
1

A Case Study of Software Reengineering

M. Sc. Seminar

Harry Hornreich

Advisors: Prof. Daniel Berry & Prof. Noah Prywes

2

Motivation

The problem of maintaining and enhancing existing
legacy systems has been recognized as a major problem
in software engineering.

Researchers have proposed solving this problem by
organizational changes and methods for systematic
software reuse.

However, the transition from large, complex legacy
applications to a future based on software reuse and
automatic program generation has proved very difficult.

3

Software Maintenance

Software maintenance is the “modification of a software
product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product
to a changing environment” (ANSI).

Types of maintenance:
• Corrective
• Adaptive
• Perfective
• Preventive

4

Relationship Between Terms

Requirements Design Implementation

Forward
engineering

Forward
engineering

Reverse
engineering

Reverse
engineering

Design
Recovery Design

Recovery

Reengineering Reengineering

Restructuring Restructuring Redocumentation,
Restructuring

5

Synthesis

• Prescribes an ordered sequence of steps for the
management, analysis and specification of a domain ,
which contains the architecture of a product family of
reusable software components and the decision rules
needed for their selection.

• The top-down process of creating the domain is called
domain engineering.

• New applications are constructed by selecting
components from the domain, as indicated by the
decision rules, in a process called application
engineering.

6

Domain Reengineering

• Ahrens and Prywes (A & P) have augmented the top-
down domain engineering process with a bottom-up
domain reengineering process that extracts
architecture, design, business rules, etc. from legacy
software.

• New applications are still constructed using
application engineering.

7

Augmented Transition Method

Domain
repository:

Definition
Specification
Architecture
Reuse library

Documentation

Application
engineering

Auto. program
generation

Application
software

User requirements

Domain SW
engineering
Top down

Domain SW
reengineering

Bottom up

Domain and
software experts

Legacy
application

software

Customer/
Technology
Feedback

8

Thesis Objectives

• To evaluate the proposed domain reengineering
process.

• To reach conclusions on the required enabling
technology for the reengineering process.

• To develop a method for the evolutionary development
of a domain according to external requirements.

• To reach conclusions on the required enabling
technology for the new method.

• To refine the theory of SWUs to support the above
processes.

9

The Experiment

•A case study can show the effects of a technology or
method in a typical situation, but cannot be
generalized to every possible situation.

• Case studies are not as scientifically rigorous as
formal experiments but they can provide us with
sufficient information to judge if a method has any
promise in it, and whether it is worth to proceed to
controlled experimentation.

• A 1965 experiment to show that interactive
programming is more effective than batch
programming failed to produce significant results
because the effect of the independent variable was
drowned out by individual differences in programmers
of equal experience. One was found to be 28 times
more effective than another of equal experience.

10

The Experiment - Cont.

• Our case study is a “which is better” type of case
study: A & P versus conventional maintenance.

• Our hypotheses are that the A & P method:
– requires less time to produce an application
– produces more reusable code
– requires less code modification to produce an

application

11

Experiment steps

1. Select legacy code program P as pilot
2. Domain reengineer P and create initial domain
3. Devise a set of requirements R’ for P’
4. Experimenter and control create individual versions of

P’ and test them against the same set of tests
5. Devise another set of requirements R’’ for P’’
6. Experimenter and control create individual versions of

P’’ and test them against the same set of tests

The following measurements were collected:
• Implementation hours
• Number of added, deleted, and modified code lines

12

Experiment Validity

• We selected a typical legacy program as the pilot.
• The experimenter had no previous knowledge of the

pilot program.
• The experimenter was not disclosed the requirements

until he needed them.
• Only discussion of the requirements was allowed

between the experimenter and control.
• Similar versions were compared against a common

base-line before proceeding to the next step.
• The control had a clear advantage over the

experimenter (years of programming, knowledge of the
domain, knowledge of the pilot, previous knowledge of
the requirements).

13

The ffortid Program

ffortid is a ditroff post-processor for handling Hebrew,
Arabic, Persian, as well as other right-to-left
languages.

ffortid rearranges each input line so:
• Text in right-to-left fonts is in its correct direction.
• Lines containing Arabic and Persian are left justified

by stretching words and not by adding additional white
space.

14

Why ffortid?

• ffortid is a typical legacy program (on a small scale):
– Written over a long time span (1983-1991)
– Written by several programmers (3)
– Had several versions (1.0, 2.0 & 3.0)
– In working condition and in use
– No original design documents

• ffortid is a good candidate for experimentation:
– Reasonably sized (2510 lines)
– The experimenter had no previous knowledge of the

program

15

Software Unit Theory

A Software Unit (SWU) is a well-defined component of a
software system, that provides one or more
computational resources or services.

• The scope of a SWU is the body of code which it
abstracts.

• The capabilities of a SWU are the services it can
provide.

• The interface of a SWU is a description of how its
services can be accessed by its clients and how these
services affect other SWUs.

• The requirements of a SWU are the services it depends
upon in order to provide its own services.

16

Service Flow Diagrams

A Service Flow Diagram (SFD) is a graphical description
of the service flow between one or more SWUs.

ffortid
1

fontfilen

fontfile1

stdin

stderr

stdout

descfile argc P argv P

...........

17

SFD Icons
ii

Software Unit

XXX
n

XXX is the name of the SWU.
n is its number (optional)

IO File

XXX

XXX is the name of the file

Local Variable

XXX

XXX is the name of the variable

ii

Parameter Variable

XXX P

XXX is the name of the variable

Return Variable

XXX R

XXX is the name of the variable

External Variable

XXX E

XXX is the name of the variable

ii

SWU Borderline

XXX

XXX is the name of the SWU

Parameters Group

. ...
..
..
..
..
..
..
.......................................

XXX P

func

Groups parameters of func for
SWU entry point

Data Flow Relationship

A B

Data flows from SWU A to
SWU B

ii

Bi-Directional Data Flow
Relationship

A B

Data flows from SWU A to
SWU B and vice-versa

Call Relationship

A B

SWU A calls a function in
SWU B

Use relationship

A B

SWU B uses declerations or
definitions in SWU A

iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

18

SFD of SWU with sub-units

dump.c

start P

end P

reverse_lr P

start P

end P

paper_width P

start P

end P

out_fontable E out_font E out_horizontal E out_size E out_font_name E

out_vertical E

dump_line
19

recalc_horiz
21

reverse_line
20

print_line
22

stdout

connect E

dump_defin
18

19

A complex SFD

width.c

width2

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

s P

in_size P

in_font P

width R

. ...
..
..
..................................

width_init

loadfont

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

n P

s P

s1 P

descfile

fontfile1

......

fontfilen

stderr

c P in_size P in_font P width R

width1

. ...
..
..
..
..
..
..
..
..

widthn

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

pn P

width R

width_calc
37

init_dev_font
36

debug_error
38

width_defin
35

indx_1st_spec_font E

char_name E

char_table E

char_indx_table E

size_char_table E

no_of_fonts E

width_table E

unit_width E

basic_font_info E

code_table E

fontdir E

size_char_name E

font_name E

units_per_inch E

no_chars_in_biggest_font E

20

Reverse Engineering a SWU

Reverse Engineering a SWU has the two major goals:
• Recreate the architecture and design of the SWU
• Assist understanding of the SWU

And several minor goals:
• Identify SWUs that are candidates for reuse
• Recover information not documented in the code
• Detect incorrect documentation
• Detect errors in code
• Detect side-effects in SWUs

21

Reverse Engineering a SWU - Cont.

Reverse engineering steps:
• Partition the SWU into sub-units and continue

recursively.
• Partition according to the syntactical structure of the

SWU and the principles of coupling and cohesion.
• Partition down to the desired abstraction level of good

reuse candidates.
• Determine the attributes of the sub-units in a

bottom-up fashion.

22

ffortid 3.0 Decomposition
ffortid

1

Dump
2

token.h
7

lex.h
8

macros.h
9

connect.h
10

dump.c
11

dump_defin
18

dump_line
19

reverse_line
20

recalc_horiz
21

recalc_horiz_2
39

calc_total
40

stretch
41

print_line
22

Lines
3

token.h
7

table.h
12

macros.h
9

lex.h
8

lines.c
13

lines_defin
23

new_free_token
24

insert_token
25

put_token
26

Main
4

token.h
7

table.h
12

lex.h
8

lexer
14

lex.dit
27

macros.h
9

main.c
15

main_defin
28

main
29

Misc
5

token.h
7

table.h
12

macros.h
9

misc.c
16

new_font
30

font_info
31

out_of_memory
32

yywrap
33

width
34

Width
6

width.c
17

width_defin
35

init_dev_font
36

width_calc
37

debug_error
38

23

ffortid 3.0 SWU #1 Page

Software Unit #1 — ffortid

1.1 Software Unit Type

Program. (lex.h, lex.dit, token.h, macros.h, connect.h, table.h, dump.c, lines.c, main.c, misc.c,
width.c)

1.2 Scope Diagram

ffortid
1

Dump
2

Lines
3

Main
4

Misc
5

Width
6

1.3 Capabilities

ffortid takes from its standard input dtroff output, which is formatted strictly from left-to-right, finds oc-
currences of text in a right-to-left font and rearranges each line so that the text in each font is written in its
proper direction. Additionaly, ffortid left and right justifys lines containing Arabic & Persian fonts by
stretching connections in the words instead of inserting extra white space between the words in the lines.

1.4 Interface

command line options:
ffortid [−rfont-position-list] ... [−wpaperwidth] [−afont-position-list] ...

[−s[n|f|l|a]] ...

The -rfont-position-list argument is used to specify which font positions are to be considered
right-to-left. The -wpaperwidth argument is used to specify the width of the paper, in inches, on
which the the document will be printed. The -afont-position-list argument is used to indicate
which font positions, generally a subset of those designated as right-to-left (but not necessarily), contain
fonts for Arabic, Persian or related languages. The -s argument specifies the kind of stretching to be
done for all fonts designated in the -afont-position-list

1. -sn — Do no stretching at all for all the fonts.
2. -sf — Stretch the last stretchable word on each line.
3. -sl — Stretch the last stretchable word on each line up to a maximum length.
4. -sa — Stretch all stretchable words on the line by the same amount.

The default is no stretching at all.

Manual connection stretching can be achieved by using explicitly the base-line filler character \(hy in
the dtroff input. It can be repeated as many times as necessary to achieve the desired connection length.

Side effects:
1. ffortid reads dtroff output from stdin and prints dtroff output to stdout.
2. ffortid prints encountered errors to stderr and halts program.
3. ffortid allocates and frees memory from the heap. If out of heap memory ffortid prints a

``out of memory´´ message to stdout and halts program.

24

ffortid 3.0 SWU #1 SFD

1.5 Service Flow Diagram

ffortid

width
6

dump
2

misc
5

descfile

fontfile1

fontfilen

stdin

argc P

argv P

main
4

lines
3

stdout

stderr

.....

25

Conclusions from Reverse Eng.

• Reverse engineering is like archeology
• We did not attempt to understand the details of the

code only its structure
• We added our own comments
• SWU pages must be constructed bottom-up
• A query mechanism on code is necessary
• SFDs were not useful for very low level abstractions
• SFDs were done last but helped give global picture
• Reverse engineering large legacy applications must be

performed using dedicated CASE tools

26

CASE tools for Reverse Eng.

• Can suggest alternatives and implications of a partition
• Generate automatically the interface and requirements
• Generate automatically most of the side-effects
• Generate automatically SFDs
• Extract useful comments from the code
• Handle most of the “paperwork’’ involved
• Build a database for queries and view generation
• Allow the addition of our own comments
• Allow easy correction of previous partitioning

decisions

27

The Initial Domain

• Domain definition: “The family of ditroff post-
processor applications capable of reversing text in
right-to-left fonts and capable of left justifying lines by
stretching Arabic text’’

• Each SWU in ffortid 3.0 decomposition becomes a
reusable component in the domain

• Currently their is only one application SWU and one
method of combining the components

• The domain’s reusable components are not always
very adaptable or easily reusable

• We avoided performing preventive maintenance and
instead wanted to observe the evolutionary
development of the domain

28

Requirements Implementation

• Major implementation steps:
– List requirements at user level
– Express the requirements in a more detailed fashion as

capability, interface and requirement modifications of the
application SWU

– Implement the access interface modifications
– Implement the capability and requirement modifications
– Implement the result interface modifications

• Each single modification is implemented in the same
fashion:

– Perform a focused top-down search through the SWU
hierarchy for the low-level SWUs possessing the attribute
to be modified.

– A single modification can result in modification side-
effects

29

Updated Domain Architecture

ffortid
1

Dump
2

token.h
7

lex.h
8

macros.h
9

dump.c
11

dump_defin
18

dump_line
19

reverse_line
20

recalc_horiz
39

stretch
43

calc_total
40

stretch_a_line
44

stretch_candidates
45

stretch_a_word
46

spread_stretch
47

print_line
22

Lines
3

token.h
7

table.h
12

macros.h
9

lex.h
8

lines.c
13

lines_defin
23

new_free_token
24

inquire_token
42

insert_token
25

put_token
26

Main
4

token.h
7

table.h
12

lex.h
8

lexer
14

lex.dit
27

macros.h
9

main.c
15

main_defin
28

main
29

Misc
5

token.h
7

table.h
12

macros.h
9

misc.c
16

new_font
30

font_info
31

out_of_memory
32

yywrap
33

Width
6

macros.h
9

width.c
17

width_defin
35

init_dev_font
36

width_calc
37

char_info
48

debug_error
38

30

Reuse Ratio = reused lines / original lines

Modification Ratio = modified lines / original lines

Addition Ratio = added lines / product lines

Measuring Reuse

Original Application Product Application

deleted modified reused added

31

Results

Del. Mod. Added Final Implementation
Lines Lines Lines Lines Time

Experiment 4.0 684 22 969 2795
Control 4.0 784 36 1997 3723

Experiment 5.0 126 23 947 3616 39
Control 5.0 † 44 82 789 4468 77 - 94.5

† All results regarding ffortid 5.0 are not final

32

Results Analysis

Addition
Ratio

Reuse
Ratio

Modification
Ratio

Experiment 4.0
Control 4.0

Experiment 5.0
Control 5.0 †

35%
54%

26%
18%

1%
1.5%

1%
2%

72%
67%

95%
97%

† Not final results

33

Conclusions

• There is no significant difference between the reuse
and modification ratio of both methods.

• The product produced by the experimenter (ffortid 4.0)
is more reusable than the control’s:

– smaller time to perform changes in ffortid 5.0
– smaller product size in ffortid 5.0
– system documented in ffortid 5.0
– higher quality code in ffortid 5.0

• SWU theory is applicable to real software and can be
used to document the architecture and design of
existing systems and to help the modification of these
systems.

• Domain reengineering with the use of dedicated CASE
tools can improve the maintenance of of legacy
systems.

34

35

Problems in Current Life Cycle Models

Assumptions in current life cycle models:
• Maintenance is a separate life-cycle phase.
• New software applications require new software

development.
• New applications based on reusable components can

and should be developed only in a top-down manner.
• CASE technology for forward software development

can perform almost all maintenance.

36

The Legacy and Reuse Life Cycle Model

Requirements

Component specifications

Architecture

Design

Application/reuse software

Transformed software

Legacy software

Forward Transformations

Reverse Transformations

Software Life Cycle Phase

38

ffortid History

• ffortid 1.0 (1983-1984)
– Author: Cary Buchman (UCLA)
– Capabilities: Hebrew only

• ffortid 2.0 (1986)
– Author: Mulli Bahr (HU)
– Major Modification: Output Optimization

• ffortid 3.0 (1989-1991)
– Author: Johny Srouji (Technion)
– Major Modification: Arabic with connection filler

stretching

All these people worked with Prof. Berry who was the
customer and provided project continuity.

39

ffortid Source Files

Num File Size (lines) Functionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 lex.h 30 -
2 lex.dit 37 -
3 token.h 34 -
4 macros.h 20 -
5 connect.h 256 -
6 table.h 18 -
7 dump.c 704 10
8 lines.c 296 6
9 main.c 506 1

10 misc.c 129 5
11 width.c 480 10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Total 2510 32

42

SWU Theory - Cont

• The type of a SWU categorizes it into one of several
types of similar service providers

• The environment of a SWU is all the software in the
context in which it is used which is not in its scope

• The interface of each SWU service can be divided into
its access interface and its result interface

• A resource is a SWU service that does not have a
result interface

• results not returned through the access interface are
called side-effects

43

Software Sub-units

• Every non-trivial SWU can be decomposed into its
software sub-units

• The scope of each of the sub-units must be mutually
exclusive and the sum of the scopes must be equal to
the scope of the parent SWU

• A SWU is decomposed according to some partitioning
criteria

• The architecture of a SWU is a rooted tree of SWUs
• SWU decomposition is shown graphically using a

scope diagram

ffortid
1

Dump
2

Lines
3

Main
4

Misc
5

Width
6

44

Software Sub-units - Cont

Given a SWU S and its decomposition into sub-units
s1...sn the following lemmas hold:

(1) capabilities capabilities hidden capabilities

(2) interface interface hidden interface

(3) requirements requirements capabilities

(4) side effects side -effects interface

() () \ ()

() () \ ()

() () \ ()

() () ()

S s s

S s s

S s s

S s S

i

n

i
i

n

i

i

n

i
i

n

i

i

n

i
i

n

i

i

n

i

= −

= −

=

− = Φ
ΗΓ

Ι
Κϑ

= =

= =

= =

=

1 1

1 1

1 1

1

Υ Υ

Υ Υ

Υ Υ

Υ Ι

45

ffortid 4.0 Requirements - Cont

From comparison of old and new manual pages we
created a list of 3 required enhancements:

• Change the command-line options and add the
capability to automatically stretch letters and/or
connections according to theses options and the new
information in the width tables.

• Add the capability to manually stretch letters.
• Add the capability to control automatic stretching of

words with manually stretched letters and/or
connections by two new command-line options.

46

• A SWU modification can potentially affect its
capabilities, interface or requirements.

• 4 major types of modification:

• In type II* and IV* current interface is only added to
and not modified.

• In type III* current capabilities are only added to and
not modified.

SWU Modifications

Type Capabilities
Modified

Interface
Modified

no
no
yes
yes

no
yes
no
yes

I
II
III
IV

