) Functions
1 lex.h 30 -
2 lex.dit 37 -
3 token.h 34 -
4 macros.h 20 -
5 connect.h 256 -
6 table.h 18 -
7 dump.c 704 10
8 lines.c 296 6
9 main.c 506 1

10 misc.c 129 5

11 width.c 480 10

Total 2510 32

Table 3.2: ffortid source files

3.3 Why We Chose ffortid

ffortid was chosen as the pilot in the case study. As described in section 2.2, there
are two major criteria for selecting a program as a pilot. It should be a typical
legacy code program, although perhaps on a small scale, and it should be possible
to conduct an unbiased experiment using 1t. ffortid is a typical legacy code program
because,

e it has been written over a long time span (9 years), by several different au-
thors (3), and had several versions (3). All of the original authors were busy
with their own lives, and therefore none of them were approached for help in
understanding the design and architecture of the program,

e it i1s in working condition and in current use,

e there are no original design documents; there are some documents describing
the program’s external use and general underlying algorithms and motiva-
tion, but none of these documents actually describe the program’s design or
architecture,

e the program is reasonably well commented, although certainly not fully com-
mented, and

e it is a real program, answering a real need, and it has real users.
ffortid 1s a good candidate program for experimentation because

e it 1s reasonably sized, with 2510 source lines, not too small to be considered
a toy program and not too large for experimentation within the normal time
span of a thesis,

e the author had no previous knowledge of the program; he had never used it
or seen its code before the experiment; in fact, the author also had no prior
experience in using the ditroff text processing system, and

e the control had already written a new version of ffortid using conventional
maintenance methods; this saved some work in the experiment without af-
fecting its results.

For all the above reasons, ffortid was considered a suitable program for the
experiment. The only issue which is not addressed in this analysis i1s the issue of
scale. This issue will be addressed in Section 4.5 and in Chapter 7 describing the
experiment results.

21

Chapter 4

Domain Software
Reengineering of ffortid

The previous chapter described and justified the selection of ffortid as the legacy
application on which to base the case study. The next step in the experiment,
as described in Section 2.2, is the creation of an initial domain from ffortid. This
domain can be defined as the family of ditroff post-processors that can rearrange
text in a right-to-left font so it is written in its proper direction and can stretch
Arabic text so it is left and right justified on the line.

As the author had no previous knowledge of the ditroff text processing system
or the specific domain before the beginning of the experiment, it was only natural
to use bottom-up domain reengineering to extract the knowledge and code that
already exists in ffortid about the domain. He used a method of reverse engineering
to discover the architecture and design of ffortid. The method calls for the decom-
position of ffortid into abstractions called software units. These software units will
be the basis of the domain’s reusable components library. The following section
defines and describes the attributes of software units.

4.1 Software Units

A software unit (SWU) is a well-defined component of a software system, that
provides one or more computational resources or services.

This is a definition of what most refer to as software components or modules.!
However, SWUs are more general than modules. Any software module is by defi-
nition a SWU, but the SWU definition includes software components which would
generally not be regarded as modules. For example, a single statement, a block of
statements, a function, an object oriented class, a single definition and a group of
declarations are all SWUs but would conventionally be considered too small to be
modules. On the other hand, a complete program would not generally be considered
a module, but it is a SWU under this definition.?

The SWU concept gives a uniform view of software. It crosses traditional bound-
aries of scale, language, storage medium, programming or design technique. It can
be applied successfully to any software in any language because it captures the
essence of software, to provide computational services. It can be applied equally
successfully to machine languages, procedural languages, functional languages, or

I Not necessarily compilation units as in C.
2Here the software system of which the program is a component is the operating system envi-
ronment or alternatively any other program which can invoke it.

22

fourth-generation languages. It can be applied to any software using any program-
ming or design paradigm: functional decomposition, OOP etc. Therefore, the SWU
concept and all the techniques described shortly are applicable to any software.

A SWU provides computational services, including resources, to other SWUs or
to an external user of the software system. It can even provide services to itself, as
in recursion. A SWU can either depend on other SWUs to provide its services or
be stand alone. Clearly, the most basic SWUs in a software system will be stand
alone, however, at least some SWUs must cooperate with other SWUs to provide
their services or else, we will be left with a collection of low-level service providers.
Every SWU has a scope, capabilities, interface, requirements,; and type:

e The scope of a SWU is the body of code which it abstracts. The scope does
not have to be contiguous.

e The capabilities of a SWU are the services it provides.

e The interface of a SWU is a description of how its services can be accessed by
its clients, i.e., other SWUs or an external user, and how these services affect

or might affect other SWUs.

e The requirements of a SWU are the services it needs or depends upon in order
to provide its own services.

e The type of a SWU categorizes the SWU into one of several types of similar
service providers.?

Note that the type of a SWU should reflect the kinds of services 1t provides and
not the medium in which it is organized or stored. In some languages the name of
the storage medium is also the name of the type. For example, in C, a file is both
a storage medium and a type of SWU.

The environment of a SWU is all the software in the context in which it is used
which is not in its scope. The environment of a SWU therefore depends on the
context in which it is used and is different for each use.

When we wish to use or reuse a SWU in a software project, we are mainly
interested in its capabilities, interface, and requirements. Its capabilities tell us
what services 1t can provide our project. Its interface tells us how we can access
these services and in what way, if any, do these services affect the rest of the SWUs
in the project. Its requirements tell us what other services must already exist or be
added to our project if we want to use this SWU. Its requirements can even decide
the method by which the SWU will be included in the project.

If we wish to create a reusable component library, the above information should
be all we need in order to make a successful reuse library. This information should
be documented for each SWU in such a way that it will be easy for the potential
user to find the needed SWU, and once found, to know how to include it into his
software project, how to access it, and how it might affect the rest of the software
in the project.

4.1.1 Software Unit Interface and Side-effects

Every SWU provides a set of services. We can divide the interface of each service
into its access interface i.e. how the service is accessed or initiated and its result
interface 1.e. how the service results, if any, are returned.

3The different types are decided upon by the decomposer and are language dependent. Example
types in C are: function, procedure, declaration, definition, groups of the above, file, module and
program.

23

A resource 1s a SWU service that does not have a result interface, for example,
the definition of a new type. Other SWUs that include this definition, via the access
interface, can use the newly defined type. However, this inclusion does not generate
any result and therefore this SWU has no result interface. Resources are usually
definitions or declarations that do not provide computational services.

The result interface itself can be divided into 2 parts, results returned through
the access interface of the service and results not returned through the access in-
terface. The latter are called side-effects. In other words, a SWU service side-effect
is a change in the SWU environment which is not clearly stated or visible in the
service’s access interface.

The problem with side-effects 1s well known. They cause SWUs to be depen-
dent on each other in a non-clear fashion. Once a side-effect is generated, it can
propagate through a system and cause unexpected results. Therefore; side-effects
are something we generally wish to avoid.

However, not all side-effects are bad. Some of them are intentional or unavoid-
able. For example, a printing function that prints to a fixed stream will always have
a side-effect, the printing, but this is intended and documented. If the stream to
be printed is passed as a parameter to the printing function, then it is a matter of
interpretation if the printing is or is not a side-effect. The hard-liners would argue
that since the printing is an effect outside the environment of the program, to a
permanent file, for example, this is still a side-effect. The soft-liners would view the
streamn parameter as representing the stream and would therefore argue it is not a
side-effect. Personally, I believe the hard-liners are more precise in this case. Some
examples of things that are, and are not, side-effects:

1. The value returned by a function call is not a side effect because the fact that
a value will be returned 1s clearly stated in the function definition, the access
interface.

2. Accessing an external variable and reading its value is not a side effect because
their is no change in the value of the external variable. Note however, that
a declaration of the external variable is necessary for the SWU to function
correctly, but this does not affect the access interface of the SWU, just as the
call in the body of one function to another does not add the second function to
the access interface of the first. The external variable and the second function
are part of the requirements interface of the SWU because they are necessary
for it to provide its own services.

3. Memory allocation or deallocation inside a function is a side effect unless the
allocated memory is deallocated before the function returns.

4.1.2 Software Sub-Units

The SWUs s1, ..., s, are the sub-units of a SWU S if and only if the following two
equations hold:

scope(S) = U scope(s;) (4.1)
i=1
V1<=14,j <=n,i#£j scope(s;) ﬂ scope(s;) =0 (4.2)

Every non-trivial SWU can be decomposed into its software sub-units. A sub-
unit is a SWU in its own right. The scope of each of the sub-units must be mutually
exclusive and the union of the scopes must be equal to the scope of the parent SWU.
As with SWUs, the scope of each sub-unit does not have to be contiguous.

24

AN

Figure 4.1: Example scope diagram

The sub-units of a single SWU do not all have to be of the same type or be
recorded in a certain order, such as their scope order. However, the sub-units
should be composed in a defined manner in order to create the parent SWU.

The decomposition of a SWU into its sub-units is not unique, and is dependent
on a partitioning criteria provided by the decomposer. Figure 4.1 shows an example
scope diagram, which i1s a graphical description of the decomposition of a SWU into
its sub-units. It shows that a SWU named ffortid is decomposed into 5 sub-units.
Each SWU in the diagram has a name and an identification number.

Section 4.2 examines partitioning criteria for SWUs. There is however, one rule
which must be followed universally. This rule states that it is not desirable for a
SWU to have more than 7 sub-units. The reason for this is purely psychological.
The human brain has difficulty understanding more than 7 clusters at the same time
[20], and having too many sub-units would therefore impede the understanding of
the architecture of the SWU. If one does have a natural decomposition into more
than 7 sub-units he or she should attempt to logically group some of them into a
single sub-unit. If it does not seem natural to decompose the SWU into less than 7
sub-units, this usually indicates that one has some complexity problem in the SWU
abstraction and it should, perhaps, itself be split into smaller abstractions.

The capabilities of a SWU are not necessarily the sum of the capabilities of its
sub-units. Using the well known information hiding principle, a SWU can hide to
its own clients some of its sub-units’ capabilities which are seen to its creator as
internal. This is achieved by also hiding the interfaces of the services we wish to
hide. In this way we can achieve different levels of abstraction, and hide the internal
details and workings of a SWU. Therefore we can define:

e The hidden-capabilities of a SWU are the subset of its capabilities that it does
not to expose to its clients.

e The hidden-interface of a SWU is the subset of its interface that it does not
to expose to its clients.

The requirements of a SWU are also not necessarily the sum of the requirements
of its sub-units. The reason for this is that one sub-unit can answer some or all
of the requirements of its brother sub-units. Therefore, it is quite possible to a
have a stand-alone SWU with sub-units such that some or all of them do have
requirements.

The side effects of a SWU are the side-effects of its sub-units that affect its
environment. Sub-unit side-effects that affect only other sub-units are not side-
effects of the parent SWU.

I can now relate more precisely between the attributes of a SWU and the at-
tributes of its sub-units. Given a SWU S and its decomposition into sub-units
$1,..., 8y the following lemmas hold:

capabilities(S) = U capabilities(s;) \ hidden-capabilities(S) (4.3)

i=1

25

n

interface(S) = U inter face(s;) \ hidden-interface(S) (4.4)

i=1
requirements(S) = U requirements(s;) \ U capabilities(s;) (4.5)
i=1 i=1
side-effects(S) = (U side-effects(s;)) ﬂ inter face(S) (4.6)
i=1

The natural decomposition of a SWU into software sub-units which could them-
selves be decomposed into even smaller sub-units etc, creates a hierarchical map of
SWUs describing the architecture of the root SWU. This gives rise to the following
definition:

The Architecture of a Software Unit S is a rooted tree of SWUs, where the root
of the tree represents S and each of the other nodes in the tree is a direct sub-unit
of its parent node. The architecture of a SWU is a tree because, by the definition
of sub-units, the scope of all the sub-units in the architecture is mutually exclusive.
Since the decomposition of a SWU into its sub-units is not singular, we can have
different architectures for the same SWU. This is an indication of the different
perceptions different decomposers can have of the same SWU.

SWU architectures are graphically described by using multilayer scope diagrams
(see Figure 4.10). Although they do not look like rooted trees, they are semantically
equivalent and more readable.

4.1.3 Service Flow Diagrams

A Service Flow Diagram (SFD) is a graphical description of the service flow between
one or more SWUs. Different graphical icons are used to describe the different types
of SWUs and the different kinds of services that they can provide. A summary of
the major icons used is shown in Figure 4.2. A complete list of the SFD icons with
explanations can be found in Appendix A.

As shown in Figure 4.2 a SFD can show three types of service flow: data, function
call, and declaration/definition use. The first shows the existence of data flow from
one SWU to another. The second shows a function call from one SWU to another.
The last shows the use of definitions or declarations from one SWU by another.
It is, of course, possible to think of other interesting service flow types. However,
these types were sufficient for the current experiment.

The precise semantics of a service flow are not shown in its SFD. If necessary,
these could be documented in the interface section of the SWU.

The SFD of a single SWU can show different service flow views between the
SWU and its environment. It can show the services that a SWU provides and how
it provides them, i.e., the access and result interface, and/or it can show the services
it requires in order to provide its services, i.e., its requirements. The boundary
between what is internal and what i1s external to the SWU is shown by a dashed
borderline.

Figure 4.3 shows the SFD of the SWU representing the complete ffortid program.
It shows the interface of ffortid and the services required by it in one diagram. ffor-
tid receives input from stdin and from the command-line through argc and argv and
outputs to stdout and stderr. ffortid needs to read in a description file and several
font files to provide its services. Note that without reading additional documenta-
tion or providing different views of the SFD one cannot always distinguish between
interface and required services.

26

Software Unit

XXX isthe name of the SWU.
nisits number (optional)

10 File

XXX

XXX isthe name of thefile

Local Variable

XXX

XXX isthe name of the variable

Parameter Variable
XXX ®

XXX isthe name of the variable

Return Variable
XXX ®

XXX isthe name of the variable

External Variable
XXX @

XXX isthe name of the variable

SWU Borderline

XXX isthe name of the SWU

Parameters Group

Groups parameters of func for
SWU entry point

Data Flow Relationship

Data flows from SWU A to
SWuU B

Bi-Directional Data Flow
Relationship

Data flows from SWU A to
SWU B and vice-versa

Call Relationship

SWU A cdls a function in
SWuU B

Use relationship

SWU B uses declerations or
definitionsin SWU A

Figure 4.2: Major icons used in SFDs

27

descfile arge ® argv ®

fontfilel
stderr
fontfilen @
stdout
stdin

Figure 4.3: A SFD of the SWU abstracting ffortid

One can show service flow between any number of SWUs. It is interesting to
show the SFD of a SWU and its sub-units in one SFD. Such a diagram shows which
of its sub-units provides each service, and what services flow between the sub-units
themselves. All the sub-units of the SWU are shown in the diagram. However,
some of them could be internal in the sense that they only provide services to other
sub-units and no services to the SWU environment.

Figure 4.4 shows an example of such a SFD. In it we see the SFD of the SWU
abstracting the dump.c file in ffortid. dump.c has 5 sub-units, one of which, the “re-
calc_horiz” sub-unit, is hidden as an implementation detail of the SWU. It provides
function call services to two other sub-units, “dumpline” and “reverse_line” and no
services outside the SWU. Note how dump.c changes 6 global variables as a side-
effect and one can see this side-effect originates in the “dumpJline” sub-unit. Also
note that this SFD does not show the services required by dump.c. For example, we
do not see any services that the “dump_line” sub-unit requires in order to provide
its own services that are not in any of the other sub-units. We do, however, see the
side effects of any such required services, if there are any.

In the previous sub-section, I stated that it is not desirable for a SWU to have
more than 7 sub-units. The SFD of such a SWU would probably be too complex to
understand. I have observed that there is a correlation between the visual complex-
ity of a SFD and the external complexity of the SWU. A SWU can be internally
very complex. However, if it has a very simple interface, then it usually captures a
very well defined concept and is therefore easy to understand by humans. A SWU
that has a very large interface is more difficult to understand. However, if this large
interface is really a collection of individually simpler interfaces, such as function
calls, then it can more easily be grasped.

A SWU that has side-effects is more difficult to understand than one without
any side-effects, especially in the context of the other SWUs. For example, a SWU
that changes many global variables is difficult to understand. Figure 4.5 shows such
an example SFD which is very difficult to understand. Perhaps a SFD can serve as
an important indication of the external complexity of a SWU.

28

out_fontable @ out_font @ out_horizontal @ out_size @ out_font_name @

' out_vertical
sat (P | ! ®
1
I I
end ‘ <~ dump_line |
e ‘ :
- I I
I I
—_— I I
reverse Ir Q ‘ |
I I
| |
I - I
S N I
! connect @ recalc_horiz !
I - 21 I
I I
I
st (P
stdout

| dump_defin
! 18
|

reverse line
20

Figure 4.4: SFD of dump.c SWU with its sub-units

29

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

in_font i @ ; i

oas o

O

.
@ v 5/ ‘i\‘ &
S i tabe B

]
| init_dev_fon
_ l 36
: |
: ! 1
: sl ‘
: ® i
e !
I
I
descfile !
I
I
[
l
fontfilel |
width_defin
35

ic_faont_in |
I

| |

- I, |
: } code table (E)s7

| |

fontfilen } }

| |

| debug_error fontdir i
w v

|

I
“d 1 ‘
err | .
I size_char_name |
' width.c ®Z‘—\

,,

indx_table

Figure 4.5: A complex SFD

30

4.2 Reverse Engineering a Software Unit

Reverse Engineering an existing SWU has two major goals [1]: to recreate the
architecture and design of the SWU by decomposing it into sub-units identifying
meaningful higher level abstractions and to assist understanding of the SWU by
documenting the SWU and its sub-units. Additionally, reverse engineering a SWU
has the following sub goals:

e to identify SWUs which are candidates for reusable software components,

e to recover information which 1s not documented in the source code, for exam-
ple, modifications which were performed during maintenance but were never
documented,

e to detect incorrect documentation, errors etc., which exist in the source code,
and

o to detect side effects in the SWUs.

Understanding of the structure and functionality of the SWU is facilitated by
providing the engineer with a top-down progression of more detailed information on
the SWU and its sub-units. The capabilities of each SWU are documented with the
ald of comments extracted from the source code. The interface and requirements
of each SWU are also documented from the source code. Graphical representations
of the service flow between SWUs (SFDs) are generated.

In order to recover the design of a SWU we must decompose it by recursively
partitioning it into smaller and smaller sub-units. As defined in section 4.1.2, the
architecture of the SWU is represented by a hierarchical map of SWUs, where
descendant sub-units show an explosion of their parent SWU. All external service
flow between partitioned SWUs are propagated up to a common ancestor SWU.

The decomposer must have some partitioning criteria to guide the decomposition
process. This will usually be the syntactical structure of the code combined with
the principles of cohesion and coupling. For example, a program in C will first be
decomposed into its compilation units (modules). If there are too many modules,
we can logically group related modules to create a smaller number of sub-units.
This grouping will follow the principles of cohesion, i.e., strong service relations
inside a SWU, and coupling, i.e., weak service relations between SWUs. Each of
these module groups will be decomposed into its modules. In the next step, each
compilation unit can be partitioned into its source files; again grouping some of
them if there are too many of them. Source files will be decomposed into their
global functions etc.

The decomposer must also decide on the desired level of detail and stop parti-
tioning when that level is reached. We want to decompose SWUs down to a level
which holds abstractions which are good reuse candidates. On the other hand, it is
important to obtain SWUs with a granularity that does not clutter the visualization.
The statement level in a function 1s usually too low to be a good reuse candidate. A
good decomposition level in C is the function or group of functions level. Of course,
sometimes we find very large functions from which we can find groups of statements
that are good abstractions and therefore good reuse candidates. This implies that
the function was too large to begin with, and should have been split into several
functions in the original design.

As explained in Section 1.1, reverse engineering is a process of examination. We
are trying to recapture the architecture and design of the SWU as understood by
its creators and modifiers. This is not necessarily the best possible architecture
and reverse engineering is not concerned with improving the design in any way.

31

Any improvements we believe can be inserted into the design can and should be
recorded, but should not be implemented during the reverse engineering process.
In later life-cycle phases, we may be able to justify some or all of these changes and
perform them as necessary.

The process of decomposition is best performed by starting from the SWU to
be decomposed, determining its sub-units and proceeding recursively. However,
the attributes of each sub-unit should be determined in a bottom-up fashion. The
reason for this is that the major attributes of a sub-unit, its capabilities, interface,
and requirements are difficult to determine accurately without first determining the
same attributes of its own sub-units. Section 4.1.2, showed that the capabilities of
a SWU are determined by the capabilities of its sub-units. The side-effects of a
SWU are the side-effects of its sub-units minus those that do not affect the outside
environment of the SWU. The requirements of a SWU are the requirements of its
sub-units that are not satisfied by any of the other sub-units.

It is therefore natural to view the capabilities, and interfaces, of the SWUs as
being propagated from the most low-level SWUs up through the SWU architecture.
When determining the capabilities of a certain SWU we can decide not to pass on
a certain service, thereby hiding it and creating higher level abstractions. A SWU
requirement will be propagated up until it is satisfied by a SWU at a certain level,
at which point i1t disappears. Side effects are propagated up from their originating
SWU until they reach a level, if at all, in which they are no longer considered side
effects because their effect becomes internal to the SWU at the new level.

To summarize, there are 4 major points in reverse engineering a SWU:

1. Partition the SWU into sub-units and continue recursively.

2. Partition the SWU according to the syntactical structure of the SWU and the
principles of coupling and cohesion.

3. Partition the SWU down to the desired abstraction level of good reuse candi-
dates.

4. Determine the attributes of the sub-units in a bottom-up fashion.

4.3 ffortid Version 3.0 Reverse Engineering

The author performed a process of reverse engineering as described above on ffor-
tid Version 3.0. The process was performed completely manually using only tradi-
tional methods of text editing and UNIX commands such as grep. All SFDs were
drawn manually using Pic [21]. The whole process was very laborious and it was
completed successfully only because ffortid is a relatively small program.

The following SWU classifications were chosen as types: Program, Module,
Source file, Declarations source file, Definitions source file, Data file, Definitions
block, Declarations block, Procedure group, Function group, Procedure, and Func-
tion.

It was decided that the required level of detail will be no smaller than functions
or procedures. It turned out to be unnecessary to carry out all refinements to this
level.

The partitioning criteria was similar to the one described in the previous sec-
tion. In some cases it was decided to partition a SWU in one way, and later on
after understanding the SWU better, a different partitioning that captured the new
understanding more precisely was used. This i1s a natural and expected phenomena.
As one learns more about the software and understands it better, one might see the
abstractions of the software differently.

32

Software Unit #1 — ffortid
1.1 Software Unit Type

Program. (lex.h, lex.dit, token.h, macros.h, connect.h, table.h, dump.c, lines.c, main.c, misc.c,
width.c)

1.2 Scope Diagram

1.3 Capabilities

ffortid takes from its standard input dtroff output, which is formatted strictly from left-to-right, finds oc-
currences of text in aright-to-left font and rearranges each line so that the text in each font is written in its
proper direction. Additionaly, ffortid left and right justifys lines containing Arabic & Persian fonts by
stretching connections in the words instead of inserting extra white space between the words in the lines.

1.4 Interface

command line options:
ffortid[-rfont-position-list]..[-wpaperw dth][-afont-position-Ilist]..
[-s[nffll|a]l] ...

The -rfont-position-Iist argumentis used to specify which font positions are to be considered
right-to-left. The - wpaper wi dt h argument is used to specify the width of the paper, in inches, on
which the the document will be printed. The - afont - position-1i st argument is used to indicate
which font positions, generally a subset of those designated as right-to-left (but not necessarily), contain
fonts for Arabic, Persian or related languages. The -s argument specifies the kind of stretching to be
done for all fonts designated inthe - af ont - posi ti on-1i st

1. - sn — Do no stretching at al for all the fonts.

2. - sf — Stretch the last stretchable word on each line.

3. -sl — Stretch the last stretchable word on each line up to a maximum length.

4. - sa — Stretch all stretchable words on the line by the same amount.
The default is no stretching at al.

Manual connection stretching can be achieved by using explicitly the base-line filler character \ (hy in
the dtroff input. It can be repeated as many times as necessary to achieve the desired connection length.

Side effects:

1. ffortid reads dtroff output from stdin and prints dtroff output to stdout.

2. ffortid prints encountered errors to stderr and halts program.

3. ffortid allocates and frees memory from the heap. If out of heap memory ffortid printsa
““out of memory”” message to stdout and halts program.

Figure 4.6: First part of ffortid Version 3.0 SWU 1 page

33

1.6 Service Flow Overview Diagram

decfile arge ® argv ®

fontfilel

stderr

fontfilen

stdout

stdin

Figure 4.7: Third part of ffortid Version 3.0 SWU 1 page

Each SWU in the decomposition was documented in what is called a Software
Unit Page. Figure 4.6 shows the first part of the page documenting the SWU
abstracting the complete ffortid program (SWU 1). The first section of the page
titled “Software Unit Type” describes the SWU type and scope. In this case, the
type of the SWU is “Program” and its scope is all the source files of the program.
Section 2 (1.2) of the page is the scope diagram of the SWU showing graphically
the SWU and its sub-units. The sub-units of ffortid are the 5 modules from which
it is created. This is a natural decomposition which captures the architecture of the
program. Note that each of the sub-units has, of course, its own SWU page which
describes i1t completely in the same fashion.

The third section of a SWU page, titled “Capabilities”, gives a verbal description
of the capabilities of the SWU. This should be a precise and concise description of
the SWU capabilities in a language which is clear to the domain and software expert.
In the case of ffortid, this section describes the capabilities of the complete program.

The fourth section of the SWU page, titled “Interface”, gives a precise de-
scription of the interface of the SWU. This is simply a list of the different services
provided by the SWU. The interface section describes, as described in Section 4.1.1,
the side effects of the SWU. In the case of ffortid, the interface is the command-line
options of the program. These are described completely in the section.

As defined previously, side effects are changes in the SWU’s environment which
are not clearly visible or stated in the SWU service’s access interface. In this
case, the environment of ffortid is the operating system environment. Therefore,
all effects which are not clear from the command-line options must be considered
side effects, although some or all of them might be part of the normal function
of the program. Reading and writing to files/streams, allocation and deallocation
of dynamic memory are therefore all side effects vis-a-vis ffortid and they are all
recorded in this section.

In most SWU pages, the fifth section, which holds a SFD of the SWU, is the
last section of the page. To SWU 1 it was decided to add a sixth section, titled
“Service Flow Overview Diagram”, which is also a SFD describing the services

34

1.5 Service Flow Diagram

r—-—""""""™""~""*"~>"~>""~>"*"~"~"~"~"~"~"~"~"~"~"~"Y"”" ” " ”" 7” =” =" =" =”" ” =” =” =” = = =/ ° a

I I

descfile ‘ !
! ngth | stderr

: I

fontfilel |~ |

I I

I I

| |

I

fontfilen 3 dump i

I 2 I

I I

I I

I I

; | main lines '
stdin ‘ 4 3 ‘ stdout

I I

: I

! misc !

arge P ! 5 1

I

I I

L ffortid !

agy (P) "o -

Figure 4.8: Second part of ffortid Version 3.0 SWU 1 page

and side-effects of the SWU, but without showing the internal structure or service
flow of the SWU. This SFD is a simplification of the SFD of the previous section
with the intention of showing the SWU as a “black box”. It does not add any
information to the previous SFD. In Figure 4.7, we see that ffortid receives input
from the command-line, argc and argv variables, from the standard input stream,
and from a number of files, and outputs to the standard output and standard error
streams. The allocation and deallocation of dynamic memory is not shown in the
diagram, although with appropriate icons it certainly could have been.

As mentioned previously, the fifth section of a SWU page holds a SFD that
graphically describes the services provided by a SWU to its environment, the side
effects of these services, and the service flow between the sub-units of the SWU.
Figure 4.8 is this SFD of SWU 1. Unlike the SFD in Figure 4.7, it shows in detail the
service flow between the sub-units of ffortid and their relation to the environment.
For example, in it we can see that the command-line options and the standard
input are read by SWU 4 which abstracts the main module. The other input files
are read by the width module. Standard output is generated only by the lines and
misc modules; and output to standard error is generated only by the main and width
modules. In the SFD one can see which module calls functions in other modules
and from which modules does data flow to other modules.

There is no requirements section in our SWU pages. The reason for this is
that the reverse engineering process was performed before the significance of such
a section was realized. Clearly, such a section is needed for the potential user of
a SWU. In it, he or she will find what environment must exist for the SWU to
function properly.

As stated previously, each of the SWUs in the decomposition was documented
by a SWU page. Figure 4.9 shows the SWU page of an intermediate SWU in the
decomposition, SWU 16. Note how the function width, SWU 34, is a sub-unit of
SWU 16 but is not part of its interface. The reason for this i1s that width provides
no services. This can be seen in the SFD of SWU 16, width has no parameters and
returns no value. This function is an archeological relic of some earlier development
phase of ffortid.

35

Software Unit #16 — misc.c
16.1 Software Unit Type
Source file. (misc.c)

16.2 Scope Diagram

out_of_memory
32

16.3 Capabilities
Contains a number of general support routines.
16.4 Interface

Functions:

new_f ont - adds anew font to the font table.

font _i nf o - extracts afont number and name from afont token string.

out _of _nenory - printsan ““out of memory”” error message and halts execution.
yywr ap - standard lex library function called whenever lex reaches an end-of-file.

Side effects:

1. new_f ont changesvaluesinthe passed font _tabl e.

2. font _i nf o returnsthrough f ont _nunber the font token number and through f ont _nane the
font token name.

3. out _of _menory prints “out of memory”” error message to stdout and causes program to halt.

16.5 Service Flow Diagram

font_number@ font_name ® font_direction ® font_table ®

stdout

Figure 4.9: SWU 16 page in ffortid Version 3.0 decomposition

36

4.4 ffortid Version 3.0 Architecture

Altogether, ffortid Version 3.0 was decomposed into 41 SWUs of which 28 are low-
level. Each SWU was given a name and identification number. Additionally, the
size of each SWU, and the number of lines in its scope, were recorded. Table 4.1
summarizes this information for all the SWUs in the decomposition.

Figure 4.10 shows the complete decomposition of ffortid into its SWUs in the
form of a scope diagram. Due to the diagram’s length, it was broken into 5 scope
diagrams, one for each of ffortid’s direct sub-units. They are shown one on top
of the other but should be connected as shown by the dashed arrows. Note that
SWUs abstracting header files (such as token.h) appear several times in the diagram
because they are included by different SWUs.

The process of reverse engineering ffortid by decomposing it into SWUs, creating
a page documenting each SWUs scope, capabilities, interface, and SFD proved itself
as very effective in advancing the author’s understanding of the architecture of a
program about which he initially knew nothing.

In general, ffortid’s architecture is a rather outdated form of structured program-
ming. There is heavy use of global variables, which in some cases can be justified,
but could always have been avoided to achieve higher independence between mod-
ules. This outdated architecture is exemplified in the SWUs which are sometimes
not as reusable as desired, since they are abstractions of the code as is, without any
modification.

The basic idea in ffortid 1s to read in the ditroff output tokens, convert them to
an internal representation, perform any calculations and alterations to the lines of
tokens as necessary in order to change text direction and/or justify lines, and then
output the token lines in the same format as ffortid input.

ditroff output is a stream of well-defined tokens which are device-independent
commands to a typesetter (usually a printer). These commands include such things
as device resolution definition, font mounting, character printing, horizontal and
vertical movements etc. This stream of tokens i1s parsed by SWU 14, which is
generated by Lex based on SWU 27, into lexical tokens, SWU 8. SWU 4, the Main
module, parses the command line options and stores them in global variables. It
then reads in token by token using SWU 14, and depending on the token type
either immediately outputs it as is, or if it 1s a character token, stores the token in
a token structure, SWU 7, which holds lines of character tokens. Main simulates
the actions of the typesetter by recording its changing state as fonts and point sizes
are changed and movements are performed. Main uses services in Lines;, SWU 3,
to create and free token structures, some miscellaneous services in Misc, SWU 5,
and services in Width, SWU 6, that calculate the width of characters according to
their font and point size. This information is needed for line width calculations and
character transformations within lines.

The heart of ffortid 18 in SWU 2, Dump. In it, lines of character tokens are
transformed according to the command-line options stored in global variables and
then output using services in Lines. For its calculations, Dump needs some width
services from Width. Dump reverses characters of the fonts that are specified in the
command-line as those to be reversed and stretches lines that contain characters in
the fonts specified in the command line as those to be stretched. The stretching of
the lines is performed according to the stretch style requested by the -s option, as
described in the SWU 1 page.

The complete decomposition is available in Adobe Acrobat pdf format with
hypertext links between the different SWU pages [22]. This electronic manual can be
read using Adobe’s Acrobat reader which is available free of charge. The hypertext
links enable easy traversal between SWU pages, source code and all other relevant
documents.

37

Num | Name Type Size(lines) | Low-Level

1 ffortid Program 3422

2 Dump Module 1044

3 Lines Module 398

4 Main Module 1299

5 Misc Module 201

6 Width Module 480

7 token.h Declarations source file 34 *

8 lex.h Definitions source file 30 *

9 macros.h Definitions source file 20 *
10 connect.h Datafile 256 *
11 dump.c Sourcefile 704
12 table.h Declarations source file 18 *
13 lines.c Sourcefile 296
14 lexer Lex generated sourcefile 691
15 main.c Sourcefile 506
16 misc.c Sourcefile 129
17 width.c Sourcefile 480
18 dump_defin Definitions block 34 *
19 dump_line Procedure 103 *
20 reverse line Procedure 83 *
21 recalc_horiz Function group 463
22 print_line Procedure 21 *
23 lines_defin Definitions block 35 *
24 new_free token | Function group 85 *
25 insert_tokens Procedure group 52 *
26 put_tokens Procedure group 124 *
27 lex.dit Lex sourcefile 37 *
28 main_defin Definitions block 58 *
29 main Function 448 *
30 new_font Procedure 41 *
31 font_info Procedure 41 *
32 out_of memory | Procedure 17 *
33 yywrap Function 13 *
34 width Function 17 *
35 width_defin Definitions block 47 *
36 init_dev_font Procedure group 229 *
37 width_calc Function group 122 *
38 debug_error Procedure group 82 *
39 recalc_horiz_2 Procedure 53 *
40 calc_total Function 48 *
41 stretch Function group 361 *

Table 4.1: ffortid Version 3.0 software units

38

width_defin
35

out_of_memory

Figure 4.10: Overview of ffortid Version 3.0 decomposition

39

4.5 Awuthor’s Conclusions from Decomposition

Performing a decomposition of a legacy program has a lot in common with archeol-
ogy. One discovers mixed layers of architectures and changes performed by different
programmers at different times and with different programming paradigms. A good
legacy program is one that is relatively homogeneous despite the various changes it
has undergone throughout its lifetime.

As I examined the code during the partitioning phase, I added my own comments
to help me understand what each piece of code was doing. During this phase I had
found several small bugs, erroneous comments, unused code and variables and even
a gross differentiation from the documentation in the manual page. Clearly, this
is a result of the many modifications performed on the code. In general, the code
was readable and had enough significant names in it to help understand the overall
architecture of the program. I did not however attempt to understand the details
of each and every algorithm, but instead to gain insight into the structure of the
program.

I have found that building the SWU pages was best performed by starting from
the lowest level SWUs and working my way up to higher level SWUs. The reason for
this was that all the capabilities, interfaces and side-effects of the SWUs propagate
up from the low level to the high level SWUs. It is simply not possible to document
correctly a higher level SWU without first documenting its lower level SWUs.

I found 1t important to be able to understand the interaction between the differ-
ent parts of the code. This includes recognizing the use of global variables, function
calls etc. and where these were defined. 1 used grep to do these simple tasks, but
the ability to perform automated queries on the code, just as in a database, and
generate different views of the code, in my view, can greatly advance the software
understanding process.

The SFD were actually the last thing I added to the decomposition. I found
that they were a lot of work and did not help much in the decomposition itself, 1.e.,
deciding on the partitioning criteria. Additionally, I have found that they did not
help much in the understanding of SWUs especially in levels lower than function or
procedure. I found it much easier to read statements of code than to understand
a graphical description of these statements. However, the graphical documentation
was very helpful giving a global view of high level SWUs services especially when
you try to understand a SWU you have not worked with in a while.

The manual reverse engineering process I performed, helped me reach conclu-
sions on what functions a dedicated CASE tool should provide to aid this process.
There 18 much paperwork in this method and without such dedicated CASE tools
no single or group of engineers can be expected to complete it in a reasonable pe-
riod of time on large legacy systems. Fortunately, most of this paperwork can be
automated successfully. In my view, this method of reverse engineering is viable on
real, large volume, complex legacy code systems only with such CASE tools.

In general, a CASE tool should automate everything that can be automated
and leave to the human operator that which cannot be automated well. The same
is true for a reverse engineering CASE tool. It does not need to, and should not,
replace the human decisions needed in the process. The documentation of SWU
interfaces and SWU requirements, extraction of relevant comments, and generation
of SFDs can all be automated. Precise partitioning of a SWU and capabilities
documentation must still be mostly manually performed. Such tools are therefore
semi-automatic reverse engineering tools.

With the use of expert knowledge, a reverse engineering tool can provide sug-
gestions to help the human operator make faster and more knowledgable decisions.
For example, it can suggest one or several options for partitioning a SWU accord-
ing to its syntactic structure and/or the resulting service flow dependencies between

40

the sub-units. The human operator can then decide to accept one of the suggested
decompositions or provide one of his own. More advanced tools could even try to
learn new partitioning criteria from previous human partition decisions.

To summarize, a CASE tool can help a process of reverse engineering by:

e suggesting criteria, alternatives, implications, and places to partition a SWU,
perhaps using Al knowledge expert technologies,

o generating automatically the SFDs,
e generating automatically all or most of the side-effects of a SWU,
e generating automatically the requirements of a SWU,

e handling most of the paperwork involved; a change in one SWU should prop-
agate automatically to all affected SWUs,

e extracting or pointing to comments in the code which might be of use in
documenting a SWU,

e building a database of the SWU architecture on which different queries can
be performed, and

e allowing the addition of new comments to the source code as additional com-
ments and not as part of the code.

Such a dedicated CASE tool should not only provide assistance in the reverse
engineering process itself, but it should provide an environment in which the discov-
ered architecture can be traveled through i.e., to move from one SWU to its parent
SWU or to one of its sub-units, to view a SWU’s attributes, to transfer between the
abstraction and the source code, and to see different views of the stored informa-
tion such as all uses of a global variable, function calls, etc. The reverse engineering
tool should build a SWU database which can be viewed and easily changed as we
change previous decomposition decisions. This database will later serve as s basis
for changing the source code or SWU structure.

The fact that the complete SWU architecture is stored in a database will greatly
help the following steps of changing the different components and realizing the
effects of these changes.

4.6 The Initial Domain

The domain under consideration is the family of applications that are ditroff post-
processors capable of reversing text in right-to-left fonts and capable of left and
right justifying lines by stretching Arabic text.

The author decided to use the architecture of ffortid Version 3.0 as discovered
by the reverse engineering process as the basis of the initial domain architecture.
Each of the SWUs in the decomposition is a reusable component in the domain.
Some of the reusable components are low-level. Others are themselves composed of
lower level reusable components. The SWU pages document the capabilities and
interface of each SWU and therefore of the reusable components.

The initial domain has only one SWU representing an application, SWU 1, and
one way of composing the different reusable components to create it. SWU 1 is
directly composed from 5 high level reusable components:

e SWU 2 - Dump - a module that contains routines to reverse and stretch
internal token lines.

41

e SWU 3 - Lines - a module that contains routines to allocate, free, and output
internal token lines.

e SWU 4 - Main - a module that parses the command-line options and runs the
main ffortid driver routine.

e SWU 5 - Misc - a module that contains some general support routines.

e SWU 6 - Width - a module that contains global variables to store the font
and width tables and routines to initialize them and return character widths
based on them.

The reusable components created from these SWUs are not always very adapt-
able or reusable. Some of them are not as independent from other components as
would be desired. The intention is that they be transformed in an evolutionary
manner to more adaptable components by a continuous flow of new external re-
quirements for more advanced applications in the domain. It is possible to speed
up this natural process by performing, at selected life-cycle points, a top-down
domain engineering effort to refurbish the components for future requirements.

For example, it was possible not to use the architecture and components recov-
ered from ffortid as is, but instead to use them as a basis for a domain with object
oriented reusable components by extracting and analyzing the knowledge and code
in the components. This method is arguably faster and less costly than building a
domain from scratch because the designers have to their advantage the knowledge
and experience of previous generations of programmers embedded in the legacy
code. However, this technique is highly dependent on the domain and quality of
the legacy application being leveraged.

In very complex domains with large legacy applications, such a preventive main-
tenance effort would be very costly and risky and therefore difficult to justify. In
such a case, it is probably better to let the domain evolve in an evolutionary man-
ner. This is the case to be checked in this experiment. Do our reusable components
become better as more applications are created from the domain? How does the
domain adapt under these circumstances?

42

Chapter 5

ffortid Version 4.0

After successfully building an initial domain architecture and reusable components
1t was time to proceed to the next experiment stage. According to the experiment
design, a new set of previously unknown requirements must be devised for a new
application in the domain.

Berry had already created, as part of his research, a new version of ffortid accord-
ing to a set of requirements he devised. He used his own systematic maintenance
method to implement these requirements. Only after I had finished creating the
domain, was I presented with this new set of requirements, so they could not have
affected in any way the architecture of the domain I created.

I was to implement these new requirements using the legacy and reuse based life-
cycle model as my basis. As previously described, the intention is that the domain
develop in an evolutionary manner according to external requirements. Therefore,
no modifications will be made to the domain unless they can be completely justified
by new requirements, or perhaps, by errors found in existing components. The new
application 1s named ffortid Version 4.0.

5.1 SWU Modifications

All modifications to a SWU are performed on its scope, i.e. its source code. A
modification of a SWU can potentially affect the 3 major attributes of a SWU: its
capabilities, its interface, and its requirements. All these attributes are orthogonal
and therefore each one of them can either be, or not be, affected by each modifica-
tion.

The type of a SWU will usually not change by a modification, unless it 1s a
major modification in which case it 1s not clear if the new SWU is logically the
same as the old one. A SWU is an abstraction of a concept in the domain. One
can update the abstraction as the domain changes, however, a major change in the
abstraction does not leave us with the same SWU.

Most modifications are performed to change a SWU’s capabilities and /or inter-
face. Modification of a SWU’s requirements is usually a side-effect of these changes
unless 1t is itself the required change. We have categorized the 4 types of modifi-
cations possible looking only at how they affect the capabilities and interface of a
SWU (see Table 5.1).

A type I modification of a SWU is simply a reimplementation of the SWU without
changing its capabilities or interface. Such a modification will usually be performed
either as part of a preventive maintenance effort or in order to increase the perfor-
mance of the SWU in some respect, e.g., time, space, etc. Such modifications do
not change any of the services provided by the SWU or how it interacts with its

43

Type Capabilities Interface
Modified Modified

I no no
1 no yes
Il yes no
v yes yes

Table 5.1: SWU modification types

environment.

A type Il modification of a SWU does not change any of its services but does
change the way the environment accesses them. Usually such a modification will
result in a simpler, easier to understand, easier to use interface and this is the
main motivation for such a change. A type Il modification can include type 1
modifications as well.

A type III modification of a SWU changes the services of the SWU without
changing its interface. In other words, this is a semantic change of the SWU without
changing its syntax. A semantic change does not necessarily mean the SWU concept
changes. On the contrary, for example, a SWU abstracting a square root calculating
function can be modified to increase the accuracy of its result. The SWU concept
has not changed, we are still providing square root calculating services. Even a local
fault correction, is a type III modification. A type III modification can include type
I modifications as well.

A type IV modification of a SWU 1s a change both in the semantics and in
the syntax of a SWU. This usually occurs when a modification of the services
provided by a SWU also require the change of its interface, either to increase its
input bandwidth for needed new information, or to increase the output bandwidth
for the new services results. A type IV modification can include type I, type II, and
type III modifications as well.

Any of the above types of SWU modifications can potentially also affect the
requirements of the SWU. Modifications to a SWU’s requirements are either side-
effects of other modifications or part of a preventive maintenance effort. The fewer
requirements a SWU has the more independent 1t is in terms of how 1t can be incor-
porated in a project. We should always strive for SWUs that are more independent
and therefore have fewer requirements, however, most low and medium level SWUs
must interact with other SWUs to provide their services and therefore must have a
minimal number of requirements.

Type I and type II modifications are normal in preventive maintenance. Type
IIT and type IV modifications are typical in corrective, adaptive, and perfective
maintenance.

Type II and type IV modifications are generally to be avoided because they
affect not only the specific SWU that was modified but also all the SWUs that
use the service whose interface has changed. Modifications of type IV that do not
change the current interface of a SWU but instead add to it, do not fall under
the category of modifications to be avoided because they do not cause this type of
modification ripple effect. We will call these kind of modifications type IV*.

We can define in a similar fashion type IT* modifications. However, it is not
clear why one would add to an existing interface without changing the capabilities
of the SWU. Type IIT* modifications are modifications of type III that do not
change current capabilities but instead add completely new services without a need
to change the SWU’s interface. This is possible if the SWU interface was defined
well enough to allow such future enhancements.

Software modifications are a natural phenomenon of software evolution. We

44

UGS
PS *
(b) ‘ i s
PS ®
©
PS 4
(d) ‘ i s
PS *
1l
(® ‘ ‘ ’
P ®
1l
® ‘ A ’
PS ®

Figure 5.1: Connecting letters, fillers, and dynamic letters

should however, attempt to reach a situation in which we do not have modification
ripple effects in which a modification in one SWU causes many modifications in
other SWUs. In other words we want to reach a situation in which we perform only
type I, IT*, III, IIT*, and IV* modifications. This will occur only when we have
good domain abstractions with carefully planned interfaces that pass high-level
information abstractions.

5.2 The New Requirements

ffortid version 4.0 should have all the functionality of version 3.0 plus the capability
to left and right justify lines containing Arabic, Persian or related languages by
stretching letters and not just by inserting fillers between connecting letters. This
requires the use of dynamic fonts in which letters can actually be stretched. Figure
5.1 (a), (b), and (c) show the current method of inserting a filler between two
connecting letters, increasing the word’s width. Parts (d), (e), and (f) of Figure 5.1
show the new method of stretching a letter in a word to achieve the same effect.
Note that not all arabic letters can be stretched. Only those letters with a large,
mostly horizontal stroke, are traditionally stretched in Arabic calligraphy.

The new requirements were specified as precisely as possible by Berry by writing
a new manual page describing the new version of ffortid. It can be found in Appendix
C. From a comparison of the old and new manual pages we created a list of 3
required enhancements:

1. Change the command-line options and add the capability to automatically
stretch letters and/or connections according to these options and the new
stretch information in the width tables.

45

2. Add the capability to manually stretch letters.

3. Add the capability to control automatic stretching of words with manually
stretched letters and/or connections by two new command-line options.

Enhancement 1 modifies the command-line options to express the new possibili-
ties of automatic stretching created by the use of letter stretching. In ffortid Version
3.0 all stretching was performed by inserting fillers and the stretch style option spec-
ified where to stretch. In ffortid Version 4.0 automatic stretching is specified by two
relatively independent dimensions: where to stretch (the streteh place) and how to
stretch (the stretch mode). The stretch place is similar to the previous stretch style.
The stretch mode allows the stretching of only connections, only letters, either letter
or connection, whichever comes later in a word, or both.

This enhancement includes inserting the functionality that performs the actual
stretching of the lines according to the specified options. This includes reading new
width tables fields that specify the stretchability and connectivity of each character.
This information is needed so ffortid can know which characters are stretchable.

Enhancement 2 adds the functionality needed to accept new input tokens that
specify manual letter stretch commands. These enable the user to manually stretch
specific letters by any required amount. The manual stretch information must be
stored in the character token as an integral part of the character.

Enhancement 2 adds the capability to manually stretch letters in words. When
automatic line stretching is enabled, these words can be additionally stretched to left
and right justify a line. In some cases, it would be desirable to prohibit automatic
stretching of words already manually stretched. Enhancement 3 adds two new
command-line options to achieve this effect: the -msc option prohibits the automatic
stretching of words containing manual connection stretch commands, and the -ms1
option prohibits the automatic stretching of words containing manual letter stretch
commands.

The actual stretching of letters by ffortid is achieved by a new output token that
is preceded by ffortid to every character that it wants stretched. This output token
includes the amount of stretch of the character. An application called psdit that
reads ditroff output and translates it into postscript was modified to accept this
new ditroff command and translate it into postscript commands causing the actual
character stretching. This application is not part of ffortid as such and is therefore
not part of the experiment.

We made sure the 3 enhancements cover all the new requirements by compar-
ing the old and new manual pages. Our main concern in the division of the new
requirements into enhancements was to make each enhancement as independent
from the others as possible from the users point of view. All the enhancements are
independent except for enhancement 3 which depends on enhancement 2. The idea
is that in principle each enhancement could be performed separately and therefore
could be tested separately in an incremental manner.

5.3 Implementation

We now have a domain and a set of requirements which we must implement by
adapting the domain as necessary and generating a new application answering these
requirements. Our new requirements are enhancements to ffortid Version 3.0 on
which our initial domain i1s based. In the domain’s current state, we can generate
only applications with similar architectures because we have only one SWU rep-
resenting an application. Such SWUs tell us how to build applications from our
reusable components. This will not always be the case in more advanced domains
in which applications with completely different architectures could be generated.

46

In such domains, we would have several SWUs each representing an application
architecture.

We propose here a systematic method for domain adaptation according to a new
set of requirements. This method can be used to implement the requirements in an
incremental manner or in a single batch.

Usually requirements are expressed in a user-oriented, high level fashion. Our
first step 1s the expression of the requirements in a more detailed fashion by listing
them at the lower software level as interface and capability changes to the SWU
representing the complete application. In our case this is SWU 1. The interface

changes of SWU 1 are:

I-1 Modify the command-line options.
I-2 Modify the structure of the width table.
I-3 Add the acceptance of input manual stretch commands.

I-4 Add the printing to output of stretch commands.

Note how some of the changes are modifications to existing interfaces, I-1 and
-2, and some are completely new additions to the application interface, -3 and
I-4. T-1, I-2, and 1-3 are all access interface changes and I-4 is the only result
interface change. The capability changes of SWU 1 are:

(C-1 Treat manual stretch values in character tokens as part of the character.
C—-2 Add the storage of automatic stretch values in character tokens.

C-3 Modify automatic stretching to stretch according to the new command-line
options and width table information.

Note again how some of the capability changes are completely new capabilities,
C-1 and C-2, and some are modifications of existing capabilities, C-3.

The next step in our method is the implementation, first of the access inter-
face changes, and then of the capability changes, and finally of the result interface
changes. Capability changes can and usually do depend on new information in the
input interface and must therefore be implemented only after we have designed and
implemented the access interface changes. The result interface changes can and usu-
ally do depend on the new capability changes and must therefore be implemented
after them.

The division of the requirements into application interface and capability changes
serve several purposes. First, it helps separate the internal and external changes to
the application. Secondly, it assists the implementation of the changes using the
method in the previous paragraph.

Each interface or capability change is implemented using the same technique.
Using the domain hierarchy of SWUs, we perform a top-down search for all the
low-level SWUs that should be modified by the change. The search is a focused
search, directed by the interface or capability description of each SWU. If we are
modifying an existing interface, or capability, we search for the current low-level
SWUs that possess the to-be-modified interface or capability. If we are adding a
new interface or capability we search for the SWU to which it should logically be
added.

For example, I-1 is a modification of the current command-line options. Accord-
ing to the SWU Lemmas in Section 4.1.2, there exists a sub-unit of SWU 1 that
provides this interface service. By interface service, we mean that there exists a
sub-unit that reads in, parses, and stores the command-line options for the use of

47

other sub-units. The top-down search flows from SWU 1 to SWU 4 to SWU 15 and
finally to SWU 29 (see Figure 4.10). We must therefore modify SWU 29 which is
the main function to implement I-1. This includes modifying the parse mechanism
of the command-line to accept the new options and modifying the global variables
to store the new options.

This modification causes a series of modification side-effects. SWU 29 requires
SWU 28 for the definition of the global variables holding the command-line options.
These variables need to be changed because of the change in SWU 29. SWU 18
holds external declarations of the same variables for the dump module. Therefore,
SWU 18 requires the definitions in SWU 28 and a modification in them requires a
similar modification in SWU 18. These external definitions are used only in SWU
41 where automatic stretching 1s performed according to these options. Therefore,
SWU 41 must also be modified.

A single modification causing such a modification side-effect chain reaction is
something we generally wish to avoid. In this case, the interface change in SWU 1
required a capability and interface change in SWU 29. The global variable interface
used to convey the command-line options is not a high level enough abstraction of
this information. If we had used a user-defined type that abstracted the command-
line options we would need only have changed this type’s capabilities i.e., its fields,
in SWU 29 and changed SWU 41 to use these fields. No other SWUs would have
been affected. We can see that in some cases modifications are bound to have
side-effects, but we should keep these side-effects to the necessary minimum.

It is interesting that some of the modification side-effects can be detected auto-
matically by a CASE tool. For example, if in a SWU, a programmer changes the
definition of variables used in other SWUs, the CASE tool can warn the program-
mer that these other SWUs must be modified as a consequence of the definition
change. The programmer can then correct the other SWUs, perhaps causing other
modification side-effects. Such a tool will help the programmer not to forget to
modify affected SWUs in the cases it can detect.

The SWU database should hold a tree of service dependencies between the
SWUs. This tree should be checked by the tool for possible modification ripple
effects. If a global variable is not used any more in SWU 28 and it depends on SWU
29 for its definition then the tool should notify the programmer of this change. When
the definition of a global variable is deleted, as in SWU 29, then the programmer
must be notified of all the SWUs that use this variable, such as SWU 41.

Modification I-2 is an example of a modification causing a change in the domain
hierarchy. The top-down search leads us from SWU 1 to SWU 6 to SWU 17 and
finally to SWU 36. There, we add the functionality needed to read in the additional
stretch and connectivity fields in the width tables. Keeping in line with the design
philosophy of the modules we must add global variables to SWU 35 to store this
additional information. We decided however to provide functions that access this
new information so it does not have to be accessed through the global variables.
We grouped these functions in a new SWU 48 called char_info, and as they belong
to width.c we made it a sub-unit of SWU 17. New macros needed for the functions
in SWU 48 were added to the macros.h, SWU 9, and it was included in file width.c
therefore 1t became a sub-unit of SWU 6, Width.

This modification did not generate any modification side-effects, except for SWU
35, largely because it was an addition to the current interface without any changes
to the previous one.

Modification C-1 calls for the viewing of manual stretch values in character
tokens as part of the character. A top-down search of the domain architecture
revealed that there is no character width concept in the domain. The functions in
width return only the font table width of characters. Therefore, we created such a
concept by creating a function tokenBasicWidth and another function which which

48

we thought is an important concept tokenStretch. The former returns the width
of a character token before it 1s automatically stretched and the latter returns the
total stretch amount of a character token. These were grouped in a new SWU
inquire_token, SWU 42, and added as a sub-unit to SWU 13, lines.c. We then had
to examine the complete code looking for calculations based on a character’s width
and change them to call the function tokenBasicWidth. This modification caused
no side-effects.

Modification C-3, implementing the new automatic stretching according to the
new command-line options, resulted in two fundamental changes to the domain
architecture. The first fundamental change was caused by the fact that we realized
SWU 41 which is the heart of the line stretching algorithm would require complete
refurbishing in order to implement the modification because it does not have the
abstractions necessary to represent the new required functionality. We therefore
created a new SWU 43 instead with several sub-units each performing part of the
line stretching algorithm with the new letter stretching functionality inside. Of
course this does not mean we could not use some of the code in SWU 41 in the new
SWUs. We did. However, most of SWU 43’s code was completely new.

The second fundamental change in the domain architecture as a result of modi-
fication C-3 was that of finding a serious conceptual bug in the original ffortid while
testing the modification. We realized that the original designers of ffortid made a
serious mistake in deciding when to reverse part of the tokens in a line. This mis-
take 1s only evident in certain test cases. This realization resulted in the deletion
of SWU 21, some modifications to SWU 19 and SWU 39 and the alteration of the
domain architecture to reflect these changes.

Several additional minor bugs were found in the original code but they were
corrected without any ripple effects or major domain architecture changes.

Figure 5.2 shows the updated domain architecture of ffortid Version 4.0 after
all the above modifications were performed. As ffortid Version 4.0 included only
enhancements over ffortid Version 3.0 we saw no need to preserve SWUs that have
been deleted or replaced by better SWUs. In more advanced domains where one
could have a choice between several components this should be reflected in the
domain architecture and scope diagram.

Table 5.2 shows all information on the SWUs in the updated domain.

5.4 Implementation Comparison

The initial domain had 28 low-level SWUs with 2510 lines altogether. We deleted
from the domain 3 low-level SWUs (10, 34 and 41) and one high-level SWU (21).
We added 6 low-level SWUs (42, 44, 45, 46, 47, and 48) and one high-level SWU
(43).

The 3 low-level SWUs deleted had altogether 634 lines (lines include comment
lines). Of the 25 low-level SWUs carried on to the modified domain, modifications
were made to 18 of them. Altogether 320 lines were added, 50 were deleted and 22
modified. The 6 new low-level SWUs have altogether 649 lines. The new domain
therefore has 31 low-level SWUs and 2795 lines.

Berry implemented the same requirements using the same original ffortid version
as his basis. He used his own SOTP systematic maintenance method to implement
these requirements. The major steps in the his method were:

e Make a list of all the changes.

e Mentally plan the changes to the implementation to achieve these changes,
mainly in data structures and key new algorithms.

49

out_of_memory

width_defin
35

46

Figure 5.2: Overview of ffortid Version 4.0 domain

50

Num | Name Type Size (lines) | Low-Level

1 ffortid Program 3803

2 Dump Module 1020

3 Lines Module 493

4 Main Module 1457

5 Misc Module 204

6 Width Module 629

7 token.h Declarations source file 39 *

8 lex.h Definitions source file 31 *

9 macros.h Definitions source file 33 *
11 dump.c Sourcefile 917
12 table.h Declarations source file 18 *
13 lines.c Sourcefile 372
14 lexer Lex generated source file 705
15 main.c Sourcefile 631
16 misc.c Sourcefile 114
17 width.c Sourcefile 596
18 dump_defin Definitions block 30 *
19 dump_line Procedure 125 *
20 reverse_line Procedure 87 *
22 print_line Procedure 21 *
23 lines_defin Definitions block 33 *
24 new_free_token Function group 91 *
25 insert_tokens Procedure group 74 *
26 put_tokens Procedure group 135 *
27 lex.dit Lex sourcefile 38 *
28 main_defin Definitions block 73 *
29 main Function 558 *
30 new_font Procedure 42 *
31 font_info Procedure 42 *
32 out_of _memory Procedure 17 *
33 yywrap Function 13 *
35 width_defin Definitions block 51 *
36 init_dev_font Procedure group 260 *
37 width_calc Function group 151 *
38 debug_error Procedure group 82 *
39 recalc_horiz Procedure 47 *
40 calc_total Function 55 *
42 inquire_token Function group 45 *
43 stretch Function group 607
44 stretch_a line Function group 182 *
45 stretch_candidates | Function group 131 *
46 stretch_a_word Function group 116 *
47 spread_stretch Function group 123 *
48 char_info Function group 52 *

Table 5.2: ffortid Version 4.0 software units

51

e Add to each change on the list, a list of modules affected by the change.

e Make hard copies of each of the modules and write in all the changes by fol-
lowing the list and going to each affected module. As you do this, discover
additional changes necessary, so-called ripple effects, and either do them im-
mediately if they are small and in the same module or add them to the list of
changes to be done with the right modules listed next to them.

e Desk check the changes by going module by module trying to make sure that
the module is consistent.

e Enter all the changes and recompile after each change.
e If you can see an order to doing the changes, i.e.

— all changes which do not invalidate current functionality
— all changes which change current functionality

— all changes which add new functionality

and each such set makes a testable program, follow that order of adding the
changes and compiling and testing.

Note that this method did not include any form of reverse or reengineering. Us-
ing this method to implement the above requirements Berry found it was possible
to create an order of implementation that enabled the implementation of each mod-
ification and its subsequent testing. Berry found that a typical test would expose
two or three bugs and about half of these were unforeseen ripple effects.

To the original 2510 line ffortid program Berry added 1997 lines, deleted 784
lines and modified 36 lines. Therefore, his implementation of ffortid Version 4.0 had
altogether 3723 lines. The most striking difference between the two implementations
is the number of added lines, 321 by the author compared to 1997 by Berry. This
requires some explanation.

Both implementors had the same goal in mind, to perform the minimum amount
of modifications needed to implement the new requirements. However, as happens
so often with programmers, they chose different designs for their implementation.
Berry chose to store any information calculated in appropriate data stores so it will
never need to be calculated twice. This required the addition of new data types
and was not in keeping with the original design of ffortid.

The author on the other hand, as a consequence of the reverse engineering
and modification method used, based his design largely on the original design.
The focused search method used to find the SWU to be modified tends to focus
the programmer on the current abstractions when they exist and not on creating
new abstractions. Only when these do not exist in the current architectures must
one justify and then add the new abstractions with as much coherence with the
current design as possible. In other words, the author claims that the difference in
the number of added lines between the two implementations is not an accident of
different programming styles but a consequence of the methods used. Clearly one
could have done exactly the same changes as the author had done without reverse
engineering ffortid. However, using this method these changes came naturally and
easily.

As a general remark, we want to point out another lesson we had learned during
this phase of the experiment. The fact that we decided to have a written contract
for the requirements, i.e., the manual page, brought to the surface mistakes and
misconceptions Berry had of his program. The fact that another person, ignorant
at that, had to implement the same manual page, resulted in the clarification of
many points which had seemed clear to Berry, but on second thought were not well

defined.

52

Chapter 6

ffortid Version 5.0

After we had successfully compared both implementations of the first set of require-
ments, we proceeded to the final experiment stage. According to the experiment de-
sign, another set of more advanced requirements must be devised and implemented

by the experimenter and control on their latest application versions. Needles to say,
these requirements were not known to the author before reaching this stage.

6.1 The New Requirements

The new requirements were specified as precisely as possible by Berry by writing
an additional manual page describing the new version of ffortid. It can be found in
Appendix D. From a comparison of the previous and new manual pages a list of 7
required enhancements was created:

1.

7.

Use new font width table information on type of connection stretching re-
quested and accept new manual connection stretch commands.

Arrange words in slantable fonts on a slanted base line.

Use new ditroff commands to properly handle embedded text of the the op-
posite direction containing sub-text | e.g., numerals, of the original direction.

. Add -msw option to prevent the automatic stretching of words containing

manual stretch of any kind.
Use new font width table information on type of stretching requested.

Allow stretching of all types of characters, not just
N named character.

Change -a command-line option to --.

Enhancement 1 allows fonts to specify the type of automatic connection stretch-
ing to be performed when connection stretching is needed according to the current
stretch mode and place command-line options. Their are 3 possible types of con-
nection stretching:

e Fixed filler — is the type of connection stretching used in ffortid Versions 3.0

and 4.0. Connections are fixed size fillers inserted between connecting letters.

o Stretchable filler — the use of stretchable letters allows the use of a stretchable

filler character. This character is usually and normally of width zero but
can be stretched to any needed length and then inserted between connecting
letters.

53

PS L 4
S

PS L 4
© ' \ ’

PS L 4
(d) ' \ ’

PS L 4

Figure 6.1: Stretchable letter connections and fillers

e Stretchable connections — the connecting portions of all connecting letters
are themselves stretchable in the same way as stretchable letters are. In this
case, to achieve a total connection stretch of size x, one would pass /2 to each
of the connecting-after portion of the before letter and the connecting-before
portion of the after letter.

The stretchable filler solves the problems caused by the fact that the amount of a
given connection stretch may not be integrally divisible by the width of the fixed size
filler. The use of stretchable connections improves the appearance of the connection
stretch by replacing the flat straight filler with a smooth curved connection.

For example, figure 6.1 (a) shows two regular connecting letters. Part (b) shows
how their connecting parts are dynamically stretched by a given amount and part
(c) how the stretched letters are joined. Part (d) of the same figure shows the same
connecting letters stretched by inserting a stretched filler between the letters. Note
the more pleasing result using the first method in (¢) than using the second in (d).

This enhancement includes the acceptance of new manual connection commands
for the two new types of connection stretching, i.e., manual stretchable filler com-
mands and manual letter connection stretch commands.

Enhancement 2 enables ffortid to handle slantable fonts. These fonts have a
fixed character slant which requires special handling in laying out words and lines.
Each word in such a font is printed on a slanted baseline that crosses the original
baseline of the line at the center of the word. Figure 6.2 shows each word’s baseline
as a solid arrow and the line’s baseline as a dotted arrow.

Figure 6.3 shows a sample slanted output created by ffortid. Note how it handles
correctly a combination of slanted, unslanted, left-to-right, and right-to-left fonts.
All the command-line options and different types of stretching are available with
slanted fonts as well.

Sometimes right-to-left text contains some embedded left-to-right text, such
as a street address in Hebrew that contains a numeral using traditional western

Figure 6.2: Layout of slanted font words on line

54

@f@/'wlﬂj&ijlﬂ

7.5 15] .
;{g)f)'ﬂj(Engﬂish);ga}}’j ji’lywz"
JSJ‘)&)’JC/})QWJ'IW.)JI (r71y

'y@gﬂ)ﬂ)%'/}wlfylj

Figure 6.3: Sample slanted output

digits with the most significant digit to the left. If this right-to-left text were
embedded inside left-to-right text, e.g., an English sentence announcing a Hebrew
street address, inside a left-to-right document, then the numeral, being left-to-right
text, would be treated as left-to-right text that separates two right-to-left chunks
inside a left-to-right document. Enhancement 3 solves this problem by recognizing
two ditroff commands that surround the embedded left-to-right text and cause ffortid
to recognize that the surrounding text should be treated as a single right-to-left unit.

Enhancement 4 adds a new command-line option —msw that prevents the auto-
matic stretching of words containing manual connection or letter stretch commands.
This 1s useful for preventing the messing up of finely tuned manual stretch com-
mands by the automatic stretch mechanism.

Enhancement 5 allows better control over the type of stretching fonts provide.
A new line in each font’s width table describes the stretchability of the font as
either connections only, letters only, or letters and connections. This enables the
font to limit the type of automatic stretching allowed on the font despite the actual
available stretchability of each character. Therefore, the same font can be mounted
several times, each time with different stretch properties.

ffortid Version 4.0 allowed only the stretching of characters entered by their
numerical code. Enhancement 6 enables the stretching of characters also entered
by their ascii or two letter synonym.

Enhancement 7 is a trivial enhancement which simply changes the syntax of the
-a command-line option, specifying the stretchable fonts, to the more intuitive ——
syntax.

6.2 Implementation

The most substantive enhancements in ffortid 5.0 are the two new types of connec-
tion stretching, slanted fonts, and the handling of embedded reversed text. These
enhancements represent completely new functionality in ffortid. The rest of the
enhancements are mostly technical because they only alter or improve current func-
tionality without adding something completely new.

The author implemented these requirements using the same method described
in the previous chapter. He implemented them serially, one by one, testing each
new enhancement as it was implemented, and found no problem in doing this.

Berry implemented the same requirements using his own SOTP method de-

55

scribed in the previous chapter. He had found that unlike the first set of require-
ments, it was not possible for him to implement each enhancement separately. He
implemented the whole program all at once. He then tested the old features first to
make sure that they have been preserved and then the new features.

56

Chapter 7

Experiment Results

Before giving the results and conclusions from the experiment, it is necessary to
describe how to compare different application versions for their amount of reuse
and modification.

7.1 Measuring Reuse

Figure 7.1 shows as a Venn diagram what happens when we create a new application
from some original application. Part of the original code is deleted and is not
included in the product . Another part of the original code is modified and included
in the product application. Finally, part of the code 1s reused as-is in the product
application. The final product application consists of the modified and reused code
from the original application and of completely new code which 1s added to existing
code. Note that this analysis is true not only of applications but also of any other
type of SWU.

In order to qualitatively measure the amount of reuse achieved in a project based
on some original application producing some product application, we have defined
three important ratios. These ratios use as the basic unit of their numerator and
denominator, the number of code lines including comments. It is of course possible
to choose some other basic unit such as lines without comments, statements etc.
However, code lines have been shown to be a good estimate of code size over the
years. Additionally, in my view, comments are also reused in projects and not only
program statements; therefore, it is logical to count them as well in program size.

The reuse ratio (see Equation 7.1) measures the number of directly reused lines
in the product application relative to the original application size. This ratio tells
us how much of the original application was reused as-is.! Clearly, a small reuse
ratio means that we did not reuse a lot of code from the original application. On the

1Some use a reuse ratio which includes not only directly reused lines but also modified lines.
This measures what is known as leveraged reuse.

Modified Reused

Original Product
Application Application

Figure 7.1: Relationship between original and product application

57

d li
Reuse Ratlio = eusec nes (7.1)

original lines

dified i
Modification Ratio = w (7.2)
original lines

dded i
Addition Ratio = ——~ 1% (7.3)

product lines

Ddl. Mod. Added Finad Implementation
Lines Lines Lines Lines Time

Experiment 4.0 684 22 969 2795 —
Control 4.0 784 36 1997 3723 —
Experiment 5.0 126 23 947 3616 39
Control 5.0 44 82 789 4468 77-94.5

Table 7.1: Experiment results

other hand, a large reuse ratio indicates a large amount of reuse from the original
application.

The modification ratio (see Equation 7.2) is similar to the reuse ratio except
that it measures the number of modified lines in the product application relative to
the original application size.?

The addition ratio (see Equation 7.3) measures the number of new lines in the
product application relative to the product application size. This measure is im-
portant because it tells us how much of the final application is from completely new
code and how much is from directly reused and modified code (1 — addition ratio).
It is possible to have a case with a high reuse ratio and a high addition ratio. This
indicates that although we reused a large proportion of our original application,
this reuse amounts to only a small fraction of our final product application and
therefore we cannot say we have reached a high level of reuse altogether. In fact,
such a situation would probably imply that the whole reuse effort was futile and
that perhaps it was better to create the complete product application from scratch
as most of it was created so in any case.

Therefore, in order to state that a high level of reuse was achieved in a certain
project we should have a large reuse, or leveraged reuse, ratio and a small addi-
tion ratio. How much is large and small? That depends on the specific project
and 1its goals. If we implement two different versions of the same application, the
comparison is simpler because we can compare the ratios of each version and decide
accordingly which had a higher level of reuse.

7.2 Results

For each application version of the author and the control we recorded the number
of deleted, modified, and added lines from the original application it was derived
from. Additionally, we recorded the final number of lines in the product application
and the implementation time in hours, including testing, of the second version. The
results for all the different application in the experiment can be found in Table 7.1.

Both the author’s and the control’s versions of ffortid 4.0 started from the same
application — ffortid 3.0, which had 2510 lines. Both deleted approximately the same
number of lines and modified nearly the same insignificant number of lines. The

2Therefore adding the reuse and modification ratios gives us a leveraged reuse ratio.

58

Reuse Moaodification Addition

Ratio Ratio Ratio
Experiment 4.0 2% 1% 35%
Control 4.0 67% 1.5% 54%
Experiment 5.0 95% 1% 26%
Control 5.0 97% 2% 18%

Table 7.2: Experiment results analysis

major difference between the versions is the number of added lines. The control
added more than twice the number of lines the author added in order to achieve the
same functionality, and therefore his application version was much larger, almost
1,000 lines more, than the author’s (See Section 5.4).

The reason for this wide difference is that the control took a design decision
different from that of the author, adding a new complex data structure and all
the code needed to initialize, handle and extract the information in this new data
structure. Clearly, this decision was not mandatory, as the author achieved the
same functionality without adding this new data structure.

Remember that both implementors had the same goal in mind: to perform
the minimum amount of modifications needed to implement the new requirements.
However, as happens so often with programmers, they chose different designs for
their implementation. Berry chose to store any information calculated in appro-
priate data stores so it will never need to be calculated twice. This required the
addition of new data types and was not in keeping with the original design of ffortid.

The author, on the other hand, as a consequence of the reverse engineering and
modification method used, based his design largely on the original design. The
focused search method used to find the SWU to be modified tends to focus you on
the current abstractions when they exist and not on creating new abstractions. Only
when these do not exist in the current architecture must one justify and then add
the new abstractions with as much coherence with the current design as possible. In
other words, it 1s claimed that the difference in the number of added lines between
the two implementations is not an accident of different programming styles but a
consequence of the methods used. One could have done exactly the same changes
the author had done without reverse engineering ffortid. However, using this method
these changes came naturally and easily.

No implementation time is recorded for either application version of ffortid 4.0
for two reasons: First, the control’s version was written before this experiment was
conceived and therefore no time recordings were performed. Secondly, the author
was learning and inventing his method as the application was being created and
therefore it is not possible to objectively compare the two versions implementation
times.

The analysis of these results can be found in Table 7.2. As expected from the
collected data, the direct reuse ratio of both versions was more or less the same, as
both deleted and modified more or less the same number of lines. The modification
ratio of both versions was small and insignificant. Finally, the addition ratios of
both versions were quite different. The addition ratio of the author (35%) is much
lower than the addition ratio of the control (54%), because he added significantly
fewer new lines to the product application.

According to the analysis in the previous section, the author’s version 4.0 had a
higher level of reuse of the original application, ffortid 3.0, than the control’s because
it has a slightly larger reuse ratio and a significantly lower addition ratio. In order
to judge which ffortid 4.0 version was more reusable, i.e. which method resulted in
a more reusable application, we must compare the level of reuse achieved by each

59

method in the second experiment step.

The author and the control both started their versions of ffortid 5.0 from their
individual versions of ffortid 4.0. Both the author and the control deleted very few
lines from their original application although, as shown in Table 7.1, the author
deleted more lines than the control. This indicates that both implementors added
good code to ffortid 4.0 versions because they reused most of it in the their ffortid 5.0
versions. Both the author and the control modified very few lines, with the control
modifying more lines, and both added nearly the same number of new lines. The
final application of the control, therefore, still had significantly more lines than the
author’s because he started with a larger original application.

Implementation time was recorded in this experiment step. The control recorded
a minimum and maximum implementation time because he could not give exact
hours due to the nature of his working environment. He was interleaving other
professional duties while coding and was continually thinking even while not coding.
Even if we take the minimum hours recorded by the control, they are approximately
twice the implementation hours of the author. I believe this can be attributed to
the fact that the author’s original application was documented in the form of a
domain, while the control had only the immediate documentation in the code itself.
This documentation allowed the author to quickly trace where each modification
needs to be performed using the SWU architecture. The control on the other hand
had only the decomposition of his application into modules to guide him. In the
author’s view, the overall result of this was better software understanding by the
author and the ability to perform modifications quicker.

The analysis of these results using the above ratios can be found in Table 7.2.
The direct reuse ratios of both versions are similar and very high. The modification
ratios of both versions are similar and insignificantly small. The addition ratio of
the author is higher than the control’s because he added slightly more lines but had
a smaller final application size therefore resulting in the higher addition ratio. If
we take the different original application size into account, there is no significant
difference between the version’s addition ratios.

7.3 Conclusions

There was no significant difference between the reuse and modification ratios of
both methods in both experiment steps. There was a significant difference in the
addition ratio of the methods in ffortid 4.0. As explained in the previous section,
I believe this shows the advantage of using the proposed method which directs the
implementor to use existing SWUs over creating new abstractions.

Although there was no significant difference in the ratios of the different imple-
mentations of ffortid 5.0, if we examine the overall results, the author claims they
indicate clearly that the author’s version of ffortid 4.0 was more reusable than the
control’s because:

e It took a significantly shorter time to perform the necessary changes on it.
e It has a significantly smaller application size.
e It is better documented.

o It has higher quality code.?

3This conclusion was reached by examining both applications source code and comparing ba-
sic principles of software engineering such as function length etc. This is clearly a subjective
conclusion.

60

It is, however, necessary to put some hedges over these results. Although we
had taken several steps to make sure the results of the experiment are valid and
that we had taken into account the possible difference between the implementors
capabilities 1t 1s still possible that the author was a much better programmer than
the control and this explains the difference in the implementation time, etc. The
author does not believe this to be the case, but in any case further case studies and
formal experiments are needed in order to strengthen these results.

Another point to keep in mind in such experiments, is that there is a possible
difference between the actions of an ignorant and knowledgable person. It is well
known that an ignorant person performs better on some tasks because of a lack
of tacit assumptions a knowledgable person makes due to his increased knowledge
[23]. This can also be a possible explanation for the different design decision taken
by the control in his implementation of ffortid 4.0.

The author has shown it i1s possible to use the proposed domain reengineering
method to produce an initial domain, and has proposed a systematic method for
the implementation of requirements in such a domain. In the current case study,
this method did result in a high level of reuse and low level of modification. This
method can be highly automated using dedicated CASE tools.

Regarding the SWU theory refined in the thesis, it has been shown that it is
applicable to real software and that it can be used to document the architecture and
design of existing systems and to advance the systematic implementation of new
requirements. It also allows a high degree of automation of the proposed method
using CASE tools which are a must if we wish to use such methods of reengineering
on large scale systems.

In the author’s view, only the use of such methods and automated tools offer
hope of handling the problem of maintaining and reusing the large number of legacy
systems that exist. Further experiments, perhaps with real, full scale, legacy sys-
tems, using state-of-the-art CASE tools will help refine the proposed methods and
advance the technology of software reengineering. Only with such experiments will
we be able to realize the full potential of these technologies.

As a final not I would like to quote a remark pointed out by Berry while reading
Section 5.3 “Now I am beginning to understand the advantage you had in tracking
things down to avoid ripple effects and to just plain find what to change and the
sources of bugs!”. This remark recognizes the potential in the methods used in this
experiment.

7.4 Acknowledgments

I wish to thank Prof. Daniel M. Berry who not only performed all the functions of
an advisor in an exceptional way but also performed a vital part of the experiment
itself by acting as its control. I would also like to thank Prof. Noah Prywes for
describing to me his methods on which this thesis 1s based and for exchanging ideas
during the experiment.

61

Appendix A

SFD Icons

62

XXX

A

XXX

XXX

Assignment

a=b+c

XXX isthe name of the variable on the |eft hand side of the assignment.

Procedure/Function Call

my_procedure(argl,arg2)

XXX isthe procedure name.

Condition
if (my_var)...else... switch(c)

XXX iseither IF or SWITCH.

Simple Condition

if (my_var)

XXX isaways IF without an else.

10 File
FILE* fd;

XXX isthe name of the variable or the name of the file in quotes.

Loop

for(i=0;i<n;i++)... while(cond) do ... do statement while (cond)

XXX isthetype of statment, e.g. FOR, WHILE or DO.

63

Software Unit
A single Software Unit.

XXX isthe name of the SWU. If it has a number the number nis shown.

Local Variable
XXX type name;
XXX isthe name of the variable.

Parameter Variable

func(type name);
XXX @ unc(typ:)
XXX isthe name of the parameter variable.
Return Variable
type func(argl, arg2);
XXX ® ype func(arg 92)
XXX isthe name of the return variable.
External Variable
extern type name;
XXX (E) P ’
XXX isthe name of the external var;
r,,,,B,,”j Software Unit Borderline
| |
: A : Aisinternal to SWMU XXX. B isexternal.
| |
| |
. XXX | XXX isthe name of the SWU. All SWU in the scope of XXX are in the box.
"""" proc : Function/Procedure parameters group
YYY @ proc is the name of the function/procedure. YYY is a parameter.

O Groups function/procedure parameters and return value for SWU entry point.

64

A~ B

Scope relationship
SWU A precedes SWU B in a block.

Captures precedence of SWU within a block.

Data Flow Relationship
Data flows between SWMU A and SWU B.

Relationship between a consumer and producer of data.

Bi-Directional Data Flow Relationship
Data flows between SWU A and SWU B and vice-versa.

Bi-Directional relationship between a consumer and producer of data.

Call Relationship
SWU A calls afunction or procedurein SMU B.

Relationship between a function/procedure caller and the callee.

Use relationship

SWU B uses declerations or definitionsin SWU A.

Relationship between decleration/definition in a SWU and it's use in another

SWU.

65

Appendix B

ffortid Ver 3.0 Manual Page

66

NAME
ffortid — in dtroff output, find and reverse all text in designated right-to-left fonts and carry out stretching in
Arabic and Fars text

SYNOPSIS
ffortid[-rfont-position-list]..[-wpaperwidth][-afont-position-Ilist]..
[-s[nifl|lal][file]..

DESCRIPTION

ffortid’s job is to take the dtroff(1) output which is formatted strictly left-to-right, to find occurrences of
text in a right-to-left font and to rearrange each line so that the text in each font is written in its proper
direction. ffortid deals exclusively with dtroff output, it does not know and does not need to know anything
about any of dtroff’s preprocessors. Therefore, the results of using ffortid with any of dtroff’s preproces-
sors depends only on the dtroff output generated as a result of the input to dtroff from the preprocessors.
Furthermore, the output of ffortid goes on to the same device drivers to which the dtroff output would go;
therefore, ffortid’ s output isin the same form as that of dtroff.

In the command line, the —r f ont - posi ti on-1i st argument is used to specify which font positions
are to be considered right-to-left. A font - posi ti on-1i st isalist of font positions separated by white
space, but with no white space at the beginning. ffortid, like ditroff, recognizes up to 256 possible font posi-
tions (0-255). The actual number of available font positions depends only on the typesetting device and its
associated ditroff device driver. The default font direction for all possible font positions is left-to-right.
Once the font direction is set, either by default or with the —r font - posi ti on-/i st argument, it
remains in effect throughout the entire document. Observe then that ffortid’s processing is independent of
what glyphs actually get printed for the mounted fonts. It processes the designated fonts as right-to-left
fonts even if, in fact, the alphabet is that of aleft-to-right language. In fact, it is possible that the same font
be mounted in two different positions, only one of which is designated as a right-to-left font position. This
ishow asingle font can be printed | eft-to-right and right-to-left in the same document.

In addition to the specified font directions, the results of ffortid’s reformatting also depends on the
document’s current formatting direction, which can be either left-to-right or right-to-left. The default for-
matting direction is left-to-right and can be changed by the user at any point in the document through the
use of the

X X PL

and

X X PR

commands in the dtroff output. These commands set the current formatting direction to left-to-right and
right-to-left, respectively. These commands are either meaningless or erroneous to dtroff device drivers;
therefore they are removed by ffortid as they are obeyed. These commands can be generated by use of

\ X PL’

and

\ X PR

escapes in the dtroff input. For the convenience of the user, two macros

. PL

and

67

. PR

are defined in the -mX2 and -mXP macro packages, that cause generation of the proper input to ffortid.
They are defined by

..de PL
\\ X' PL’
.de PR
\\ X' PR

If the current formatting direction is left-to-right, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from left to right. In each dtroff output line, any sequence of contiguous right-to-left
font characters isreversed in place.

If the current formatting direction is right-to-left, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from right to left. Each dtroff output line is reversed, including both the left and right
margins. Then, any sequence of contiguous left-to-right font characters isreversed in place.

The ~wpaper wi dt h argument is used to specify the width of the paper, in inches, on which the document
will be printed. As explained later, ffortid uses the specified paper width to determine the width of the right
margin. The default paper width is 8.5 inches and like the font directions, it remains in effect throughout
the entire document.

It isimportant to note that ffortid uses the specified paper width to determine the margin widths in the refor-
mated output line. For instance, suppose that a document is formatted for printing on paper 8.5 inches wide
with aleft margin (page offset) of 1.5 inches and aline length of 6 inches. This resultsin a right margin of
1 inch. Suppose then that the text specifies a current formatting direction of right-to-left. Then, ffortid’s
reformatting of the output line results in left and right margins of 1 and 1.5 inches, respectively. This mar-
gin calculation works well for documents formatted entirely in one direction. However, as a document’s
formatting direction changes, the resulting margins widths are exchanged. Thus, . PL’s right and left mar-
gins end up not being the same as . PR’ s right and left margins. The user can make ffortid preserve the left
and right margins by specifying, with the -wpaper wi dt h argument, a paper width other than the actual
paper width. This artificial paper width should be chosen so that both margins will appear to ffortid to be as
wide as the desired left margin. For example, for the document mentioned above, a specified paper width
of 9.0 inches results in reformatted left and right margins of 1.5 inches each. The resulting excess in the
right margin isjust white space that effectively falls of the edge of the paper and does not effect the format-
ting of the document.

There is one exception to these ssimple rotation rules in that ffortid, at present, makes no attempt to reverse
any of dtroff’s drawing functions, such as those used by pic(1) and ideal(1) (which are aso available
directly to the user). It is therefore suggested that these drawing functions, and thus pic and ideal, be used
only when the current formatting direction is left-to-right. Additionally, due to the cleverness of the dtroff
output generated by most substantial eqn(1) equations, it is suggested that eqn’s use also be limited to a
left-to-right formatting direction for all but the simplest forms of equations. These rules do not in any way
restrict the use of right-to-left fonts in the text dealt with by any of the preprocessors, but simply suggest
that these particular preprocessors be used only when the formatting direction is |eft-to-right.

An additional point to keep in mind when preparing input both for dtroff’s preprocessors and for dtroff
itself is that ffortid rotates, as a unit, each sequence of characters of the same direction. In order to force
ffortid to rotate parts of a sequence independently, as for a tbl(1) table, one must artificially separate them
with a change to a font of the opposite direction.

The-afont - posi tion-1i st argument is used to indicate which fonts positions, generally a subset of
those designated as right-to-left, contain fonts for Arabic, Farsi, or related languages. For these fonts, left
and right justification of aline is achieved by stretching instead of inserting extra white space between the

68

words in the line. Stretching is done on aline only if the line contains at least one word in a —a designated
font. If so, stretching is used in place of extra white space insertion for the entire line. There are several
kinds of stretching, and which is in effect for all —a designated fonts is specified with the —s option,
described below. If it is desired not to stretch a particular Arabic, Farsi, or other font, while still stretching
others, then the particular font should not be listed in the —af ont - posi ti on-1i st. Words in such
fonts will not be stretched and will be spread with extra white space if the containing line is spread with
extra white space. The -r and the —a specifications are independent. If a font is in the —af ont -
position-1ist but notinthe —r font-position-Iist, then its text will be stretched but not
reversed. This independence can be used to advantage when it is necessary to designate a particular Arabic,
Farsi, or other font as left-to-right for examples or to get around the above mentioned limitations in the use
of egn, ideal, pic, or thl.

The kind of stetching to be done for al fonts designated in the —af ont - posi ti on-1i st isindicated
by the —s argument. The choices are:

-sn
Do no stretching at all for all the fonts.

—sf
Stretch the last stretchable word on each line. A stretchable word is a word containing a stretch-
able character (if the font is dynamic) or a stretchable connection to a character (if the font has a
straight base line). Currently only stretchable connections to characters are handled; a future ver-
sion will deal with dynamic fonts. If no stretchable word exists on the line, then spread the words
in the line as does dtroff.

Stretch the last stretchable word on each line. If the amount of stretch for that word is longer than
a limit equal to the current point size times the length of the base line filler used to achieve the
stretched connection, then stretch the penultimate stretchable word up to that limit, and if neces-
sary, then stretch the stretchable word before that, etc. If no stretchable word exists on the line, or
some extra stretch isleft after stretching all stretchable words to the limit, then spread the words in
the line as does dtroff.

Stretch all stretchable words on each line by the same amount (different amount for each line). If
no stretchable word exists on the line, then spread the words in the line as does dtroff. Thisisthe
default for al —a designated fonts.

FILES
Jusr/lib/tmac/tmac.0 standard macro files
/usr/lib/font/devIC device description and font width
tables
SEE ALSO

Cary Buchman, Daniel M. Berry, User’s Manual for Ditroff/Ffortid, An Adaptation of the UNIX Ditroff for
Formatting Bi-Directional Text,

Johny Srouji, Daniel M. Berry, An Adaptation of the UNIX Ditroff for Arabic Formatting

troffort(l), ptrn(l)

69

Appendix C

ffortid Ver 4.0 Manual Page

70

NAME
ffortid — in dtroff output, find and reverse all text in designated right-to-left fonts and carry out stretching in
Arabic, Hebrew, and Persian text

SYNOPSIS
ffortid[-rfont-position-Ilist][—-wpaperw dth][-afont-position-list]..
[-s[n]l[l |cle|b][f [2|manpunt]jajad|al]]] [-nms[c]|l] ...

DESCRIPTION

ffortid’s job is to take the dtroff(1) output which is formatted strictly left-to-right, to find occurrences of
text in a right-to-left font and to rearrange each line so that the text in each font is written in its proper
direction. ffortid deals exclusively with dtroff output, it does not know and does not need to know anything
about any of dtroff’s preprocessors. Therefore, the results of using ffortid with any of dtroff’s preproces-
sors depends only on the dtroff output generated as a result of the input to dtroff from the preprocessors.
Furthermore, the output of ffortid goes on to the same device drivers to which the dtroff output would go;
therefore, ffortid’s output isin the same form as that of dtroff. ffortid reads its input from the standard input
and write to the standard output.

In the command line, the —r f ont - posi ti on-1i st argument is used to specify which font positions
are to be considered right-to-left. A font - posi ti on-1i st isalist of font positions separated by white
space, but with no white space at the beginning. ffortid, like ditroff, recognizes up to 256 possible font posi-
tions (0-255). The actual number of available font positions depends only on the typesetting device and its
associated dtroff device driver. The default font direction for al possible font positions is left-to-right.
Once the font direction is set, either by default or with the —r font - posi ti on-/i st argument, it
remains in effect throughout the entire document. Observe then that ffortid’s processing is independent of
what glyphs actually get printed for the mounted fonts. It processes the designated fonts as right-to-left
fonts even if, in fact, the alphabet is that of aleft-to-right language. In fact, it is possible that the same font
be mounted in two different positions, only one of which is designated as a right-to-left font position. This
ishow asingle font can be printed | eft-to-right and right-to-left in the same document.

In addition to the specified font directions, the results of ffortid’s reformatting also depends on the
document’s current formatting direction, which can be either left-to-right or right-to-left. The default for-
matting direction is left-to-right and can be changed by the user at any point in the document through the
use of the

X X PL

and

X X PR

commands in the dtroff output. These commands set the current formatting direction to left-to-right and
right-to-left, respectively. These commands are either meaningless or erroneous to dtroff device drivers;
therefore they are removed by ffortid as they are obeyed. These commands can be generated by use of

\ X PL’

and

\ X PR

escapes in the dtroff input. For the convenience of the user, two macros

. PL

and

71

. PR

are defined in the —mX2 and —mXP macro packages, that cause generation of the proper input to ffortid.
They are defined by

..de PL
\\ X' PL’
.de PR
\\ X' PR

If the current formatting direction is left-to-right, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from left to right. In each dtroff output line, any sequence of contiguous right-to-left
font characters isreversed in place.

If the current formatting direction is right-to-left, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from right to left. Each dtroff output line is reversed, including both the left and right
margins. Then, any sequence of contiguous left-to-right font characters isreversed in place.

The ~wpaper wi dt h argument is used to specify the width of the paper, in inches, on which the document
will be printed. As explained later, ffortid uses the specified paper width to determine the width of the right
margin. The default paper width is 8.5 inches and like the font directions, it remains in effect throughout
the entire document.

It isimportant to note that ffortid uses the specified paper width to determine the margin widths in the refor-
mated output line. For instance, suppose that a document is formatted for printing on paper 8.5 inches wide
with aleft margin (page offset) of 1.5 inches and aline length of 6 inches. This resultsin a right margin of
1 inch. Suppose then that the text specifies a current formatting direction of right-to-left. Then, ffortid’s
reformatting of the output line results in left and right margins of 1 and 1.5 inches, respectively. This mar-
gin calculation works well for documents formatted entirely in one direction. However, as a document’s
formatting direction changes, the resulting margins widths are exchanged. Thus, . PL’s right and left mar-
gins end up not being the same as . PR’ s right and left margins. The user can make ffortid preserve the left
and right margins by specifying, with the -wpaper wi dt h argument, a paper width other than the actual
paper width. This artificial paper width should be chosen so that both margins will appear to ffortid to be as
wide as the desired left margin. For example, for the document mentioned above, a specified paper width
of 9.0 inches results in reformatted left and right margins of 1.5 inches each. The resulting excess in the
right margin isjust white space that effectively falls of the edge of the paper and does not effect the format-
ting of the document.

There is one exception to these ssimple rotation rules in that ffortid, at present, makes no attempt to reverse
any of dtroff’s drawing functions, such as those used by pic(1) and ideal(1) (which are aso available
directly to the user). It is therefore suggested that these drawing functions, and thus pic and ideal, be used
only when the current formatting direction is left-to-right. Additionally, due to the cleverness of the dtroff
output generated by most substantial eqn(1) equations, it is suggested that eqn’s use also be limited to a
left-to-right formatting direction for all but the simplest forms of equations. These rules do not in any way
restrict the use of right-to-left fonts in the text dealt with by any of the preprocessors, but simply suggest
that these particular preprocessors be used only when the formatting direction is |eft-to-right.

An additional point to keep in mind when preparing input both for dtroff’s preprocessors and for dtroff
itself is that ffortid rotates, as a unit, each sequence of characters of the same direction. In order to force
ffortid to rotate parts of a sequence independently, as for a tbl(1) table, one must artificially separate them
with a change to a font of the opposite direction.

The-afont - posi tion-1i st argument is used to indicate which fonts positions, generally a subset of
those designated as right-to-left, contain fonts for Arabic, Hebrew, Persian, or related languages, whose
fonts support stretching of letters and/or connections. For these fonts, left and right justification of aline

72

can be achieved by stretching instead of inserting extra white space between the words in the line. If
requested by use of the —s argument described below, stretching is done on aline only if the line contains
at least one word in a —a designated font. If so, stretching is used in place of the normal distributed extra
white space insertion for the entire line. The intention is that stretching soak up all the excess white space
inserted by dtroff to adjust the line. If there are no opportunities for stretching or there are too few to soak
up al the excess white space, what is not soaked up is distributed in between the words according to
dtroff’s algorithm. There are severa kinds of stretching, and which is in effect for all —a designated fonts
is specified with the —s argument, described below. If it is desired not to stretch a particular Arabic,
Hebrew, Persian, or other font, while still stretching others, then the particular font should not be listed in
the —afont - posi ti on-1i st.Words in such fonts will not be stretched and will be spread with extra
white space if the containing line is spread with extra white space. The —r and the —a specifications are
independent. If afont isin the —af ont - posi tion-/i st but not in the —r font - posi tion-1ist,
then its text will be stretched but not reversed. This independence can be used to advantage when it is
necessary to designate a particular Arabic, Hebrew, Persian, or other font as left-to-right for examples or to
get around the above mentioned limitationsin the use of egn, ideal, pic, or thl.

The kind of stetching to be done for al fonts designated in the —af ont - posi ti on-1i st isindicated
by the —s argument. There are two relatively independent dimensions that must be set to describe the
stretching, what is stretched and the places that are stretched. A stretch argument is of the form

-smp
or
-sn

where m specifies the stretching mode, i.e, what is stretched, and p specifies the places that are stretched.
The m and p must be given in that order and with no intervening spaces. The —sn means that there is no
stretching and normal spreading of words is used even in —a designated fonts. The choices for the mode m
are:

I (letter €ll)
In the words designated by the p, stretch the last stretchable letter.
c
In the words designated by the p, stretch the last connection to aletter.
e
In the words designated by the p, stretch either the last stretchable letter or the last connection to a
letter, whichever comes | ater.
b

In the words designated by the p, stretch either the last stretchable letter or the last connection to a
letter, whichever comes later, and if it is aletter that is stretched and it is a connect-previous letter
then also stretch the connection to the letter.

To our knowledge, al Arabic and Persian fonts, have a baseline filler that can be used to achieve the
stretching of connections. It is fairly easy for such afiller to be added to any font definition that does not
have it, and moreover to make it the character that is addressed by \ (hy, which is normally the code for
the hyphen character. (Therefore no account is taken of the possibility that stretching connections is not
possible.) Since Arabic and Persian do not have a hyphen and hyphenation is turned off when in an Arabic
or Persian font, it is safe to use \ (hy to name the filler. Of course, this requires that the width table for
Arabic and Persian fonts have an entry for hy designating thefiller character in the font, for example:

hy 15 0 0267 filler

Giving the filler character an explicit dtroff two-character name allows dtroff to deal with it uniformly
despite that it might be in a different position in each font.

73

On the other hand, stretching of letters requires a dynamic font which, by its very nature of not having a
constant bitmap for a given font name, point size, and character name, cannot be type 1 (in PostScript ter-
minology) and cannot be a bitmapped font. Therefore, not al Arabic, Hebrew, and Persian fonts support
stretching of letters. Moreover, within a dynamic font, not all characters are stretchable. Historically, only
characters with strong horizontal components are stretchable, such as those in the stand-alone and
connect-previous forms of the baa family. Obviously, one cannot stretch totally vertical characters such as
alif. Therefore, it is necessary to specify by additional information in the ditroff width table for a font
which characters are stretchable. In the width table for an Arabic, Hebrew, or Persian font, for each char-
acter that is not also an ASCII character, i.e., not aso a digit or punctuation, and thus is neither connected
or stretchable, one specifies after the name, width, ascender-descender information, and code, two addi-
tional fields, the connectivity and the stretchability of the character, in that order. The connectivity is either

for stand-alone,

for connect-after,

for connect-previous,

for connect-both, or

for unconnected (because it is punctuation or a diacritical, etc.),

cCmomouU>»Zz

and the stretchability is either

N for not stretchable,
S for stretchable,

Some examples of width table lines are:

% 125 2 045 per cent

--- 55 0 0101 U N comra
70 0 0105 U N hanza
--- 129 0 0106 N S baa_SA
--- 36 2 0102 N N al ef _SA
--- 113 0 0177 A N sad_CA
66 2 0215 A S caf _CA
--- 43 2 0225 P N al ef _CP
--- 120 0 0274 P S baa_CP
--- 53 0 0230 B N baa_CB
73 2 0261 B S caf _CB
Recall that - - - in the name field of a character means that it can be addressed only by \ N n’ , where nis

the decimal equivalent of the character’s code. Only such lines will have the connectivity and stretchability
fields.

For a Hebrew font, for which there is no notion of connectivity of letters, and therefore, the position of the
lettersisirrelevant for deciding stretching, there is only the possibility of stretching letters. Some examples
of width table lines for such fonts are:

% 132 3 045 per cent
--- 95 3 0140] N qguot el ef t =al ef
--- 92 3 0141 U S a=bet

74

Below, “stretchable unit” refers to what is a candidate for stretching according to the mode. The choices
for p, which specifies places of stretching, are:

f
In any line, stretch the last stretchable unit.

Assuming that the mode is b (both), in any line, stretch the last two stretchable units, if they are
the connection leading to a stretchable connect-previous letter and that letter, and stretch only the
last stretchable unit otherwise. If the mode is not b, then this choice of placesisillegal.

mor m
In any line, stretch the last stretchable unit by an amount not exceeding n emmes. If that does not
exhaust the available white space, then stretch the next last stretchable unit by an amount not
exceeding n emms, and so on until al the available white space is exhausted. If nisnot given, itis
assumed to be 2. 0. In general n can be any number in floating point format.

a, ad,or al

In any line, stretch all stretchable units. In this case, the total amount available for stretching is
divided evenly over al stretchable units on the line identified according to the mode. Since the
units of stretching are the units of device resolution, the amount available might not divide evenly
over the number of places. Therefore, it is useful to be able to specify what to do with the
remainder of this division. This specification is given as an extension of the stretching argument.
The choices are d or | , with the former indicating that the excess be distributed as evenly as pos-
sible to the spaces between words and the latter indicating that the excess be distributed as evenly
as possible in stretchable letters that were stretchable units according to the current mode and
place. The latter is the default if no choice is specified. The stretched item for the | choice must
be a letter rather than a connection because only a stretchable letter is stretchable to any small
amount that will be the remainder.

In general, the stretch is divided as evenly as possible between all stretchable unitsin a line. Specificly, in
stretch mode b, if we have a connection leading to a stretchable connect-previous letter and that letter,
then any stretch remainder we have from stretching the connection will be added to the stretch of the letter.

Sometimes, it is desirable to be able to manually stretch connections or |etters to achieve specia effects,
e.g., more balanced stretching or stretching in lines that are not otherwise adjusted, e.g., centered lines.
Stretching a connection can be achieved by using the baseline filler character explicitly as many times as
necessary to achieve the desired length. Note that the troff line drawing function can be used to get a series
of adjacent fillersto any desired length, e.g.,

\I* 2m (hy’

will draw a string of adjacent base-line fillers of length 2 emms.

To achieve stretching of letters, one should immediately preceed, with no intervening white space, the
letter to be stretched by

\ X stretch’\h'n’

where n is a valid length expression in troff's input language. ffortid is prepared to deal with the output
from dtroff generated by this input to generate output that will cause the letter immediately following it to
be stretched by the length specified in n. For example,

\ X stretch’\h’ 1m \ N 70’

will cause the character whose decimal code is 70 to be stretched by 1 emm. The output will fail to have
the desired effect if the letter following is not a stretchable | etter.

75

For finer control over stretching, it may be desirable to inhibit automatic stretching on manually stretched
connections and letters. In particular, when manual stretching is done on a letter or its connection for
balancing purposes, one does not want additional automatic stretching to be done on the same to mess up
the balance. Accordingly, two command line flags are provided for this purpose:

-nBC
Do not automatically stretch manually stretched connections.

-nsl
Do not automatically stretch manually stretched | etters.

These flags are understood as eliminating potential stretching places, letters or connections, that were
identified on the basis of the stretch mode, | , ¢, e, or b. (In the following description, parenthesized text is
acomment stating what is true at this point and not what needs to be done.)

For any letter | that isa candidate for stretching by the mode,
if both the letter itself and its connection to the previous letter are candidates then

if either kind of manual stretch isin the letter and that kind of manual stretch cannot be
stretched additionally, then neither part of | isany longer a candidate;

otherwise (only the letter itself is a candidate OR only its connection to the previous letter is a
candidate)

if the letter itself is a candidate for stretching by the mode,

if there is manual stretching in the letter and manualy stretched letters cannot be
stretched more, then | isno longer a candidate;

otherwise (the connection of | isa candidate for stretching by the mode),

if there is manual stretching in the connection of | to the previous letter and manually
stretched connections cannot be stretched more, then | isno longer a candidate.

FILES
Jusr/lib/tmac/tmac.d0 standard macro files
/usr/lib/font/devIC device description and font width
tables
SEE ALSO

Cary Buchman, Daniel M. Berry, User’s Manual for Ditroff/Ffortid, An Adaptation of the UNIX Ditroff for
Formatting Bi-Directional Text,

Johny Srouji, Daniel M. Berry, An Adaptation of the UNIX Ditroff for Arabic Formatting

troffort(l), ptrn(l)

76

Appendix D

ffortid Ver 5.0 Manual Page

77

NAME
ffortid — in dtroff output, find and reverse all text in designated right-to-left fonts, carry out stretching in
Arabic, Hebrew, and Persian text, and arrange that words in slantable fonts are printed on a slanted base
line.

SYNOPSIS
ffortid[-rfont-position-1list][—-wpaperwidth][— font-position-list]..
[=s[nllll [clep](f [2In{ampunt]|ajad]al]]] [-ms[c|l W] ...

DESCRIPTION

ffortid’s job is to take the dtroff(1) output which is formatted strictly left-to-right, to find occurrences of
text in a right-to-left font and to rearrange each line so that the text in each font is written in its proper
direction. ffortid deals exclusively with dtroff output, it does not know and does not need to know anything
about any of dtroff’s preprocessors. Therefore, the results of using ffortid with any of dtroff’s preproces-
sors depends only on the dtroff output generated as a result of the input to dtroff from the preprocessors.
Furthermore, the output of ffortid goes on to the same device drivers to which the dtroff output would go;
therefore, ffortid’s output isin the same form as that of dtroff. ffortid reads its input from the standard input
and write to the standard output.

In the command line, the —r f ont - posi ti on-1i st argument is used to specify which font positions
are to be considered right-to-left. A font - posi ti on-1i st isalist of font positions separated by white
space, but with no white space at the beginning. ffortid, like dtroff, recognizes up to 256 possible font posi-
tions (0-255). The actual number of available font positions depends only on the typesetting device and its
associated dtroff device driver. The default font direction for al possible font positions is left-to-right.
Once the font direction is set, either by default or with the —r font - posi ti on-/i st argument, it
remains in effect throughout the entire document. Observe then that ffortid’s processing is independent of
what glyphs actually get printed for the mounted fonts. It processes the designated fonts as right-to-left
fonts even if, in fact, the alphabet is that of aleft-to-right language. In fact, it is possible that the same font
be mounted in two different positions, only one of which is designated as a right-to-left font position. This
ishow asingle font can be printed | eft-to-right and right-to-left in the same document.

In addition to the specified font directions, the results of ffortid’s reformatting also depends on the
document’s current formatting direction, which can be either left-to-right or right-to-left. The default for-
matting direction is left-to-right and can be changed by the user at any point in the document through the
use of the

X X PL

and

X X PR

commands in the dtroff output. These commands set the current formatting direction to left-to-right and
right-to-left, respectively. These commands are either meaningless or erroneous to dtroff device drivers;
therefore they are removed by ffortid as they are obeyed. These commands can be generated by use of

\ X PL’

and

\ X PR

escapes in the dtroff input. For the convenience of the user, two macros

. PL

78

and
. PR

are defined in the —mX2 and —mXP macro packages, that cause generation of the proper input to ffortid.
They are defined by

..de PL
\\ X' PL’
.de PR
\\ X' PR

If the current formatting direction is left-to-right, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from left to right. In each dtroff output line, any sequence of contiguous right-to-left
font characters isreversed in place.

If the current formatting direction is right-to-left, all formatting, filling, adjusting, indenting, etc. is to
appear as occurring from right to left. Each dtroff output line is reversed, including both the left and right
margins. Then, any sequence of contiguous left-to-right font characters isreversed in place.

The ~wpaper wi dt h argument is used to specify the width of the paper, in inches, on which the document
will be printed. As explained later, ffortid uses the specified paper width to determine the width of the right
margin. The default paper width is 8.5 inches and like the font directions, it remains in effect throughout
the entire document.

It isimportant to note that ffortid uses the specified paper width to determine the margin widths in the refor-
mated output line. For instance, suppose that a document is formatted for printing on paper 8.5 inches wide
with aleft margin (page offset) of 1.5 inches and aline length of 6 inches. This resultsin a right margin of
1 inch. Suppose then that the text specifies a current formatting direction of right-to-left. Then, ffortid’s
reformatting of the output line results in left and right margins of 1 and 1.5 inches, respectively. This mar-
gin calculation works well for documents formatted entirely in one direction. However, as a document’s
formatting direction changes, the resulting margins widths are exchanged. Thus, . PL’s right and left mar-
gins end up not being the same as . PR s right and left margins. The user can make ffortid preserve the left
and right margins by specifying, with the -wpaper wi dt h argument, a paper width other than the actual
paper width. This artificial paper width should be chosen so that both margins will appear to ffortid to be as
wide as the desired left margin. For example, for the document mentioned above, a specified paper width
of 9.0 inches results in reformatted left and right margins of 1.5 inches each. The resulting excess in the
right margin isjust white space that effectively falls of the edge of the paper and does not effect the format-
ting of the document.

There is one exception to these ssimple rotation rules in that ffortid, at present, makes no attempt to reverse
any of dtroff’s drawing functions, such as those used by pic(1) and ideal(1) (which are aso available
directly to the user). It is therefore suggested that these drawing functions, and thus pic and ideal, be used
only when the current formatting direction is left-to-right. Additionally, due to the cleverness of the dtroff
output generated by most substantial eqn(1) equations, it is suggested that eqn’s use also be limited to a
left-to-right formatting direction for all but the simplest forms of equations. These rules do not in any way
restrict the use of right-to-left fonts in the text dealt with by any of the preprocessors, but simply suggest
that these particular preprocessors be used only when the formatting direction is |eft-to-right.

An additional point to keep in mind when preparing input both for dtroff’s preprocessors and for dtroff
itself is that ffortid rotates, as a unit, each sequence of characters of the same direction. In order to force
ffortid to rotate parts of a sequence independently, as for a tbl(1) table, one must artificially separate them
with a change to a font of the opposite direction.

79

The—-font - posi tion-1ist argument is used to indicate which fonts positions, generally a subset of
those designated as right-to-left, contain fonts for Arabic, Hebrew, Persian, or related languages, whose
fonts support stretching of letters and/or connections. For these fonts, left and right justification of a line
can be achieved by stretching instead of inserting extra white space between the words in the line. If
requested by use of the —s argument described below, stretching is done on aline only if the line contains
at least one word in a — designated font. If so, stretching is used in place of the normal distributed extra
white space insertion for the entire line. The intention is that stretching soak up all the excess white space
inserted by dtroff to adjust the line. If there are no opportunities for stretching or there are too few to soak
up al the excess white space, what is not soaked up is distributed in between the words according to
dtroff’s algorithm. There are severa kinds of stretching, and which is in effect for all —- designated fonts
is specified with the —s argument, described below. If it is desired not to stretch a particular Arabic,
Hebrew, Persian, or other font, while still stretching others, then the particular font should not be listed in
the — font - posi ti on-1i st.Wordsin such fonts will not be stretched and will be spread with extra
white space if the containing lineis spread with extra white space.

The —r and the — gpecifications are independent. If afont isin the — font - posi ti on-1i st but not
inthe —r font - posi ti on-1i st, thenitstext will be stretched but not reversed. This independence can
be used to advantage when it is necessary to designate a particular Arabic, Hebrew, Persian, or other font
as left-to-right for examples or to get around the above mentioned limitations in the use of egn, ideal, pic,
or thl.

The kind of stetching to be done for al fonts designated in the — f ont - posi ti on-1i st isindicated
by the —s argument. There are two relatively independent dimensions that must be set to describe the
stretching, what is stretched and the places that are stretched. A stretch argument is of the form

-smp
or
-sn

where m specifies the stretching mode, i.e, what is stretched, and p specifies the places that are stretched.
The m and p must be given in that order and with no intervening spaces. The —sn means that there is no
stretching and normal spreading of words is used even in — designated fonts. The choices for the mode m
are:

I (letter €ll)
In the words designated by the p, stretch the last stretchable |etter.
c
In the words designated by the p, stretch the last connection to aletter.
e
In the words designated by the p, stretch either the last stretchable letter or the last connection to a
letter, whichever comes later.
b

In the words designated by the p, stretch either the last stretchable letter or the last connection to a
letter, whichever comes later, and if it is aletter that is stretched and it is a connect-previous letter
then also stretch the connection to the letter.

Not all modes are available for al fonts. For example, fonts for Hebrew, whose letters are not connected do
not support connection stretching. While Arabic, Hebrew, and Persian traditionally do have letter stretch-
ing, not al fonts for them support letter stretching. ffortid attempts to stretch all — designated fonts in the
specified modes, but in any text, ends up doing only those stretches that are possible given in the text's
current font. To allow ffortid to know what stretches are possible, the width tables for stretchable fonts
have some additional lines that must come somewhere after the nane line and before the char set line.

stretchabl e: letters connections
stretchabl e connections letters

80

stretchabl e: connecti ons
stretchable: letters

Each such stretchable font must have one of the first four lines. We now discuss the various ways that
different kinds of stretch are achieved in the available fonts and how ffortid deals with each.

To our knowledge, all Arabic and Persian fonts, have a baseline filler that can be used to achieve the
stretching of connections. It is fairly easy for such afiller to be added to any font definition that does not
have it, and moreover to make it the character that is addressed by \ (hy, which is normally the code for
the hyphen character. Since Arabic and Persian do not have a hyphen and hyphenation is turned off when
inan Arabic or Persian font, it issafe to use\ (hy to name thefiller. Of course, this requires that the width
table for Arabic and Persian fonts have an entry for hy designating the filler character in the font, for
example:

hy 15 0 0267 filler

Giving the filler character an explicit dtroff two-character name allows dtroff to deal with it uniformly
despite that it might be in a different position in each font.

On the other hand, stretching of letters requires a dynamic font which, by its very nature of not having a
constant bitmap for a given font name, point size, and character name, cannot be type 1 (in PostScript ter-
minology) and cannot be a bitmapped font. Therefore, as mentioned, not all Arabic, Hebrew, and Persian
fonts support stretching of |etters. Moreover, within a dynamic font, not all characters are stretchable. His-
torically, only characters with strong horizontal components are stretchable, such as those in the stand-
alone and connect-previous forms of the baa family. Obviously, one cannot stretch totally vertical charac-
ters such as alif. Therefore, it is necessary to specify by additional information in the dtroff width table for
afont which characters are stretchable. In the width table for an Arabic, Hebrew, or Persian font, for each
character, one specifies after the name, width, ascender-descender information, and code, two additional
fields, the connectivity and the stretchability of the character, in that order. The connectivity is either

for stand-alone,

for connect-after,

for connect-previous,

for connect-both, or

for unconnected (because it is punctuation or a diacritical, etc.),

cComoU>»=2

and the stretchability is either

N for not stretchable,
S for stretchable,

Some examples of width table lines are:

% 125 2 045 per cent

--- 55 0 0101 U N comma
70 0 0105 U N hanza
--- 129 0 0106 N S baa_SA
--- 36 2 0102 N N al ef _SA
--- 113 0 0177 A N sad_CA
66 2 0215 A S caf _CA
--- 43 2 0225 P N alef _CP

81

--- 120 0 0274 P S baa_CP

--- 53 0 0230 B N baa_CB
73 2 0261 B S caf _CB
Recall that - - - in the name field of a character means that it can be addressed only by \ N n’" , where n is

the decimal eguivalent of the character’s code.

For a Hebrew font, for which there is no notion of connectivity of letters, and therefore, the position of the
lettersisirrelevant for deciding stretching, there is only the possibility of stretching letters. Some examples
of width table lines for such fonts are:

% 132 3 045 per cent
--- 95 3 0140] N guot el ef t =al ef
--- 92 3 0141 U S a=bet

In adynamic font, there are two additional, alternative ways that stretching of connections can be achieved.

[)
The filler is a stretchable letter, normally of width zero, to which the total width of the filler is
passed as the stretch amount.

The connecting portions of all connecting letters are themselves stretchable in the same way as the
stretchable letters are. In this situation to achieve a total connection stretch of x, one would pass
x/2 to each of the connecting-after portion of the before letter and the connecting-before portion
of the after letter.

The use of the first of these solves the problems caused by the fact that amount of a given connection
stretch may not be integrally divisible by the width of thefiller. A stretchable filler can be stretched to any
amount. The use of the second improves the appearance of the connection stretch. While letter stretching is
done with nice, smooth curves, connection stretching using the very straight filler is noticeably flatter and
there are observable corners where the filler meets the generally curved connecting parts of its adjacent
letters. While the fixed-size filler scems to be available on all Arabic and Persian fonts, stretchable fillers
and stretchable connecting parts are available only with type 3 PostScript fonts, although it would be possi-
ble to provide a stretchable filler as the only locally defined character in atype 3 font that falls to another
type 1 font for al the other characters, which are only virtual in the type 3 font.

The dtroff width table for any font providing a stretchable filler or stretchable connecting parts must have
an additional line to specify the nature of the connection stretch in the font, which must be one of the fol-
lowing.

connection stretch: fixed filler
connection stretch: stretchable filler
connection stretch: stretchabl e connections

This line must come somewhere after the nane line and before the char set line. If none is specified, it
is assumed to be the first. Therefore, it is not necessary to say anything new for the typical type 1 or bit-
mapped font with a fixed-sized filler. Note that if a font allows different kinds of connection stretching,
only one can be specified per mounting of the font specified in a single width table. If one wants to use the
same font with different ways of stretching connections, one must mount the same font under different
names in different width tables, each specifying a different kind of connection strecthing.

ffortid implements the connection stretching that is requested by the —s command-line arguement as well
asit can using the kind of connection stretching available for the font being used. Thus, if one is not using
fixed-sized fillers, ffortid ignores the various options put in to deal with the fact that an integral number of

82

fillers may not fulfill the needed stretch.

Below, “stretchable unit” refers to that which is a candidate for stretching according to the mode. The
choices for p, which specifies places of stretching, are:

f
In any line, stretch the last stretchable unit.

Assuming that the mode is b (both), in any line, stretch the last two stretchable units, if they are
the connection leading to a stretchable connect-previous letter and that letter, and stretch only the
last stretchable unit otherwise. If the mode is not b, then this choice of placesisillegal.

mmor m
In any line, stretch the last stretchable unit by an amount not exceeding n emmes. If that does not
exhaust the available white space, then stretch the next last stretchable unit by an amount not
exceeding n emms, and so on until al the available white space is exhausted. If nisnot given, itis
assumed to be 2. 0. In general n can be any number in floating point format.

a, ad,or al

In any line, stretch all stretchable units. In this case, the total amount available for stretching is
divided evenly over all stretchable units on the line identified according to the mode. Since the
units of stretching are the units of device resolution, the amount available might not divide evenly
over the number of places. Therefore, it is useful to be able to specify what to do with the
remainder of this division. This specification is given as an extension of the stretching argument.
The choices are d or | , with the former indicating that the excess be distributed as evenly as pos-
sible to the spaces between words and the latter indicating that the excess be distributed as evenly
as possible in stretchable letters that were stretchable units according to the current mode and
place. The latter is the default if no choice is specified. The stretched item for the | choice must
be a letter rather than a connection because only a stretchable letter is stretchable to any small
amount that will be the remainder. Of course, if the method of stretching a connection is dynamic,
then a connection could be stretched to any amount, but then there would not be a remainder in
the first place.

In general, the stretch is divided as evenly as possible between all stretchable unitsin a line. Specificly, in
stretch mode b, if we have a connection leading to a stretchable connect-previous letter and that letter,
then any stretch remainder we have from stretching the connection will be added to the stretch of the letter.

Sometimes, it is desirable to be able to manually stretch connections or |etters to achieve special effects,
e.g., more balanced stretching or stretching in lines that are not otherwise adjusted, e.g., centered lines.

If fixed-sized fillers are used to achieve connection stretching, then one can use the filler character expli-
citly as many times as necessary to achieve the desired length. Note that the troff line drawing function can
be used to get a series of adjacent fillersto any desired length, e.g.,

\I[* 2m (hy’

will draw a string of adjacent baseline fillers of length 2 emmes.

How to manually stretch connections that are done by a stretchable filler or by stretchable connection parts
is described after describing how to manually stretch letters themselves.

To achieve stretching of letters, one should immediately preceed, with no intervening printable text, the
letter to be stretched by the escape sequence

\X stretch’\h' n’
where n is a valid length expression in troff's input language. ffortid is prepared to deal with the output

from dtroff generated by this input to generate output that will cause the letter immediately following it to
be stretched by the length specified in n. For example,

83

\X stretch’\h’ 1m \ N 70’

will cause the character whose decimal code is 70 to be stretched by 1 mm. The output will fail to have the
desired effect if the letter following is not a stretchable letter.

If connection stretching is achieved by having a stretching filler, then one manually stretches the filler char-
acter by the desired amount asif it were aletter.

\ X' stretch’\h’ n"\ (hy

Here, though the stretch parameter n is the total length of the filler, as the filler is of length zero if it is not
stretched.

To stretch the connecting parts of |etters, two additional escape sequences are provided that may be placed
before, with no intervening printable text, the letter to which they apply,

\X BCstretch’\h’nb \ X ACstretch’\h’ na

where nb and na are valid length expressions in troff’ s input language. These specify the amounts of stretch
in the before and after connecting parts of the immediately following letter. The order in which the
\ X stretch’\h’'n', \ X BCstretch’\h'nb',and \ X ACstretch’\ h’ na" for aletter appear
isirrelevant, but in between them and after the last of them, there is no printable text, including white space
(including new lines), and the letter to which they apply immediately follows the last. Suppose that two
consecutive, in logical order, letters have decimal codes 70 and 80. Suppose also that 70 connects after to
the connecting before 80. Suppose finally that this connection from 70 to 80 is to be stretched by 1 emm
and the letter 80 isto be stretched by 2 emms. Then the input would look as follows:

\ X ACstretch’\h’.5m\N 70"\ X BCstretch’\h’.5m\ X stretch’\h’ 2m \ N 80

Note that the connection stretch of 1 emm was split into two stretches of .5 emm for each of the connecting
after and the connecting before parts.

For finer control over stretching, it may be desirable to inhibit automatic stretching on manually stretched
connections and letters. In particular, when manual stretching is done on a letter or its connection for
balancing purposes, one does not want additional automatic stretching to be done on the same to mess up
the balance. Accordingly, three command line flags are provided for this purpose:

-nsc

Do not automatically stretch manually stretched connections.
—sl

Do not automatically stretch manually stretched letters.
-nBwW

Do not automatically stretch any word containing any manual stretching.

These flags are understood as eliminating potential stretching places, letters or connections, that were
identified on the basis of the stretch mode, | , ¢, e, or b. (In the following description, parenthesized text is
acomment stating what istrue at this point and not what needs to be done.)

For any letter | that isa candidate for stretching by the mode,

if | isinaword containing a manually stretched letter or connection and —nswis set, then | isno
longer a candidate

otherwise

if both the letter itself and its connection to the previous letter are candidates then

if either kind of manual stretch is in the letter and that kind of manual stretch cannot be
stretched additionally, then neither part of | isany longer a candidate;

otherwise (only the letter itself is a candidate OR only its connection to the previous letter is a
candidate)

if the letter itself is a candidate for stretching by the mode,

if there is manual stretching in the letter and manually stretched letters cannot be
stretched more, then | isno longer a candidate;

otherwise (the connection of | isa candidate for stretching by the mode),

if there is manual stretching in the connection of | to the previous letter and manually
stretched connections cannot be stretched more, then | isno longer a candidate.

ffortid is able to arrange that text in slantable fonts is printed with each word in a line of text in a slanted
baseline that crosses the baseline of the line at the center of the word. The figure below shows each words
baseline as a solid arrow and the line’ s baseline as a dotted arrow.
figure baselines.ps

Observe that in this style of printing the beginning of a non-first word is directly over the end of its previ-
ous word. Moreover, within a word there will generally be stretching to allow this property to hold; that is,
if there were no stretching to achieve left justification, it might be necessary to have a horizontal gap
between two consecutive words.

For ffortid to implement this slanted-baseline printing for a font, it is necessary that some non-standard
information be supplied in the dtroff width table for the font. First, there is aline that specifies the slant in
degrees.

slant 22.0

The argument can be a floating point number. This line must come somewhere after the nane line and
before the char set line. The argument should be the slant in degrees and should match the slant implied
by the first two values in the Font Mat ri x of the font. Specificaly the ratio of the second to the first
should be the tangent of the dant. ffortid uses this slant value to know by how much to displace the begin-
ning of aword vertically so that as it flows downward in the right-to-left direction, the center of the word
crosses the line' s baseline.

In addition, in order that there appear to be no horizontal white space between words, the spacewi dt h of
the font must be set to one.

spacewi dth 1

Actually, the spacewidth should be zero, but dtroff refuses to set the it to zero, setting it to an emm width if
you tell it zero. To the human eye, at the typical resolutions specified in the DESC files, in the mid hun-
dreds, a spacewidth of oneis close enough.

A few suggestions to the user are in order. While dtroff supports font changes in the middle of words,
ffortid does not support and reports as an error font changes that change the dant in the middle of words,
either to another nozero slant or to no slant at all. Besides it being a pain to implement, it is not clear what
the behavior should be in such a situation. Recall also that there is typically no horizontal separation
between slanted words; all the separation comes from the end of one word being separated vertically from
the beginning of the next. If words are too short, there may not be enough vertical clearance between con-
secutive words. To insure adequate vertical clearance, it may be necessary to combine several words into
what dtroff and ffortid consider one word. For this purpose, each such slantable font should have a special

85

character called \ (ps (for “permanent space”, whose width is set to what would normally be the spa-
cewidth and which can be used as an unpaddable blank between two words that are to be treated as a sin-
gle, unbreakable word by dtroff and ffortid.

ps 72 0 040 per manent space

Note that the normal dtroff unpaddable space, “\ ", cannot be used, because its width is defined to be that
of the regular space, i.e., the spacewidth, and would end up being one in this case. If one wants the
guaranteed white space, but wants to allow a word break, one can make the\ (ps the last character or the
first character in aregular, white-space-delimited word.

FILES
/usr/lib/tmac/tmac.] standard macro files
/usr/lib/font/devIC device description and font width
tables
SEE ALSO

Cary Buchman, Daniel M. Berry, User’s Manual for Ditroff/Ffortid, An Adaptation of the UNIX Ditroff for
Formatting Bi-Directional Text,

Johny Srouji, Daniel M. Berry, An Adaptation of the UNIX Ditroff for Arabic Formatting

troffort(l), ptrn(l)

86

Bibliography

[1] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design
recovery: A taxonomy. IEEFE Software, 7(1):13-17, January 1990.

[2] ANSI/TEEE. [EEE standard glossary of software engineering terminology.
IEEE, 1983. ANSI/IEEE standard 729.

[3] Roger S. Pressman. Software Engineering: A Praclitioner’s Approach.
McGraw-Hill, 3rd edition, 1992.

[4] Barry W. Boehm. A spiral model of software development and enhancement.

Computer, 21(5):61-72, May 1988.

[6] Judith D. Ahrens, Noah S. Prywes, and Evan Lock. Software process reengi-
neering: Toward a new generation of case technology. Journal of Systems and

Software, 30(1 and 2):71-84, July—Aug 1995.

[6] Software Productivity Consortium. Reuse-driven software process guidebook.
Technical Report SPC-92019-CMC, Version 02.00.03, Software Productivity

Consortium, Herndon, Virginia, 1993.

[7] Software Productivity Consortium. Software reuse: The competitive edge.
Technical Report SPC-91047-N, Software Productivity Consortium, Herndon,
Virginia, 1991.

[8] Judith D. Ahrens and Noah Prywes. Reengineering the software life cycle
and enabling technology. Technical report, Computer Command and Control
Company, July 20 1994.

[9] CSTB Report. Scaling up: A research agenda for software engineering. Com-
munications of the ACM, 33(3):281-293, March 1990.

[10] Alfonso Fuggeta. A classification of case technology. Computer, 26(12):25-38,
December 1993.

[11] Judith D. Ahrens and Noah S. Prywes. Transition to a legacy and reuse-based
software life cycle. Computer, 28(10):27-36, October 1995.

[12] Rebecca Joos. Software reuse at motorola. IEEE Software, 11(5):42-47,
September 1994.

[13] Wayne C. Lim. Effects of reuse on quality, productivity, and economics. IEEE
Software, 11(5):23-30, September 1994.

[14] Barbara Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger. Case stud-
ies for method and tool evaluation. IEEE Software, 12(4):52-62, July 1995.

87

[15]

[16]

[17]

[18]

[19]

[20]

[23]

H. Sackman, W.J. Erickson, and E.E. Grant. Exploratory experimental studies
comparing online and offline programming performance. Communications of

the ACM, 11(1):3-11, January 1968.

Cary Buchman and Daniel M. Berry. User’s Manual for ditroff/ffortid, An
adaption of the UNIX Ditroff for formatting bi-directional text. Berry Com-
puter Scientists, Los Angeles, CA, 1987.

J. Srouji and D. M. Berry. Arabic formatting with ditroff/ffortid. FElectronic
Publishing, 5(4):163-208, December 1992.

B. W. Kernighan. A typesetter-independant TROFF. Computing Science 97,
Bell Laboratories, Murray Hill, NJ, March 1982.

J. F. Ossana. NROFF/TROFF user’s manual. Technical report, Bell Labora-
tories, Murray Hill, NJ, October 11 1976.

G.A. Miller. The magical number seven, plus or minus two: Some limits on
our capacity for processing information. The Psychological Review, 63:81-97,

March 1956.

B.W. Kernighan. Pic — a graphics language for typesetting, revised user
manual. Computing Science 116, Bell Laboratories, Murray Hill, NJ, December
1984.

Harry I. Hornreich. ffortid version 3.0 decomposition manual. Available from
ftp://csgo.cs.technion.ac.il/pub/misc/dberry /hornreich.work, April 1996. In
Adobe Acrobat pdf format.

D.M. Berry. The importance of ignorance in requirements engineering. Journal

of Systems and Software, 28(2):179-184, February 1995.

88

NIDM 2V WINND NOTINA IPNN MIPN

TN N

NIDM 2V WINND NOTINA IPNN MIPN

NN 9y NN

DOYTNI VO ININ NJAPI MYPITN DY SPIN NP0 DYI
AVNNN PYTN

TN N

NI INIDV NN - NPIDVN VIO YIN
1998 NI non N"WNN TN

WTNT NOYPOL M2 N INIT A9 TMNINA NWYYI PN 9y NN
avnnn

M IPNN TONNA 2 NINIY MINHN DY IPIDVN 1IPY MTIND IN¥IA

2% TINN TN 'O 2AN YW IRND WITPM M IPNn

M IPAN ToNA NN NN JY SNIWRI MTIND 21871

Q°1°]y 1210

T7Epn

X12n
.................................. mnn 11
.................. OPNN MNNT DIPP DOTINI IPYa 1.2
......................... OPNN MNNT YSIN JTMD 13
................................ 7AYNn MY 14
........................... NYSMn YNn VY 15

= 0 6 O Ut W

........................ APNDN TNILY 16

"0%317

.......................... WP PN 21
...................... WPNKN NP0 %Y 2.2
...................... WD NIPH G 2.3

flortid N”32107

.............................. ypy 31
.................... ffortid ¥ Mpnn dNap 3.2
...................... flortid 2 99N MY 3.3

ffortid Sw wanm QwN NOTIT

......................... 0N TP 41
........... TS IYOYM NN NP PYPN 411
............... 130N OY NWOD TN 412
.............. OOMPY TN MDNNT 413
................ 130N NP SY MNNY 0TI 4.2
............. 3.0 NOM flortid SY INND DO 4.3
............. 3.0 NOP) flortid 2 NMOPYIIND 44
................... PYPONN JANHN INPON 4.5
........................ MYNIN ONNN 4.6

4.0 70972 flortid

................. NN DTN DMPY N 511
....................... nwvwINn MYATn 52
............................ vimmn 53
...................... DWVIYNHN IRNWN 54

5.0 09" flortid

....................... nwvwINn MYITn 6l
............................ vinmn 6.2

57
57
58

61

62

66

70

77

87

710°373 NIRXIN

................. WNYVIDY NPT 7.1
....................... NN 7.2
....................... mpon 7.3
........................ mhn 74

Q°N17w NIt N17ARYT2 070
3.0 7077 flortid IRN 73
4.0 7077 flortid 9IRN 73
5.0 7077 flortid 9IRN 73

7793199272

077K N

........................... MmN YA owpn 11
............. TN MIDINA N YIPYI OONN MNN 77N 1.2
.................... NYSNN I2YHN NV DY Dy vIn 13
....................... TTNMINDD NV D9NNN 14

................ DIPN NINN DY MIANTN NPIN DN 3.1
................. flortid 797 N2y KoY ditroff ¥ RONT 3.2
............... flortid 797 ANV ditroff ST NN 3.3
............... NI NN TININN MIIANTID NPIMN. 3.4
..... MPOPN 2TV TY MHNTIN DNYA MNINN TMIANHN IPTIN - 35
..... D702 MNINND MIAINTNN NPIINRD 72 P2 NN IVvINN - 3.6
........... TPOINY I3y AW 120N flortid VIAY NONT 3.7

.......................... NIONYT2 NNV TDMNOT - 4.1
............... MY NI} IDNNTY DMIPY DO 4.2
................... ffortid D¢ MY NN NPT 4.3
......... MVYNN MY OY dump.c J¥ MW NI/ IDVNT - 44
..................... DA DINY TN TDNNT 4.5
......... 3.0 NOM ffortid ¥ 1 NN DT 9T oW PRI PON 4.6
......... 3.0 NOM ffortid 2¥ 1 NN NN 9T SWOWOVW PO 4.7
.......... 3.0 NOM flortid DY 1 NN NN 9T WO Pon - 4.8
............. 3.0 NOM ffortid S¥ PYPO 16 NN NN 9T 4.9
........... NN MY 3.0 NOM) flortid PIPO YW DOy VAN 4.10

............ PHRPT PN DN OINININ ,TNINTN NPIMN 5.1
................... 4.0 NOY) flortid $790 S Yy Van 5.2

.................. D7 ONIHNI DRI IPININ NN 6.1
.................... 1Y YOWN N1 OIN NTO 6.2
........................ YOIWN 20102 VIAT NINIT 6.3

.............. DMIPY INNT DIWY»T Njpn DWW Ppa 0on> 7.1

19
21

38

51

58
59

NIRSav nPvwA

ffortid S¢ PMOOIN

.......................... flortid 5¢ M1 >8ap

................... 3.0 NOM) flortid S¥ NMIDINN PN’

....................... NI MTPHI OV OXND
................... 4.0 NOP) flortid S¥ NMIDINN TN’

.. 100N IINNIN
22N MRNIN NN

31
32

4.1

51
5.2

7.1
7.2

aibqrle

NOTIN Y DINHA TN MPYID NI TINMP MOIWN NDYY NPRNN DY 1Pyan
YN PONT DIYN DY 1990Y DY MIDIN MDIY»I THPNI IYITIN B 7Py¥a 119N
DPN 722 MNjPHnn DIY»N JY DXOTINNDN DY) BN DN DIMIND Y N2WoN 19N
PN IPN YORY 20N 1D 7PN NI DIYN ToNN2 DIYNL WYY DMIPY 1m0 7]
TPNY AYYY YT DIWN TONNI TAXY 29 YT DIYPI NSN OW TNHD 0T IMN
PND PP MIYY THPHA DAND NNNTYT DIWHN NN PIND J1PI XD 195 0IND 239N
VY Y'Y DPMIR OMIPY 'Y R 7PY NPT WINN D70 PR DARYNIA NI M
3019 2 TPLMIVIN 7PN 71I2IN WIN YIDYD

DYINY MNPON DY) NN NN NOTIN DY N ATAY RN 72YN2 HNN DO
NNTO DTYN NITO NYINN R DY) A"NINA Software Productivity Consortium 1"y
101N 22>39 JY NMVPLPPIIND NX 29NN TN JY MYIT DITIN MY NP
D090 NN DYO DXVITH NPNIAN PN TINY DY SINOYNI /WIiN Yo
DWIN DY TN NUTIN XIPI NOND N2¥HRoN DIND NP SY M PN 0NN
0w NTUTIN NI TINNA ,NPNAN 22N 279y, DINTNN D239 NPNA 'Y D222

2% THNONY 290 TNSN 1IN0/ N2> YN NI TY NNSY DN I R Y
N AYD AP PNN NN NI0IN NOTINA N DIW»H OINNI JN 2NN YT DY NN
DNV MIN YIDYWI DININ NI 2239 DY 117190 , 09NN MY NIN DNIN IYNT
TNAZ PP N 01 ANV DYP DOWN /M, DINTA IWAN DWW T3 JY DN DY
D»NON D PONNN 2o %92 ThN DWW 1)

DVNIN TN ,NVN2 NIV DINNN NOTIN TINN PO WD DININ DIININ
NIV NIDINK DORONN DOVMVIN DXJD MY PINNA WTTTN TN NUTIN XIPIN NIy
TPIT DN PTHNY 1IN HY N2 YHNYND 1) IR NN DINNA Y7 N2 MINA
S NINT N NN DN MINY P DIN 7IDINN 27 TIN) DINNI DWW
oY MY DN DNDINA MINN TR NPVPDY PINNA MY PRD NPNI TN
TVI91 NP0 PR X NFPNON NIV NVNIN YTNN NOTIN NLVNI NIVIIN NOTIN
DOYTN DMY» NPYAa

1229 2"y NZYNT NVNIN YINN NOTING NYSIIN NVLIWN IR TIWNZ DO M NN
MDY YNIAT 7PN YN 0P ITHA N SIPRR NIDIN DY DY STIRNWN NN 10
,DOUNNYNN 2N IMYN YIN 1IN DY JAN 72 MINONDI NPV NN DY 97120
DNTPTIN DY NIY TNSN IR DIP TIND 1PN TNNYN NIVON TDIWN
TN NN A2 WP NPNT 21> M PINN >NPHRN DW»N Iy DOOINN NP
DMPY DN2 ¥Y¥AD 290 SWIPN 9202 v

OV DWW IMND IPNNN O 272’99 1727 1INNKN 21D DIPPOIN MW PN

MNT 9 .0N9Y DDIWIN JY DOIRIN TN Y TIN N1 MNY MW WHnwn Jan
A9W DTIPN WTN Y DDIN N P20 IN 120N 'Y IYRIY DWON SY

IR NIPO NN, 1 INNT INYNRI DINT N NI 5Y WD NOTINI YRR 13nmn
DNTPINN DO TY TIYTHN TIITN IV TP 110 JY TPIPNIZAN NN DI
VNN IPAN DWITIN DVWINN DIYMD TIX Y NN 7Y OTI TIM DD Y
77 MY PN WK MOY WD 0PI TINNIN NPRNTIN MW NN YN N0
DY J¢ MNT AW OIMN TIN DY 270 WTNN NDTINI IN NNKI NOTINA YIDY
TIYOYT DN 279 720NN VY

2PN NIPHN PN T MWD

ID»PN MOYN IYND INY NP IR DY DIXY DYTNN NOYN 1 7IY03

PPN MOWN WND N YIDY2 PIY TIP NP MISY IYTNN NOWN 2 7YY

NN DY NIMT 1IN DY NIDINA DMIPY TIND DIYNT NYTNN NOXWN 3 JIvTH
ID»PN MOWN

DIDPPN MOV IYRND INY DIV DIV MNP DYTNN NOWYN 4 0IY05

1N N2 P> IININNY RTNZ 10 7Y OTPIM PN YNT NP0 IPNN s
Y DM INY NTNZ NI DY NP DY 190N

PNNT YOI W DY NI e
NN DN 2Y DTPM YT 73 7P N7 9anN7 e

DWW Y SWHYM MW NTN T TILTTN D8NP 9y ¥ 93 7PN NI 1IN0Y e
DI TIWTY PIY PN 295

DIYPN NNN JY N DRSY MYAITN JY PN TR OPP2 NNY 9PN 1annn e
DY

LNAN 20D 7Y MDINY 2197 MPPTA NNIP NINN T2 INLY NTINMND DD
DO TPPSPND DY NTNT 1 Iy

N212°2 ©1I2%) DYJTAN ,DNIINN 90N 5710 WK NIDIN NDTINA MDD’ 751 WD
BN PN M 2NN D M NP I MDD GDIN IR VAT 213> NN
20N MIDNNN M) PIPY P KW MIN7 .C DW»N NI 29)P Ooya DINIONN
MY PO IV 2917 ¥ 72NN 2Y DN NN 19010 ATV W2 1) Ny
DWPNY D2Po0NN TIVY NN JY TIND NPIMY NN 2 W 12NNJ IWRD NP
AN PN AN ROV NIAN 22 NIPN KT I2NN7 PN NI PIN KIN MDD NI
TNET NV DWHN Y DN THNTH DI NIRM PPN ;NN 1983 TIY IND
NI DWON NTI IMWITN ¥ DT YT 19D P27 02N 120032 10 1D 00N
92NN NOWI M PIFP IND MO RN OX ,TIOT J2W DN 71PN NINY PP
TNIY7 OXR QDN IWPNKT MINT NI NYSINN NOWI TRY ¥ RN PN NOY 29 Y
22012 1P N2 AN 9720 NOWI NI PIN DY IN NPYRYHD TN 1PN MINSIND XY
M7

i

TIDY DI PN NN M OwW» ffortid NIPI MDD TNND N DWW
TIY 129N ANWN M DW» NI ditroff INIPIY UNIX 5S¢ :ppnn o99nnn
IN P2 FPIAY D95197 MY 22570 DIYTN DINDN NN IWIND NI, D2onnn
DLIYY) MNTIV MNNDN DI, TININ 5212 IRNYS PR MINN MY 1D 7P
PP NI IR DMWY DTN 30T 9y DWW 9 TINY A1) M DW» D»aNYIA
29Y 0N NN IY TSR 59 PN TN WIDYA RSN S¥10 0N 1Y DPYno
N2YT) XY ISYN TPINN AWHNY ST MILP NPN 1291 MY 2510 SN N NINNN
PPN YD TWN YR >N

TR Y 7PN, 999 NID 12 DINNN 9 N3N DIWIN DY ¥ 59 7N KI 7anndy
TP YN IR NONINT DI JY NZ¥NT VNI YTNND NIDIN NOTINA YHNWNo »yav
INMAY MNNT NOTIN JY NV YHNYN 92aNHNN .0INNN 7y DY DYP PN 910V
D79917 3% NVXYI .DIYPN DY NPT NNVPVLIIIND X THZX7 7N Iy M0%0N Tonna
D020 NN NN’ 1N NIDIN TITN> NI TN MNXIPIN MOYIIN MY DW»N NN
I 2 23T JPIND PYPAN MWD T3 N ¥ 1aNNKD DINHN JY DI IIDOY
NI PR TN WY DAYNNN DXI37 MYITTH MDD 22X TNIPON (7°0N)

MPY MNSZ NPADN WK NIDIN NIIWN 2V AL ITHN 227 NN 11N N1
¢ 0N MIYITN L PYNRNN SN2 NNV DTN IPNN THR 22N ANYD IN
INSIND IWIPNZ DINZYY T8N MYIY 122010 D) DTN 1P MDD NI NP
Y NN DTN DY DY TITN> 10 11D 20 TN NN MM PN NoYain
APNNN NZY MIVHN TN’ DY 1IN PAT MDD DTN Y 53N MNINN 72 P2 WiPn
NNV NN PP DNNYIY DMPY NN MDDNT OOXRIPIN DN YIdY vy
NN DXPODN BNY DN DOXTPYN MIDIN TMITN’ JY DINYN DNION IR 79N
AR PYD TYND Y1 TNDY NINN MTHZ INMiZ NIDIN 21V NITION NV MININD

N DY DN TNN 9D ffortid DWMN ¥ IIMT MW 1Y PaAm 7anHn NN
Y9101 900N MY 2 NI DN DY NT 232190 MY PN NN 190N
NPPTA 551 WHDIH2 WAIATIV MYYN 190D NT 732 MNIWN SV

YW 1ITIN NT T2 IWINY NN YIDKWN NN DN 1PN TYTH2 10 DY
DO

PO XN N YIPY DN NYMIY IMYN 9900 IX TTM NN WN°WUn 0" e

YYI PNPHRN TWPNN N2 TTINR DT ON> .DWMN DY SNPNN TYMYN 190107
NINY 29D N vy

IMYY MY 9010 NN TTIN RINY NIN ININD YIdYn O NNyt "1°0N 01"
DWW DY ONPHRN MMV 19002 FPON I8N

TNYN MD0N7 PO ININT DOINY TIYTHN TNYN 100N NN TTI N0 O e
TIPN NN NN INNNN 710D N7 N NINY PPD 2N 713 ON> NN 290N
DMIPYN) N YIDYN YA THZN I8 100D 110D POINZ YN

TIN KINWDD 0PNI0L THIN TN YWY Y 1M DY 2 TN 9y 795
NIW T 99 Pyn M2 TN YIDY DN TINd NADIN DN 112 N YIDY ON 1o
DN AW T2 9Y DY) TN NADIN DN SNPHN DWW 17 NP PIRT TIN D

VTN TP K9 OO TN I8 YIND
P2 IPYN D) WIND YIPYN DHX2 STNNN 720 77 NIY TN DN TINSIN

11

N7 NODINN DN XINNK 9T7aN 7PN NN DY . DNYN NHD2IN 2a9¢a MOXWN MY
NY P MO YIDWA PIFPN DY AN Mt 97N TaNnN TIYTY DWW Y PYUNIN
IR TN MOWON NPT NIY MNP NIIN MTH YHNWNT NINHNN NN 19770
1P MINKITIN 999 59 VAN PIWN DM NTA DONYN DO XN 97N 7PN NIV
VIV NP 20 7PN 72000 DY DY TV IYRIN NTIY TD Y THYdANH JY NYos

¥ P2 PN SY WND WIN

OV JY OMIPY YNIT P TN TITYHRUYN NP e
INPOPR TPIIYAYN 7PN DIWMN DTN e

NP 20 TINNN PN NI e

1Y DM MDONL PN 1Y TP e

PINT 1IN YY DADN TNINM DD NN 2PN DVINTY YHTIS ¥ 1INt DN
DO NN IY WY PIMY NPNVN TIPOYN J019) 1IN TINSIN

99 MRS MINT NOTINT NYKIIN DLW YHNWNT JPIW 120100 DN MY N0
DPOMDIN DY FIRY R NOWN DI DIPIN Y¥IT JFPIW) NN DIND NPT 11
WND AP DIITI TN ITON DMWY J¥ R DLW YIDY NN ININ ONY D99
TIN MDY AP DI IR D) MOV YIPY 77 120NN NIYTY Ipnn1 ow»n
NONYIY DD DND NN THY MIDINA MIND YDV NPRNNN T1»Ya
RY ANYRIN NN DPAYHNND DI NRY) NPIPHR MNTY MIIWN 9y WD
NDTINA N PNV JY SN XITH TIN TN MYKIND THOWD NN 19w
1391

v

	A Case Study of Software Reengineering
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Definitions
	1.2 Problems in Current Life Cycle Models
	1.3 Proposed Life Cycle Model
	1.4 Transition Method
	1.5 Proposed Transition Method
	1.6 Thesis Objectives

	2 The Experiment
	2.1 A Case Study
	2.2 Case Study Mechanics
	2.3 Case Study Validity

	3 The ffortid Program
	3.1 Background
	3.2 ffortid Source Files
	3.3 Why We Chose ffortid

	4 Domain Software Reengineering of ffortid
	4.1 Software Units
	4.1.1 Software Unit Interface and Side-effects
	4.1.2 Software Sub-Units
	4.1.3 Service Flow Diagrams

	4.2 Reverse Engineering a Software Unit
	4.3 ffortid Version 3.0 Reverse Engineering
	4.4 ffortid Version 3.0 Architecture
	4.5 Author's Conclusions from Decomposition
	4.6 The Initial Domain

	5 ffortid Version 4.0
	5.1 SWU Modifications
	5.2 The New Requirements
	5.3 Implementation
	5.4 Implementation Comparison

	6 ffortid Version 5.0
	6.1 The New Requirements
	6.2 Implementation

	7 Experiment Results
	7.1 Measuring Reuse
	7.2 Results
	7.3 Conclusions
	7.4 Acknowledgments

	A SFD Icons
	B ffortid Ver 3.0 Manual Page
	C ffortid Ver 4.0 Manual Page
	D ffortid Ver 5.0 Manual Page
	Bibliography
	Hebrew Version

