
A Method for Aiding Requirements
Analysts in Requirements Elicitation for

Large Software Systems

Leah Goldin

A Method for Aiding Requirements
Analysts in Requirements Elicitation for

Large Software Systems

Research Thesis

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Science

Leah Goldin

Submitted to the Senate of the Technion — Israel Institute of Technology
Tammuz 5755 HAIFA July 1994

This research was carried out in the Faculty of Computer Science under the supervision of Pro-
fessor Daniel M. Berry.

I would like to thank Dan Berry for being teacher, colleague, and friend.

I wish to thank the members of my thesis committee, Amiram Yehudai, Janos Makowsky, Yona
Lavi, and Yossi Gil. Many thanks for their insightful suggestions on the writing of this thesis.

Eliezer Kantorowitz, Michael Rodeh, Amiram Yehudai, and Janos Makowsky provided helpful
comments at the decisive point of the thesis proposal.

Specially, I would like to acknowledge the assistance of Yael Dubinsky and Haim Roman with
operating system problems, and Chava Shamir for her constant support and encouragement.

i

For Simcha
Ayelet
Chemi
Hadar

Zur

ii

Table of Contents
page

1 Introduction ... 2
1.1 The Problem ... 2
1.2 Requirements Engineering ... 5
1.3 Requirements Elicitation ... 6
1.4 Existing Requirements Engineering Methods, Tools, and Systems 8

1.4.1 Tools and Systems for Requirements Analysis .. 8
1.4.2 Deficiency of Past Work for Requirements Elicitation 11
1.4.3 Requirements Elicitation Methods and Tools ... 12

1.4.3.1 Natural Language Processing .. 12
1.4.3.2 Social Perspectives .. 13
1.4.3.3 Guiding Systems .. 14

1.5 Envisioned Requirements Gathering Environment ... 15
1.6 Plan of Thesis ... 17

2 Abstraction Identification ... 18
2.1 Operational Definition and Assumptions ... 18
2.2 Existing Abstraction Identification Tools .. 20

2.2.1 Grammatical Parsers ... 20
2.2.2 Repeated Phrase Finder .. 21
2.2.3 Lexical Affinities ... 22
2.2.4 Remaining Weaknesses .. 24

2.3 New Approach ... 24
2.3.1 Motivation ... 24
2.3.2 Formal Description ... 25
2.3.3 How the New Approach Avoids Weaknesses of Previous Approaches 30
2.3.4 Possible New Weaknesses of the New Approach 31
2.3.5 AbstFinder Program .. 33
2.3.6 Performance Analysis of Program .. 36

2.3.6.1 Value of WordThreshold .. 36
2.3.6.2 Complexity of Current Implementation ... 37

2.3.6.2.1 Time Complexity of Prototype ... 37
2.3.6.2.2 Space Complexity of Prototype .. 37

2.3.6.3 Alternative Implementations ... 38
2.3.6.3.1 Complexity of Alternative Implementations 39
2.3.6.3.2 Other Alternatives ... 40

2.3.6.4 Final Complexity Assessment ... 40
3 Scenarios for Usage of AbstFinder .. 41

3.1 Learning What Words to Ignore .. 41
3.2 What to Do with a Well-Organized Document ... 41
3.3 Zooming ... 42
3.4 Iteration to Final List of Abstractions .. 44
3.5 Combinations of Scenarios .. 47

iii

Table of Contents Contd.

4 Evaluation of AbstFinder .. 48
4.1 How to Evaluate a New Method or a Tool .. 48

4.1.1 The Evaluation Plan .. 51
4.2 Case Studies ... 52

4.2.1 Findphrases Case Study. ... 52
4.2.2 Flinger Missile Case Study ... 53
4.2.3 RFP Case Study .. 55

4.2.3.1 findphrases vs. AbstFinder ... 62
4.2.4 Results ... 63

4.3 Indexing vs. Abstraction Finding ... 64
5 Abstraction Organization Exploration .. 67

5.1 What is an Abstraction Network .. 67
5.1.1 Using the Abstraction Network—The Perspective of the Elicitor 70

5.2 Problem Exploring with Hypertext .. 73
5.2.1 Hypertext-Related Work ... 73
5.2.2 Generate Abstraction Network On Top of Hypertext 75
5.2.3 An Abstraction Network Case Study .. 76

5.2.3.1 Findphrases Case Study ... 77
5.3 Abstraction Network Exploration Summary ... 78

6 Conclusions ... 80
Bibliography .. 82
Appendix A AbstFinder Implementation Considerations .. 90

A.1 AbstFinder Output ... 90
A.2 How does the Elicitor use AbstFinder Output .. 91
A.3 AbstFinder Input Filtering ... 92

Appendix B Manual Pages of AbstFinder Tools .. 94
Appendix C Results and Data of the findphrases Case Study ... 108

C.1 Source Transcript of the findphrases Case Study ... 108
C.2 Ignored Files Used in the findphrases Case Study .. 111
C.3 AbstFinder Results in the findphrases Case Study .. 112
C.4 Decomposition of the findphrases Case Study ... 127

Appendix D Results and Data of the Flinger Missile Case Study 128
D.1 Source Transcript of the Flinger Missile Case Study ... 128
D.2 Ignored Files Used in the Flinger Missile Case Study .. 136
D.3 AbstFinder Results of the Flinger Missile Case Study 137
D.4 The Flinger Missile Transcript after Straining ... 143

Appendix E Results and Data of the RFP Case Study ... 150
E.1 Source Transcript of the RFP Case Study ... 150
E.2 Ignored Files used in the RFP Case Study .. 156
E.3 AbstFinder Results on the RFP Case Study: First Iteration 158
E.4 AbstFinder Results on the RFP Case Study: Last Iteration 167
E.5 ASSR - Allocated System Software Requirements for the RFP 169
E.6 Sub-abstractions of Testing Abstraction (Summary) .. 172
E.7 Sub-abstractions of Safety and Fail Abstractions ... 175
E.8 Results of findphrases on the RFP Case Study ... 178

iv

Table of Contents Contd.

Appendix F Using Abstraction Network of Findphrases Case Study 186
F.1 Makefile for generating links automatically .. 191
F.2 Example of using Hyperties with logging (findphrases) 195
F.3 Hyperties input file with mark-up (findphrases) .. 198

v

List of Figures and Tables
page

Figure 1: Network of Nodes .. 16

Figure 2: Links ... 16

Figure 3: Comparing shorter sentence to circular shifts of the longer 29

Figure 4: Comparing doubled longer sentence to shifts of the shorter 30

Figure 5: First part of AbstFinder output ... 34

Figure 6: Second part of AbstFinder output ... 35

Figure 7: Finding sub-abstractions by zooming .. 43

Figure 8: Iterative abstraction identification .. 46

Table 1: The abstractions of findphrases ... 53

Figure 9: An illustration of the RFP case study ... 56

Table 2: The Case Studies Summarizing Criteria ... 64

Table 3: Case Studies comparison ... 65

Figure 10: The abstraction network ... 69

Figure 11: A segment of possible IBIS-style discussion network 71

Figure 12: The hypertext concept .. 74

Figure 13: AbstFinder Input/Output Architecture .. 93

Figure 14: Decomposition of findphrases by Aguilera ... 127

Table 4: The links generated automatically by AbstFinder. .. 187

Figure 15: Hyperties with findphrases ... 188

Figure 15: Hyperties with findphrases (Cont.) ... 189

vi

List of Figures and Tables Contd.

Figure 15: Hyperties with findphrases (Cont.) ... 190

vii

Abstract

The importance of obtaining good requirements for software-based systems cannot be
understated. Many methods and tools have been devised for analyzing requirements, but only
recently has there been a focus on what needs to be done before the analysis can begin, that is,
eliciting the information from the client and identifying the abstractions contained in this infor-
mation. As a step towards solving the problems of requirements elicitation, this work motivates
and describes a new approach for a tool, based on traditional signal processing methods, to help
find abstractions in natural language text, such as one might receive from the client of a pro-
posed software system.

In order to design the tool, it was necessary to determine effective ways of identifying
abstractions in natural languages transcripts of client interviews. The tool, AbstFinder, was
implemented and a number of case studies demonstrated the effectiveness of AbstFinder even
on industrial-sized examples.

The key measures of the effectiveness of AbstFinder are: (1) its coverage, and (2) how
summarizing it is. An RA will not be willing to be assisted by any tool unless he or she is
confident that it is covering. However, presenting all the input does not help the RA either. To
prevent from overwhelming the RA, the tool should reduce what he or she has to examine. In
any case, the human RA still has to do the thinking with the output of the tool; consequently it is
not necessary that the tool exhibit any intelligence, especially if the intelligence might cost some
of its coverage. The case studies have shown that AbstFinder is indeed covering and summariz-
ing.

With any scheme of automated assistance, scenarios for usage should be defined. Typi-
cally, in the process of abstraction identification, even the most intelligent elicitor cannot
abstract a full transcript all at once. Thus, different scenarios for using AbstFinder were
identified, and these include the following activities: learning what words to ignore, zooming,
and iteration to a final list of abstractions.

Once the abstractions are recognized, they have to be organized so that all the text deal-
ing with any abstraction can easily be found. Only then, the elicitor will be able to finish the eli-
citation, i.e., filtering out inconsistencies, identifying absence of information, negotiating with
the clients and users, and updating the abstraction content if necessary.

The work also explores the use of hypertext as a medium in which to organize the
abstractions that have been identified. Since there is a lot of work being carried out by others in
the problems of usability of hypertext itself, e.g., how to avoid getting lost in hyperspace, the
present exploration was limited to identifying needed functionality and made no attempt to
evaluate usability issues. There has also been a lot of research recently in the use of hypertext in
software engineering in general. Thus, the present exploration is intended to bridge abstraction
identification to the other work.

1

1 Introduction

1.1 The Problem

Requirements more often are ill-defined, fuzzy, incomplete, or simply incorrect with
respect to users’ needs. Problems in the system caused by deficiencies in software requirements
are often not identified until well after the system is deployed, or are thought to be caused by bad
design or limitations of computing technology.

It is well known that as much as 60% of the errors that show up during a system’s life
have their origin in the requirements gathering and specification stage [Dav90, Sch92]. It is also
well known that the cost to correct an error found in the development stages of system develop-
ment is orders of magnitude higher than to correct the same error found during the requirements
gathering and specification stages [Boe81]. The importance of getting the requirements right
cannot be underestimated.

On the other hand, it appears that the least understood step of systems development is the
requirements gathering and specification stage, and that within this stage, gathering is less under-
stood than specification.

The problem is that there is a tremendous gap between the client’s needs and the
software engineer’s understanding of the client’s needs. The gap is widened by the fact that the
client may not even be able to verbalize his or her own needs. The client speaks with fuzzy sen-
tences replete with tacit assumptions, and the software designers are just not able to identify his
or her intentions.

Furthermore, requirements are subjected to continual change, and almost always this
change impacts the software. This fact has affected the life-cycle models in which these risks are
considered, e.g., as in Boehm’s spiral model [Boe88].

The Software Engineering Institute (SEI) was asked by the Air Force Systems to perform
a near-term study assessing the nation’s capacity to produce software for the Department of
Defence (DoD). The SEI found [SSKLW90] that the executives’ perspectives on the relative
importance of factors that contribute to the failure of military system development contracts to
meet schedules and costs are (The numbers are in a scale of 1 through 5 with 5 being “most
important”.):

1. inadequate requirement specification (4.5),

2. changes in requirements (4.3),

3. shortage of system engineers (4.2),

4. shortage of software managers (4.1),

5. shortage of qualified project managers (4.1),

2

6. fixed-price contracts (3.8),

7. inadequate communication for systems integration (3.8),

8. insufficient experience as team (3.8),

9. shortage of application domain experts (3.6),

10. integration of contractor/subcontractor efforts (3.5),

11. new application domain (3.5),

12. inadequate software development tools (3.4),

13. turnover of personnel (3.3),

14. shortage of skilled programmers (3.2),

15. complex hardware (2.8), and

16. shortage of electrical engineers (2.7).

Of these, 1, 2, 9, and 11 are requirements related. Note that shortage of application domain
experts, the ones that have the knowledge about the tacit assumptions of the problem domain,
makes it almost impossible to get the needed requirements information.

Many system design or programming methods, e.g., those of Jackson [Jac75], Parnas
[Parnas 1972], Booch [Boo86], Myers [Mye79], Orr [Orr77, Orr81], etc., start from an assumed
clear statement of requirements and show how to arrive at a design of a program meeting those
requirements. However, none of these methods really explain how these requirements are
obtained in the first place. It is clear that writing of the requirements is a major part of the prob-
lem solution, and that when this writing is done properly, many pitfalls in the path of delivering
the required system may be avoided.

Large E type [Lehman 1980] software, for which it is difficult or even impossible to
obtain clear requirements, is usually developed for a client organization in which there are many
people who have some view or say as to what the desired system should do. These views range
from being deceptively similar to each other through being totally unrelated to each other to
being totally inconsistent with each other. It is no wonder that the distillation of these views into
a consistent, complete, and unambiguous statement of the requirements, albeit in natural
language, is a major part of the problem of developing software which meets the client’s needs.
Therefore, it is essential to have methods and tools that help in distilling these many views into
coherent requirements.

3

A basic reality of large E type systems is that they are too large for one person to keep in
mind. Consequently, both the client and the producers of such systems are required to be teams
of people working together. Therefore, it is necessary that the tools support cooperative
[CSCW88] work by the members of these teams.

An experiment that was done by Martin and Tsai [MT88, SMT92] is very telling. The
goal of the experiment was to study the earliest phases of software development by cataloguing
the number, types, and severities of errors detected in the user requirements. Ten teams worked
in isolation using different methods, each developing from the same user requirements. Each
team was organized as an independent working group with four software engineers, one of
whom was the controller who was responsible for scheduling tasks and collecting experiment
data. The subject of the user requirements was a centralized railroad traffic control (CTC). Each
team detected user requirement errors, assessed feasibility, and tried to arrive at an informal
understanding of the user’s needs.

The user requirements were only about 10 pages long, and the user believed that only one
or two mistakes would be found there. But the results of error identification by the ten groups
were amazing. A total of 92 requirement errors were identified by all teams, but the average
team identified only 35.5 of these, and not many teams found the same error. Since the average
team detected only 35.5 requirement errors, if only one group were used, as in a normal project,
56.5 errors would remain to be detected during downstream phases, such as coding and testing.
Moreover, requirement errors of the greatest severity were identified by the fewest teams. No
wonder we have a software crisis.

Problems in software engineering, especially requirement specification, belong to the
category of wicked problems [Con87]. Wicked problems are those who cannot be solved in trad-
itional systems analysis approach, which is 1) define the problem, 2) collect the data, 3) analyze
the data, and 4) construct a solution. The only way to really understand a wicked problem is to
have solved it. These problems have no stopping rule. Solutions to wicked problems are not
right or wrong, they just have a degree of sufficiency. This is the case with requirements elicita-
tion; one cannot really know what are the client’s needs until one has implemented the full
requirement specification.

Full discussions of the problems of obtaining good requirements and of the effect of the
failure to obtain them may be found in a textbook by Davis [Dav90] and in a paper by Krasner
[Kra88].

The importance of obtaining good requirements for software-based systems cannot be
understated. Many methods and tools have been devised for analyzing requirements, but only
recently has there been a focus on what needs to be done before the analysis can begin, that is,
eliciting the information from the client and identifying the abstractions contained in this infor-
mation.

4

The following sections give a brief description about requirements engineering in gen-
eral, emphasizing the sub area of requirements elicitation, which is the concern of this research.

1.2 Requirements Engineering

The traditional software development life cycle consists of: requirements definition,
design, coding, and testing (including integration) [Sch92]. Heretofore almost all work in
software, both formal and informal has assumed that the requirements were known, and in many
cases formally stated. It has become apparent recently that the normal situation is that the
requirements are given in incomplete, inconsistent, and vague statements. From these poor
statements it is impossible to develop a system; to design, code, and test. Investigation of the
software crisis, which was discovered and named in the 1960s [NR69], determined that require-
ments deficiencies are among the most important contributors to the crisis; in nearly every
software project which fails to meet performance and cost goals, requirements inadequacies play
a major and expensive role in the failure.

Requirements engineering is the discipline that begins with the customer’s statement of
need and ends with well-defined specifications to be used for the development. Note that
according to IEEE Standard 610.12-1992 for Software Engineering Terminology [IEEE92], the
term “specifications” is a written requirement, and will be used in the thesis in requirements
documents. The activities involved in requirements engineering are: capture, representation and
analysis, and access of the requirements information.

Three disciplines of requirements engineering, which are active through the whole life-
cycle of the software, have already been identified [RE93],

1. requirements elicitation for capturing the requirements data,

2. requirements analysis to model and analyze the requirements, and

3. requirements management to access the requirements data in a controlled manner
[PCCW93].

Requirements analysis is the most familiar activity in requirements engineering. Most of
the existing technologies on requirements have been directed to requirements modeling and how
to enhance the semantics of such descriptions (See Section 1.4). These methods and tools
assume that the requirements are already written and stated in some restricted language.

The purpose of acquiring or elicitating requirements is to gather enough information to
begin to build the conceptual model of the client’s enterprise, the model from which it will be
possible to write the requirements [WLLO90]. The abstractions identified during elicitation may
become the key abstractions of the conceptual model. The expected output of the elicitation
phase is a list of well-stated requirements, formal or informal, that can be easily transformed to
one of the modeling methods languages.

5

Requirements management is a new area recognized by the SEI in its Capability Maturity
Model (CMM) [PCCW93], in which the concern is the ability to access requirements, to keep
changes of requirements under configuration control, and to keep a trace from requirements to
all the other work products that implement the requirements, e.g., design documents, test docu-
ments, code modules, etc.

Traditionally, a requirements analyst (RA) is needed to sift through these statements and
produce consistent, complete requirements, specified enough to be used for the development of
the system, e.g. design, code, and testing. As a result of recent research [CWS93] that has
identified elicitation as a major step requiring competence, there is a specific subtask of require-
ments engineering called requirements elicitation, and the person who does it is the requirements
elicitor, who may or may not end up being the requirements analyst. Thus, in the rest of this
thesis, the requirements elicitor is called simply the elicitor in order to distinguish his or her
function from that of the requirements analyst.

This research is focused requirements elicitation. The following section gives a descrip-
tion of what is involved in requirements elicitation.

1.3 Requirements Elicitation

Problems of requirements elicitation are of three kinds,

1. problems of scope, i.e., whether the requirements cover too little or too much,

2. problems of understanding, within a group, such as users and developers, as well as
between groups, and

3. problems of volatility, i.e., the rapidity with which requirements change.

Problems of understanding, according to McDermid [McD89], include:

� users having incomplete understanding of their needs,

� users having poor understanding of computer capability and limitations,

� analysts having poor knowledge of the problem domain,

� user and analyst speaking different languages,

� the ease of omitting obvious information,

� conflicting views of different users, and

� the vagueness and untestability of requirements, e.g., “user friendly” and “robust”.

According to Leite, requirements elicitation has received little attention in the past from the

6

software engineering research community, “..because it is an area where one has to deal with
informality, incompleteness, and inconsistency” [Lei87].

Requirements information for systems come in many formats, depending on the custo-
mer, problem domain, and extant systems. The information may arise in many forms, such as

� informal technical notes,

� notes from meetings,

� statements of work,

� requests for proposal,

� operational concept documents,

� interviews with customers and users,

� menus of operational features observed in competing or preceding products, and

� functions observed in competing or preceding products, and

� technological surveys.

In the process of gathering requirements for a new system, the elicitor may become inun-
dated with a large volume of data in a wide variety of formats. To promote the likelihood of
successful analysis and design of the new system, the elicitor must be able to capture all the
information related to the requirements from the client. Thus, the process of capturing the custo-
mer requirements involves

a. abstracting the material to identify the main concepts in the customer transcripts,

b. conducting negotiation with the customer in order to verify that the customer need is
fully understood, and if not, filling in the missing details, and

c. stating the requirements in simple imperative sentences (This activity is not within the
scope of this thesis.).

The purpose of this work is to suggest methods for automatic assistance for the human
involved in requirements elicitation in the informal stage. The suggestions include

1. a method to assist in abstraction identification and

2. a method for maintaining the abstractions for negotiation with the customer.

7

1.4 Existing Requirements Engineering Methods, Tools, and Systems

There has been a modest amount of work in requirements engineering over the past few
years ending with that presented at the first International Conference on Requirements Engineer-
ing (RE’93) [RE93]. Even among the requirements engineering environments presented at
RE’93, none provide any assistance in elicitation and abstraction identification. They all seem to
start with abstractions already identified, and focus on organizing the already identified abstrac-
tions.

In this section, two types of existing technologies in requirements engineering will be
described,

a. methods and tools for requirements analysis, and

b. work in requirements elicitation that shows different ways of attacking the elicitation
problem; social perspectives, natural language processing techniques, using a lexicon,
and interactive nudging systems.

1.4.1 Tools and Systems for Requirements Analysis

Current tools, methods and systems for dealing with requirement include SADT [RS77,
Ros77], IORL [SM85], PSL/PSA [TH77], RDL [EFRV86], RSL [Alf77, Alf79, Alf85], PAISley
[Zav82], RML [BGM85], ECSAM [LW89, WLLO90], and Burstin’s prototype tool [Bur84].
The first two are graphically oriented, and the second of these is automated.

Structured Analysis and Design Technique (SADT) was developed as a method of
modification of all complex systems, data processing or not. A description is made by model
diagrams called artigrams. They model processes, inputs, and outputs and enable hierarchical
decomposition into sub-processes. SADT uses a graphic language for expressing the require-
ments of the system under design. An SADT model is an organized sequence of diagrams start-
ing with a top-level overview diagram. A diagram is composed with at most six boxes connected
in arbitrary manner with arrows and accompanied with explanatory text. Each lower-level
diagram is an explanation of one of the boxes at the parent diagram. An arrow between boxes
represents a constraint relation between the boxes and not necessarily a flow of control or data.

Technology for Automated Generation of Systems (TAGS) is a system development
method that has the designers focusing on writing requirements rather than on coding. TAGS is
composed of the Input/Output Requirements Language (IORL), a tool system, and the TAGS
method. IORL is a graphic and tabular language that allows specification of each important
software, hardware, embedded, or management of the system under design. The system must be
specified as a hierarchical collection of components that interact through data links with a con-
trolling mechanism that dictates how information flows through the system. An IORL
specification is a schematic block diagram (SBD). The highest level SBD shows the major sys-
tem components and the data interfacing between them. Each such component may be expanded
in a lower level SBD. Associated with each SBD are a variety of other diagrams supplying other

8

information about the components in the SBD. These include diagrams for specifying control,
logic, and data flow of and among the components of an SBD. The associated tool set allow con-
struction of the diagrams, a number of static checks within and between diagrams, and simula-
tion driven by the diagrams. The multi-view orientation of TAGS is similar to that of SARA,
except that the latter is directed at implementation design while the former is directed at
specification.

Problem Statement Language/Problem Statement Analyzer (PSL/PSA) is a formal
language for the statement of problems that is assisted by the analyzer. PSL is a language for
expressing the objects and relations among objects of the system under design. A system consists
of objects which may have properties which in turn may have values. The objects may be con-
nected by relationships. The language has a rich collection of standard object, property, and
relation type that can be used to describe all aspects of an information system including input,
output, data flow, system and data structure, performance, and management. PSA accepts PSL
as input, builds a relational data base capturing the content of a PSL specification and prepares a
variety of reports. The data base can be used as a living specification that can be interrogated and
updated as necessary.

TRW’s Software Requirements Engineering Program (SREP) project has produced the
Software Requirements Engineering Methodology (SREM) which makes use of a number of
tools comprising the Requirements Engineering and Validation System (REVS). SREM was
built for dealing with asynchronous real-time systems, but can be applied to general interactive
systems. The processes are described by a language called Requirements Statement Language
(RSL). REVS is used to translate sentences of RSL into tuples of relational database called the
Abstract System Semantic Model. Tools are provided for interrogating and updating this data-
base as well as for preparing reports. RSL differs from PSL in that the former emphasizes flows.

Winchester’s Requirement Definition Language (RDL) of UCLA’s SARA System also
expresses relations between objects of the system under design. Each sentence in RDL
represents a tuple of a relational database built up about the system under design. Some of these
relations can be expressed pictorially through the use of SARA’s other modeling languages for
exhibiting system structure, control, and data flows. The multi-view orientation of SARA is
similar to that of TAGS, except that SARA is directed at implementation design while TAGS is
directed at specification.

PAISLey is a Process-oriented Applicative and Interpretable (executable) Specification
Language. The specifications that are generated are operational in the sense that they are an exe-
cutable model of the proposed system interacting with its environment.

The designers of Requirements Model Language (RML) observe that requirements are
meaningful only in the context of certain real-world knowledge. Thus, specification processing
tools should have access to a knowledge base that can be consulted to provide implied details
that are not given explicitly. For instance, when the requirements specify a temperature and
tolerance, knowledge about heat, temperature, measurement, tolerance limits, Fahrenheit, Cel-
sius, etc. is implied on the part of the reader and is often used implicitly by the programmers. An

9

RML specification organizes the world as a collection of interacting objects. For each object, its
characteristics are given as incomplete sentences with the object implied as a missing parameter.
Thus, an object’s specification can be viewed as a collection of relation tuples with the object
appearing at least once in each tuple. A complete specification can thus be organized as a rela-
tional database. It is intended to build tools for translating an RML specification into an artificial
intelligence language for knowledge representation so that existing tools can be used for extract-
ing the implied information of a specification.

The ECSAM method of requirements analysis and modeling of Embedded Computer
Systems and their software has been developed and used since 1980 at the Israeli Aircraft Indus-
try (IAI). The ECSAM modeling approach addresses the conceptual and design models and
defines the mapping between them. The conceptual model, also referred to as a domain model
[KCHNP90], describes the system in the problem space and is a necessary foundation for the
understanding of the physical phenomena on which the system is based. Its main purpose is to
support the behavioral and performance analyzes of the system which leads to a consistent and
precise specification of requirements. The design model describes the system in the solution
space. It represents the actual structure of the system and supports the design process. ECSAM
also defines the mapping between the conceptual model and the design model. The languages of
STATEMATE [HLNPPSST90] are used to produce the graphic models and to represent the
ECSAM views. The ECSAM conceptual model is described by the following three views:

1. The logical modules view — describes the partitioning of the system into its logical sub-
systems, containing the external information that flows between the system and its
environment, the information that flows between the internal subsystems, and the func-
tional activities performed by each logical subsystem.

2. The operating modes view — describes the system’s main operating modes and the tran-
sition between them.

3. The dynamic processes view — describes the behavioral processes that occur in the sys-
tem in its various operating modes in response to external or internal events.

The overall dynamic behavior of the system is jointly described by the last two views. The three
view are complementary and interrelated.

Burstin presents a method for obtaining requirements. He identifies the users of the sys-
tem and activates them several times in several stages in order to refine and correct the require-
ments. Computer embedded systems usually operate in real time and are activated by or invoke
external processes. These processes may result either from human activity or from a non-human
entity like a signal generating source. Therefore, Burstin defines abstract-users which are all the
entities, human or non-human, that have anything to do with a system, feeding it input or using
its output. As Burstin stated, obtaining more users’ views will result in a fuller coverage of the
system. His goal is to organize the requirements information so that one can scan the information
through user views, system views, or process views. However, in this method, all the analysis of
the user interviews is done by a human RA (requirement analyst). The problem is that humans

10

make mistakes and overlook relevant ideas. As shown in one of the experimental results in Sec-
tion 1, in one particular experiment, each group identified only one third of the errors and none
of the severe errors.

Burstin’s prototype tool allows tuples of a relation, i.e., sentences, each with a verb and
objects, to be organized into a hierarchy of abstractions. Each abstraction contains those sen-
tences sharing a common collection of objects, with the verbs representing procedures of the
abstraction. There are tools for introducing and moving sentences to and from abstractions and
for placing and moving abstractions in the hierarchy. There is also a rudimentary application-
oriented expert system that helps recognize when two or more phrases of sentences may be talk-
ing about the same thing, e.g., plane and airplane or passenger and flier.

1.4.2 Deficiency of Past Work for Requirements Elicitation

All of these systems are useful for working with sentences and abstractions of a require-
ments document, once they are recognized and formed. Organizations implementing and using
two of these, PSL/PSA and SREM, report much user satisfaction [TH77, Alf85, SSR85].

It is interesting that all the above requirements analysis systems deal with relations and
all but the first two, which are picture-oriented, and the designers of PAISLey have gone to the
use of relational database for storing the relations. All these system can be used to support an
abstraction-based requirement development which leads naturally to an abstraction-based
software development [BGN86] or object-oriented software development if one identifies an
abstraction as an object.

All these methods and tools assume that the requirements are already written down as if
there were nothing to it. Those tools demand from the user highly constrained subsets of English
consisting of sentences, each of which states one requirement. Some of these tools, such as
PAISley, even help simulate the requirements in the context of their environments assuming all
the necessary details are defined. But none of these methods give much help in actually obtain-
ing the sentences in the first place and in recognizing the relevant abstractions, especially in the
context of a large client organization. The description of all of the methods either fail to mention
how to get the sentences or say something to the effect of “get them and write them down” as if
there were nothing to it.

Teichroew and Hershey [TH77] offer that “since most of the data must be obtained
through personal contact, interviews will still be required.” PSA does help this gathering process
in that its “intermediate outputs ... also provide convenient checklists for deciding what addi-
tional information is needed and for recording it for input.”

Alford [Alf77] says that the “SREM steps address the sequence of activities and usage of
RSL and REVS to generate and validate the requirements. It assumes [italics are not in the origi-
nal] that system function and performance have been allocated to the data processor, and have
been collected into a Data Processing Subsystem Performance Requirement or DPSPR.”

11

Even eight years later, Scheffer, Stone, and Rzepka [SSR85], from a completely different
company which had been using SREM, state only that the “initial input to SREM is a system
specification that is translated into RSL and interpreted to determine the interfaces with the out-
side world, the messages across these interfaces, and the required processing relationships and
flows.”

The first step of the TAGS method [SM85] is the conceptualization step. “User concepts
and requirements are used to develop a conceptual model that is the basis for subsequent
engineering.” This conceptual model is the top level SBD. In the cited article, there is advice on
the issues that should be dealt with in arriving at it. However, no tools are provided as the TAGS
method deals with activities that follow the production of this first SBD.

Thus, the gap between the initial fuzzy natural language statements from the individuals
in the client organization to the sentences, i.e., relations, with which these tools work is still too
large. Methods and tools are needed to close this gap.

1.4.3 Requirements Elicitation Methods and Tools

More recently the software engineering community has been paying attention to the
problem of eliciting the raw information from the clients [LPR93]. Some of these works attack
the eliciting problem from the point of natural language processing techniques. Those works
have attempted to work with problem descriptions in a restricted natural language to produce
formal descriptions [SHTUE87, ISK93]. Leite and others have devised methods and tools for
building the vocabulary of the problem domain [LF91, LF93]. Ryan [Rya93] discusses the gen-
eral role of natural language processing in requirements engineering. Others concentrate on
developing a good social interaction between the client, the users, and the requirements
engineer. Some of this work, e.g., contextual inquiry [HJ90], has focused on observing the
client’s organization in action and modeling what it does and why. There are works that guide
the human user, via user friendly interfaces, in order to obtain the information from him or her.
In the following, work of each of the three categories is described.

1.4.3.1 Natural Language Processing

Work was done in Japan [SHTUE87, ISK93] on methods to derive formal specifications
from informal ones using knowledge about relations between structures of natural language and
structures of the real world. However, the so-called natural language of the informal specifica-
tion ended up being a very restricted, unnatural language.

Kevin Ryan [Rya93] gives a good discussion about the role of Natural Language Pro-
cessing (NLP) in requirements engineering. While saying that NLP in the requirements
engineering process has been overstated in the past, possibly because of misunderstandings of
the requirements process itself, he identifies some phases and tasks in which NLP may be
applied.

12

The task of the requirements elicitor is portrayed as one of translation between the two
specialized worlds of the application domain and computing. Mere understanding of the syntax
or even the specific semantics of a specialized language is not the most crucial factor in bridging
the communication gap. Of far greater significance are the unstated assumptions that reflect the
shared, common sense, knowledge of people familiar with the social, business, and technical
contexts within which the proposed system will operate. To rely solely on text as a source of
knowledge or to expect the client to reduce all his or her demands to a textual form is clearly
impractical.

Note that the purpose of language understanding software is to understand sentences
without human help. The purpose of abstraction finding tools is to help a human find key con-
cepts; it is intended to be used by humans and with human support. Because an abstraction
finder has a human operator, it is quite acceptable if it reports only chunks of words that a human
can still recognize. This is not so for a language understander. Also ambiguous sentences pose
major difficulties for understanding, but not for an abstraction finder. A language understander
tries to optimize on smartness, but an abstraction finder needs to optimize on not losing any
abstraction, and reducing the volume to be examining by the human even at the expense of
reporting spurious abstractions.

The activity of stating the requirements at the end of the elicitation phase is not new.
Burstin defines a requirement as a basic unit of information. This unit is often represented as an
imperative sentence with a function as the verb of the sentence and abstract objects as the direct
objects of the sentence. Those basic units of information are elicited by interviews with different
users of the desired system.

Also, Leite has worked in enhancing the semantics of simple sentences by means of
natural language structure called the Language Extended Lexicon (LEL). This LEL contains the
vocabulary of the language of the problem. After a process of elicitation, which is not dealt with
by Leite, the requirements analysis group should try to achieve consensus over a list of require-
ments. Based on this list, a lexicon is built. LEL building cannot be automated, and Leite offers
only guidelines for the humans doing the task.

1.4.3.2 Social Perspectives

More attention was given lately to the social perspectives of requirements elicitation pro-
cess. Goguen and Linde survey a variety of methods used in requirements elicitation [GL93],
including introspection, interviews, questionnaires, and protocol, conversation, interaction, and
discourse analysis. These techniques can elicit tacit knowledge by observing actual interactions
in the workplace.

Contextual inquiry [HJ90] is a means of gathering information about a customer’s work
practices and experiences. The contextual inquiry approach focuses on interviewing users in
their own context as they do actual work. The technique contributes to forming a valid under-
standing of the nature of user work that can be used as a basis for effective design action. The
key concepts of the technique are: (1) context of actual experience, (2) partnership in order to

13

empower the interviewer to articulate, (3) interpretation of the customer’s work practice, and (4)
focus in order to create a shared understanding.

Contextual inquiry is an adaption of field research techniques taken from psychology and
anthropology. Structuring contextual inquiry is a way to synthesize qualitative data into concep-
tual groupings, using affinity diagrams. Developing an affinity diagram is a social, group pro-
cess.

1.4.3.3 Guiding Systems

Most application domain tools, that are more concerned with the modeling of the appli-
cation domain, have a user-friendly interface in order to guide the user in inputting his or her
knowledge about the domain [Fea93, Eas93]. Many of these provide a way to organize a
domain model into a collection of abstraction nodes into which all information about these
abstractions is stored. Finkelstein et al [FKN92] use a framework of multiple viewpoints, per-
spectives, into which to partition the system specification. The framework suggests a restricted
structure of partitions and slots, into which the elicitor has to fit in his knowledge about the
domain.

There are some tools which are more modelling oriented. READS [Smi93] is an hyper-
text system designed to support the key requirements engineering activities of requirements
discovery, analysis, decomposition, allocation, traceability, and reporting. READS facilitates the
construction, browsing, and maintenance of a typed hypertext network with a user interface
designed specifically for the system engineer. However, as quoted in the paper, “Requirement
discovery and extraction are done by examination of the document through scrolling and regular
expression searching. Candidate requirement statements are selected with the mouse and placed
into the requirements inspection window from which they may be saved into the project data-
base.” Still, the process of capturing the requirements in the first place is done by humans.

RETH, Requirements Engineering Through Hypertext [Kai93], also aims to establish
links among natural language requirements statements and the representation of objects in a
domain model. It provides a representation mediating between the completely informal ideas of
the user in the very beginning and the more formal models and requirements. RETH attempts to
support the activities problem analysis, and requirements definition that can be viewed as one of
eliciting the requirements from the users. Kaindl, the author of of the paper, suggest “to get help
from an analyst (a requirements engineer)” since requirements formation is “too difficult for
inexperienced users”. RETH only helps to gather and structure the requirements by supporting
brainstorming through hypertext. It does not automate any part of the elicitation process.

All these methods give the human elicitor technical assistance, but mostly rely on the
human to supply all the requirements information according to a strict template.

14

1.5 Envisioned Requirements Gathering Environment

This work is aimed at producing essential parts of an envisioned integrated environment
called REquirements GAthering Environment (REGAE), for gathering, sifting, and writing
requirements. This environment may very well be part of a large environment used for software
development, deployment, and maintenance [CASE88]. For now, REGAE is described as help-
ing the human requirements elicitor, massage transcripts of interviews with members of a client
organization into a consistent, complete, unambiguous, coherent, and concise statement of what
the organization wants. No matter what language is being used either for the interview tran-
scripts or for the final requirements, REGAE should support any possibility. Usually the input to
REGAE will be a natural language transcript, possibly with pictures [Har87], but REGAE should
support any language possibility. The output language in which the requirements are written, can
be anything from natural language with pictures, to any of the requirements expressing
languages mentioned in Section 1.4.

Since not enough is known about an effective requirements writing in order to be able to
codify the process, a completely expert-system approach is excluded, at least for now. Therefore
an environment is envisioned, consisting of clerical tools that help with the tedious, error-prone
steps of what an elicitor does.

The goal of REGAE is to organize the whole collection of requirements information as a
network of nodes, each denoting an abstraction and containing a description of all that is known
and required about the abstraction. The arcs between the nodes can be used to describe the rela-
tions between the abstractions. Of course, what relations these arcs represent is left up to the eli-
citor. Certainly, there are arcs that should be generated automatically. For example, should there
be a link between all copies of a given sentence and from each word identifying any abstraction
in any sentence to the node defining the abstraction? Such a network is intended to be used both
in the requirements specification and in the subsequent development.

REGAE needs two basic kinds of tools:

1. to assist identify the abstractions that will make the nodes from the transcripts of the
interviews, and

2. to help organize the abstraction into a network of abstraction-nodes, each to contain a
consistent, complete, unambiguous, coherent and concise description of that abstraction.

In order to motivate the description of tools of the first kind in the subsequent section, it
is useful to understand the envisioned tool of the second kind. This tool provides a medium in
which nodes, implemented as windows on a work station screen, can be organized into a net-
work, as suggested by Figure 1 and Figure 2. Each window can be made to hold arbitrary text,
including text that causes displaying of a picture. Any arbitrary element of the text of any win-
dow can be given links connecting the element to any window or to any element, possibly in
another window. Figure 2 shows two windows from a description of an airline reservation sys-
tem.

15

˜˜˜˜˜˜
˜˜˜˜˜˜

˜˜˜˜˜˜
˜˜˜˜˜˜

˜˜˜˜˜˜
˜˜˜˜˜˜

˜˜˜˜˜˜
˜˜˜˜˜˜

˜˜˜˜˜˜
˜˜˜˜˜˜

Figure 1: Network of Nodes
�מתי� של רשת :1 �יור

book passenger on flight book passenger on flight

flight passenger

Figure 2: Links
קשרי� :2 �יור

16

The links connect an element to windows giving more details about the element or to
other elements talking about the same or related concepts, as the elicitor desires. The elicitor
can use these links to navigate through the windows as he or she is tracking down information
that allows the contents of each window to be refined into a suitable description of the window’s
abstraction.

This description of the tool of the second kind suggests building it on top of some exist-
ing hypertext system [YMvD85, Con87, DS87]. Indeed, Garg and Scacchi have suggested
maintaining all life-cycle documents as hypertext [GS87]. More recently other groups have
come to the same idea and have produced functioning hypertext-based requirements manage-
ment systems [LF93, Smi93, PT93].

1.6 Plan of Thesis

The remainder of the thesis is divided into four sections.

Section 2 presents a key process in requirements engineering, that of abstraction identification.
Section 2.1 gives operational definitions and assumptions, and Section 2.2 describes past
attempts to build tools for abstraction identification and their weaknesses. Sections 2.3,
2.3.1 and 2.3.2, introduce a new approach for abstraction identification that is the subject
of this dissertation. Then Section 2.3.3 describes how the new approach avoids most of
the weaknesses of previous approaches. However, as shown in Section 2.3.4, the new
approach has its own possible weaknesses, which, it is argued, can be defended against.
Section 2.3.5 sketches the program of AbstFinder and Section 2.3.6 analyzes it; finally,
Section 3 gives scenarios for using AbstFinder.

Section 4 explains how to evaluate a new method or a tool in requirements engineering, defines
criteria for evaluation, and Section 4.1.1 gives an evaluation plan based on those criteria.
Section 4.2 describes the case studies conducted according to the evaluation plan. Sec-
tion 4.2.3.1 compares AbstFinder to findphrases on the industrial-size case study. Sec-
tion 4.3 evaluates AbstFinder as an indexing tool. Finally, Section 4.2.4 summarizes the
results of the AbstFinder evaluation activities and concludes that AbstFinder is an
effective tool for abstraction identification.

Section 5 describes a case study in the use of hypertext to build an abstraction network for
requirements engineering.

Section 6 draws the conclusions of this research and summarizes its contributions.

17

2 Abstraction Identification

This section describes past and a current effort to establish automatic assistance for iden-
tifying abstractions. It is assumed that the text from which the abstractions are to be identified is
available in machine-readable form. First, however, it is necessary to attempt to define abstrac-
tion so that it will be understand exactly what is supposed to be identified.

2.1 Operational Definition and Assumptions

Abstraction, in general, is ignoring details. When people try to understand a written
requirements document, they usually abstract the contents. In this case, abstracting means ignor-
ing enough details to capture the main ideas or concepts in the document. What details are
ignored cannot be defined formally, or even informally. However, everyone involved with a pro-
ject seems to know an abstraction when he or she sees it. Such a definition is not workable.
Therefore, operationally, abstraction identification is defined as identifying some words from the
written requirements document, and it is hoped that the scheme for selecting the words yields
words that help humans to understand the document.

Eventually, when the elicitor feels that he or she understands the text of the transcript by
having a list of abstractions, each abstraction identifier will be used for retrieval of the
abstraction’s contents. An abstraction’s contents is all the sentences, collected from different
places in the transcript, that deal with the subject of the abstraction identifier, e.g. “communica-
tion”. The contents of an abstraction as derived from the initial text received from the customer
may be ambiguous, incomplete, and inconsistent. Negotiation with the customer will be needed
in order to resolve inconsistencies and to add more information in order to obtain useful require-
ments. Obtention of requirements from abstractions is a laborious activity and lies outside of the
thesis.

In any case, an abstraction is not equal to a requirement. According to IEEE Standard
610.12-1990, a requirement is defined as “condition or capability needed by a user to solve a
problem or achieve an objective”. Thus, an abstraction can be thought of as higher level than
requirements. The correspondence between requirements and abstractions is many to many.
The importance of the abstractions is that they can serve as an initial list for requirements, and
be used for the negotiation with the customer.

There are some who say that abstraction identification may be defined as inverse data
retrieval. Data retrieval is the activity in which one retrieves data according to a known key-
word. Abstraction identification is the activity in which one looks for the key concepts to be
used for retrieving information about that concept. One of the main concerns in information
retrieval [SM83] is the automatic indexing of documents, which consists of producing for each
document a set of indices that form a profile of the document. A profile is a short-form descrip-
tion of a document, easier to manipulate, and plays the role of a surrogate in the retrieval stage.
Recall that in abstraction identification for requirements elicitation, understanding is needed in
order to be able to state the raw requirement. In indexing for information retrieval, a profile is a
list of keywords that do not necessarily have any meaning and cannot be used as abstractions

18

identifiers. However, a list of abstractions identifiers is a good list of index terms for retrieval.

Heretofore, abstraction identification has been done manually by an elicitor. The elicitor
scans all the transcripts, trying to note important subjects and objects of sentences, i.e., nouns.
The problem is that humans get tired, get bored, fall asleep, and overlook relevant ideas. So it is
proposed that REGAE contain tools that do the clerical part of the search without getting tired,
falling asleep and overlooking anything. The human elicitor still has to do all of the thinking
with the output of the tools, but he or she will be confident that no piece of information has been
overlooked in the process of gathering input to the human process of abstraction identification.

That is, no matter what, the elicitor must read all the input at least once. The larger this
input, the more that must be digested in the elicitor’s process of abstraction identification. There
is the danger of information overload in gathering this input. To avoid information overload, it is
useful to somehow reduce the size of the input that must be digested. The danger in reducing the
size of the input and relying only on the reduced input is that something important might be
overlooked. Therefore, confidence is needed in that the reduced input overlooks nothing impor-
tant.

The identifiers of the abstractions can also serve as titles of sections of the requirements.
Each of these sections has to be filled with details in order to produce a well defined require-
ment. For instance, the section titled “navigation” might be filled in as follows, “The system
shall navigate according to the parameters, how, when, where”. Actually, the most refined
abstractions are needed for the requirements, in order to give each individual requirement the
most accurate title. For example, in the RFP transcript given later, “Unmanned Air Vehicle” is a
well defined abstraction and is mentioned in almost every paragraph. However, this phrase is
the title of the entire document, which identifies the whole project, and it does not help much in
capturing the detailed requirements needed to develop the system. So, a more refined abstraction
identifier such as “navigation”, “launch recovery”, or “communication”, which identifies some
function or data, is much more useful for a well defined individual requirement.

The list of the abstraction identifiers does not replace the original transcript. Reading
only the list of requirement titles will not lead to understanding the client’s needs. This list,
however, assists the elicitor in two ways. First, it helps the elicitor keep the important concepts
in focus. Second, it is used as a reference in order to keep the elicitor from overlooking anything.

Underlying all the approaches attempted in the past and finally taken here are some
assumptions that ultimately have to be validated. Their validation will come retroactively as a
result of the success of the resulting tools. The assumptions are that

1. at least some manifestation of all abstractions is expressible within the confines of a sin-
gle sentence and

2. each individual abstraction is discussed in more than one sentence.

If these assumptions hold, then a repetition-based approach, such as proposed below, should
work. The main idea behind such an approach is that the importance of a term in the text is

19

proportional to its frequency of occurrence within the text. It has been empirically verified that a
writer repeats important words in the text as he or she tries to explain or verify them [Luh58].

The repetition-based approach implies that important abstractions for requirements are
discussed more than once among the sentences obtained from the clients. The rationale behind
that is that a requirement has to appear once for definition and at least once for usage. If a
requirement is not defined or not used at least once, then it cannot be considered as a require-
ment to be designed. If by mistake, the client forgot to define the requirement but used it more
than once, the elicitor will identify it and will negotiate with the client in order to complete the
definition. However, if some requirement was only defined and not used, or not defined and
used only once, the elicitor might neglect it too.

The assumptions seem to overlook a high-level abstraction that consists of a concept
spread out over several sentences that individually do not expose the concept. Either these do not
occur or if they do occur, it is assumed that the human elicitor will notice them as an aggregate
of several identified concepts. For this identification to be possible, it must be that each indivi-
dual subconcept is mentioned more than once so that all of them show up and can be recognized.
Our experience has shown that these high level abstractions are not a problem to identify.

One key point that emerged in the consideration of the past work is that it is critical for
the tool to have guaranteed coverage, even if it is less intelligent. The lack of intelligence is no
real drawback since the human elicitor has to analyze the output of the tool anyway. He or she
will provide the missing intelligence. Indeed, there are some advantage to forcing the human to
think carefully. However, to be sure that the thinking is supplied with full information, full cov-
erage by the tool is critical. Particularly disastrous is a so-called intelligent tool that makes mis-
takes and leaves things out in its attempt to be intelligent.

2.2 Existing Abstraction Identification Tools

There is a sequence of increasingly better tools developed to assist in abstraction
identification.

2.2.1 Grammatical Parsers

An early idea for abstraction identification, reported in [BYY87] was to use a parser in
order to find the nouns. The result was that the few errors it made were distracting and it was
more comfortable to find the nouns manually. Ultimately, the idea of using a parser in order to
find the nouns for abstraction identification was abandoned, because it did not inspire confidence
that it found everything. More importantly, the parser would overlook an important noun
because it appears to the parser as a verb. For example, in the phrase “book a flight”, “book” is a
verb and not a noun as thought to be by many parsers. Even a better, but still ultimately imper-
fect, parser does not solve this confidence problem. Finally, the abstractions are often noun
phrases and not just the words. In the same example phrase, the key concept is “flight booking”
and not just “flight”, the only real noun found in the phrase.

20

2.2.2 Repeated Phrase Finder

A second idea [Agu87, AB90] was to use findphrases, a repeated phrase finder, a
repeated phrase finder, a repetition-based approach. Counting isolated words in the text is not
sufficient, because a lot of information is lost. In particular, information on the relationships in
which words are involved is lost. Therefore, it is necessary to consider the phrases in which the
words appear.

In its simplest application, the user provides findphrases with the original text of
requirements description and a file containing punctuation and keywords. The punctuation and
the keywords are used by findphrases to break the text into sentences. findphrases processes
those statements and produces a series of reports. The basic output contains: (1) the input file,
written with lines numbered and punctuation keywords overstruck (for bold faced appearance).
(2) a frequency-ranked table of repeated phrases, and (3) an alphabetically ordered table of the
repeated phrases. Each entry in these tables gives the number of the line in the original text in
which the phrase occurs, so each phrase may be examined in its original context to decide which
abstraction is really represented by the phrase. A number of options are provided that the user
may use to control the parsing of the input text into tokens and phrases, to control the printing of
the phrases in the tables of the output, and to indicate which additional tables are to be printed.

There is also a learning process in using findphrases. It appears that there are different
characteristic sets of punctuation-keywords and of ignored phrases for each language. Moreover,
for each application area there appears to be a characteristic set of ignored phrases. When using
findphrases, one should fill the punctuation-keywords and ignored phrases files with common
words that are actually important abstractions, but whose presence skews the list and populates it
with too much noise for finding the other abstractions.

Aguilera [Agu87, AB90] describes tests of the effectiveness of findphrases in helping
the elicitor identify abstractions. The tests involved four examples of program development,
each of which had multiple versions of the same program ranging from natural language descrip-
tions, through designs, decompositions, etc., to code.

It was desired to determine if findphrases is effective in helping the elicitor to find, in
natural language transcripts of interviews about a system under development, all of the abstrac-
tions that serve as the basis for requirements, design, and implementation. It was deemed
effective if we, as humans, do indeed recognize the same set of abstractions in the outputs of
findphrases run (with the appropriate parameter files in each case) on all versions of the same
problem. Finding the same set of abstractions in all versions says that the abstractions found in
the first version, the natural language description, are sufficient to cover all abstractions that will
be needed for all subsequent versions, including the code and that no other abstractions will need
to be invented during the design and implementation.

21

The first experiment is Abbott’s example of programming with the help of [Abb83]
natural language. This example is the focus of a paper [BYY87] that points the need of this
phrase finding tool. For this experiment, three versions of program solution are compared. The
first version was written in standard English, the second in an Ada-based program design
language, and the third in Ada. The second experiment is the problem of writing the phrase
finder itself. In writing the phrase finder, the manual page served as the requirements document.
findphrases was run with its own manual page to see if the same abstractions that formed the
basis for the modular decomposition used in writing the code are identified from the information
provided by findphrases. The third experiment takes Mitchell’s text book [Mit84] example of
writing sorting program starting from the English statement of the requirements and ending with
a Pascal program developed with a structured programming method. Four versions of the pro-
gram solution are compared, the initial English description, two program design language
descriptions, and the final Pascal program. The fourth experiment takes Wiener and Sincovec’s
text book [WS84] example of writing a spelling checker program. They start with a statement of
requirements, develop a modular decomposition for the solution, and produce an Ada program.

While the tests were convincing for the documents considered, none of them considered
an industrial sized example in the context of a real-live software development. The question of
whether the effectiveness scales up remains.

findphrases was found to be effective in aiding the elicitor to identify abstractions in all
stages of life-cycle. However, one particular weakness was noticed. A repeated phrase finder
fails to count as a repetition of book a flight the phrase book the flight since it looks for fixed pat-
terns. Were each of these phrases to appear only once, the concept of booking a flight would not
show up at all in the list of repeated phrases. In many cases, concepts do not appear as adjacent
words but rather a set of words separated not more than a few words. Most of these concepts
appear as closely separated pairs of words standing for an agent-object relation. Moreover, this
relational information often allows distinguishing between semantically distinct uses of the same
word by showing the context from which the word comes.

2.2.3 Lexical Affinities

The third idea [MB88, MB88], is to use lexical affinities (LAs) as the atomic unit for
identifying major abstractions within a text. An LA stands for the correlation of the common
appearance of two items in sentences of the language [Cru86]. For our purposes, the definition
was restricted, by observing LAs within a finite document rather than on the whole language. For
instance, in this thesis, requirement and analysis are bound by a lexical affinity. For our purpose,
were considered only LAs involving open-class words as meaning bearing. Open classes words
are nouns, verbs, adjectives, and adverbs whereas closed-class words are pronouns, prepositions,
conjunctions, and interjections [Hud84].

In order to retrieve the LAs from a document, an extracting tool that retrieves the lexical
relations and selects as LAs those appearing the most often was used [MB88]. The LA finder’s
output is a list of lexical affinities with their associated frequency of appearance within the con-
sidered text. For instance, the analysis of the rm manual in the UNIX environment, returns as

22

the most frequent LAs, the list (delete file), (file file), (file permission), etc. each of which
appears three times within the one-page document. Were the manual page taken as a statement
of requirements of rm, it was believed that this list of LAs would be of great help for assisting
the elicitor in his or her process of extracting requirements. The LA finder could be much
improved by accounting for the general context or universe to which the document belongs. This
context would allow filtering out such LAs as (file file), cited above.

In order to account for the general context or universe, LAs need to be scaled according
to their specific contribution in the given document. As a measure of their contribution, it is pro-
posed to evaluate the resolving power of every LA. The resolving power is defined as the power
� of an LA as a function of its quantity of information and its frequency of appearance within the
considered text. The quantity of information represented by a word w in a given textual universe
is defined as [SM83]

INFO(w) =� log 2P(w) .

Thus, if a word “asterisk” occurs once in every 20,000 words, its quantity of information is
estimated to be

INFO(“asterisk”) =� log 2 5�10�5 = 14.29.

In contrast, the word “the” that occurs once in every 15 words, has its information contents
estimated to be

INFO(“the”) = 3.9.

Drawing from this definition of quantity of information for single words, the resolving power of
an LA within a document d can be defined as follows.

Let (w 1 ,w 2 , f) be a tuple retrieved while analyzing a document d, where (w 1 ,w 2) is an
LA appearing f times in d. The resolving power of this LA in d is defined as

�((w 1 ,w 2 , f)) = f �INFO(w 1) INFO(w 2)

The higher the resolving power of an LA is, the more characteristic it is of the considered docu-
ment. The best LAs, in terms of resolving power, within a document, represent key concepts of
the considered document. These LAs may therefore provide valuable assistance to the elicitor in
the process of extracting requirements.

In order to test the effectiveness of LAs in helping the human to find abstractions, the LA
finder was tried on the findphrases manual page that was used as a requirements document for
building findphrases program. The LA finder found all the abstractions identified by
findphrases between the most significant leading LAs.

Again, none of the tests considered an industrial sized example in the context of a real-
live software development, and the question of whether the effectiveness scales up remains.

23

The initial tempt to use an LA finder in assisting the elicitor in requirement extraction
looks promising. However, at present the LA finder does not find LAs consisting of more than
two words of common grammatical structure, verb-noun, adjective-noun, etc. Of course,
findphrases has no problem in finding phrases longer than two words.

2.2.4 Remaining Weaknesses

The early idea of using a parser in order to find the nouns for abstraction identification
was not satisfactory, because it did not inspire confidence that it found everything. The parser
might overlook an important noun because it appear to the parser as a verb. Even a better, but
still ultimately imperfect, parser does not solve this confidence problem.

findphrases and the LA finder have each weaknesses that the other does not have.
findphrases finds long phrases but identifies only fixed patterns, whereas the LA finder
identifies nonadjacent words but is limited to precisely pairs of words. findphrases cannot iden-
tify phrases written in differing orders, for example, “book a flight” and “flight booking” which
are not the same phrase but do belong to the same abstraction. The basic LA finder cannot han-
dle phrases of length two whose elements are in different order, but which are grammatical vari-
ants of the same root, such as “book a flight” and “flight booking”. Neither of them identifies
synonyms as belonging to the same abstraction.

The new approach described in the next section is an attempt to get the best of both
findphrases and the LA finder.

2.3 New Approach

This section describes a new approach that eliminates many but not all of the weaknesses
of the older tools. First a formal statement of the searching is given motivated by a description of
what is desired. While the new approach solves most of the weaknesses of the older tools, there
are a few remaining.

2.3.1 Motivation

In general, a concept that identifies an abstraction may be a phrase within a sentence.
This phrase may be composed of an arbitrary number of words, distributed within the sentence,
with arbitrary sized gaps, and may appear in different orders in different sentences. For example,
by examining the two sentences, “book ... a ... night flight” and “... flight ... booking”, an elicitor
will suggest the common concept “book flight” as an abstraction identifier.

It is therefore, desired to determine for any pair of sentences, the set of chunks that they
have in common independently of the order of these chunks in the sentences. The chunks in gen-
eral will be words. However, many times, it is desired that these chunks be words sans suffixes
and prefixes in order to capture the commonality in the form of the grammatical root of two
occurrences of the same word in different parts of speech. Therefore, it is necessary to allow
these chunks to not begin and end at word boundaries. That is, in the two sentences

24

The flights are booked
He is booking a flight

we wish to find the two chunks “flight” and “book”, neither of which is a full word in both sen-
tences. (The fact that they are in different orders in the two sentences is dealt with below.) The
upshot of this desire is that the sentences are considered streams of characters with no particular
status accorded to the usual word-ending characters such as blanks and punctuation.

One side effect of ignoring word boundaries is that noise can creep into the matching
chunks. For example, among

book flight
book funny

the matching chunk is “book f”. Fortunately, the elicitor can ignore the “f” as meaningless. By
experimentation, it was determined that attempting to algorithmically excise the noise caused
significant material to be lost, e.g., in formulae, variables are significant single-character chunks.
Also, we are counting on the intelligence of the human user of the program to recognize mean-
ingful words from the chunks. Sometimes this may be difficult. Among

impossible to see
a possibility seems

the common chunks are “possib” and “see”. The two main problems are illustrated here. Will a
human be able to connect “possib” to the correct root “possible”? Will the human be misled to
believing that “to see” is a common concept. To assist the human in finding abstractions and
avoiding being misled, it will be necessary to print with an abstraction at least a pointer to the
sentences involved. Again, algorithmic attempts to avoid these problems, particularly the latter,
are fraught with the danger of losing information.

2.3.2 Formal Description

AbstFinder takes the novel approach of considering each sentence as a stream of bytes
without any semantics, manipulates those streams, and extracts from them meaningful abstrac-
tion identifiers. Thus, the problem of finding common phrases between sentences that identify
abstractions, reduces to a problem of finding possibly discontinuous common substreams among
the streams. The substreams are the words of the phrase that may be discontinuous in the sen-
tence. But, each substream has to be contiguous, since it might be a word or portion thereof, and
a word in a natural language is a run of characters.

Finding common chunks that are in different orders in the sentences may be achieved by
comparing one sentence against each of the circular shifts of the other, searching, in each case,
for possibly disjoint runs of consecutive matching characters in the two.

25

Some well-known existing techniques for comparing sequences are to see how different
they are [SK83] and can be applied only to sequences of equal length. For example, some

methods for comparing sequences a and b are Euclidean distance�����i = 1
�
i = n

(a i �b i)
2 , city block

distance
i = 1
�
i = n

| a i �b i |, and Hamming distance that is simply the number of positions in which the

corresponding elements are different. The general approach used in sequence comparison is to
seek the appropriate correspondence by optimizing over all possible correspondences that satisfy
suitable conditions, such as preserving the order of the elements in the sequence.

Central to the literature on sequence comparison is one basic problem, which is essen-
tially the same in speech processing, macromolecular biology, error-correcting compilers, etc.
Given two sequences, the basic comparison problem, roughly speaking, is to find a match, i.e., a
trace, alignment, or list of changes, between the elements in the two sequence which require the
smallest number of changes, such as deletions, insertions, and substitutions. Most application use
the dynamic-programming algorithm, via Levenshtein distance. The Leveshtein distance d is
defined as the minimum cost of a sequence of edit operations, i.e., change, delete, insert, that
change one string into another. The dynamic-programing method is a recursive technique for
finding the distance and the corresponding optimum analysis, i.e., the sequence of operations
that caused this optimized matching. In the dynamic-programming method, the two sequences
which can be of different length, are put on a matrix, and a match is based upon finding the
minimum cost to move through all the positions of the matrix, comparing each character of
sequence a to each character of sequence b.

Since abstraction identification involves finding common runs of substring, which consti-
tute a meaningful word or phrase in natural language, it is simpler than the mere general problem
of sequence comparison. An abstraction identifier is a common concept which appears, at least
partially, identically in both sequences. No edit operations are allowed in a concept that is going
to serve as an abstraction title. For instance, “Industry” and “Interest” may be close enough for
the basic problem of sequence comparison. But, they are completely unrelated concepts for
abstraction identification purposes. Thus, the AbstFinder algorithm is a special case of a
dynamic-programming problem that takes into consideration only equalities.

Two parameters are involved in that basic problem of sequence comparison, the distance
and the corresponding analysis, i.e., the list of changes that caused the match. In some applica-
tions it is the distance, and in others it is the analysis that is of primary interest. In abstraction
identification, the analysis itself, i.e., the common subsequence, is of higher interest, because
those common subsequences will serve as the abstractions identifiers. Since in abstraction
identification, the appropriate correspondence of the same concept in different sequences is not
known in advance, the distance is also very important, and is used as a criterion for finding that
correspondence.

26

Let S denote a sentence. Then length(S) is its length, and for 1�i�length(S), S[i] is the
i th character of S. For 1�i < j�length(S), S[i .. j] is the substring of S stretching from S[i]
through S[j]. Also, if length(S)�1, head(S) = S[1] and tail(S) = S[2 ..length(S)]; if, how-
ever, length(S) = 0, head(S) is undefined and tail(S) is the empty string, �. BLANK is the blank
character. Finally, S || T is the concatenation of S followed by T.

If length(S)�1, the i th circular shift of S, CS i (S) is defined recursively.

CS 1 (S) = tail(S) || head(S)
CS i (S) = tail(CS i �1 (S)) || head(CS i �1 (S)), for 2�i�length(S) .

It will often be useful to put a blank at the end of S before circularly shifting S in order that the
end of S not form a bogus word with the concatenated beginning of S.

In comparing two sentences it will be necessary to pad the shorter one with blanks to the
length of the longer one. Therefore,

For n�length(S), padn (S) = S || BLANKn � length(S) .

The special case of padding by one more character will be denoted as simple pad(S),

pad(S) = pad length(S) + 1 (S) = S || BLANK .

A run in two sentences S and T of the same length is a string of consecutive characters
that appears in both sentences in exactly the same position of each such that the character before
the run in each differ and the character after the run in each differ. For a run to be significant, it is
required that its length be greater than WordThreshold, a value that has to be set experimentally
as described below. Later, each run obtained from comparing two sentences, one of them a cir-
cular shift, will be called a phrase, because it can contain several words, which are common to
the two sentences.

Suppose that length(S) = length(T) = n, 1�i < j�n, and j� i�WordThreshold. Then,

run i , j (S ,T) = � {a| 1�i < j�n and

j� i�WordThreshold and
a = S[i .. j] and a = T[i .. j] and
if i�1 then S[i �1]�T[i �1] fi and
if j�n then S[j + 1]�T[j + 1] fi } .

The right hand side yields a nonempty set only when S[i .. j] is a run of significant length in S
and T.

27

Suppose that length(S) = length(T) = n. Then,

runs(S ,T) =
i = 1
�
n

j = 1
�
n
run i , j (S ,T) .

The abstraction in common between two sentences S and T may be defined to be the set
of runs in common in their circular shifts after padding each by one blank to prevent the last
word of a sentence concatenated with its first word becoming a spurious word. However, as
explained below, for simplicity, the runs are those found by comparing the shorter sentence pad-
ded to one more than the length of the longer with the circular shifts of the longer.

Let S and T be two sentences. If they are of unequal length, then let L be the longer of the
two and s be the shorter of the two. Otherwise, let L be T and s be S. Let n = length(L). Then,

Abst(S ,T) =
i = 1
�
n
runs(padn + 1 (s) ,CS i (pad(L))) .

Consequently, even if S and T are of unequal length, Abst(S ,T) = Abst(T ,S). Later, the
abstraction of a particular sentence S will be taken as the union of all Abst(S ,X) for all other
sentences X. Thus, there cannot be more abstractions than there are sentences.

From the sentences (not really, but the example has to be kept short!)

file to ignore
the ignored files

the working of the definition causes the sentences to be padded to

file to ignoreXXXX
the ignored filesX

where “X” represents a padding blank, which is really indistinguishable from an ordinary blank.
The definition causes the circular shifts of “the ignored filesX” to be matched for runs
against the padded “file to ignoreXXXX”, as shown in Figure 3.

The formal description admits of a very straightforward implementation that completely
avoids generating and storing of the circular shifts. Basically, the sentence that would be circu-
larly shifted, the longer one, is concatenated to itself after the one blank padding and the shorter
sentence is compared for runs with the doubled sentence after positioning its beginning at each
successive character of the first half of the doubled sentence. Figure 4 shows the algorithmic
rendition of the formal run search shown in Figure 3. Note that it is neither necessary to pad the
second occurrence of the longer sentence, nor to pad the shorter sentence.

28

file to ignoreXXXX____ ______

the ignored filesX
he ignored filesXt
e ignored filesXth
ignored filesXthe

ignored filesXthe
gnored filesXthe i
nored filesXthe ig
ored filesXthe ign
red filesXthe igno
ed filesXthe ignor
d filesXthe ignore
filesXthe ignored

filesXthe ignored � file____��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� ��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

ilesXthe ignored f
lesXthe ignored fi � ignore______�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

esXthe ignored fil
sXthe ignored file
Xthe ignored files

Figure 3: Comparing shorter sentence to circular shifts of the longer
ארו� משפט של �יקליות להזזות ק�ר משפט השוואת :3 �יור

This algorithm will be recognized as the traditional signal processing algorithm to find
commonality in two signal streams [Skl88]. Perhaps the power of this approach comes from its
treatment of a sentence as a stream of arbitrary characters with the substreams appearing any-
where rather than being constrained to fall on word boundaries because the sentence is con-
sidered a string of words.

It is clear that searching for runs by comparing the shorter sentence padded to the length
of the longer with the circular shifts of the longer is different from searching for runs by compar-
ing the longer sentence with the circular shifts of the shorter padded to the length of the longer.
However, the difference in the set of runs produced is strictly in what the human would regard as
noise (Recall the discussion at the beginning of Section 2.3.). The set of meaningful words and
word roots among these runs are the same. The implementation of searching for runs by compar-
ing the longer sentence with the circular shifts of the shorter padded to the length of the longer
would require concatenating more than two copies of the shorter sentence in order to simulate its
circular shifts; indeed the exact number of copies needed depends on the ratio of the lengths of
the two sentences. Given that human intelligence is needed anyway to interpret the runs, and
different noise is still noise, for simplicity in the algorithm it was decided to always compare the
shorter sentence padded to the length of the longer with the circular shifts of the longer. This

29

the ignored filesXthe ignored filesX____ ______

file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX � file____��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� ��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

file to ignoreXXXX
file to ignoreXXXX � ignore______�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

file to ignoreXXXX
file to ignoreXXXX
file to ignoreXXXX

Figure 4: Comparing doubled longer sentence to shifts of the shorter
ק�ר משפט של להזזות משוכפל משפט השוואת :4 �יור

implies that in a set of sentences only half the total possible comparisons will be done since
Abst(S ,T) equals, by definition, Abst(T ,S).

2.3.3 How the New Approach Avoids Weaknesses of Previous Approaches

The new approach provides an effective way of identifying abstractions in natural
language transcripts of client interviews, which allows

1. unlimited phrase length, within the confines of a sentence,

2. phrases with unlimited gaps between the words within a sentence,

3. arbitrary permutations of a phrase to be recognized as the same phrase,

4. automatic matching of subwords that share a common root, when the variation to other
parts of speech is regular, e.g., as for “purchased” and “purchase”.

30

The new approach solves the weaknesses of findphrases and the LA finder algorithms,
of being unable to deal with phrases with arbitrary numbers of words, with arbitrary gaps
between words of the phrases, and with arbitrary permutations of the words in the phrases.
Treating a sentence not as a list of words but as a signal stream frees the algorithm from any
phrase constraints. The cyclical sliding of the sentences enables identifying similar words in
whatever order they appear in each sentence.

One weakness of all previous methods remains, namely that of identifying as a single
concept phrases that have nothing textual in common. There are two manifestations of this, irre-
gularity in changes to other parts of speech, e.g., the past tense of “buy” is “bought”, and
synonyms. People use different words, called synonyms, for the same thing, and a particular
word might appear less used than its concept actually is. Synonyms are used particularly when
the requirements are written by more than one person. Both of these problems can be regarded as
that of replacing one word by another. Therefore, the program, AbstFinder, containing the basic
algorithm, has been provided a facility for synonym replacement, according to a dictionary that
can be enhanced by the user.

There is one advantage of findphrases and the LA Finder which is preserved in Abst-
Finder, their algorithms are independent of the language of the requirements transcripts. Even
information that is language dependent, such as ignored words, suffixes, etc., are prepared in a
user input file, and is used as is without trying to understand the language.

The tool is purposely non-intelligent so it can guarantee that it considers all of the input
and the analyst can have confidence that none of the input has been overlooked as is required.

2.3.4 Possible New Weaknesses of the New Approach

One problem will be to set the WordThreshold parameter. If it is not set high enough,
then parts of words—called noise in signal processing terminology—might hide the the real
abstractions to be identified. With too much noise, the elicitor will not see the trees in the forest
and will not find the abstractions. If the WordThreshold is set too high, then abstractions that are
identified by a word shorter than the WordThreshold will be missed. The risk is that to get very
meaningful phrases, the threshold may be set too high and not all abstractions will be found. So,
it will be necessary to experiment with threshold values, and these values may prove to be
different for each problem. It may also be necessary to run the same problem with different
thresholds.

A second noise problem can be caused by words or phrases which are meaningful but do
not contribute to the abstraction identification process. For each language there appears to be a
characteristic set of common words, and for each application area there appears to be a charac-
teristic set of application-dependent keywords.

1. The common words, e.g., “a”, “on”, “the”, “in”, etc. obviously do not identify any
abstraction. When looking for similarity, these words will skew the list of correlated
phrases that identify an abstraction, and will populate it with too much noise for humans

31

to easily find the real abstractions identifiers. One should fill an ignored-phrases-file
with common words, in order to mark them for not taking part in the calculation for runs.
The ignored-phrases-file can also accumulate application-independent words that can be
used for any project.

2. The application-dependent keywords are actually important, and repeat a lot in the text.
For example, in the RFP text, which is entitled “Unmanned Aerial Vehicle (UAV) and
which was used as a case study (See Section 4.2.3), the words “unmanned”, “aerial”,
“vehicle”, and “UAV” appear in almost every sentence. When looking for commonality,
these words will also skew the list of abstractions making it harder for the elicitor to find
other abstractions. So, when using AbstFinder, one should fill an ignored-application-
phrases-file with these frequent application keywords, which identify larger abstractions.

Filling these ignored phrases files requires experimentation and is basically a learning
process. This process is described in Section 3.

A third noise problem can be caused by common long suffixes. For instance, “cation” in
“application” and in “communication”, or “ance” in “accordance” and in “appearance”. In order
to avoid these suffixes being counted as possible abstractions by AbstFinder, one should fill the
ignored-suffixes-file with the recognized common suffixes, in order to mark them for not taking
part in the calculation for runs.

An enhanced operator Abst(S ,T), Abst�(S ,T) is applied in AbstFinder program, which
uses runi , j� (S ,T), instead of run i , j (S ,T), where

runi , j� (S ,T) = � {a| 1�i < j�n and

j� i�WordThreshold and
a = S[i .. j] and a = T[i .. j] and
a[i .. j] is not an ignored suffix and
if i�1 then S[i �1]�T[i �1] fi and
if j�n then S[j + 1]�T[j + 1] fi } .

This means that a run cannot begin with an ignored suffix.

In general, a little noise that sometimes causes useless information to appear among the
valid abstractions, does not harm abstraction identification. If there is not too much noise, the
elicitor can easily distinguish the the noisy strings from the meaningful words and ignore them.
Also an ambiguous phrase, without a common word that was ignored, poses no problem for a
human to interpret if it is reported as a repeated phrase.

There is also the problem of inconsistency, of client using misleading concepts. Either
using the same concept for different purposes, abstractions, or using different concepts for the
same abstraction. For instance, the author has experience as a requirements elicitor of a com-
munication system in which the concept “frequency” was used for frequency of hopping for

32

anti-jamming purpose, and for the frequency of a clock, which are completely different abstrac-
tions. Those inconsistencies originating in the client’s transcript are lit up by the new method,
which helps identify them and gets the client involved in solving them.

2.3.5 AbstFinder Program

The AbstFinder program incorporates the algorithm described in the previous section.
AbstFinder’s algorithm uses the information yielded by Abst(S ,T) for all distinct combinations
of two sentences S and T. A sentence is not compared with itself, but no attempt is made to
avoid comparing a sentence to another sentence that happens to be a duplicate. Indeed, such
duplicates should strengthen the frequency of the abstractions embodied in the sentences, espe-
cially if they come from different sources. The set of runs returned by an invocation of Abst on
one pair of sentences, one being a circular shift, is called the phrases of that pair of sentences.
Whatever meaning can be ascribed to this phrase is the abstraction embodied by the phrases in
common in the two sentences. The main data structures of the program are corr_phrases and
corr_lines. Each entry in corr_phrases is the set of phrases obtained by comparing one sen-
tence to all circular shifts of all of the other sentences; any sentence for which no phrases are
found does not have an entry in corr_phrases. corr_lines is an array indexed the same as
corr_phrases, such that for each entry in corr_phrases there is an entry in corr_lines that con-
tains the line numbers of the sentences that compose the abstraction that is identified by the
corr_phrases entry.

Accept four input files:
a punctuation-keyword-file, an ignored-phrases-file,
an ignored-suffixes-file, an ignored-application-phrases-file,
and a synonyms-file;

Partition the text into sentences one per line, where a sentence is
the text lying between two consecutive elements of the
punctuation-keyword-file;

comment line and sentence are used interchangeably from now on tnemmoc

Remove from the text strings found in the ignored-phrases-file
and strings found in the ignored-application-phrases-file, and
mark suffixes according to the ignored-suffixes-file, and
replace words by their synonyms according to the synonym-file;

declare N := number of lines; comment = number of sentences tnemmoc
declare corr_phrases[1:N], corr_lines[1:N];
declare NA := 0; comment number of abstractions accumulated so far
which must always be less than or equal to N tnemmoc

for i from 1 to N do
corr_phrases[NA] := �;
corr_lines[NA] := {i};

33

for j from i+1 to N do
if Abst(line[i],line[j]) � � then
corr_phrases[NA] := corr_phrases[NA] � Abst�(line[i],line[j]);
corr_lines[NA] := corr_lines[NA] � {i} � {j}

fi
od
if corr_phrases[NA] � � then NA := NA + 1 fi;

od;
NA := NA - 1; comment correct overshoot tnemmoc

comment sort the NA identified abstractions so that the most
refined ones are at the top of the list tnemmoc

Sort both corr_phrases and corr_lines so that correspondence between
corr_phrases[i] and corr_lines[i] is preserved and
the elements of corr_phrases are ordered mainly by increasing
numbers of phrases in the elements and
within the group for any number of phrases, by decreasing
numbers of lines/sentences from which the phrases came;

Prepare and print the output as described below;

The output of AbstFinder comes in two parts. The first part is a table summarizing the
identified abstractions, and the second part gives a full description of each of the abstractions.
Figure 5 shows the first part of an AbstFinder output that features in a later discussion.

|------|-------|-------|-------|----------------------------|
| #) | abst# | corr_ | corr_ | correlated-phrases |
		phras#	lines#		
1	42	1	11	punctuation keyword file	
2	14	1	2	whitespace	

Figure 5: First part of AbstFinder output
AbstFinder של הפלט של הראשו� החלק :5 �יור

There is one row in the table per identified abstraction. The first field, labeled “#)”, gives
a serial number for the abstraction. The field labeled “Abst#” gives the abstraction number
assigned by AbstFinder to its first phrase (the NA of the algorithm). The “corr_phras#” field
gives the number of distinct phrases that were united into the abstraction by AbstFinder. The
“corr_lines#” field gives the number of distinct lines or sentences that contain these phrases.

34

Finally, the “correlated-phrases” field shows the phrases themselves with vertical bars in
between them and after the last one. Each blank starting from the second column after the begin-
ning of the field is significant and is part of its run. This field is truncated by its flowing beyond
the physical width of the paper. This truncation is a design feature, and it’s purpose is to signal
to the elicitor reading the summary part, that this abstraction is identified by too many phrases,
and may be too broad (See Section 3). Even if the phrases are truncated, the full list may be
found in the corresponding entry in part 2. The abstractions in the table are listed in order of
increasing numbers of the correlated phrases, and within any particular number of correlated
phrases, in order of decreasing numbers of sentences from which the phrases came. Note that
the elicitor uses only the “correlated-phrases” field in order to decide on abstraction identifiers.
All the other parameters are for research purposes (See Appendix A).

An abstraction identified by one phrase is more distilled than one that is identified by
more phrases. Obviously, there exists an abstraction that identifies the whole document and con-
tains every sentence in the document, but we are not interested in it. So, the first criterion for
ordering the abstractions is in order of increasing numbers of correlated phrases. Then, when
two abstractions have the same number of correlated phrases, the second criterion for ordering is
in order of decreasing numbers of sentences from which the phrases come. The more sentences
contained in an abstraction the more significant it probably is.

The second part of the output of AbstFinder is a full description of the abstractions in
order of their serial numbers in part 1. Figure 6 shows one of them. The output itself is in the
Courier font and the commentary is in the Times Roman font.

{1} abst_id=42
====================
correlated phrases of abstraction are
(#=1) number of correlated phrases

punctuation keyword file| phrases themselves

correlated sentences of abstraction are
(#=11) number of correlated sentences

44 2 8 14 20 21 23 24 30 35 49 identity numbers of sentences

Figure 6: Second part of AbstFinder output
AbstFinder של הפלט של השני החלק :6 �יור

Another byproduct of AbstFinder is the corr-phrases-file. The corr-phrases-file con-
tains a list of all and only the abstraction identifiers, i.e., the correlated-phrases of part 1 of the
output.

35

The full program can be thought of as a kind of clustering [Sal89]. In clustering, one
starts with each object in a separate class. Then a distance measure is selected. The next step is
to group into one class all objects whose distance is according to a predefined criterion. This
repeats until intra-class distances are low and inter-class distance is high.

In AbstFinder, as with normal clustering techniques, there is a similarity measure (the
length of the runs among two sentences) and a criterion for deciding when two items are similar
(the sum of lengths of the runs being greater or equal to WordThreshold). However, true cluster-
ing puts each object in one and only one class, as it is a partitioning. In AbstFinder a sentence is
allowed to be in several abstractions. Moreover, true clustering starts with an arbitrary
classification, and then moves objects from class to class until the criterion is fulfilled. The final
result of classification can be heavily influenced by that arbitrary first classification. Generally,
in requirements elicitation, no a priori classification is available. Moreover, it is desirable to
avoid being influenced by any initial prejudices.

Moreover, AbstFinder can be compared only to flat clustering. Hierarchical clustering is
not relevant to abstraction identification. The hierarchical clustering may be good for search in
libraries [Maa89] where one start at a certain top level and wants to get to the lowest level with
clusters consisting of single elements in order to fetch a certain software module. In abstraction
identification, one is looking for some middle level in which an abstraction is defined by a good
phrase, consisting of a few words in a few sentences, but not too high because an abstraction has
to be specific. By using AbstFinder, hierarchies are generated only when the elicitor wishes to
do so. The elicitor expresses this wish by zooming into an abstraction that he or she thinks that is
too broad (See Section 3).

2.3.6 Performance Analysis of Program

This section analyzes the performance of AbstFinder from three different points of view,

1. an implementation independent analysis of the value of WordThreshold,

2. a complexity analysis of the current, prototypical implementation, and

3. a complexity analysis of possible alternative, production implementations.

2.3.6.1 Value of WordThreshold

As mentioned in Section 2.3.4, the WordThreshold parameter must be set very carefully.
An abstraction is identified by a concept, and a concept is composed of natural language words.
Thus, if we assume that the minimum length of a meaningful word is three characters, then
WordThreshold has to be set to at least three in order to be able to capture common concepts as
abstraction identifiers according to AbstFinder.

36

However, while prototyping the tool, It was decided to keep all input spaces between
words, and to take them into consideration while calculating similarity. So, a threshold of three
characters was found to be too low. It happened often that a string of form “x y” was found as a
match. This match is meaningless because “x” is the last character of one word and “y” is the
first character of the successive word. So, the threshold was raised to 5 characters, and Abst-
Finder appeared to capture only meaningful phrases. Of course, each application can have its
own WordThreshold, and it will be necessary to experiment with the value of the threshold. For-
tunately, there is no reason that several different activations of AbstFinder, each with a different
WordThreshold, cannot be used by the elicitor for abstraction identification.

2.3.6.2 Complexity of Current Implementation

The current implementation is a prototype. It was intended to be, and in fact was,
modified often as the exploration of its use showed the necessity to do so. Consequently, the
current implementation was designed to be as simple as possible to make it as easy as possible to
change. This simplicity ended up costing a lot in run time, but in fact was not too bad in terms of
its space consumption. The time and space complexities are considered in turn.

2.3.6.2.1 Time Complexity of Prototype

Given that N is the number of sentences in the input document and n is the maximum
length of a sentence, the time complexity of AbstFinder is o (n 2�N 2), or o (K 2), where K is an
upper bound on the input size. Each of the N sentences is compared to the other N �1 sentences.
Each comparison of a pair of sentences involves comparing the at most n characters of one to the
at most n characters of each of the at most n circular shifts of the other.

In principle, sentence lengths are unbounded. However, since they are natural language
sentences, they can be regarded as bounded, say, at about 250 characters. Moreover, as the elici-
tor follows the iterative process of using AbstFinder, the sentences are getting shorter as the
ignored files are getting bigger (See Section 4.2.3). Therefore, the time complexity of Abst-
Finder can be regarded as o (N 2).

The use of AbstFinder with real-life industrial transcripts (See Section 4.2) showed that
the time performance is more than acceptable to the elicitor. This acceptability was fortunate
because the real performance problem turned out to be that of space, and more than once, oppor-
tunities to save time were sacrificed to get a program that fit in the available memory.

2.3.6.2.2 Space Complexity of Prototype

As mentioned, the bottle-neck of AbstFinder is space. The following calculations show
how much memory AbstFinder consumed for the RFP case study (See Section 4.2.3).

37

In general, AbstFinder generates information into two main data structures,
corr_phrases and corr_lines. corr_phrases accumulates for each identified abstraction, all
the common concepts that identify it, and corr_lines accumulates for each abstraction the line
numbers of the sentences that compose the abstraction. If the input document contains N sen-
tences, then in the worst case, N abstractions are possible, i.e., each sentence contains a new con-
cept. For each abstraction, the maximum length of the string that identifies an abstraction is n,
i.e., the size of the longest sentence. For each abstraction, the maximum number of sentences
that compose it is also N, i.e., if some sentences were to talk about all concepts or there were
only one concept. So, corr_phrases’s maximum size is o (N�n), and corr_lines’s maximum
size is o (N 2). Thus, if we regard n as constant, the space complexity of AbstFinder is o (N 2).

In the RFP case study, the input transcripts contained about 2000 sentences. Thus, for
N = 2000 and n = 250, about 5MB memory space was needed to run AbstFinder. Since the pro-
totype was developed and run in a multi-user system, memory was not allocated in advance,
because then the program would have been put at the lowest priority. So, memory was allocated
dynamically for the space needed for the corr_phrases string generated for each abstraction.
Working with dynamic allocation caused problems occasionally when dynamic memory consu-
mers interfered with each another.

All the above is the space needed for AbstFinder output only. This does not include the
original sentences of the input transcript. Because of system constraints, the original sentences
were kept in a file and not in memory. So, for each iteration of calculating one abstraction, the
sentence i that was compared to all the others was brought into the memory, and for each com-
parison to some other sentence, that sentence was read from the input file. So, only two sen-
tences of original input file were kept in memory at any time. Only by keeping all of the original
sentences in memory, and eliminating input of the sentences from a file for each comparison
would the time performance improve.

2.3.6.3 Alternative Implementations

There are faster algorithms based on the use of tries. The time complexity of these algo-
rithms can be made o (N) if desired. A trie is essentially an M-array tree, where M is the size of
the alphabet used in the text to be searched. The nodes of the tree are M-place vectors with com-
ponents corresponding to characters of the alphabet. The name “trie” comes from its being used
in information retrieval. This data structure is very useful for improving searching methods.
For a complete description of tries, please see Knuth’s book on searching and sorting [Knu73].

The basic AbstFinder step is comparing all the circular shifts of one sentence to all cir-
cular shifts of all the others. Thus, in order to save the time of circularly shifting all the sen-
tences, one might consider building a trie encoding all the circular shifts of all sentences. There
is one path root for each of the M characters. A path is rooted at its first character and follows
one circular shift. A branch in a path represents where two circular shifts that share their initial
parts begin to differ.

38

Each path is of maximum length n (sentence length), and there is at most an M way
branch at each node. Also each node has enough additional information that tells from which
sentences the various paths that come through it come. Actually the sentence that is compared to
the others is followed sequentially, without taking advantage of its representation in the trie.
Because all sentences will be in the trie, care has to be taken not to match a sentence to itself.

Suppose one builds a trie of all the circular shifts of all the sentences of the document.
It’s clear that if one can build a trie capturing all sentences one can build a trie capturing all cir-
cular shifts of all sentences. After all, each circular shift of a sentence is a sentence. Therefore, to
build the circular shifts of all sentences, one could simply make all the circular shifts first and
then build a trie of a much larger set of sentences. Obviously, it is more time effective to add all
the circular shifts of one sentence as that sentence is being added to the trie. If the sentence is of
length n, each letter, is added to n paths all at once.

Once the trie of all circular shifts of all sentences is ready, the search for matches is
linear in the number N of sentences. While sequentially visiting the characters of each sentence,
all circular shifts of all sentences are checked simultaneously for matches.

Note that a substring that is common among some sentences is the shared beginning of
more than one path from its first letter. These shared substrings are the runs that identify
abstractions.

2.3.6.3.1 Complexity of Alternative Implementations

Thus, once the trie is built, the time complexity of AbstFinder is o (N�n 2). For each of
the N sentences, the sentence of maximum length n will be scanned as a trie path of the same
maximum length is followed. The time complexity for building the trie is also o (N�n 2). There-
fore the time complexity of the alternative AbstFinder is o (N�n 2). If we accept the earlier
argument about n effectively being constant, then the time complexity of the alternative Abst-
Finder is o (N).

The trie has paths of maximum length n rooted at the M characters, and at each step
along the way each node has a potential branch of M. Each node also contains information
announcing if it is the end of a circular shift, maybe the circular shift itself, and pointers to the
sentences involved. Therefore, the space needed for a trie encoding all circular shifts of all sen-
tences is bounded by (c�Mn). It is clear that the trie implementation of AbstFinder requires
significantly more space that the prototype implementation of AbstFinder.

It is clear that the upper bound will be never be reached, since we are dealing with
natural language in which the number of combinations of characters is limited. Thus, in the fol-
lowing, a more realistic analysis is given.

39

In the RFP case study, the number of sentences is N = 2000, and the maximum length of
a sentence is n = 250. So, the number of circular shifts of all sentences is N�n where each circu-
lar shift is of length n. This results that the number of characters of all circular shifts is N�(n 2),
which is the number of nodes needed in a trie representing all the circular shifts. For each node,
a trace is to be kept to the sentence in which that specific path is contained. The space needed for
trace in each node is 400 (maximum number of sentences in an abstraction) in the RFP case
study. Thus, the space needed for an optimal trie representing the RFP document is around
2000�(2502)�400 or about 50 GB. Even this amount of space is not realistic.

The space that AbstFinder needed for generating the results is relevant for trie architec-
ture too, since it is used for output. In the implementation used for the thesis, the original file
was kept as is and only two of its sentences were brought into the memory on each iteration.

2.3.6.3.2 Other Alternatives

Based on the observation that runs show up in the form of shared initial subpaths in the
trie, some other algorithms are suggested. Specifically, it is possible to recognize the runs during
the construction of the trie and eliminate the matching stage. However, since both stages are
o (N), the savings is only in the multiplicative constants.

A Patricia tree [Knu73] represents an optimization of tries. The basic idea of a Patricia is
to build a binary trie, but to avoid one-way branching by including in each node the number of
bits (characters) to skip over before making the next test. However, this change does not change
the order of magnitude of space needed.

2.3.6.4 Final Complexity Assessment

Experience with AbstFinder on an industrial-sized example shows that its real perfor-
mance problem is space; and this problem is only exacerbated when the faster algorithms are
used. In any case, the maximum run time for the industrial-sized case study was three hours.
This time was deemed tolerable because it is no problem for the elicitor to go out to lunch or do
something else while waiting for it to report on a large input. Moreover, generally speaking
AbstFinder is run only on early documents only for the purpose of assisting in identifying
abstractions. Therefore, the slow runtime of AbstFinder on large files is no real burden.

Since the first version of AbstFinder was implemented as a prototype, the main concern
was simplicity due to expected changes during the research. Indeed the prototype was changed
three times. Analysis of the prototype implementation shows that its time complexity is only
o (N 2) still reasonable, while space complexity is reasonable too. The trie based implementa-
tions are considerable faster, but require unrealistic amounts of space. The conclusion is that the
simplest implementation is reasonable both in time and space.

40

3 Scenarios for Usage of AbstFinder

With any scheme of automated assistance, scenarios for usage should be defined. Typi-
cally, in the process of abstraction identification, even the most intelligent elicitor cannot
abstract a full transcript all at once. Usually, the elicitor reads some pages in order to learn the
terminology of the transcript. Then he or she reads the transcript several times, in an iterative
learning process, capturing another set of abstractions in each pass. Thus, an automated assis-
tance for abstraction identification has to be compatible with human capabilities of learning and
understanding new material.

This section describes typical scenarios that an elicitor might follow in order to have
AbstFinder help identify the abstractions in a new problem given to him or her by a client. It is
assumed that the elicitor has on line what the client believes is a complete description of the sys-
tem to be built. This description is written mostly in some natural language.

3.1 Learning What Words to Ignore

First some trial runs need to be done on small parts of the transcript, taken from different
sections of it, in order to learn the language of the document. Learning here consists in identify-
ing the ignored words, putting the common words into the ignored-phrases-file, the special
application words into the ignored-application-phrases-file, and the suffixes into the ignored-
suffixes-file. The ignored-phrases-file and the ignored-suffixes-file are accumulated from one
application to another. The ignored-application-phrases-file is specific to an application. Actu-
ally, the ignored-application-phrases-file may contain very important high level abstractions that
have to be taken into consideration by the elicitor, but which have been recognized, noted, and
put into that in order not to clutter up the output. After each run of AbstFinder, the ignored
words and suffixes files are updated, because after any change, new noise appears. This process
converges after a few runs.

3.2 What to Do with a Well-Organized Document

If the transcript to be analyzed is a well-organized document, using it as is with Abst-
Finder it may cause some of the abstractions to be concepts that belong to the table of contents
or the meta-language that defines document writing. These included organizational concepts
such as “summary”, “confidential”, and “base-line configuration”.

The table of contents itself, although it looks like a good classification of the material, is
only an organizational list. It is not necessary that each title in the table imply an abstraction.
For example, the title “Characteristics” does not identify an abstraction because it is too broad
and unfocused. We aim to have abstractions of only functional or informational strength, the
two highest module strengths, according to Myers [Mye79].

41

So, the titles in the table of contents do not necessarily have to appear in the AbstFinder
result list. In fact, it is suggested to remove the table of contents from the transcript before apply-
ing AbstFinder. Unless the table of contents is removed, every title of it will appear in the
abstraction list, because each title appears at least twice; once in the table and again in the
specific section.

On the other hand, for an unorganized collection of documents, the list of abstractions
produced make good candidates for sections of an organized document produced from their con-
tents and the phrases of these abstractions might very well end up being the section titles that
show up in the table of contents, along with the organizational titles such as “Introduction”, etc.

3.3 Zooming

Sometimes, important abstractions that are identified by one word, such as “testing”, are
too general and not very helpful. Moreover, later in the AbstFinder output list, more specific
sub-abstractions such as “built-in test” and “acceptance test” may be found, which are more to
the elicitor’s liking (See Figure 7).

In order to obtain full coverage of all the sub-abstractions concerned, the elicitor can
zoom into each abstraction that is found to be too broad. Zooming is a refinement of an abstrac-
tion by its sub-abstractions. Zooming is very useful for abstracting requirements, and in gaining
confidence in the tool.

The following describes the zooming procedure:

1. The first step of zooming projects into a file f all the sentences from the original docu-
ment that contain approximately the candidate string e.g., “test”. The file f should con-
tain all that was ever mentioned about the candidate string in the original document. The
reason for using the approximate grep program, agrep [WM91], is to allow other parts
of speech for the word to be found. This requirement is not critical in this particular case
because “test” is the root and its changes to other parts of speech are regular. In the case
of a root with irregular changes, the elicitor will have to build a more complicated search
pattern or search several times to capture all the variations of the root.

2. The second step activates AbstFinder on the file f. The result of this abstraction
identification is a detailed list of sub-abstractions of the abstraction identified by the can-
didate string. For the example, this zooming process would provide a better resolution of
all the concepts that relate to “test”, namely “test equipment”, “acceptance tests”,
“rejection/retest”, etc.

Thus, zooming is very useful to the elicitor for focusing on specific abstractions, and to extract
their internal sub-abstraction structure fully.

42

BIT

accept

burn

--

RFP

for an

unmanned

--

--

agrep test agrep accept agrep safe

DocumentDocument
SafetyTest Accept

Document

AbstFinder AbstFinder AbstFinder AbstFinder

Full
Abstraction List

Test
Subabstraction
List

Accept
Subabstraction
List

Safety
Subabstraction
List

air vehicle

flight termination
environmentaltest

equipmentlaunch

navigate
--

test

--

Original
Document

Figure 7: Finding sub-abstractions by zooming
הגדלה באמ�עות תת-מופשטי� מ�יאת :7 �יור

43

AbstFinder identifies the abstractions with no hierarchies. The formatted output of
AbstFinder is arranged so that more refined abstractions are higher in the output list. The fewer
phrases identifying the abstraction the more refined it is. In reality, all abstractions are equally
important. An abstraction that appears at the end of the list may not be any less important. On
the contrary, this abstraction was defined among many other concepts and it is difficult to distin-
guish it from the others. Also the abstraction does not appear many times in the transcript.
Thus, it is very important to identify that abstraction as quickly as possible in order to get back
to the client and obtain more information about it.

3.4 Iteration to Final List of Abstractions

When using AbstFinder with huge transcripts, the elicitor should read the output list of
abstraction and note the abstractions identified by fewer than four or five phrases. Abstractions
identified by more than five phrase are difficult to understand. They are also often extraneous
because they capture concepts that are too general to be useful. The extreme example is the one
abstraction that identifies the whole transcript, and that abstraction is clearly not very useful.
Therefore, the elicitor has to stop at some point, a point before which the abstractions are still
useful, and at and beyond which they are not useful. It may be impossible to find a single point
meeting both criteria, so often the elicitor has to settle for a point at and beyond which they are
not useful.

The main purpose of the clerical tool is to identify all meaningful abstractions. Without
full coverage, the elicitor will never trust the tool to not overlook something important. So if the
list is cut off just before the point at which abstractions are identified by six phrases, the concern
is whether there are any abstractions that are not recognized because they are identified by more
than five phrases. In order to eliminate any worry about a possible lost of abstractions, the itera-
tive procedure described below should be carried out.

This procedure uses the Strainer program, an auxiliary tool (See Appendix B) designed
to strain out words from a text file according to a list of words contained in another file. The
extraneous abstraction elimination is done by activating Strainer using the logged corr-
phrases-file as the input list of words to be removed from the original document. Strainer
removes a chunk from the text file if and only if it has white space on both sides. Being sur-
rounded by white space means that the chunk is a whole word in the text file and not part of a
word. Note that AbstFinder is designed to find common runs of sentences, even if they are only
parts of words. Strainer however, is designed to remove only whole words. This feature is very
important for the iterative usage of AbstFinder, in order not to ruin the text and keep what
remains after straining potentially meaningful.

The following describes the iterative procedure:

1. Activate AbstFinder once on the original document.

2. With the Strainer program, remove from the original document the abstractions already
recognized and logged by the elicitor, leaving what is left in another file f.

44

3. Activate AbstFinder on f. The result of AbstFinder is a new list of abstractions, without
the ones that were recognized before, but with some that had been buried in the first
abstraction list after the cut-off point.

The process repeats until finally the elicitor is left in f with a list of abstractions, which are all
meaningless (See Section 4.2.3). That meaningless list indicates that all the meaningful abstrac-
tions were identified previously and strained out from the transcript.

This iterative way of applying AbstFinder and then Strainer, is suitable for a human eli-
citor to capture large amounts of information. Doing it step by step allows him or her to look
each time over a limited, readable, and understandable amount of information and to accumulate
it. The elicitor is confident that nothing is overlooked, because things that have not been seen
yet will pop up in some later iteration. The iterations continue until finally she or he is sure that
the document has been wrung dry of abstractions.

Recall that AbstFinder generates also the corr-phrases-file file that contains the abstrac-
tion identifiers, each abstraction per line. The elicitor, by using part 1 of the formatted output of
AbstFinder, decides which abstractions are meaningful, and stops at abstraction n. The elicitor
keeps only the n first lines of corr-phrases-file file, i.e., the identifiers of the n recognized
abstractions, and removes the rest of corr-phrases-file. These n abstraction identifiers are also
logged in the accumulative abstraction-phrases-file.

This accumulated list of meaningful abstractions provides full coverage. The iterative
process is illustrated in Figure 8. In this figure, each box labeled “Corr-Phrases” represents one
output from AbstFinder and has an iteration number, the number of abstractions accepted by the
elicitor as meaningful above the dotted line cut-off point, and the total number of abstractions in
the file, reported by AbstFinder, below the dotted line. In the case of the box numbered “#4”, no
abstraction was accepted as meaningful, so there is no dotted line, and the number of abstrac-
tions there is the total reported.

45

Document

Phrases

#1

#2

#3

#4

(400)

(1627)
(400)

(1144)
(300)

(725) (250)

Abstraction

Corr-Phrases

Corr-Phrases

Corr-Phrases

Corr-Phrases

AbstFinder Strainer

Document = Original minus Ignored

Terms (General and Application)

Figure 8: Iterative abstraction identification
איטרטיבי באופ� מופשטי� זיהוי :8 �יור

46

3.5 Combinations of Scenarios

The scenarios can be used in different combinations for different purposes. When using
AbstFinder, the user has to be cognizant of the purpose or objective for the use, i.e., require-
ments, indexing, etc., and follow an appropriate combination of scenarios.

Let

1. “learning” denotes the activity of learning what words to ignore,

2. “well-organized” denotes the activity of dealing with a well-organized document,

3. “zooming” denotes the activity of zooming, and

4. “iteration” denotes the activity of iteration to a final list of abstractions.

Recall that all of these activity were described in previous sections (See Section 3). Thus, typi-
cal scenarios for requirements abstractions identification are the following:

[learning*] iteration, [iteration]

learning, iteration, [iteration*, learning*]

well-organized, learning, iteration, [learning*], [iteration], [zooming*]

The learning scenario is completly dependent on the human that does it. The human will
decide to ignore terms, mostly application ignored words, according to his or her objective. For
instance, when doing abstraction identification for requirements, many details, such as names of
people, will not be considered as abstraction for requirements, and will be ignored during the
learning scenario, by putting them in the ignored-application-phrases-file. On the other hand,
when finding abstractions for the purpose of building a back-of-book index, details such as
people’s names are relevant candidates for indexing and will not be ignored.

In the indexing case study (See Section 4.3), it was demonstrated that two people with
different objectives got different sets of identified abstraction from the same input, because they
followed different scenarios.

Also, identifying abstractions in order to generate input for some requirements analysis
method, such as OOA or SA will involve different scenarios according to the objective, which is
identifying objects or functions.

47

4 Evaluation of AbstFinder

This section considers the evaluation of the effectiveness of AbstFinder for finding
abstractions in natural language text. It is first necessary to explain how such a tool can be
evaluated with the help of case studies. Then three case studies are described. These lead to the
conclusion that for them, AbstFinder is indeed effective.

4.1 How to Evaluate a New Method or a Tool

With any new idea of a method or a tool one must evaluate its effectiveness. First, it is
useful to compare the new tool to old tools, such as findphrases and the LA Finder, to verify
that the new tool does at least as well or better than the old ones. One problem is that the old
tools were tested against only toy examples.

One must really test such a tool against a human effort, since heretofore requirements eli-
citation has been done manually by a humans. There is no simple analytic method for testing
human efforts. It is now well-known that controlled experiments do not work in software
engineering. Because of the cost and the need to control the independent variables, controlled
experiments are invariably on toy examples. Moreover, it is also well-known that conclusions
do not scale up. The intellectual and managerial difficulties of a program grow exponentially
with the size of the program. Running sufficient numbers of instances to obtain significant
results is prohibitively expensive when the instances involve industrial-sized problems [Sch92].
It is just too expensive to contemplate repeating a real problem costing millions of dollars
enough times to make statistically significant conclusions.

Moreover, too often, differences between individual software professionals dominate the
controlled variable of the experiment [SEG68]. An early experiment that intended to compare
two methods of program development produced non-significant results because a difference of
up to 28 to 1 between pairs of programmers in their coding and debugging time and product size.
An experienced programmer will almost always outperform an entry-level programmer. But
Sackman worked with matched pairs of computer professionals, comparing, e.g., two individuals
with 12 years of experience, and two entry-level programmers both trained in the same institute
with same programming experience. What is most alarming about Sackman’s results is that his
biggest observed differences were between pairs of experienced programmers.

It is possible to consider repeating an experiment on a different project, rearranging the
members of the teams, etc. The trouble with these techniques is that each experiment will prob-
ably last about a year, and there is no guarantee that all members of teams will stay in the same
organization long enough to complete the experiment. Therefore the field of software engineer-
ing has been relegated to doing case studies with careful introspection

An important issue is the question of whether the abstractions found by the tool are
meaningful to the human elicitor that has to approve them. Meaningfulness can be confirmed
only by humans, and is very much affected by the WordThreshold. An abstraction identifier gen-
erated by AbstFinder is a sequence of characters called a phrase. This sequence of characters

48

was found independently of natural language word boundaries. Thus, it is important to check if
these abstractions identifiers are meaningful.

If a word contained in a phrase that identifies an abstraction is not complete but at least
contains the root, or if the abstraction is identified by more than one phrase, then the identifier is
meaningful if a human can interpret the semantics of the phrases. For example, the following
are meaningful identifiers: “|solar radiation|” is understood as is, and “|surface
|metal |” means “metal surface”, and “|storage transit|” means “storage transit”,
“storage transition” or “storage transiting”, all of them can serve as an identifier describing the
same abstraction. Whereas, “|confi|identi|” are meaningless, but when they appear
together with “confidential”, e.g. “|confi|identi|confidential|”, then “confidential”
is the semantic identifier that is extracted and the rest is noise and is neglected.

If we were sure that all chunks would be full and only words, then we could develop a
mostly correct automated test for meaningfulness: submit the output word list to spell or another
spelling checker. However, we are faced with phrases that do not stick to word boundaries, and
meaningfulness can be confirmed only by humans, and is very much affected by the setting of
WordThreshold.

Testing against human effort must show that the new tool does at least as well and possi-
bly better than expert human elicitors in less time or with fewer people. Time and people power
are easy to measure, but how to measure the concept of doing at least as well and possibly better
than a human or other tool? A new tool should find at least all abstractions and maybe some not
found by the humans or the old tool. Still, a criterion should be established for tools which
involves comparing only input to expected output.

The key objective measures of the effectiveness of AbstFinder are: (1) its coverage, and
(2) how summarizing it is. A tool that is not covering or which does not summarize is not good,
for the following reasons:

It must be that this tool does not overlook any important abstraction that will need to be
present in the requirements specification. A tool that does not overlook important abstraction is
said to be covering. An elicitor will not be willing to be assisted by any tool unless he or she is
confident that it is covering.

Clearly, the identity function is a covering tool. However, presenting all the input does
not help the elicitor either. The other main requirement for the tool is that it reduce the amount
of text that the elicitor must look at. An elicitor still has to do the thinking with the output of the
tool, in order to approve the abstractions found. The elicitor will not be effective if the amount
of information that must be examined is too big. A tool whose output is significantly smaller
than its input is said to be summarizing.

49

Note finally, that a tool that is only summarizing is no good either. The most summariz-
ing tool is that which outputs nothing. The tool must summarize while preserving coverage.

Measuring the ability to summarize is easy. It is done by simply comparing the ratio of
sizes between the input transcript to the output of AbstFinder. Coverage is much harder to
measure. One must compare the list generated by AbstFinder to that made by a known expert
(and pray that in fact the expert is good) and judge whether all concepts found in the latter are
present in the former. The high probability of error in this tedious job makes any claimed “yes”
answer highly suspect. In addition, the person doing the job had a vested interest in finding a
“yes” answer. Therefore a more systematic way to evaluate coverage had to be found.

This comparison can be done manually for small case studies, but it is almost impossible
for a full-scale, industrial-strength case study. Thus, coverage question can be answered by
straining from the human-made document all abstractions that appear in AbstFinder’s result and
seeing if there are any leftovers. This information in the leftovers has to be examined very care-
fully in order to find out if there are any meaningful concepts there. Lack of a meaningful con-
cept means coverage is achieved. The smaller size of the leftovers and the greater visibility of
meaningless text increases the credibility of the answer.

To put the evaluation in context, it is important to understand typical scenarios of
abstraction identification with and without AbstFinder to help the elicitor. Without AbstFinder,
the elicitor

1. reads all the documents once to get a sense of what is there, and

2. then repeatedly reads individual documents and parts thereof in order to find and verify
abstractions until no more new abstractions are found.

With AbstFinder, the elicitor

1. reads all the documents once to get a sense of what is there, and

2. follows the iterative procedure of Section 3.4 until no new abstractions are found.

Thus, in traditional abstraction identification, the full set of documents are read over and over,
with no prior limit. In AbstFinder-assisted abstraction identification, if the output is covering,
the full set of documents is read only once. Thereafter, only the much smaller summaries need to
be examined over and over. Besides being smaller than the full set, the summaries gather the
most important concepts to the top of the list for a better focus.

For the evaluation, since the first steps of the two scenarios are the same, the comparisons
focuses on the differences in what must be examined for the second steps.

50

4.1.1 The Evaluation Plan

On the basis of these evaluation criteria, the following evaluation plan was adopted.

1. Activate AbstFinder on the same problems used to evaluate findphrases and the LA
finder in order to insure that AbstFinder is at least as covering as the old tools.

2. Activate AbstFinder on industrial strength case studies in order to compare its
effectiveness to that of a human. This is done with two case studies, one smaller and the
other larger.

a. The Flinger Missile example is the smaller case. In this case study there was not
any expert result to compare with. So, the author acted as an experienced elicitor,
certainly not an expert, for evaluating the results of AbstFinder in this case
study. The author may be biased, but the introspection gained was invaluable to
learn methods to use AbstFinder and to prepare for the RFP case study.

b. The RFP to IAI for the Unmanned Aerial Vehicle-Short Range system is the large
industrial-strength case study. The RFP transcript was already analyzed by three
expert IAI elicitors over a month. Their results were kept secret from the author
while she was applying AbstFinder to the same RFP. The author was not an
expert in the application area. Also, findphrases, a previous tool for abstraction
identification, was run on the same RFP case study in order to compare Abst-
Finder performance to findphrases one.

The main purpose of the case studies is to compare abstractions found; if the elicitor
assisted by AbstFinder finds all that the human experts found, then elicitors assisted by Abst-
Finder will be judged as at least as covering as only human elicitors. Another purpose is to see
if elicitor assisted by AbstFinder found abstractions that the human experts did not find. There
is no better measure than experience, and ultimately the proof will be in acceptance of tool by
the elicitors’ community.

Special attention will be given to the tuning of the WordThreshold, trying to get more
meaningful abstractions with a higher WordThreshold while preserving coverage. Also, it is
necessary to keep track of time and sizes of files while experimenting with AbstFinder on the
RFP.

The experimentation with AbstFinder was conducted on a SUN4 server running a full
load of users. However, it was not heavily loaded since the response to commands and of the
editor were reasonable.

51

4.2 Case Studies

4.2.1 Findphrases Case Study.

The findphrases decomposition was used as a case study because the decomposition
was already known. So, it could be used to check AbstFinder’s results against already known
results. The document that served as the requirements was the manual page of findphrases,
because in fact the manual page was written as a requirements document, before the program
was written. The requirements document was two pages long (See Appendix C.1). The already
known abstractions were taken from Aguilera’s [Agu87] program decomposition (See Appendix
C.4), and her own list of abstractions identified by findphrases, and Maarek’s [MB88] list of
abstractions identified by lexical affinities (See Table 1).

The experience consisted of running once AbstFinder for learning purposes, in which
the ignored files were initialized (See Appendix C.2). Then, one more activation of AbstFinder
was needed for generating the abstraction list (See Appendix C.3). The following analyzes the
results in terms of our criteria of evaluation.

Meaningfulness:

The output of AbstFinder applied to the findphrases manual page was found to be very
meaningful. The correlated phrases that served as abstraction identifiers were complete from the
linguistic point of view, and were very semantic terms, very similar to the real ones; “token file”,
“punctuation keyword file”. The reader should do his own comparison with Table 1.

Summarizing:

The initial size of the findphrases transcript was 6935 bytes, whereas the AbstFinder
output, via corr-phrases-file, was 1855 bytes, about 26% of the original data size. So, the output
of AbstFinder is summarizing with respect to the original data.

Coverage:

As shown in Appendix C.3, the first 25 of the 48 entries of the AbstFinder output list
includes all the abstractions found by Aguilera in implementing findphrases, all abstractions
found by findphrases, and all abstractions found by Maarek with lexical affinities. So, for this
case study, AbstFinder was found to be at least as covering as findphrases and the LA finder
and was found to cover all abstractions found by a human programmer (See Table 1).

People and Computer Power:

The run of AbstFinder to generate the full output of the abstraction list took about 10
minutes. In this case study, the known abstractions of findphrases are the data abstractions
used in the decomposition of the program. During the original decomposition of the
findphrases program, no records were kept about the amount of time spent to arrive at the

52

���
The abstractions of findphrases AbstFinder results��

Data Abstraction Repeated phrases AbstFinder’s Corr-Phrases Abst#���
string_type_file strings, characters character|symbolcharacter| 7��
argument_line argument,option argument |optional 3,14��
output_file output, tables of the output output|tables 25��
chunk_file file(s), free format free format |files 9��
punc_keyword_table punctuation keyword(s) file punctuation keyword file 1��
multi_tokens_table multi tokens file token file 5,17��
text_file text,input,arbitrary text arbitrary text|input 12��
phrases phrase, repeated phrase, ignored phrase phrase 4��
sentences sentence(s) sentence 6��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 1: The abstractions of findphrases
findphrases של ההפשטות :1 טבלה

decomposition. However, it is safe to say that decomposition took a lot more than 10 minutes of
Aguilera’s time.

4.2.2 Flinger Missile Case Study

The document for the Flinger Missile case study was five pages long and contained 279
sentences. Its first part, 65 sentences over 1.5 single-spaced pages, contained a well-defined
functional specification of the Flinger Missile (See Appendix D.1). That part was well written in
a very professional language. Its second part, 214 sentences over 3.5 single-spaced pages, con-
tained the transcript of a video-taped unrehearsed interview between the elicitor and an operator
of the Flinger Missile, in which the elicitor was questioning the operator about the missile
behavior.

Since there was no human-made abstraction list to which to compare the AbstFinder
results, the author had to play both roles:

1. The elicitor assisted by AbstFinder working on the Flinger Missile document, called
elicitor-A below.

2. The expert elicitor, called elicitor-X below, confirming that the identified abstraction by
AbstFinder are real abstractions in the Flinger Missile document.

53

The author was not acquainted at all with the Flinger Missile project, but did have good
experience in developing real-time software for computer-based systems [WAHKMOOTW93,
ALW91]. Thus, the author combined both roles: activating AbstFinder on the document as
elicitor-A, then following AbstFinder output as elicitor-X, confirming that each abstraction
identifier in that list actually defines a real abstraction in the original document. This conclusion
may be biased, but the experience gained with this case study helped to learn how to use Abst-
Finder. However, note that elicitor-A had become more expert with the application by the time
she had to switch to being elicitor-X!

The following is a description of the experiment steps

1. First, AbstFinder was run a few times on small parts of the Flinger Missile document,
taken from different places in the transcript, in order to initialize the ignored phrases and
suffixes files (See Appendix D.2).

2. AbstFinder was activated on the first part of the Flinger Missile document (See Appen-
dix D.3).

3. AbstFinder was activated on the whole document.

The following analyzes the result in terms of our criteria of evaluation.

Meaningfulness:

AbstFinder on the first part of Flinger Missile transcript produced very meaningful
abstractions. For instance, “launch”, “circle”, “orientation”, “self test”, “cruising speed”,
“artificial horizon”, “loiter”, “reconnaissance”, “friend foe target”, “self destruct”, etc., are very
essential functions and objects of the real-time system of a missile. The first part of the Flinger
Missile document was written in a very professional language, which explains the very profes-
sional meaningful list of abstractions identified by AbstFinder. Activating AbstFinder on the
whole document, including the interview, did not reveal any new information. Of course, the
interview part of the document could not stand by itself, because its questions and answers did
not cover all the details of the system.

An interesting thing occurred to elicitor-X while verifying the abstractions of Flinger
Missile found by AbstFinder. Two abstractions were found by AbstFinder, “loitering” and
“reconnaissance” whose functional difference was not clear at first glance. In general, loitering
is the unemployed state while reconnaissance is the spying state. This makes a lot of sense when
trying to identify the missile’s different modes. Loitering is a default mode, in which the camera
does not operate, while reconnaissance is an active mode, in which pictures are taken. The nice
thing was that in the interview part of the document, the real elicitor mentioned in the document
was also confused about those two different modes of the missile, and was asking the operator
the same question. So the team consisting of the author and AbstFinder did make a good elici-
tor.

54

Coverage:

Since there was no reference for comparing AbstFinder results to human elicitor efforts,
it was impossible to check coverage as defined. Still, a rough estimation of coverage was
obtained using Strainer (See Section 3). Strainer was activated on the Flinger Missile docu-
ment, removing from the original document words taken from corr-phrases-file, e.g. the abstrac-
tion identifiers found by AbstFinder, including terms found in the ignored-application-file.
Recall that corr-phrases-file contains only the abstraction identifiers in terms of the original tran-
script. These abstraction identifiers are the only information that the elicitor needs to scan and all
the other parts of the AbstFinder output is primarily for research purposes and not intended for
the elicitor.

The leftovers of the original document, after straining out corr-phrases-file words, were
checked very carefully by elicitor-X and found to be meaningless (See Appendix D.4). This
helped to gain confidence that AbstFinder found all the terms that are essential for understand-
ing the Flinger Missile document. Without the terms that AbstFinder identified as abstractions
the text is meaningless, meaning that no concept or abstraction was left and the abstraction list of
AbstFinder does cover the important issues of Flinger Missile.

Summarizing:

The initial size of the Flinger Missile transcript was 15029 bytes, while the AbstFinder
output, via corr-phrases-file, was 3429 bytes, about 22% of the original data size. So, the output
of AbstFinder is summarizing.

People and Computer Power:

The run of AbstFinder on Flinger missile took about an hour, including the analysis.
Again, there were no human efforts to compare with. Still, an hour for generating a list of
abstractions is minor in terms of human effort and performance, and it is clear that the original
effort took more. To sum up, the introspection gained from the case study was necessary to learn
methods of using the tool and to prepare for the RFP case study. For instance, only by experi-
mentation, it was found that a WordThreshold of 6 is more reasonable than of 5, as had been
anticipated. Also, clearing all noise is not so good. Some reasonable amount of noise helps to
differentiate better between the abstractions that are found. Also, using Strainer for estimating
coverage led eventually to the scenario of using AbstFinder iteratively.

4.2.3 RFP Case Study

The Request For Proposal (RFP) document for the Unmanned Aerial Vehicle-Short
Range (UAV-SR) system [IAI89] is a real life case study, about 100 pages long, containing 2200
sentences (Appendix E.1 shows some portions of the RFP that help the reader to see the basis for
the following analysis). The Israeli Aircraft Industry (IAI) is currently producing the UAV-SR
according to the client’s needs expressed in its RFP document. There are two groups in IAI that
work in parallel, and meet only in pre-planned rendezvous points during the life cycle of the

55

project (See Figure 9). One group is the development group, which carries the product through
the different life cycle stages; analysis, design, etc., using the RFP as the basis document that
defines the user’s needs. The second group is the Software Quality Assurance (SQA) group,
which is responsible for doing reviews at different pre-planned points in the life cycle of the pro-
ject, in order to control the software development process.

RFP

(part of the contract)

Abstraction
 list

Developers SQA

Analysis

Design

Code

RA
???

Compare

ASSR

IAI - Israeli Aircraft Industries

AbstFinder
Requirements
Traceability

RFP - Case Study

Figure 9: An illustration of the RFP case study
RFP לימוד דוגמת של איור :9 �יור

The SQA group’s main interest now is to solve the problem of requirements traceability.
Requirements traceability consist of finding for each requirement the module or modules which
help meet it. For this purpose, they had captured the requirements in the user’s and client’s
language taken from the RFP, and expressed them as a list of simple statements, each identifying
one requirement that is written in another document called the Allocated Software System
Requirements (ASSR) [IAI90]. The IAI people did a simple grammatical transformation of
complex sentences into simple sentences, each containing one requirement in a strict format, for
example, “The software shall provide the capability to support the AV with guidance and con-
trol” (Appendix E.5 shows some portions of the ASSR that help the reader to see the basis for

56

the following analysis). Notice that “The software shall provide the capability to” is a fixed pat-
tern used by IAI for stating a requirement, in order to comply with the MIL-STD 490 [DOD85]
for writing specifications. Clearly, words from this and other similar phrases should be in the
ignored-application-phrases-file.

For creating the ASSR, IAI employed three people for a month. They read the user’s
document over and over and extracted from it the simple requirements statements. Then, another
three people had to approve it. The final document that the IAI people produced contained all
the client’s requirements known by the IAI people and the developers. The list of requirements
produced by the three experts is called the “human-made” document below, and it served as a
reference list for the experiment. This project was already done by the IAI. So the requirements
were well-known to them, but they were kept secret from the author.

The experiment consisted of the author, called the elicitor below, using AbstFinder on
the RFP to generate the list of abstractions, and comparing the resulting abstractions to the IAI’s
human-made list of requirements. The elicitor did not see the human-made document until after
finishing to generate her output list of abstractions. The hope was that the elicitor would find
meaningful abstractions in a summarizing output list of AbstFinder while providing full cover-
age of the client’s requirements, and to get all that with a lot less effort than three person months.

The elicitor (the author) had never worked in any kind of application similar to that
described by the RFP document. Even the title of the RFP document, The Unmanned Aerial
Vehicle-Short Range (UAV-SR) system, did not tell her anything as an elicitor. So the elicitor
had to dig into the RFP with the help of AbstFinder in order to identify the abstractions of that
RFP. A copy of portions of the RFP document is included in Appendix E.1 to allow the reader to
follow the description below.

The experiment involved five steps.

1. First, some trial runs were done on small parts of the transcript, in order to learn the
language of the document and initialize the ignored files (See Appendix E.2).

2. The RFP was a well-organized document, being well structured with a table of contents
and divided to sections and subsections. The first run of AbstFinder was done on the ori-
ginal transcript as is, and there was a strong resemblance between the leading abstrac-
tions in the list and the table of contents of the RFP document. Some of the abstractions
belonged to the meta-language of document writing. These included “operational organi-
zation concepts”, “design construction”, “summary”, “confidential”, and “base-line
configuration”. These were added to the ignored-application-phrases-file.

3. For the next test, the table of contents was removed and AbstFinder was activated again
on the RFP with the updated files of ignored words. The ignored words and suffixes files
were updated after each run, and they converged after three or four runs. The results
were very meaningful, and neither concepts from the table of contents nor the meta-
language of document writing appeared. The initial output list of AbstFinder was very

57

long and contained essential objects and functions of an air vehicle, such as, “launch
recovery”, “mission”, “test”, “position”, “transponder”, “acceleration”, etc. (See Appen-
dix E.3). It contained 1627 abstractions (with repetitions). The elicitor observed the
abstractions consisting of less than four phrases, and stopped after about 400 abstractions
in AbstFinder output list. These 400 were logged to the abstraction phrases file that
accumulated the final result of AbstFinder.

4. The elicitor decided to zoom (See Section 3) into abstractions that were found to be too
broad. For instance, “testing” was a very good abstraction, but it was too broad and
unfocussed and the elicitor decided to be more specific. The result of that zooming was,
for instance, a detailed list of sub-abstractions of the abstraction “testing” (See Appendix
E.6). So, a better resolution of all the concepts that relate to “test” was achieved: “test
equipment”, “acceptance tests”, “rejection/retest”, “test levels”, “burn test”, “environ-
mental tests”, “test flight phases”, etc. The same was done for “fail” and “safety” (See
Appendix E.7).

5. Following the iterative process (See Section 3), Strainer was activated in order to
remove from the input transcript of this stage the abstractions that were already recog-
nized. Again, the elicitor read the list of abstractions found in, up to about 400 abstrac-
tions, which were identified by less than five phrases, and stopped again because of rea-
dability problem. After three times of applying AbstFinder and then Strainer, the elici-
tor was finally left with a very short list, of only about 250 abstractions, which were all
meaningless. Most of them were parts of words such as “aiming”, “partic”, “rable”, etc.
(See Appendix E.4). That only meaningless abstractions remained indicates that all the
meaningful abstractions were identified previously and strained out from the transcript.
The accumulated list of all the meaningful abstractions, that were strained out during the
iterative process, is the final output list of the AbstFinder effort.

At this stage, the elicitor met the IAI people and exchanged documents; the elicitor gave
them the AbstFinder output list and they gave her the heretofore, secret ASSR document
[IAI90]. The following analyzes the results in terms of our criteria of evaluation.

Meaningfulness:

After the elicitor was finished generating what she thought was a complete list of abstrac-
tions, the phrases in this list were examined by three expert analysts of the RFP transcript. The
three professional requirements analysts, Mr. Kudish, Dr. Winokour, and Mr. Engel, are highly
skilled and have nearly sixty years of cumulative experience in real-time system and software
requirements analysis. They all said that they found all of theAbstFinder-generated phrases to
be meaningful to them. They confirmed that the abstraction identifiers generated by AbstFinder
contained terms and phrases that identify real functions and objects of the RFP that they already
knew. One of the IAI people, Dr. Michael Winokur, was very impressed to see in the beginning
of the AbstFinder-generated list some abstractions, such as “surrogated training”, that they had
overlooked for a long time until finally the customer pinned it on their noses.

58

Summarizing:

The output of AbstFinder was summarizing. The original document RFP was 214,654
bytes long while the final AbstFinder-assisted list was only 47,105 bytes, about 21% of the size
of the original data. The original transcript contained full sentences of text. The AbstFinder
result, via corr-phrases-file, contained only the abstraction identifiers, one per line, that were
recognized and logged by the elicitor. Recall that AbstFinder output contains noise of parts of
words, and repetitions, both between abstractions and within an abstraction.

Since the elicitor uses the AbstFinder abstraction list as a guideline for understanding
the original document, it is important that it be small enough and contain the gist of the material
in the original. In fact, the experts observed that the output of AbstFinder, corr-phrases-file,
could serve as input for generating the ASSR. They felt that the abstraction identifiers together
with the interpretation of the elicitor, subjected to the strict format of the ASSR would yield the
ASSR statements. For instance, “launch recovery” would yield “The software shall provide the
capability to do launch recovery”.

Coverage:

The problem with evaluating coverage is that someone must sit down and see that all
abstractions in the human-made document show up in the AbstFinder-generated list. The high
probability of error in this tedious job makes any claimed “yes” answer highly suspect. In addi-
tion, the person doing the job has a vested interest in finding a “yes” answer. Therefore, a more
systematic way to evaluate coverage had to be found.

The human-made document, the ASSR (See Appendix E.5), contained a list of require-
ments statements in a very strict format, while the AbstFinder output is a list of phrases, in free
format, identifying abstractions. Recall that an abstraction is not a requirement, but they are both
stated in natural language words. So, by removing from the ASSR all words that identified
abstractions in the AbstFinder gives a good measure of coverage. The leftovers of this subtrac-
tion above contains natural language words that appeared in the human-made document and did
not show up in AbstFinder result. If some meaningful concept can be find among those words,
then AbstFinder has failed to cover all the abstractions-concepts in the RFP document.

The coverage question can be answered by straining from the human-made ASSR docu-
ment all abstractions that appear in AbstFinder’s result and seeing if there are any leftovers. No
leftovers means full coverage. The smaller size of the leftovers and the greater visibility of
meaningless text increases the credibility of the answer.

Strainer was used again for removing from ASSR words taken from AbstFinder output
via corr-phrases-file. Since corr-phrases-file is as generated by AbstFinder, the list contains
abstractions that are identified by more than one phrase with repetitions and parts of words. For
instance, if an abstraction is identified by two concepts a and b, it will appear as a | b in Abst-
Finder output list. The following explains why this format of AbstFinder output does not harm
the coverage verification process. If an abstraction is identified by a | b, then there are some

59

possibilities:

1. If a contains the same word as b with extra blanks on one or both sides, then Strainer
removes it only once, because it works with whole words only. Strainer takes a word
from corr-phrases-file, with white space on both sides, and removes the word from ASSR
only if it found the word there with white space on both sides. So, if corr-phrases-file
contains “|launch|”, or “| launch|”, or “|launch |”, or “| launch |”,
Strainer will remove “launch” from ASSR, if it appears therein surrounded by white
spaces.

2. If a is substring of b or vice versa, then Strainer, which is working only with whole
words, ignores it.

3. If a and b are two different phrases then:

a. If a is meaningful and b is a common word, e.g., among the sub-abstractions of
“testing”, “|accordance |test levels |”, then Strainer will remove
also the common word, i.e. “accordance” that is actually a noise and should have
been added to the ignored files.

b. If a and b are both meaningful abstractions, then the elicitor will accept both of
them as two different abstractions.

The result of the subtraction of corr-phrases-file from ASSR was 3019 bytes. The RFP
was 214,654 bytes (about 100 pages) long and the human-made requirements document was 83
pages (about 140K bytes) long. The phrases of the remainder were analyzed very carefully in
order to see if AbstFinder missed any abstraction. The phrases of the remainder were separated
to several categories according to their characteristics.

1. Most of the phrases originate from the strict meta-language of the requirements
specification format of the ASSR, such as “activate”, “allow”, “deactivate”, “herein”,
“include”, “integrate”, “must”, “only”, “provide”, which are not abstractions and were
used only in the ASSR document for stating requirements and not in the RFP original
transcript.

2. Some concept were in different grammatical forms such as “transmit” in the AbstFinder
abstraction list, and “transmitting”, “transmitters”, and “transceiver” in the ASSR. Those
words in the leftovers do not carry any new concept, they actually describe the same
abstraction. The same is for:

“calibrate” and “calibration”
“assigned” and “assignment”.

While AbstFinder is designed to classify all the “transmit...” words as a single abstrac-
tions, Strainer is designed to remove only whole words and does not remove words that
properly contain a recognized root. If Strainer were to cut parts of words, then the

60

remainder of the document will be a mass of unreadable text. For instance, suppose that
“inter” were found by AbstFinder as a common part among “interchangeability” and
“interfaces”. Removing “inter” as part of word would leave in the leftovers “changeabil-
ity” and “faces”. Both of these accidentally generated words are garbage relative to the
application.

3. Acronyms such as “NBC” are introduced to replace a longer full phrase such as
“Nuclear, Biological, Chemical”; the full phrase appears only once at the introduction of
the acronym or in a dictionary of acronyms, and the acronym appears many times
throughout the document. The acronyms are used to save the writing of the longer full
phrase. AbstFinder did not identify many acronyms. Many acronyms are shorter than
the WordThreshold, and a full phrase if appears only once it is not going to be caught by
any frequency-based scheme. Actually, only the “NBC” was not found, all the others
were found since the term of the acronyms were repeated in the text more than once.
Given that reducing WordThreshold causes generation of too much noise, there are two
solutions, both general enough to be made part of a standard scenario for the elicitor.

a. The synonym dictionary can be used to replace the acronyms by their full phrases
for the purpose of abstraction identification.

b. Recognize all the acronyms as important abstractions, log them as abstractions,
and then add them to the ignored-application-phrases-file.

Only after recognizing the abstractions, the elicitor may switch to using acronyms as
abstractions identifiers.

4. Ten concepts appeared in the leftovers because they appear in the RFP only once, and
AbstFinder identifies only concepts that appear more than once, at least once for
definition and once for use. Of these, five phrases were synonyms in the context of the
system that was defined in the RFP, such as “contour” and “elevation”, and “enemy” and
“threats”, that occurred because the synonym-file was not implemented yet.

5. The remaining five phrases were specific examples of some already captured abstractions
and appeared in the text with linguistic clues, “i.e.”, “e.g.”, and “for example”. These are
not abstractions, they are details that will be put inside the abstraction.

To sum up, after some generally applicable modifications that should be part of a standard
scenario for use of AbstFinder, full coverage was achieved.

Does Better than Human Experts:

It was interesting to see if AbstFinder found some concepts that the human elicitor over-
looked. This meant checking if the list of requirements in the human-made document cover the
list of abstractions found by AbstFinder. That question was answered by removing from the
AbstFinder-generated abstraction list all that appear in the human-made document to see if
there are any leftovers. Again, the subtraction was be done by Strainer.

61

The result was about 35,402 bytes long. There were very meaningful concepts concern-
ing “communications”, “ordnance”, “weather conditions”, etc. Perhaps some of these did not
appear in the human-made document because they were hidden in the classified requirements
appendix of the RFP document. This appendix is competition sensitive and was not submitted to
the research case study. Note, that the RFP specifies the whole system, hardware and software,
while the human-made document specifies the software only. So, most of these 35,402 bytes
concern other requirements than software. A great portion of these leftovers was noise, i.e.,
parts of words, and did not contribute any new concept.

We also found that the people of the project were not happy to hear the results of this
investigation, because the project was already in progress, and they felt, incorrectly, that it was
not the right time for them to find things that they might have missed. Note again, that accord-
ing to the project people, some of the abstractions such as “surrogated training” appeared very
clearly at the output list of AbstFinder while the project people overlooked it for long time. So,
we got the impression that an elicitor operating AbstFinder can do better than a group of human
elicitors.

People and Computer Power:

The list of requirements generated by the three experts required one month of concen-
trated work for a total of three person-months. Running AbstFinder took about five hours total
CPU time, three hours operating time, and about two hours of elicitor overview, which is about
one day of work. The first run of AbstFinder on RFP took about two hours. The second run,
after straining out the most frequent abstractions on the list, took about 30 minutes. The last run
took about 5 minutes. However, note that the elicitor was doing other things while the CPU was
running.

4.2.3.1 findphrases vs. AbstFinder

In order to demonstrate the improvement of AbstFinder over old tools of abstraction
identification, an experiment was conducted in which findphrases was activated on the RFP
source document that was used as the source for the RFP case study. The main concern was to
check the findphrases results of abstractions identification, in terms of coverage and meaning-
fulness. findphrases was run using the same ignored words obtained from the common and
application ignored words files. Since findphrases treats the ignored words differently, an
ignored word does show up when it is used in conjunction with some non-ignored word.

The output of findphrases contained a much smaller number of identified abstractions,
which immediately implied that would be a coverage problem (See Appendix E.8). An exami-
nation of the findphrases results revealed the following:

a. findphrases found most of the major concepts consisting of one word, but still failed to
find a lot of one word concepts, such as, “transponder”, “generators”, “navigation”,
“acceleration”, “telemetry”, “logistics”, etc. which are very important application func-
tions and objects. Probably those concepts appeared more than once in the transcript of

62

RFP since AbstFinder found them, but their number of appearance was very low relative
to the frequent ones. Thus, they did not pass the minimum frequency factor and were not
shown in the findphrases output.

b. findphrases completely failed to find compound phrases of two or more words that iden-
tify an abstraction. For instance, the abstraction “remote video terminal rvt”, which is a
very important object in this application, was found very clearly by AbstFinder.
findphrases, however, found only parts of the term and they were spread all over the
list, such as, “remote”, “video”, “terminal”, “data terminal”, “terminal (”. These frag-
ments do not imply the full concept at all. All of this is the result of findphrases’s
approach of looking for fixed patterns. On the other hand, AbstFinder is completely
flexible in finding a term in any permutation of its words and with any gap between them.
The same happened to “real time”; findphrases found only “real” and “time”. The
phrase “ground data terminal gdt” was not found by findphrases either. Instead, even
though it was looking for phrases of length up to five, findphrases found only “ground”,
“ground data”, “data terminal”, and “terminal”, again spread all over the list.
findphrases failed completely to identify “baseline configuration” and “functional
audit”, which are very important quality requirements.

c. Actually, phrases of more than one word were rarely find in the output of findphrases
on RFP. Usually, if a phrase of more than one word was found, then the adjacent word
was a common one, such as, “the system”, “equipment shall”, “the equipment”, “the sys-
tem shall”, “contractor shall”, etc. These phrases do not add more information. Again,
this limitation is the result of the approach of fixed patterns. All of the above confirm the
observation that the abstractions found by findphrases do not cover all the abstractions
that exist in the RFP case study.

When comparing the output of AbstFinder to findphrases, the AbstFinder output has
much more meaningful compound abstractions that describe the system to be built, and help in
understanding the requirements. In that context, the findphrases output looks like a list of sin-
gle words, without context, ordered according to their frequency in the source text. In terms of
meaningfulness, AbstFinder is much better.

4.2.4 Results

For the specific case studies carried out, the author assisted with AbstFinder was found
to be

1. at least as good as findphrases and the LA finder on the findphrases requirements. All
the abstractions found by findphrases the LA finder were found at the top of the output
list of AbstFinder.

2. at least as good as the author acting as an elicitor on the Flinger Missile example.
Through this case study, the Strainer was found to very useful for estimating coverage.
This case study was good practice for learning scenarios for using AbstFinder.

63

3. at least as good as three human experts on the RFP, and in fact found some abstractions
that they did not found. For the same case study, the author assisted with findphrases
failed to cover all the abstractions and yielded less meaningful abstractions identifiers.

In all the case studied, the AbstFinder output was summarizing with respect to the original
document (See Table 2).

��
findphrases Flinger Missile RFP��

Source-file 6935 bytes 15029 bytes 214654 bytes��
corr-phrases 1855 bytes 3429 bytes 47105 bytes��
% 26% 22% 21%��

�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

��
�
�
�
�

Table 2: The Case Studies Summarizing Criteria
הלימוד בדוגמאות התימ�ות קריטריו� :2 טבלה

Moreover, in the RFP case study, the AbstFinder output amounted to 21% of its input, and all
the runs of AbstFinder on the RFP to determine its abstractions took one day, while the three
human experts took three months to do their analysis of the RFP.

The conclusion is that for the case studies presented, AbstFinder output is meaningful,
has coverage, and is summarizing.

Recall that AbstFinder output contains noise strings and repetitions. While experiment-
ing with AbstFinder, the author found that some noise was helpful for differencing the identified
abstractions, although it raises the output size. Additional filtering of repetitions and noise would
reduce the summarization factor substantially (See Section 4.2.3).

More experiments on industrial sized examples must be carried out. With each such
experiment, it is important to have a qualified, independent analysis available with which to
compare the AbstFinder-generated list of abstractions.

Also now that the prototype has successfully proved a concept, it is time to consider
scrapping the oft-modified prototype in favor of a freshly written production version, in which
better algorithms and data structures are used.

4.3 Indexing vs. Abstraction Finding

Some consider abstraction identification and term identification for indexing (as for the
back-of-a-book index) to be similar activities and believe that a tool for one should be usable for
the other. To get some idea of how true these thoughts are, we conducted an experiment in
which AbstFinder was used to help find indexing terms.

64

��
criterion findphrases Flinger Missile RFP��

meaningful very very very��
summarizing 26% 22% 21%��
coverage o.k. o.k. o.k.��
do-better configuration files ? surrogated training��
performance 15 minutes 45 minutes 3 hours��
Source 6935 bytes 15029 bytes 214654 bytes��

�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Table 3: Case Studies comparison
הלימוד דוגמאות השוואת :3 טבלה

There exists a published paper about tool-assisted term identification and a ditroff post-
processor for generating the index based on a file containing the terms to be indexed. This paper
has an index generated by the tools described therein [AB89]. Interestingly, Berry, the advisor
of the author of this thesis, is a co-author of this paper. It was decided to have both the author of
this thesis and Berry. The author of this thesis is, of course an expert AbstFinder user, but has
never done indexing. Berry, of course is very familiar with the paper, has participated in its
indexing, but had never used AbstFinder before. This experiment also served as a way to test
the distributed version of AbstFinder, consisting of binary programs, shell scripts, and manual
pages, for usability by someone other than the author. Indeed, Berry ended up suggesting a
number of minor improvement to the shell scripts and manual pages.

Berry used two iterations to get AbstFinder to generate about the same set of terms that
had been identified automatically by the phrase finder tool used for the paper. Actually Abst-
Finder was a little better than phrase finder for this purpose, but that is no surprise. However,
still only about half the eventual list of indexing terms were identified automatically. This result
was not surprising to Berry because he already knew the term identification and abstraction
identification are significantly different processes. Indeed, in one sense they are opposites. Con-
sider a phrase appearing only once. It certainly does not constitute an abstraction that encapsu-
lates data and algorithms. Yet the very fact that it appears only once is a strong reason for index-
ing it to allow someone who would miss the concept because it is not listed in the table of con-
tents to find it. In this respect, the table of contents can be thought of as a list of abstractions,
while the index can be thought of a list of abstractions and of specific details. This observation
leads to the conclusion that a successful abstraction finder is a poor automatic index term
identification tool and probably vice versa. AbstFinder is just not a good index term
identification tool and is not expected to be.

The author of this thesis, in her runs of AbstFinder, seems to have forgotten that the goal
of the exercise was to generate index terms, and ended up generating a list of abstractions. This
information, however, cannot be compared with anything as no list of abstractions was identified
earlier and published. Interestingly, Berry observed that these abstractions could form a basis

65

for organizing the paper. The names of the abstractions would become the section titles and
would show up in the resulting table of contents.

66

5 Abstraction Organization Exploration

The abstraction identification process, the issue dealt in the previous sections, results the
abstraction identifiers which are the important concepts in the user transcript, but are not enough
for elicitation. Once the abstractions are recognized, they have to be organized on some mean so
that all the text dealing with one abstraction can easily be found. Only then, the elicitor will be
able to do the elicitation, i.e., ruthlessly filter out inconsistencies, identifying absence of infor-
mation, negotiating with the customer-user, and updating the abstraction content if necessary.

The objective of the following is to explore the use of hypertext for abstraction organiza-
tion for the purpose of determining what operations will be needed, both to be done automati-
cally by the hypertext and to be available by the elicitor. This exploration is limited to identify-
ing needed functionality and is not for evaluating feasibility. A lot of research has been done
recently, as will be shown later, in hypertext itself and in its use for software engineering. Thus,
this exploration intend to present a bridge between the phase of identified abstractions to this
other work. As will be shown later, all of this hypertext work assumes that the information is
already segmented to abstractions by the user of the hypertext.

5.1 What is an Abstraction Network

The goal of REGAE, as mentioned in Section 1.5, is to help the elicitor build an abstrac-
tion network. The elicitor is to use this structure to analyze the entire information in an associa-
tive way. The elicitor is to be able to navigate through the structure to get more details about any
abstraction. Each node will contain the information about an abstraction collected from several
original documents of requirements description, so that it will be easier for the elicitor to identify
conflicts or complementary information about an abstraction taken from different user inter-
views. Furthermore, this organization gives the elicitor the ability to identify mutual influence
among abstractions and to add his or her own requirements based on that influence.

During the first stage of operating REGAE the abstractions are identified, by the Abst-
Finder algorithm described at Section 2.3.5. The output of this stage is a list of abstractions
identifiers. Each abstraction is identified by a phrase, which is the one that caused the similarity
between the sentences of that abstraction.

The second stage of operating REGAE is to use the output of the first stage, the identified
abstractions, together with the original interviews and to build a network, with the aid of a
software tool which automates in a nonobtrusive way as much as usefully possible. The output
of the abstraction identification process is not sufficient in order to proceed to the next stage. It is
necessary to involve the elicitor in refining the abstractions found by the AbstFinder algorithm
and getting his or her approval before proceeding to the next stage. Indeed, any requirement to
involve humans should not be looked on as a drawback, rather it is an opportunity for a human to
think and be creative. The purpose of automating what is possible is to free the human from
clerical work to do creative thinking.

67

The goal is to build a network similar to that shown in Figure 10. In such a network,
there are two kind of nodes; text nodes and abstraction nodes. A text node contains an original
document of user interview. A long document may be cut into several text nodes connected by
text links. The original transcripts must remain unchanged, sequential, in order to be used as
reference and see concepts in their original context. An abstraction node embodies an abstrac-
tion. An abstraction node contains the sentences of the abstraction, which were found to be
similar. The phrase that caused this similarity between those sentences is used to identify the
abstraction. Abstraction nodes are connected by Abstraction links, which are generated automat-
ically by the phrases that identify the abstractions, as will be explained later. Data links
(pointers) to the original text located in text nodes, should be added. The data links are used to
connect sentences in the abstraction to their original transcript, in case one might want to look at
a sentence in its original context. All links are double ended, in order to allow bi-directional
navigation.

As suggested in Section 1.5, this network should be built on top of some existing hypertext sys-
tem.

The process of generating the abstraction network is as follows:

1. Build the text nodes for each user interview document.

2. Build an abstraction node for each abstraction by automatically collecting all the sen-
tences that belong to that abstraction, according to keywords contained in the phrase that
identify that abstraction.

3. For each abstraction, automatically construct abstraction links according to the keyword
of phrases identifying other abstractions.

Several operations are done with the sentences in the text nodes. During the second step
above, the sentences in text nodes which are pointed to by data links are marked, and for each of
these sentences, a trace is kept backwards to the abstraction nodes that are the origins of the data
links. The problematic sentences in text nodes which are not linked remain unmarked, so that
the elicitor can check their relevance.

However, one problem remains. There may still be sentences in some text nodes which
are not linked with any abstraction nodes. Usually, these sentences have meaningless informa-
tion, as often happens in natural language transcripts, e.g., “We now turn to specific examples of
these requirements.” Sometimes, there are sentences that seem to contain relevant information,
that is context dependent, such as those beginning with “Consequently, it ...”. In any case, all
these unmarked sentences are gathered into a some abstraction called garbage-collector node,
for the elicitor to analyze it.

68

Abst1 Abst2 Abst3

Abst5

Doc1 Doc2 Doc3

Original Interview Transcripts

Abst4

Figure 10: The abstraction network
הפשטות של רשת :10 �יור

69

5.1.1 Using the Abstraction Network—The Perspective of the Elicitor

At this stage, the abstraction network is ready for a skilled elicitor. The elicitor would
ruthlessly filter out inconsistencies between sentences not only within a node, but between nodes
as well. The elicitor would use links to navigate between the nodes in order to track down these
inconsistencies by verifying information from different abstractions (nodes). Any failure by the
elicitor to find a link where he or she needs one is an indication of a place in which links should
be generated automatically, or an indication of a link that the elicitor should generate. The key
question here is whether there are more mundane, clerical parts of this activity that can be
automated.

Recall that an abstraction is not equal to a requirement, but abstractions can serve as an
initial list for requirements, and can be used for the negotiations with the customer. By looking
into the abstraction content, the elicitor may ask the customer if that is all that is known about
that specific abstraction. This content may contain inconsistencies, or may be too small and
vague. In both cases, the customer is invited to resolve any problem with the abstraction content
[LF91]. Only then, The abstraction can be rephrased as a requirement or several requirements.

Once the requirements are written, it is necessary to validate these requirements for com-
pliance with what the client desires. It is currently envisioned that the elicitor would invite the
interviewed members of the client organization to read the draft requirements, and they would
evaluate the compliance of the document with their conceptions.

The elicitor can analyze the requirements description, and may want to make some
changes, corrections, deletions, or additions. It is very important to keep the original data, in the
text nodes, unchanged. Therefore, a new node type is defined, called issue node, and appropriate
links. The issue links connect abstraction nodes to changes written in issue nodes. The elicitor
can use these issue nodes in order to make corrections or additions.

The issue nodes and links can be arranged according to the Issue-Based Information Sys-
tems (IBIS) method [Con87, CB88]. The IBIS method is based on the principle that the design
process of complex problems, termed wicked problems, is fundamentally a conversation among
the stakeholders, e.g., designers, customers, implementors.

In a way similar to IBIS, it is proposed to use other kinds of nodes, such as issues, posi-
tions, and arguments, and other kinds of links, such as responds-to, questions, supports, objects-
to, generalizes, refers-to, and replaces. In a typical application, requirements documents are
presented to the client and users, and then the elicitor begins negotiations with them. These peo-
ple involved express their positions about an issue the elicitor brings up, and give arguments to
their position. All of these positions and arguments may be entered into the same abstraction net-
work. The elicitor reads the original information, and writes his or her analysis comments into
the issue node. The participants express their positions using argument nodes and position nodes
together with appropriate links. Each of these nodes may become a seed for a new conversation.
See Figure 11. This organization is a good representation for the people that have a stake in the
project [BYC90].

70

Issue 1

Issue 4

Issue 2

Position 1

Position 2

Issue 3

Argument 5

Argument 4

Argument 3

Argument 1

Argument 2

Respond-to

Respond-to

Questions

General

Objects-to

Objects-to

Objects-to

Objects-to

Supports

Is-suggested-by

Figure 11: A segment of possible IBIS-style discussion network
IBIS בנוסח שיחה רשת מתו� קטע :11 �יור

71

In wicked problem exploration, understanding other viewpoints better allows understand-
ing the whole problem better. IBIS supports design planning conversation. In IBIS, a basic
device is stressed, a hypertext which enables many participants to navigate among the issues.
There is no stopping rule, nor is there in the IBIS method a particular way of registering that an
issue has been resolved by agreement upon some position. Rather, the goal of the discussion is
for each of the stakeholders to try to understand the specific elements of each others’ proposals.

The method makes it harder for discussants to make unconstructive rhetorical moves,
such as “argument by repetition“, and it supports other more constructive moves, such as seeking
the central issue, asking questions as much as giving answers, and being specific about the sup-
port evidence of one’s viewpoint.

Users of gIBIS [CB88], a hypertext tool for exploratory discussion that implements IBIS
graphically, reported that the Issue-Position-Argument framework helped to focus their their
thinking on the hard, critical parts of the problem and to detect incompleteness and inconsistency
in their thinking more readily. Users reported that the structure that is imposed on discussions
was very useful and served to expose “axe grinding, hand waving, and clever rhetoric”. They
also valued the tendency for assumptions and definitions to be made explicit. These features of a
cooperative environment are very important for requirements elicitation.

It is usually the case that any change in a project impacts the software. So, whenever a
change is suggested, it is necessary to see the effects of the change. Moreover, after several
changes are made, there are times in which designers may want to reconstruct their arguments
and positions through the development. The IBIS hypertext lays it all out there to make it less
likely that an important issue position or argument will be overlooked. The IBIS method is good
for managing changes in requirements.

To sum up, the elicitor

� identifies conflicts or absence of information by examining the data inside the abstraction
nodes,

� navigates associatively between abstractions nodes by using links,

� verifies information from different abstractions by using nodes and links,

� negotiates by using nodes and links, and

� updates the abstraction network by addition and removal of nodes and links.

Thus, the main issues in generating an abstraction network are

1. to segment the information into abstractions with the help of AbstFinder, and

2. to determine the types of links needed for decisions, updates, etc. as suggested above.

72

5.2 Problem Exploring with Hypertext

The concept of hypertext is quite simple. Windows on the screen are associated with
objects in a data-base, and links are provided between these objects, both graphically, as labeled
tokens, and in the database, as is shown in Figure 12.

The intent is to organize the initial abstractions on a hypertext, in order to give the elici-
tor the ability to author the huge and complex specifications. Hypertext gives the elicitor the
ability to navigate through the information in any associative non-linear way he or she wants.
However, there is the danger of creating such a complex hypertext that the elicitor gets lost in
hyperspace.

5.2.1 Hypertext-Related Work

Hypertext, in general, is a research area of its own [Con87], This research area includes
questions of navigation techniques, links carrying functions, and updating the hypertext (nodes
and links). The general problem faced by all users of hypertext, is the question of getting lost in
hyperspace. These questions are outside the scope of this exploration, since it is being dealt with
as part of other more direct hypertext research [YMvD85, Con87, CB88].

The unresolved problem in hypertext is how to generate the hypertext in the first place.
How to segment the data in oder to be able to use efficiently the associative navigation feature of
the hypertext. Usually, the user is responsible for doing this segmentation. gIBIS [CB88] is a
hypertext tool for exploratory discussion that implements IBIS graphically, as mentioned before.
Note, that Conklin says there that they are still considering the addition of a brainstorming mode,
in which they will try to overcome the cognitive overhead required to segment the “mass of
information” (muck, in Conklin’s words) into discrete thoughts, identify their types, label them,
and link them. AbstFinder is a tool that assists in segmenting the information according to
abstractions.

Recently, a great deal of work in software engineering is taking advantage of hypertext
[DS87, GS87]. The problem addressed in this work is maintaining software life cycle on a
hypertext, keeping links between code and its documentation and links between the requirements
to different products of software life cycle. Indeed, Garg and Scacchi have suggested maintain-
ing all life-cycle documents as hypertext [GS87, Gar89].

There are some tools which are more modelling oriented. READS [Smi93] is an hyper-
text system designed to support the key requirements engineering activities of requirements
discovery, analysis, decomposition, allocation, traceability and reporting. READS facilitates the
construction, browsing, and maintenance of a typed hypertext network with a user interface
designed specifically for the system engineer. But, as quoted from the paper, “Requirement
discovery and extraction are done by examination of the document through scrolling and regular
expression searching. Candidate requirement statements are selected with the mouse and placed
into the requirements inspection window from which they may be saved into the project data-
base.” Still, the process of capturing the requirements in the first place is done by humans.

73

Display screen

A

B

C

D

EF

G

bg

f e

c
d

A

B

e
f

g

b

Hypertext database

Figure 12: The hypertext concept
hypertext-ה מושג :12 �יור

74

AbstFinder can clearly complement READS.

RETH, Requirements Engineering Through Hypertext (See Section 1.4) [Kai93], also
uses a hypertext that helps the users and analysts to make relationships and dependencies expli-
cit. RETH helps to gather and structure the requirements only by supporting brainstorming
through hypertext. For capturing the raw requirements, Kaindl suggests “to get help from an
analyst (a requirements engineer)” since requirements formation is “too difficult for inexperi-
enced users”.

5.2.2 Generate Abstraction Network On Top of Hypertext

In order to build the abstraction network on the top of some hypertext, it is needed to
transform the initial interview documents from each user into a hypertext organized in a way that
represents whatever relations the elicitor desires.

There are now two kinds of links and maybe these are all that are ever needed.

a. One kind are structural links that cannot be generated automatically. These capture that
an abstraction is a subclass of another, that one is dependent on the other, that one is a
component of the other, or maybe even all of those. For example, this structure can be
that of the decomposition, as was done for findphrases by Aguilera for implementation
purposes. Such a structure cannot be generated automatically.

b. The other kind are semantic links, which link together all sentences that talk about same
abstraction, or which link the use of a word and its defining module. These can be gen-
erated automatically as described before.

It is suggested to show only the structural links graphically because they are not automat-
ically generated and need human thinking to make. Therefore, showing them gives more infor-
mation. Showing automatically generated links does not give new information.

The following is a list of needed operations, both automatic and manual by the elicitor,
that help to prepare the abstraction network on top of hypertext for the elicitation process.

1. segment data into abstraction nodes (manually assisted by invoking UNIX scripts on the
AbstFinder’s output list of abstractions identifiers),

2. generate cross reference type links (automatically from the information generated by
AbstFinder),

3. import nodes to hypertext (automatically by invoking UNIX scripts that generate the
markup language of a hypertext),

4. generate structural type links (manually by the elicitor)

5. navigation (manually by highlighted words, buttons, log and history-hypertext features)

75

6. update links and nodes (out of the scope of this thesis, as it is the subject of other hyper-
text research)

Step 1, 2, and 3 will be demonstrated in the following case study.

5.2.3 An Abstraction Network Case Study

An abstraction-oriented network was prototyped on the top of Hyperties, a hypertext
system, using findphrases as a case study. The purpose of the case study is to demonstrate the
initial generation of an abstraction network, with the assistance of AbstFinder and the hypertext
features, and to explore whether the assumptions about desirable operations are valid.

Using Hyperties, an on-the-shelf system allows focusing on the abstraction organization
problem rather than getting bogged down in the details of building a hypertext system. Hyper-
ties is a powerful software tool for organizing and presenting information. It was developed at
the University of Maryland’s Human computer Interaction Laboratory [KS88, HYP91].

Hyperties consists of two programs, the Authoring System and the Browser. The
Authoring System is used to create a database of articles and illustrations. Using the authoring
system is like using a familiar word processor. The author types in the text of the articles and
specifies the links or cross references to other articles and illustrations. Hyperties automatically
ties the articles and illustrations together into a unified database and constructs an index to the
entire database.

The Browser enables readers to access a Hyperties database of articles and illustrations.
Using the browser is extremely easy and requires virtually no training. The reader can follow a
topic of interest, turn pages (Next or Backup) (See Appendix F Figure 15-d). The power of
Hyperties comes from the links that tie articles and illustrations together. A link is a cross refer-
ence, an indication that more information articles and illustrations. Hyperties automatically
keeps track of the path followed by the browsing reader so that he or she can return to previously
seen articles.

Hyperties automatically creates an index which lists all the articles in the database.
Readers may go to the index at any time and access any article in the database directly.

Authors may wish to refer to the same article using different phrases as links. The author
need not plan this in advance; as Hyperties builds its index it will ask if certain terms are to be
considered synonyms or not. Hyperties enables the user to VIEW the output through the
BROWSER. This feature is very convenient for the author who wants to see how the output
should or would look. The change cycle is very short and convenient.

The hypertext that was used for the experiment was Hyperties 3.0 standard version that
comes with a set of pre-defined visual designs. The user cannot add his or her own designs.
There is a Hyperties 3.0 professional version that provides the author the ability to create his or
her own designs.

76

The IMPORT utility is a program to facilitate bringing documents from other sources
into a Hyperties database. Its ability to bring existing files into a database in one step, and
resolve links as it does so, makes it a very powerful tool. The documents to be imported using
this utility must include mark-up commands to tell IMPORT how to handle the article in the
Hyperties database. A document including mark-up commands is referred to as an AIM
(Automatic IMport) file.

The following describes the three initial steps in the process of restructuring knowledge
for abstraction oriented network, used for requirements elicitation.

1. Generate an article for each abstraction node in the hypertext. The abstraction content is
the set of all the sentences from the original document that contain words of the abstrac-
tion identifier as recognized by AbstFinder. This is done by:

agrep corr-phrases-of abstraction original-transcript > abstraction-article

2. Any part of some abstraction identifier, in the form of complete words, that is contained
in the content of some other abstraction is a candidate for being a name of a cross refer-
ence type link.

3. Create a new database with Hyperties, and IMPORT the marked-up articles into it.

5.2.3.1 Findphrases Case Study

The findphrases was already used as a case study for AbstFinder, and the the full
abstraction list of findphrases, approved by the designer of findphrases, Aguilera is available.
Each abstraction, as an output of AbstFinder, is identified by a phrase, which is the correlated
phrase that caused the similarity between the sentences that compose the abstraction. So, the
nodes of the abstraction network are well identified.

The next sections describe the the initial building of the abstraction network of the
findphrases case study, as described previously.

1. The abstractions are well identified. Thus, it remains to collect all the sentences that
belong to an abstraction into an article that will be the content of the abstraction node.
This is done by agrep, that collects the sentences, one per line, that match the identifying
phrase from the input transcript into a file called article in the following. Now, article is
composed of edited sentences extracted from the transcripts to which AbstFinder was
applied.

2. Those correlated phrases that identify the abstractions, actually define the cross reference
abstractions links that should be generated automatically. In each abstraction, where one
or more of those phrases (that identify any abstraction) appears, a link should be built
automatically, between the abstraction that contains the phrase to the abstraction that is
identified by that phrase. Recall that a result of a run of AbstFinder is the corr-phrases-
file, the file that contains the correlated phrases that identify all the abstractions. For each

77

abstraction i, a copy was kept of all correlated phrases that identify all the abstractions
found minus the correlated phrases that identify i itself, i.e., the phrases that identify all
other abstractions. Then, in each abstraction article, the mark-up that would make those
phrases links was generated. This mark-up is done by surrounding the phrase link with
<L> and <\L>, using the make utility (See Appendix F.1).

3. Now, the marked-up abstraction article is ready to be IMPORTED into the Hyperties
database.

At this point, the basic authoring of the abstraction network was done, ready for the elici-
tor to browse the abstraction database. It seems that an hypertext is the way to go at least for
smaller problems. This idea was explored by the findphrases case study. Note that the purpose
of this case study is to test the functionality of the abstraction network and not for value conclu-
sions. Appendix F contains highlights and snapshots of browsing in the abstraction network of
the findphrases case study.

5.3 Abstraction Network Exploration Summary

It seems that an hypertext is a good basis for an abstraction network. As originally
envisioned, the individual nodes would be pure text. It seems that for larger problems, more
structure will be needed in the interiors of nodes, which will be populated also by structural
links. For instance, in the RFP case study, there is an abstraction “testing”. Zooming allowed
finding its sub-abstractions. In such a case, instead of the long pure text of the “testing” abstrac-
tion, it may be better to build separate sub-abstractions, e.g. “acceptance tests”, “built-in test”,
“environment tests”, etc., and link them with structural links to their parent “testing”. This can
easily done in Hyperties by building an abstraction which is actually an indexed list of links to
the sub-abstractions.

A major issue was what kinds of links should be generated automatically and in response
to what operations should these be generated. Only cross-reference type links can be generated
automatically, as described in Section 5.2.3.1. Cross-reference type links are those that link all
sentences that talk about the same abstraction or that link the use of a word with its its defining
module.

Other questions to be asked in the future during real-life applications of the tools include
the following.

1. Are there other operations that should cause the creation of links?

2. Should the links be made quietly?

3. Should the user be asked if he or she wants the links?

4. Should the links should be made only upon explicit request of the user?

5. Is hypertext even appropriate?

78

6. If not, then what is appropriate?

This research stops at the point in which the elicitor begins writing the insides of the
abstractions, in order to write the requirements of the system which is the subject of the inter-
views. The research stops at this point because the problem is now one of analysis and no longer
one of elicitation. Analysis has been thoroughly studied by others [RS77, SM85, TH77, WE82,
Alf77, Zav82, BGM85].

79

6 Conclusions

The work reported in this dissertation was aimed at designing, prototyping, and determin-
ing the effectiveness of an essential part of an envisioned integrated environment, REGAE, for
gathering, sifting, and writing requirements. REGAE is described as helping the human require-
ments elicitor massage transcripts of interviews with members of a client organization into a
consistent, complete, unambiguous, coherent, and concise statement of what the organization
wants. The goal of REGAE is to organize the whole collection of requirements information as a
network, of nodes each denoting an abstraction and containing a description of all that is known
and required about the abstraction.

To arrive at the basis for a tool that helps identify the abstractions that will make the
nodes from the transcripts of the interviews, it was necessary to ask what are the most effective
ways of identifying abstractions in natural languages transcripts of client interviews.

Preliminary studies described in Sections 2, 2.2.2, and 2.2.3 indicated that a repeated
phrase finder and a lexical affinities finder are both effective for small problems. They each have
weaknesses both that the other does not have and that the other does have. The work has con-
sidered a new tool, AbstFinder, which overcomes most of the former tools’ weaknesses. A
number of case studies demonstrated the effectiveness of AbstFinder even on large problems
(See Section 4.2.3).

1. The findphrases case study (See Section 2.2.2) helped test the accuracy of the tool in a
small, previously tested problem. The results of the application of the older tools men-
tioned above to this problem gave a means to determine the the effectiveness of the new
tool in comparison to that of the older ones.

2. The RFP case study involved applying AbstFinder to a real-life, industrial strength, full
sized problem. AbstFinder was applied to a variety of customer-generated requirement
documents in order to test the coverage of the abstractions found, and their completeness.

The key measures of the effectiveness of AbstFinder are: (1) its coverage, and (2) how
summarizing it is. A tool that is not covering or which does not summarize is not good. Hereto-
fore, abstraction identification has been done manually by a human elicitor. The problem is that
humans get tired, get bored, fall asleep, and overlook relevant ideas. Therefore, an elicitor will
not be willing to be assisted by any tool unless he or she is confident that it is covering, that no
critical piece of information has been overlooked in the process of abstraction identification.
The case studies have shown AbstFinder to be covering (See Sections 2.2.2 and 4.2.3).

A tool that is only covering is not very helpful. The most covering tool is that which out-
puts everything that is input, and the elicitor is left right where he or she started. Therefore, the
other main requirement for the tool is that it reduce the amount of text that the elicitor must look
at. An elicitor still has to do the thinking with the output of the tool, in order to approve the
abstractions found. The case studies have shown that AbstFinder is indeed summarizing. In the
RFP case study, the output was about 21% of the size of the input data (See Section 4.2.3). Note

80

finally, that a tool that is only summarizing is no good either. The most summarizing tool is that
which outputs nothing. The tool must summarize while preserving coverage, and AbstFinder is
doing precisely that for the case studies.

Finally, in the exploration of the use of hypertext to build the abstraction network it was
determined that only cross reference links should be built automatically, leaving other links to be
discovered and built by the thinking elicitor.

81

Bibliography

[AB89] Abe, K.K. and Berry, D.M., “indx and findphrases, A System for Generat-
ing Indexes for Ditroff Documents,” Software—Practice and Experience
19(1), p.1–34 (1989).

[AB90] Aguilera, C. and Berry, D.M., “The Use of a Repeated Phrase Finder in
Requirements Extraction,” Journal of Systems and Software 13(9),
p.209–230 (1990).

[Abb83] Abbott, R.J., “Program Design by Informal English Descriptions,” CACM
26(11) (November, 1983).

[Agu87] Aguilera, C.S., “Finding Abstractions in Problem Descriptions using
findphrases,” M.S. Thesis, Computer Science Department, UCLA, Los
Angeles, CA (October, 1987).

[Alf77] Alford, M.W., “A Requirements Engineering Methodology for Realtime
Processing Requirements,” IEEE Transactions on Software Engineering
SE-3(1), p.60–69 (1977).

[Alf79] Alford, M.W., “Software Requirements Engineering Methodology (SREM)
at the Age of Two,” in COMPSAC 78 Proceedings (November, 1978).

[Alf85] Alford, M.W., “SREM at the Age of Eight; The Distributed Computing
Design System,” Computer 18(4), p.36–46 (April, 1985).

[ALW91] Agrawala, A.K., Lavi, J.Z., and White, S.W., “Task Force on Computer-
Based System Engineering Holds First Meeting,” IEEE Computer 24(8),
p.86–87 (August, 1991).

[BGM85] Borgida, A., Greenspan, S., and Mylopolous, J., “Knowledge Representation
as the Basis for Requirements Specifications,” Computer 18(4), p.82–91
(April, 1985).

[BGN86] Berzins, V., Gray, M., and Naumann, D., “Abstraction-Based Software
Development,” Communications of the ACM 29(5), p.402–415 (May, 1986).

[Boe81] Boehm, B.W., Software Engineering Economics, Prentice-Hall, Englewood
Cliffs, NJ (1981).

[Boe88] Boehm, B.W., “A Spiral Model of Software Development and Enhance-
ment,” IEEE Computer 21(5), p.61–72 (May, 1988).

82

[Boo86] Booch, G., Software Engineering with Ada, Benjamin-Cummins, San Fran-
cisco, CA (1986). Second Edition.

[Bur84] Burstin, M.D., “Requirements Analysis of Large Software Systems,” Ph.D.
Dissertation, Department of Management, Tel Aviv University, Tel Aviv,
Israel (1984).

[BYC90] Burgess-Yakemovic, K.C. and Conklin, J., “Report on Development Project
Use of an Issue-Based Information System,” in Proceedings of the ACM
Conference on CSCW, Los Angeles, CA (October, 1990).

[BYY87] Berry, D.M., Yavne, N.M., and Yavne, M., “Application of Program Design
Language Tools to Abbott’s Method of Program Design by Informal
Natural Language Descriptions,” Journal of Software and Systems 7,
p.221–247 (1987).

[CASE88] IEEE Software 5(2) (March, 1988).

[CB88] Conklin, J. and Begeman, M.L., “gIBIS:A Hypertext Tool for Exploratory
Policy Discussion,” ACM Transactions on Office Information Systems 6(4),
p.303–331 (October, 1988).

[Con87] Conklin, J., “A Survey of Hypertext,” MCC Technical Report No. STP-
356-86, Rev. 1, MCC, Austin, TX (February 9, 1987).

[Cru86] Cruse, D.A., Lexical Semantics, Cambridge University Press, Cambridge
(1986).

[CSCW88] CSCW, Proceedings of the Conference on Computer-Supported Cooperative
Work, September 26-29, 1988. Anonymous.

[CWS93] Christel, M.G., Wood, D.P., and Stevens, S.M., “AMORE - The Advanced
Multimedia Organizer for Requirements Elicitation,” Technical
Report,CMU/SEI-93-TR-12, Software Engineering Institute (June, 1993).

[Dav90] Davis, A.M., Software Requirements: Analysis and Specification, Prentice-
Hall, Englewood Cliffs, NJ (1990).

[DOD85] “Specification Practices,” MIL-STD 490A, U.S. Department of Defense
(June 4, 1985).

[DS87] Delisle, N.M. and Schwartz, M.D., “Contexts — A Partitioning Concept for
Hypertext,” ACM Transactions on Office Information Systems 5(2),
p.168–186 (April, 1987).

83

[Eas93] Easterbrook, S., “Domain Modelling with Hierarchies of Alternative
Viewpoints,” pp. 65–72 in Proceedings of the IEEE International Sympo-
sium on Requirements Engineering, San Diego, CA (January, 1993).

[EFRV86] Estrin, G., Fenchel, R.S, Razouk, R.R., and Vernon, M.K., “SARA (System
ARchitect’s Apprentice): Modeling, Analysis, and Simulation Support for
Design of Concurrent Systems,” IEEE Transactions on Software Engineer-
ing SE-12(2), p.293–311 (1986).

[Fea93] Feather, M.S., “Requirements Reconnoitering at the Juncture of Domain and
Instance,” pp. 73–76 in Proceedings of the IEEE International Symposium
on Requirements Engineering, San Diego, CA (January, 1993).

[FKN92] Finkelstein, A., Kramer, J., and Nuseibeh, B., “Viewpoints: A framework for
Integrating Multiple Perspectives in System Development,” International
Journal of Software Engineering and Knowledge Engineering 2(1), p.31–57
(1992).

[Gar89] Garg, P.K., “GRAP—Information Management in Software Engineering: A
Hypertext Based Approach,” Ph.D. Dissertation, Computer Science Depart-
ment, University of Southern California, Los Angeles, CA (February, 1989).

[GL93] Goguen, J.A. and Linde, C., “Techniques for Requirements Elicitation,” pp.
152–164 in Proceedings of the IEEE International Symposium on Require-
ments Engineering, San Diego, CA (January, 1993).

[GS87] Garg, P.K. and Scacchi, W., “Maintaining Software Life Cycle Documents
as Hypertext: Issues, Analysis, and Directions,” Technical Report, Univer-
sity of Southern California, Los Angeles, California (1987).

[Har87] Harel, D., “On Visual Formalisms,” Communications of the ACM 30(6)
(June, 1987).

[HJ90] Holtzblatt, K. and Jones, S., “Contextual Inquiry: Principles and Practice,”
Technical Report DEC-TR 729, Digital Equipment Corporation (October,
1990).

[HLNPPSST90] Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R.,
Shtul-Trauring, A., and Trakhtenbrot, M., “STATEMATE: A Working
Environment for the Development of Complex Reactive Systems,” IEEE
Transactions on Software Engineering SE-16, p.403–414 (1990).

[Hud84] Huddleston, R., Introduction to the Grammar of English, Cambridge Univer-
sity Press, Cambridge (1984).

84

[HYP91] HYPERTIES Version 3.0, User’s Guide, Cognetics Corporation (1987-1991).

[IAI89] “System Specification for Unmanned Air Vehicle — Short-Range (UAV-
SR) System (RFP),” Technical Report, Israeli Aircraft Industries, Ltd.
(1989).

[IAI90] “Allocated Software System Requirements for Unmanned Air Vehicle —
Short-Range (UAV-SR) System (ASSR),” Technical Report, Israeli Aircraft
Industries, Ltd. (1990).

[IEEE92] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,” in
ANSI/Standard 610.12, IEEE, New York, NY (1992). Anonymous.

[ISK93] Ishihara, Y., Seki, H., and Kasami, T., “A Translation Method from Natural
Language Specifications into Formal Specifications Using Contextual
Dependencies,” pp. 232–239 in Proceedings of the IEEE International Sym-
posium on Requirements Engineering, San Diego, CA (January, 1993).

[Jac75] Jackson, M.A., Principles of Program Design, Academic Press, London
(1975).

[Kai93] Kaindl, H., “The Missing Link in Requirements Engineering,” ACM SIG-
SOFT Software Engineering Notes 18(2), p.30–39 (April, 1993).

[KCHNP90] Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A., “Feature
Oriented Domain Analysis (FODA) Feasibility Study,” Technical Report,
CMU/SEI-90-TR-21, DTIC: ADA235785, Software Engineering Institute
(November, 1990).

[Knu73] Knuth, D.E., The Art of Computer Programming: Sorting and Searching,
Addison-Wesley, Reading, MA (1973).

[Kra88] Krasner, H., “Requirements Problems in Large Software Projects: New
Directions for Software Engineering Technology,” Technical Report, MCC,
Austin, TX (1988).

[KS88] Kreitzberg, C.B. and Shneiderman, B., “Restructuring Knowledge for an
Electronic Encyclopedia,” in International Ergonomics Association Tenth
Congress, Sydney, Australia (1988).

[Lehman 1980] Lehman, M.M., “Programs, Life Cycles, and Laws of Software Evolution,”
Proceedings of the IEEE 68(9), p.1060–1076 (September, 1980).

[Lei87] Leite, J.C.S.P., “A Survey on Requirements Analysis.,” Advanced Software
Engineering Project Technical Report RPT-071, Department of Information
and Computer Science, University of California, Irvine, CA (June, 1987).

85

[LF91] Leite, J.C.S.P. and Freeman, P., “Requirements Validation through
Viewpoint Resolution,” IEEE Transactions on Software Engineering SE-
17(12) (December, 1991).

[LF93] Leite, J.C.S.P. and Franco, A.P.M., “A Strategy for Conceptual Model
Acquisition,” pp. 243–246 in Proceedings of the IEEE International Sympo-
sium on Requirements Engineering, San Diego, CA (January, 1993).

[LPR93] Lubars, M., Potts, C., and Richter, C., “A Review of the State of Practice in
Requirements Modeling,” pp. 2–14 in Proceedings of the IEEE International
Symposium on Requirements Engineering, San Diego, CA (January, 1993).

[Luh58] Luhn, M., “The Automatic Creation of Literature Abstracts,” IBM Journal of
Research and Development 2(2), p.159–165 (April, 1958).

[LW89] Lavi, J.Z. and Winokur, M., “ECSAM - A Method for the Analysis of Com-
plex Computer Systems & their Software,” in Proceedings of the Fifth Struc-
tured Techniques Association Conference, Chicago (May, 1989).

[Maa89] Maarek, Y., “Using Structural Information for Managing Very Large
Software Systems,” Ph.D. Dissertation, Faculty of Computer Science
Department, Technion, Haifa, Israel (January, 1989).

[MB88] Maarek, Y. and Berry, D.M., “The Use of Lexical Affinities in Requirements
Extraction,” Technical Report, Technion, Haifa, Israel (November, 1988).

[McD89] McDermid, J.A., “Requirements Analysis: Problems and the STARTS
Approach,” pp. 4/1–4/4 in IEEE Colloquium on Requirements Capture and
Specification for Critical Systems (Digest No. 138) (November, 1989).

[Mit84] Mitchell, W., A Prelude to Programming: Problem Solving and Algorithms,
Reston Publishing, Reston, VA (1984).

[MT88] Martin, J. and Tsai, W.T., “An Experimental Study in Upstream Software
Development,” Technical Report, University of Minnesota, Minneapolis,
MN (1988).

[Mye79] Myers, G.J., Composite/Structured Design, van Nostrand Reinhold, New
York, NY (1979).

[NR69] “Software Engineering: Report on a Conference Sponsored by the NATO
Science Commission,” Garmisch, Germany, 7-11 October 1968, Scientific
Affairs Division, NATO, Brussels, Belgium (January, 1969).

86

[Orr77] Orr, K.T., Structured Systems Development, Yourdon, New York (1977).

[Orr81] Orr, K.T., Structured Requirements Engineering, Ken Orr & Associates,
Topeka, KS (1981).

[Parnas 1972] Parnas, D.L., “On the Criteria to be Used in Decomposing Systems into
Modules,” Communications of the ACM 15(2), p.1053–1058 (December,
1972).

[PCCW93] Paulk, M.C., Curtis, B., Chrissis, M.B., and Weber, C.V., “Key Practices of
the Capability Maturity Model,” Technical Report, CMU/SEI-93-TR-25,
Software Engineering Institute (February, 1993).

[PT93] Potts, C. and Takahashi, K., “An Active Hypertext Model for System
Requirements,” Technical Report, College of Computing, Georgia Institute
of Technology (1993).

[RE93] S. Fickas and A. Finkelstein, Eds., Proceedings of the IEEE Inter-
national Symposium on Requirements Engineering, IEEE Computer Society,
San Diego, CA (January 4-6, 1993).

[Ros77] Ross, D.T., “Structured Analysis (SA): A Language for Communicating
Ideas,” IEEE Transactions on Software Engineering SE-3(1), p.16–33 (Janu-
ary, 1977).

[RS77] Ross, D.T. and Schoman, K.E. Jr., “Structured Analysis for Requirements
Definition,” IEEE Transactions on Software Engineering SE-3(1), p.6–15
(January, 1977).

[Rya93] Ryan, K., “The Role of Natural Language in Requirements Engineering,” pp.
240–242 in Proceedings of the IEEE International Symposium on Require-
ments Engineering, San Diego, CA (January, 1993).

[Sal89] Salton, G., Automatic Text Processing: The Transformation, Analysis and
Retrieval of Information by Computer, Addison-Wesley, Reading, MA
(1989).

[Sch92] Schach, S.R., Software Engineering, Aksen Associates & Irwin, Boston, MA
(1992). Second Edition.

[SEG68] Sackman, H., Erickson, W.J., and Grant, E.E., “Exploratory Experimental
Studies Comparing Online and Offline Programming Performance,” Com-
munications of the ACM 11(1), p.3–11 (January, 1968).

87

[SHTUE87] Saeki, M., Horai, H., Toyama, K., Uematsu, N., and Enomoto, H.,
“Specification Framework Based on Natural Language,” pp. 87–94 in
Proceedings of the Fourth International Workshop on Software Specification
and Design, Monterey, CA (April, 1987).

[SK83] Sankoff, D. and Kruskal, J.B., Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of sequence Comparison, Addison-
Wesley, Reading, MA (1983).

[Skl88] Sklar, B., Digital Communication Fundementals and Applications, Prentice-
Hall, Englewood Cliffs, NJ (1988).

[SM83] Salton, G. and McGill, M.J., Introduction to Modern Information Retrieval,
McGraw-Hill, New York (1983).

[SM85] Sievert, G.E. and Mizell, T.A., “Specification-Based Software Engineering
with TAGS,” Computer 18(4), p.56–66 (April, 1985).

[Smi93] Smith, T.J., “READS: A Requirements Engineering Tool,” pp. 94–97 in
Proceedings of the IEEE International Symposium on Requirements
Engineering, San Diego, CA (January, 1993).

[SMT92] Schneider, G.M., Martin, J., and Tsai, W.T., “An Experimental Study of
Fault Detection in User Requirements Documents,” ACM Transactions on
Software Engineering and Methodology 1(2), p.188–204 (April, 1992).

[SSKLW90] Siegel, J.A.L., Stewman, S., Konda, S., Larkey, P.D., and Wagner, W.G.,
“National Software Capacity: Near-Term Study,” Technical Report,
CMU/SEI-90-TR-12, Software Engineering Institute (1990).

[SSR85] Scheffer, P.A., Stone, III, A.H., and Rzepka, W.E., “A Case Study of
SREM,” Computer 18(4), p.47–54 (April, 1985).

[TH77] Teichroew, D. and Hershey, E.A. III, “PSL/PSA: A Computer-Aided Tech-
nique for Structure Documentation and Analysis of Information Processing
Systems,” IEEE Transactions on Software Engineering SE-3(1), p.41–48
(January, 1977).

[WAHKMOOTW93] White, S., Alford, M., Hotlzman, J., Kuehl, S., McCay, B.,
Oliver, D., Owens, D., Tully, C., and Willey, A., “Systems Engineering of
Computer-Based Systems,” IEEE Computer 26(11), p.54–65 (November,
1993).

[WE82] Winchester, J. and Estrin, G., “Requirements Definition and Its Interface to
the SARA Design Methodology for Computer-Based Systems,” AFIPS
Conference Proceedings 51, p.369–379 (June, 1982).

88

[WLLO90] Winokur, M., Lavi, J.Z., Lavi, I., and Oz, R., “Requirements Analysis and
Specifications of Embedded Computer Systems using ECSAM - a Case
Study,” pp. 80–89 in Proceedings of the IEEE CompEuro Conference, Tel
Aviv, Israel (May, 1990).

[WM91] Wu, S. and Manber, U., “Fast Text Searching With Errors,” TR 91-11,
Computer Science Department, University of Arizona, Tucson, AZ (June,
1991).

[WS84] Wiener, R. and Sincovec, R., Software Engineering with Modula-2 and Ada,
John Wiley & Sons, New York (1984).

[YMvD85] Yankelovich, N., Meyerowitz, N., and Dam, A. van, “Reading and Writing
the Electronic Book,” Computer 10(18), p.15–30 (October, 1985).

[Zav82] Zave, P., “An Operational Approach to Requirements Specification for
Embedded Systems,” IEEE Transactions on Software Engineering SE-8(3)
(May, 1982).

89

Appendix A AbstFinder Implementation Considerations

A.1 AbstFinder Output

If AbstFinder identifies, for example, “|surface |metal |” as an abstraction, it
means that both phrases appeared in the sentence that served as the reference for comparison to
all other sentences. “|surface |metal |”, appearing in the AbstFinder output, means
that the abstraction contains sentences that contain only “surface”, sentences that contain only
“metal”, and sentences that contain them both, but as different runs. This means that “metal sur-
face”, as interpreted by the elicitor, will serve as the identifier of the abstraction, and the content
of the abstraction will be the union of sentences that contain “metal” and sentences that contain
“surface”.

corr-phrases-file is the output file of AbstFinder that contains the pure list of the abstrac-
tion identifiers, i.e., the “correlated-phrases” that appear in the right most column of AbstFinder
formatted output. Each line i on corr-phrases-file contains the correlated-phrases that identify
abstraction i. These identifiers are phrases in the free language consisting of the original tran-
script words of fragments thereof. The elicitor will scan those identifiers in order to approve the
abstractions. All the other information in the formatted output is for research purposes only.

Repetitions and Estimation in the Output

By explicit design decisions there are duplicates in the output. The design decisions
derive from the requirement that the tool be clerical and not attempt any intelligence that might
lose coverage. Two kinds of repetitions are identified:

1. repetition of a term within an abstraction’s identifier, such as, “s file|tokens
file|“ (See Appendix C.3). Suppose the reference sentence, the one which is com-
pared to the others, contains the phrase “xxx tokens file xxx”. In the rest of the document
there are sentences that contain only “file”, and there are sentences that contain the full
phrase “xxx tokens file xxxx”. So, it is possible that the phrases that caused similarity
will be found in full, as in the reference sentences, and also in a substring. Note that
sometimes part of the correlated-phrases will be one character noise, e.g., “...s ...”. This
noise happens because AbstFinder ignores word boundaries. The elicitor should ignore
the noise. There is also the possibility that in one sentence appears a concept and in two
or more phrases, and the elicitor will interpret the term as only one phrase.

2. repetitions of abstraction identifiers, such as “equipment” (See Appendix E.3) Sometimes
the same abstraction “equipment” appear in six different lines. Suppose, for example,
“equipment” appears in sentences 3, 5, and 8. Then, when 5 is used as the reference, the
abstraction (5,3,8) is also identified by “equipment”. Then, in the same way, when 8 is
used as the reference, (8,3,5) is found also identified by “equipment”. These are actually
permutations of the same abstraction. Since coverage was the most important criteria in
this research, no attempt was done to clean repetitions from the output list of Abst-
Finder. Now that the prototype has successfully proved a concept, it is time to consider

90

adding filters for cleaning repetitions from the output, but the filters have to be designed
carefully to insure that coverage is not lost.

The prototype was built in order to check the feasibility of a new method. The elicitor
was counted on doing all the thinking and overcoming reasonable inconveniences. In the future,
filtering utilities can be implemented for cleaning repetitions in the output.

An explanation is in order about the value of “corr_lines#”, e.g., the number of sentences
(See also Appendix A.3) contained in an abstraction. If some abstraction is identified by four
phrases, for example abstraction number 426 in the RFP results (See Appendix E.3), “|
flight| flight |mination | flight termination |”. Then “corr_lines#”
will count all lines that contain all those combinations, i.e., lines that have “flight” and
“mination” and “ flight termination ” (blank before plus blank after). Thus,
“corr_lines#” is greater than the number of occurrences of any of its individual pieces in the
input.

The index “corr_lines#” is used for arranging the output, so that abstractions identified by
fewer phrases will be at the top, and among the abstractions that have same “corr_phrase#”, the
ones with more “corr_lines#” will be higher in the output list. So, “corr_lines#” gives a rough
estimate of how many times that abstraction appears in the transcript. Note again, “corr_lines#”
is in the output for research purposes only. They are not to be used by the elicitor. The elicitor
checks the whole list plus iterations in order to achieve full coverage. Moreover, when building
the abstraction network, the elicitor chooses sentences according to one specific phrase. Then,
the sentences can be counted accurately.

A.2 How does the Elicitor use AbstFinder Output

Confirm the Abstractions

The elicitor reads the AbstFinder output in order to capture the titles, abstraction
identifiers, of the main ideas. Then, he or she goes back to the text in order to get from the origi-
nal sentences in the original transcript all the details about that abstraction. Recall that Abst-
Finder outputs in part 2, the line numbers that are contained in each abstraction. The elicitor
can use this list of line numbers, to go back to the original sentences for the details of the
abstraction. However, this action is premature, since the abstraction network, is going to collect
and display that information via a user-friendly interface. Moreover, these sentence numbers
contain extra and irrelevant sentences, such as, for “s file|token file|”, contain sen-
tence with “s file” in addition to the relevant ones with “token file”. Thus, the elicitor
is suggested to concentrate on the abstractions identifiers, and to confirm that “token file” is the
specific abstraction identifier in that case.

Interpretation of the Abstraction Title

91

If AbstFinder finds in the same shift two runs “a” and “b”. The output will show them
as “|a|b|” and not “|a b|”. Since it is not known in what circular shift it will be found, than
maybe the combination “b a” is the correct concept and not “a b”. So, putting a bar between
them reminds the reader to think of the right combination. AbstFinder outputs as one sequence
only a complete run, which has in it the words in the order in the original transcript.

Not Useful Abstractions

In the design of the formatted output of AbstFinder, it was decided to indicate the point
beyond which the abstractions are not useful in the following way. If the length of the list of
“correlated-phrases” of some abstraction exceeds the page width, then it is truncated at the page
boundary. The truncation is a visual clue to the elicitor that this abstraction is. The full informa-
tion itself remains in part 2 of the AbstFinder formatted output just in case the presumption of
uselessness is wrong.

A.3 AbstFinder Input Filtering

The original transcript is the text as written by the client in some word processor, with its
own punctuation keywords. So, a sentence may go beyond a line or several lines. Because the
AbstFinder algorithm is sentence oriented, the first step in AbstFinder program is to rearrange
the input source into a sentence In the AbstFinder program the identification of sentence boun-
daries in the input transcript is done according to a user-input punctuation-keyword file. For
instance, in a natural language transcript people usually use . ! ; or ? to define sentence boun-
daries. In many formal programming languages, the sentence delimiter will be “;”.

Still there is a problem that people use a “.” also for other purposes than punctuation.
For instance, in section numbering, e.g., “1.2.11”, and for abbreviations, e.g., “e.g.”, “i.e.”,
“U.S.A.”, “etc.”. Since AbstFinder program uses standard filters for rearranging the input tran-
script, it will cut the section number “1.2.11” into three lines

1
2
11

and “e.g.” will be cut to two lines

e
g

which will cause redundancy of line-sentences, and also may cut one sentence to several lines.
Thus, an additional pre-pass was necessary on the input, in order to change the “.” in those
abbreviations or section numbering to some another keyword that is not a sentence delimiter in
that transcript. The patterns of these changes are standard enough to make the the construction
and use of this pre-pass part of the standard method of using AbstFinder. See Figure 13 for an
overview of how to use AbstFinder, and see also Appendix B.

92

Document

Reorganize source so
each line contains one
sentence

SOURCE

SOURCE.cr

SOURCE.ignored

Clean SOURCE.cr
from puctuation, and
ignored words

Ignored
Files

Find abstractions in
SOURCE.ignored

SOURCE recognized
abstractions identifiers

input

learn

checkSOURCE.output list corr-phrases-file

SOURCE.strained

Strain out from

Figure 13: AbstFinder Input/Output Architecture
AbstFinder של פלט קלט מבנה :13 �יור

93

Appendix B Manual Pages of AbstFinder Tools

The manual pages for the AbstFinder Tools are in UNIX manual page format on the
subsequent pages. Their page numbers have been edited to match their position in this thesis.

94

ABSTFINDER (l) MISC. REFERENCE MANUAL PAGES ABSTFINDER (l)

NAME
AbstFinder �A set of tools for abstraction identification

SYNOPSES
makeSentencesToLines infile outfile
eliminateIgnoredParts infile outfile
abstfinderFull infile outfile [optional_new_name_for_CorrPhrases]
abstfinderSummary infile outfile [optional_new_name_for_CorrPhrases]
strainTermsFromInput infile outfile

DESCRIPTION
AbstFinder is a collection of tools and an environment for producing a list of identified abstractions from
an ASCII file written in any natural language or any formal language (programming or other). AbstFinder
is based on the assumption that important abstractions are discussed more than once among the sentences
written in the file. The more sentences contained in an abstraction the more significant it is.

First, the user invokes a shellscript, makeSentencesToLines, to reorganize the input file into lines, each con-
taining one sentence according to a pre-defined set of punctuation characters.

Then, the user invokes a shellscript, eliminateIgnoredParts, to filter out from the input file ignored words
taken from IgnoredFile, IgnoredApplication, and IgnoredSuffixes.

Finally, the user invokes the abstfinderSummary or abstfinderFull shellscript to identify the abstractions.
The output of abstfinderFull is in two parts. The first part is a summary of the identified abstractions, and
the second part contains a full description of the abstractions. abstfinderSummary gives on the first part
and is usually sufficient for most purposes.

These steps may be repeated after updating IgnoredApplication with words discovered to skew the first
output. Additionally, strainTermsFromInput may be run to verify that the bottom of the output list of terms
that seems not to contain any new abstraction in fact does not.

ENVIRONMENT
The environment in which AbstFinder runs includes the following files:

IgnoredFile
IgnoredFile contains so-called noise phrases such as ‘‘a’’, ‘‘an’’, ‘‘the’’, ‘‘of’’, ‘‘of the’’,
etc. plus any useless general phrases found in previous runs of the program. This file is intended to
be used for any application.

IgnoredApplication
IgnoredApplication contains those frequent application keywords, which identify the abtraction of
the application as a whole, such as the name of the application. These are to be ignored because
their predominating presence overshadows other terms that are sought.

IgnoredSuffixes
IgnoredSuffixes contains suffixes such as ‘‘tion’’, ‘‘ance’’, ‘‘ment’’, ‘‘ing’’, ‘‘able’’, etc.
These suffixes are marked by the program, input, so they are taken into consideration during the
process of abstraction identification.

CorrPhrases
CorrPhrases is an output file containing those frequent phrases that were identified by
abstfinderSummary or abstfinderFull. This file is used as an input file to the strainTermsFromIn-
put shellscript.

USE OF TOOLS
Below is a description of a typical scenario for use of the tools; the file names beginning with “source ” are
particular for the example. Other file names are the same for all runs of the programs:

1. Prepare an input file for AbstFinder, say source.in

Sun Release 4.1 Last change: May 1 1993 95

ABSTFINDER (l) MISC. REFERENCE MANUAL PAGES ABSTFINDER (l)

2. Run makeSentencesToLines on the input made in Step 1.

makeSentencesToLines source.in source.cr.

This command puts each sentence into its own line in source.cr.

3. In order to filter ignored words and ignored suffixes use eliminateIgnoredParts as follows:

a. Prepare IgnoredFile with common words to ignore, separated by blanks.

b. Prepare IgnoredApplication with application words to ignore, separated by blanks. This will usu-
ally be empty for the first run with a new application

c. Prepare IgnoredSuffix file with suffixes to ignore, separated by blanks.

d. To get the filtered input into a file, say source.input, do

eliminateIgnoredParts source.cr source.input.

Some of the steps of this shell script will take a bit of time, in the order of several minutes. Hang
on! When the command is done, the file source.input is ready for use for by abstfinderSummary
or abstfinderFull. Generally, one uses the former as it gives enough information for the user who
is moderately familiar with the input to find the abstractions.

4. Assuming that we are using abstfinderSummary on the file source.input do the following:

abstfinderSummary source.input source.output.

This step will take a long time, like an hour and a quarter for the average technical paper. So go out to
lunch and come back sated to see the output! Besides generating the list of abstractions together with
pointers for finding the phrases in the input, abstfinderSummary also creates the file CorrPhrases that lists
only the abstractions. This is intended to be used for straining. If a third argument is given in the invocation
of abstfinderSummary, that argument is used as the file name for this list of only the abstractions.

5. Now you must examine source.output to determine what is to be ignored as an application-particular
term for the next run. Any such terms can be put into the file IgnoredApplication. Then the above steps are
repeated. At some point, the user is satsified that all the generate terms above a certain point (identified by
the user) are abstractions.

6. If you wish to check that there is no new significant information below the certain point, he or she uses
the strainer to filter out what is known to be significant and then runs abstfinderSummary or abstfinderFull
on what is left to see that it does not yield anything significant. The user must first edit CorrPhrases to
delete the significant phrases below the identified certain point. Then strainTermsFromInput is invoked.

strainTermsFromInput source.cr source.strain

In the continuing example, source.cr is the input file to be strained, and source.strain is the output file, to
be used as input to abstfinderSummary in Step 7. The program strainTermsFromInput uses the edited
CorrPhrases file.

7. Now abstfinderSummary can be invoked for the next iteration. Notice that in the continuing example,
you have to use source.strain as the input file to abstfinderSummary. Notice also that both
abstfinderSummary and abstfinderFull write over CorrPhrases on each run. Therefore, it is useful to have
the third argument for abstfinderSummary or abstfinderFull.

FILES
IgnoredFile general terms to ignore
IgnoredApplication application specific terms to ignore
IgnoredSuffixes suffixes to ignore
CorrPhrases just the abstractions

Sun Release 4.1 Last change: May 1 1993 96

ABSTFINDER (l) MISC. REFERENCE MANUAL PAGES ABSTFINDER (l)

SEE ALSO
makeSentencesToLines(1), eliminateIgnoredParts(1), abstfinderSummary(1), abstfinderFull(1),
strainTermsFromInput(1)

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 97

MAKESENTENCESTOLINES (l) MISC. REFERENCE MANUAL PAGES MAKESENTENCESTOLINES (l)

NAME
makeSentencesToLines � reorganize input to put each sentence in its own line.

SYNOPSIS
makeSentencesToLines infile outfile

DESCRIPTION
makeSentencesToLines is a tool of AbstFinder for producing a list of identified abstractions from ASCII file
written in any natural language or any formal language (programming or other).

makeSentencesToLines is a shell script, invoking newcr(1) and tr(1), that reorganizes the contents of infile
into lines, each containing one sentence according to a pre-defined punctuation symbols list to yield outfile.

The list of punctuation symbols marking the ends of sentences is defined as a shell variable inside the
script; the list can easily be edited to suit the user’s needs.

SEE ALSO
AbstFinder(1), newcr(1), tr(1)

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 98

ELIMINATEIGNOREDPARTS (l) MISC. REFERENCE MANUAL PAGES ELIMINATEIGNOREDPARTS (l)

NAME
eliminateIgnoredParts � remove ignored terms from an ASCII file

SYNOPSIS
eliminateIgnoredParts infile outfile

DESCRIPTION
eliminateIgnoredParts is a tool of AbstFinder for producing a list of identified abstractions from ASCII file
written in any natural language or any formal language (programming or other).

It is actually a shell script for removing from infile the ignored words listed in IgnoredFile, IgnoredAppli-
cation, and IgnoredSuffixes. The result goes to outfile.

First, eliminateIgnoredParts changes all characters to lower case, using tr(1). Then, it activates the input
program in order to remove the ignored words.

SEE ALSO
AbstFinder(1), input(1), tr(1)

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 99

ABSTFINDERFULL (l) MISC. REFERENCE MANUAL PAGES ABSTFINDERFULL (l)

NAME
abstfinderFull � find abstractions in ASCII text

SYNOPSIS
abstfinderFull infile outfile [optional_new_name_for_CorrPhrases]

DESCRIPTION
abstfinderFull is a tool of AbstFinder for producing a list of identified abstractions from ASCII file written
in any natural language or any formal language (programming or other).

abstfinderFull is actually a shellscript that uses abstfinder.ful to identify the abstractions in infile and to out-
put them to outfile. The output of AbstFinder is in two parts. The first part is a summary of the identified
abstractions, and the second part contains a full description of the abstractions. The summary lists the
abstractions and gives pointers (sentence numbers) to where they are found in input. The full description
shows the sentences containing the abstractions.

As a side effect, abstfinder.ful generates a file CorrPhrases containing the summary without the pointers. If
a third argument is provided to abstfinderFull, then CorrPhrases is renamed to have the third argument as
its name. It is recommended to use this third argument for all runs but the one whose input and output are
submitted to strainTermsFromInput.

FILES
CorrPhrases

SEE ALSO
AbstFinder(1), abstfinder.ful(1) strainTermsFromInput(1)

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 100

ABSTFINDERSUMMARY (l) MISC. REFERENCE MANUAL PAGES ABSTFINDERSUMMARY (l)

NAME
abstfinderSummary � find abstractions in ASCII text

SYNOPSIS
abstfinderSummary infile outfile [optional_new_name_for_CorrPhrases]

DESCRIPTION
abstfinderSummary is a tool of AbstFinder for producing a list of identified abstractions from ASCII file
written in any natural language or any formal language (programming or other).

abstfinderSummary is actually a shellscript that uses abstfinder.sum to identify the abstractions in infile and
to output them to outfile. The output of AbstFinder is a summary of the identified abstractions. This is the
same as the first part of the output generated by abstfinderFull. This summary lists the abstractions and
gives pointers (sentence numbers) to where they are found in input.

As a side effect, abstfinder.ful generates a file CorrPhrases containing the summary without the pointers. If
a third argument is provided to abstfinderSummary, then CorrPhrases is renamed to have the third argu-
ment as its name. It is recommended to use this third argument for all runs but the one whose input and out-
put are submitted to strainTermsFromInput.

FILES
CorrPhrases

SEE ALSO
AbstFinder(1), abstfinder.sum(1) abstfinderFull(1) strainTermsFromInput(1)

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 101

STRAINTERMSFROMINPUT (l) MISC. REFERENCE MANUAL PAGES STRAINTERMSFROMINPUT (l)

NAME
strainTermsFromInput � strain terms from an ASCII file.

SYNOPSIS
strainTermsFromInput infile outfile

DESCRIPTION
strainTermsFromInput is tool of AbstFinder for producing a list of identified abstractions from ASCII file
written in any natural language or any formal language (programming or other).

strainTermsFromInput is actually a shell script for removing from infile all terms found in the files
CorrPhrases and IgnoredApplication. The result is sent to outfile.

First, it changes all characters to lower case, using tr. Then, it activates the strainer program to do the
actual straining.

FILES
CorrPhrases

SEE ALSO
AbstFinder(1), strainer(1), tr(1),

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 102

ABSTFINDER.FUL (l) MISC. REFERENCE MANUAL PAGES ABSTFINDER.FUL (l)

NAME
abstfinder.ful � find abstractions

SYNOPSIS
abstfinder.ful infile outfile

DESCRIPTION
abstfinder.ful identifies abstractions from infile and generates the output to outfile. The output of abstfinder
is in two parts. The first part is a summary of the identified abstractions together with pointers (sentence
numbers) to where in infile they are found, and the second part contains a full description of the abstrac-
tions.

abstfinder.ful also creates a file CorrPhrases that lists only the abstractions (the first part without the
pointers). This file is intended to be used as input to strainTermsFromInput.

FILES
CorrPhrases

SEE ALSO
AbstFinder(1), abstfinderFull(1), strainTermsFromInput(1)

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 103

ABSTFINDER.SUM (l) MISC. REFERENCE MANUAL PAGES ABSTFINDER.SUM (l)

NAME
abstfinder.sum � find abstractions

SYNOPSIS
abstfinder.sum infile outfile

DESCRIPTION
abstfinder.sum identifies abstractions from infile and generates the output to outfile. The output of
abstfinder is identical to that of the first part of abstfinder.ful(1) and is a summary of the identified abstrac-
tions together with pointers (sentence numbers) to where in infile they are found.

abstfinder.sum also creates a file CorrPhrases that lists only the abstractions (outfile without the pointers).
This file is intended to be used as input to strainTermsFromInput.

FILES
CorrPhrases

SEE ALSO
AbstFinder(1), abstfinderSummary(1), abstfinder.ful(1), strainTermsFromInput(1)

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 104

STRAINER (l) MISC. REFERENCE MANUAL PAGES STRAINER (l)

NAME
strainer � strain terms from an ASCII file.

SYNOPSIS
strainer infile outfile [��i]

DESCRIPTION
strainer is a program that is activated by strainTermsFromInput which is a tool of AbstFinder for produc-
ing list of identified abstractions from ASCII file written in any natural language or any formal language
(programming or other).

strainer removes from infile all terms taken from CorrPhrases and, if ��i was mentioned in the command
line, from IgnoredApplication and sends the result to outfile.

CorrPhrases is a file generated by abstfinderFull or abstfinderSummary.

FILES
CorrPhrases

SEE ALSO
AbstFinder(1), abstfinderFull(1), abstfinderSummary(1), strainTermsFromInput(1),

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 105

INPUT (l) MISC. REFERENCE MANUAL PAGES INPUT (l)

NAME
input � remove ignored terms from an ASCII file

SYNOPSIS
input infile outfile

DESCRIPTION
input is a program that is activated by eliminateIgnoredParts, which is a tool of AbstFinder for producing a
list of identified abstractions from ASCII file written in any natural language or any formal language (pro-
gramming or other).

input removes from infile words found in IgnoredFile, IgnoredApplication, and IgnoredSuffixes, and sends
the result to outfile. Note that while the ignored words are completely filtered, the ignored suffixes are
marked only in their eighth bits in order to be able to ignore them in the process of abstraction
identification.

SEE ALSO
AbstFinder(1), eliminateIgnoredParts(1)

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 106

NEWCR (l) MISC. REFERENCE MANUAL PAGES NEWCR (l)

NAME
newcr � replace two successive CRs with a dot and remove all redundant CRs.

SYNOPSIS
newcr

DESCRIPTION
newcr is a filter used by makeSentencesToLines to replace two successive CRs with a dot and to remove all
redundant CRs, As a filter, the program accepts input from the standard input and outputs to the standard
output.

SEE ALSO
AbstFinder(1), makeSentencesToLines(1)

AUTHOR
Leah Goldin, Computer Science Department, Technion, Haifa, Israel.

Sun Release 4.1 Last change: May 1 1993 107

Appendix C Results and Data of the findphrases Case Study

This appendix contains AbstFinder data and results on the findphrases case study:

1. Section C.1 contains the man page of findphrases that was used as the specification
document in this case study.

2. Section C.2 contains the ignored files that were used by AbstFinder.

3. Section C.3 contains AbstFinder generated output list of abstractions.

4. Section C.4 contains already known abstractions by Aguilera, the designer of
findphrases.

C.1 Source Transcript of the findphrases Case Study

The manual pages for findphrases are in UNIX manual page format on the subsequent
pages. Their page numbers have been edited to match their position in this thesis. The input to
AbstFinder for this case study was an ASCII version of the formatted manual page.

108

FINDPHRASES (LOCAL) MISC. REFERENCE MANUAL PAGES FINDPHRASES (LOCAL)

NAME
findphrases � find repeated phrases in an arbitrary text

SYNOPSIS
findphrases [��nnumber] ��ppunctuation-keyword-file [��xignored-phrases-file] [��mmulti-tokens-file] [
��u] [��b] [��s] [��t] [��v] [��c]

DESCRIPTION
All files mentioned in the synopsis provide their data in what is referred to as free format subject to
particular restrictions to be described for each case. In free format, the items of the file may be entered zero
or several per line with a mixture of blanks and tabs before, in between, and after the items. Consequently,
no item can include a blank, a tab, or a newline.

The ��n argument is optional and if present provides a number number serving as the maximum length
phrase (to be described later) to be tallied. If this argument is not present, if it does not supply a number, or
if the supplied number is outside the reasonable range of greater than zero and less than or equal to 50, then
number is taken as 10.

The punctuation-keyword-file contains in free format a list of those character strings to be taken as
punctuation/keywords (see below). The optional ignored-phrases-file contains one-per-line a list of
phrases to be ignored in the tallying (see below). In each line, the tokens (see below) are in free format.
The optional multi-tokens-file contains in free format a list of those character strings consisting of more
than one symbolcharacter (see below) which are to be taken as multi-tokens (see below).

No assumptions are made about the standard input, thus it may be an arbitrary text. The program parses the
text into words and symbolcharacters. These in turn are formed and classified into tokens and
punctuation/keywords based on the information provided by the punctuation-keyword-file and, when the
��m option is present, the multi-tokens-file.

First some definitions are necessary:

Whitespace: blank , tab, newline ,.IR

Wordcharacter: letter , digit,.B_

Symbolcharacter: any printable character which is neither a wordcharacter nor a blank

Word: any sequence of wordcharacters delimited on each side by whitespace or a symbolcharacter

Punctuation/Keyword: whatever is in the punctuation-keyword-file; the symbolcharacter strings
are called punctuation and the wordcharacter strings are called keywords

Multi-token: whatever is in the multi-tokens-file

Token: any word, symbolcharacter, or multi-token which is not listed in the punctuation-
keyword-file

Sentence: list of tokens delimited on each side by punctuation/keyword

Phrase: one or more consecutive tokens occurring within one sentence

The main job of this program is to tally the occurrence of all phrases in all sentences. The maximum
length phrase that has to be considered is that of number tokens. If the ignored-phrases-file is provided,
then the phrases given in the file are to be ignored in the tallying. If the ��b option is used along with the
ignored-phrases-file, then phrases which begin with an ignored phrase are also ignored in the tallying.

The standard output consists of:

a copy of the input as is, with the lines numbered and the punctuation/keywords overstruck two
times (i.e., printed three times in place) so that they can be spotted easily,

a frequency ranked table of the repeated phrases. i.e., those appearing more than once among the
sentences; that is the entries of the table are given in order of decreasing frequency, and

an alphabetically ordered table of the repeated phrases.

Sun Release 4.1 Last change: 109

FINDPHRASES (LOCAL) MISC. REFERENCE MANUAL PAGES FINDPHRASES (LOCAL)

In the two tables, the entry for a repeated phrase consists of:

a sequence of asterisks indicating the phrase’s frequency as a percentage of the maximum
frequency; in this one asterisk represents 10%,

the actual number of occurrences of the repeated phrase,

the repeated phrase itself, and

a list of the numbers of all lines containing the beginning of the repeated phrase.

In printing the repeated phrase itself in a table entry, the underscores, i.e., ‘‘_’’, are printed as blanks. This
means that an underscore can be used immediately preceeding or following a word that looks like a
keyword to prevent it from being considered a keyword.

Note that the definition of ‘‘phrase’’ is independent of the number of times it occurs in the sentences. An
ignored phrase is simply one to be ignored in the tallying but not in searching for phrases. A phrase which
contains an ignored phrase which itself is not ignored is to be tallied. When the ��b option is present, a
phrase which begins with an ignored phrase is not to be tallied. A repeated phrase is one whose final tally
is greater than one. Only the repeated phrases show up in the tables of the output.

Typically, the ignored-phrases-file will contain so-called noise phrases such as ‘‘a’’, ‘‘an’’, ‘‘the’’, ‘‘of’’,
‘‘of the’’, etc. plus any useless phrases found in previous runs of the program.

One particular configuration of the files is as follows:

Punctuation-keyword-file: ; [] abort accept access all and array at begin body case constant
declare delta digits do else elsif end entry exception exit for function generic goto if in is
limited loop mod new not null of or others out package pragma private procedure raise
range record rem renames return reverse select separate subtype task terminate then type
use when while with xor

Multi-tokens-file: ���� := <= .B

This configuration is suited for finding repeated phrases in Ada� (Ada is a trademark of the U. S.
Department of Defense.) or in an Ada-based program design language.

If the ��u option is present, then only the unique phrases that are not wholly and everywhere contained in
another phrase are listed in the tables of the output. In addition to the already specified output, if the ��s
option is present, then all the sentences are listed; if the ��t option is present, then all the tokens are listed; if
the ��v option is present, then the output is verbose with the punctuation/keywords listed, and when the ��m,
and respectively the ��x, option is present, the multi-tokens, and respectively the ignored phrases, are listed.
If the ��c option is present, then upper and lower case distinctions are to be applied in determining whether
a phrase is in a sentence. The default is to ignore case distinction in the comparisons.

DIAGNOSTICS
They are good, of course.

BUGS
There are none, of course.

Sun Release 4.1 Last change: 110

C.2 Ignored Files Used in the findphrases Case Study

ignored-common-word-file:

the of is to an a from and as can be be being do does done did with very high

later well use using used in or at on want wanted anywhere until many new

somewhere whatever will for not by should able all have has had when more than

top are how first thereby any would make made give through this here between

within everywhere end zero underscore

two when generally immediately only now sufficient after continued case cases

shall initial that begin gegun successful take taken these both unique also

low one normal without possible ready kind most during just anything talk

about it go went up try tight somthing if i into move moves moved out get

getting like each provide provides contains contained containing particular

before allways back send sent you fact second third whether its but what same

other straight where me sure how we depend actually onto affect necessarily

necessary could very else instance they see side even matter told him said

off no so three several those right since some another which alright set

put much correct synopsis include item items

becuase was there then something under even effective affect available allow

thing range consist consisting maximum length contain contains

given less greater consequently below itself ever per

ignored-application-words-file:

findphrases ignored ignore repeated repeat

distinction program terminate

present described provided begin beginning print printed printing printable

call called standard course entry occur occurring occurrs

occurrence occurrences number numbers definition

definitions times considered form turn based frequency follow follows following

ordered sign limited vers sequence represents

tally tallied tallying

ignored-suffixes-file:

ition ntion ption nction ction ation tion

ance ence ment sent able ered ting ings ing

sist tive pplied ified lied ted ited ied ed

ically ally lly

111

C.3 AbstFinder Results in the findphrases Case Study

In this and other appendix sections showing AbstFinder output, long lines in part 1 of
the AbstFinder output are truncated by their extending beyond the right-hand margin of the
page. Despite the ugliness of the truncation, it corresponds to the reality of the user ignoring the
too much detail that a too long line represents. In any case, that which is missing in the trunca-
tion can be seen by looking in part 2 of the AbstFinder output.

S U M M A R Y OF A B S T F I N D

--

of lines read from input file is 54

of abstractions found is 49

--

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

1 | 42 | 1 | 11 | punctuation keyword file|

2 | 14 | 1 | 2 | whitespace|

3 | 6 | 1 | 2 | argument |

4 | 38 | 2 | 25 | phrase| phrase |

5 | 44 | 2 | 14 | s file|tokens file|

6 | 23 | 2 | 12 | tokens |s sentence|

7 | 16 | 2 | 9 | character|symbolcharacter|

8 | 43 | 2 | 8 | multi |r multi |

9 | 2 | 2 | 6 | free format |files |

10 | 4 | 2 | 5 | blank| blank tab newline|

11 | 41 | 2 | 3 | files | configuration |

12 | 11 | 2 | 3 | arbitrary text|input |

13 | 26 | 3 | 29 | phrases |file phrases file | phrases file phrases |

14 | 5 | 4 | 28 | phrase|argument |optional | phrase |

15 | 24 | 4 | 26 | phrases |s sentence| phrase|s sentences|

16 | 45 | 4 | 26 | phrases a| phrase| phrases | configuration |

17 | 20 | 4 | 17 | s file | multi tokens file|e token| multi tokens file |

18 | 33 | 4 | 12 | keyword|keyword |keyword p|d prev|

19 | 12 | 4 | 12 | character|words |symbolcharacter|characters|

20 | 25 | 5 | 31 | phrase|tokens| phrase |e tokens| phrase t|

21 | 0 | 5 | 26 | phrases |arbitrary text|d phrase| phrases |phrases a|

22 | 29 | 5 | 25 | phrases| phrase| phrases|table phrases| table|

23 | 35 | 5 | 25 | phrases| phrase| phrase | phrases| phrase s|

24 | 36 | 5 | 25 | phrase|e phrase|phrase | phrase | phrase phrase |

112

25 | 39 | 5 | 25 | phrases |output| tables | phrases s|tables output|

26 | 9 | 5 | 14 | tokens f|free format| line |e token|e tokens|

27 | 15 | 5 | 11 | blank| blank tab newline|file f|character|wordcharacter|

28 | 17 | 5 | 10 | blank |character | character |wordcharacter|wordcharacter |

29 | 3 | 5 | 10 | file m| free format | blank| line |blanks|

30 | 21 | 6 | 20 | punctuation keyword file |multi token|character |symbolcharacter m

31 | 22 | 7 | 37 | d phrase|punctuation keyword |tokens | list |s delimited |keyword p

32 | 48 | 7 | 28 | phrase|phrase |option| option| option |e sentence| phrase |

33 | 34 | 7 | 26 | phrase|e phrase|phrase |s sentence|s sentences| phrase |e phrase |

34 | 30 | 7 | 25 | phrase|phrase | phrase |s phrase | table|consists | tables |

35 | 7 | 7 | 19 | punctuation keyword file |free format | free format |file free for

36 | 32 | 8 | 27 | phrase| phrase|blanks| blank| phrase | phrase t|table | table|

37 | 37 | 8 | 27 | phrase|phrase |option|option | phrase | b option |s phrase |option

38 | 8 | 9 | 30 | phrases |phrases file |optional | line | optional | phrase| phrases

39 | 18 | 9 | 17 | punctuation keyword|character |symbolcharacter |characters| whites

40 | 1 | 10 | 39 | phrases |file m| punctuation keyword file |phrases file |tokens f|m

41 | 40 | 10 | 30 | phrases |e phrases |phrases f|s file|phrases file | phrases file |s

42 | 19 | 11 | 18 | punctuation keyword file |multi token|keywords |character strings

43 | 28 | 12 | 34 | phrases| punctuation keyword|punctuation keywords |input | phrase|

44 | 27 | 12 | 29 | phrases |phrases file |file phrases |phrase |option| option|option

45 | 31 | 12 | 25 | phrase|e phrase|phrase |e list |al phrase| phrase |es phrase|t line

46 | 47 | 13 | 39 | phrases |tokens | punctuation keyword|multi tokens |option|punctuat

47 | 10 | 13 | 29 | multi tokens |multi tokens file|s file |free format | free format |

48 | 13 | 13 | 28 | punctuation keyword|file m|multi tokens file| punctuation keyword

113

abstractions found

{1} abst_id=42

==================

correlated phrases of abstraction are

(#=1)

punctuation keyword file|

correlated sentences of abstraction are

(#=11)

44 2 8 14 20 21 23 24 30 35 49

{2} abst_id=14

==================

correlated phrases of abstraction are

(#=1)

whitespace|

correlated sentences of abstraction are

(#=2)

16 20

{3} abst_id=6

==================

correlated phrases of abstraction are

(#=1)

argument |

correlated sentences of abstraction are

(#=2)

7 6

{4} abst_id=38

==================

correlated phrases of abstraction are

(#=2)

phrase| phrase |

correlated sentences of abstraction are

(#=25)

40 1 2 6 9 24 26 27 28 29 30 31 32 33 34 36

37 38 39 41 42 47 48 49 50

114

{5} abst_id=44

==================

correlated phrases of abstraction are

(#=2)

s file|tokens file|

correlated sentences of abstraction are

(#=14)

46 2 9 10 11 14 22 24 25 27 28 29 42 49

{6} abst_id=23

==================

correlated phrases of abstraction are

(#=2)

tokens |s sentence|

correlated sentences of abstraction are

(#=12)

25 2 10 11 14 22 24 26 27 36 46 49

{7} abst_id=16

==================

correlated phrases of abstraction are

(#=2)

character|symbolcharacter|

correlated sentences of abstraction are

(#=9)

18 8 11 13 17 19 20 21 23

{8} abst_id=43

==================

correlated phrases of abstraction are

(#=2)

multi |r multi |

correlated sentences of abstraction are

(#=8)

45 2 11 14 21 22 23 49

{9} abst_id=2

==================

correlated phrases of abstraction are

(#=2)

115

free format |files |

correlated sentences of abstraction are

(#=6)

3 4 8 10 11 43

{10} abst_id=4

==================

correlated phrases of abstraction are

(#=2)

blank| blank tab newline|

correlated sentences of abstraction are

(#=5)

5 4 17 19 34

{11} abst_id=41

==================

correlated phrases of abstraction are

(#=2)

files | configuration |

correlated sentences of abstraction are

(#=3)

43 3 47

{12} abst_id=11

==================

correlated phrases of abstraction are

(#=2)

arbitrary text|input |

correlated sentences of abstraction are

(#=3)

12 1 30

{13} abst_id=26

==================

correlated phrases of abstraction are

(#=3)

phrases |file phrases file | phrases file phrases

correlated sentences of abstraction are

(#=29)

28 1 2 6 9 11 14 22 24 26 27 29 30 31 32 33

116

34 36 37 38 39 40 41 42 46 47 48 49 50

{14} abst_id=5

==================

correlated phrases of abstraction are

(#=4)

phrase|argument |optional | phrase |

correlated sentences of abstraction are

(#=28)

6 1 2 7 9 11 14 24 26 27 28 29 30 31 32 33

34 36 37 38 39 40 41 42 47 48 49 50

{15} abst_id=24

==================

correlated phrases of abstraction are

(#=4)

phrases |s sentence| phrase|s sentences|

correlated sentences of abstraction are

(#=26)

26 1 2 6 9 24 25 27 28 29 30 31 32 33 34 36

37 38 39 40 41 42 47 48 49 50

{16} abst_id=45

==================

correlated phrases of abstraction are

(#=4)

phrases a| phrase| phrases | configuration

correlated sentences of abstraction are

(#=26)

47 1 2 6 9 24 26 27 28 29 30 31 32 33 34 36

37 38 39 40 41 42 43 48 49 50

{17} abst_id=20

==================

correlated phrases of abstraction are

(#=4)

s file | multi tokens file|e token| multi tokens file

correlated sentences of abstraction are

(#=17)

22 2 9 10 11 14 21 23 24 25 27 28 29 42 45 46

49

117

{18} abst_id=33

==================

correlated phrases of abstraction are

(#=4)

keyword|keyword |keyword p|d prev|

correlated sentences of abstraction are

(#=12)

35 2 8 14 20 21 23 24 30 42 44 49

{19} abst_id=12

==================

correlated phrases of abstraction are

(#=4)

character|words |symbolcharacter|characters

correlated sentences of abstraction are

(#=12)

13 8 11 14 17 18 19 20 21 23 30 49

{20} abst_id=25

==================

correlated phrases of abstraction are

(#=5)

phrase|tokens| phrase |e tokens| phrase t

correlated sentences of abstraction are

(#=31)

27 1 2 6 9 10 11 14 22 24 25 26 28 29 30 31

32 33 34 36 37 38 39 40 41 42 46 47 48 49 50

{21} abst_id=0

==================

correlated phrases of abstraction are

(#=5)

phrases |arbitrary text|d phrase| phrases

phrases a|

correlated sentences of abstraction are

(#=26)

1 2 6 9 12 24 26 27 28 29 30 31 32 33 34 36

37 38 39 40 41 42 47 48 49 50

{22} abst_id=29

118

==================

correlated phrases of abstraction are

(#=5)

phrases| phrase| phrases|table phrases| table

correlated sentences of abstraction are

(#=25)

31 1 2 6 9 24 26 27 28 29 30 32 33 34 36 37

38 39 40 41 42 47 48 49 50

{23} abst_id=35

==================

correlated phrases of abstraction are

(#=5)

phrases| phrase| phrase | phrases| phrase s

correlated sentences of abstraction are

(#=25)

37 1 2 6 9 24 26 27 28 29 30 31 32 33 34 36

38 39 40 41 42 47 48 49 50

{24} abst_id=36

==================

correlated phrases of abstraction are

(#=5)

phrase|e phrase|phrase | phrase | phrase phrase

correlated sentences of abstraction are

(#=25)

38 1 2 6 9 24 26 27 28 29 30 31 32 33 34 36

37 39 40 41 42 47 48 49 50

{25} abst_id=39

==================

correlated phrases of abstraction are

(#=5)

phrases |output| tables | phrases s|tables output

correlated sentences of abstraction are

(#=25)

41 1 2 6 9 24 26 27 28 29 30 31 32 33 34 36

37 38 39 40 42 47 48 49 50

{26} abst_id=9

==================

119

correlated phrases of abstraction are

(#=5)

tokens f|free format| line |e token|e tokens

correlated sentences of abstraction are

(#=14)

10 2 3 4 8 9 11 14 22 24 25 27 46 49

{27} abst_id=15

==================

correlated phrases of abstraction are

(#=5)

blank| blank tab newline|file f|character

wordcharacter|

correlated sentences of abstraction are

(#=11)

17 4 5 8 11 13 18 19 20 21 23

{28} abst_id=17

==================

correlated phrases of abstraction are

(#=5)

blank |character | character |wordcharacter

wordcharacter |

correlated sentences of abstraction are

(#=10)

19 5 8 11 13 17 18 20 21 23

{29} abst_id=3

==================

correlated phrases of abstraction are

(#=5)

file m| free format | blank| line |blanks

correlated sentences of abstraction are

(#=10)

4 2 3 5 8 10 11 14 17 34

{30} abst_id=21

==================

correlated phrases of abstraction are

(#=6)

punctuation keyword file |multi token|character

120

symbolcharacter multi token|listed |e sentence

correlated sentences of abstraction are

(#=20)

23 2 8 11 13 14 17 18 19 20 21 22 24 30 35 44

45 48 49 50

{31} abst_id=22

==================

correlated phrases of abstraction are

(#=7)

d phrase|punctuation keyword |tokens | list

s delimited |keyword p| punctuation keyword

correlated sentences of abstraction are

(#=37)

24 1 2 6 8 9 10 11 14 20 21 22 23 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44

46 47 48 49 50

{32} abst_id=48

==================

correlated phrases of abstraction are

(#=7)

phrase|phrase |option| option| option |e sentence

phrase |

correlated sentences of abstraction are

(#=28)

50 1 2 6 9 11 14 23 24 26 27 28 29 30 31 32

33 34 36 37 38 39 40 41 42 47 48 49

{33} abst_id=34

==================

correlated phrases of abstraction are

(#=7)

phrase|e phrase|phrase |s sentence|s sentences

phrase |e phrase |

correlated sentences of abstraction are

(#=26)

36 1 2 6 9 24 25 26 27 28 29 30 31 32 33 34

37 38 39 40 41 42 47 48 49 50

{34} abst_id=30

121

==================

correlated phrases of abstraction are

(#=7)

phrase|phrase | phrase |s phrase | table|consists

tables |

correlated sentences of abstraction are

(#=25)

32 1 2 6 9 24 26 27 28 29 30 31 33 34 36 37

38 39 40 41 42 47 48 49 50

{35} abst_id=7

==================

correlated phrases of abstraction are

(#=7)

punctuation keyword file |free format | free format

file free format list character strings |words

punctuation keywords |character strings punctuation

correlated sentences of abstraction are

(#=19)

8 2 3 4 10 11 13 14 17 18 19 20 21 23 24 30

35 44 49

{36} abst_id=32

==================

correlated phrases of abstraction are

(#=8)

phrase| phrase|blanks| blank| phrase | phrase t

table | table|

correlated sentences of abstraction are

(#=27)

34 1 2 4 5 6 9 24 26 27 28 29 30 31 32 33

36 37 38 39 40 41 42 47 48 49 50

{37} abst_id=37

==================

correlated phrases of abstraction are

(#=8)

phrase|phrase |option|option | phrase | b option

s phrase |option phrase|

correlated sentences of abstraction are

(#=27)

122

39 1 2 6 9 11 14 24 26 27 28 29 30 31 32 33

34 36 37 38 40 41 42 47 48 49 50

{38} abst_id=8

==================

correlated phrases of abstraction are

(#=9)

phrases |phrases file |optional | line | optional

phrase| phrases file |e list |al phrase|

correlated sentences of abstraction are

(#=30)

9 1 2 6 10 11 14 22 24 26 27 28 29 30 31 32

33 34 36 37 38 39 40 41 42 46 47 48 49 50

{39} abst_id=18

==================

correlated phrases of abstraction are

(#=9)

punctuation keyword|character |symbolcharacter

characters| whitespace|wordcharacter| wordcharacter

e symbolcharacter |s delimited |

correlated sentences of abstraction are

(#=17)

20 2 8 11 13 14 16 17 18 19 21 23 24 30 35 44

49

{40} abst_id=1

==================

correlated phrases of abstraction are

(#=10)

phrases |file m| punctuation keyword file

phrases file |tokens f|multi tokens |multi tokens file

multi tokens file| phrase|file phrases file

correlated sentences of abstraction are

(#=39)

2 1 4 6 8 9 10 11 14 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

44 45 46 47 48 49 50

{41} abst_id=40

==================

correlated phrases of abstraction are

123

(#=10)

phrases |e phrases |phrases f|s file|phrases file

phrases file |s phrase|se phrase|d prev| phrases s

correlated sentences of abstraction are

(#=30)

42 1 2 6 9 11 14 22 24 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 46 47 48 49 50

{42} abst_id=19

==================

correlated phrases of abstraction are

(#=11)

punctuation keyword file |multi token|keywords

character strings |character strings punctuation

symbolcharacter |wordcharacter|wordcharacter

wordcharacter|e symbolcharacter | multi token

correlated sentences of abstraction are

(#=18)

21 2 8 11 13 14 17 18 19 20 22 23 24 30 35 44

45 49

{43} abst_id=28

==================

correlated phrases of abstraction are

(#=12)

phrases| punctuation keyword|punctuation keywords

input | phrase| phrases|table phrases| table

consists |t lines |output| output |

correlated sentences of abstraction are

(#=34)

30 1 2 6 8 9 12 13 14 20 21 23 24 26 27 28

29 31 32 33 34 35 36 37 38 39 40 41 42 44 47 48

49 50

{44} abst_id=27

==================

correlated phrases of abstraction are

(#=12)

phrases |phrases file |file phrases |phrase

option| option|option | phrase | phrases file phrases

s phrase |es phrase| b option |

124

correlated sentences of abstraction are

(#=29)

29 1 2 6 9 11 14 22 24 26 27 28 30 31 32 33

34 36 37 38 39 40 41 42 46 47 48 49 50

{45} abst_id=31

==================

correlated phrases of abstraction are

(#=12)

phrase|e phrase|phrase |e list |al phrase

phrase |es phrase|t lines |e phrase | phrase s

phrase phrase |phrase lis|

correlated sentences of abstraction are

(#=25)

33 1 2 6 9 24 26 27 28 29 30 31 32 34 36 37

38 39 40 41 42 47 48 49 50

{46} abst_id=47

==================

correlated phrases of abstraction are

(#=13)

phrases |tokens | punctuation keyword|multi tokens

option|punctuation keywords | option|option multi tokens

listed | phrase| phrases | output | option

correlated sentences of abstraction are

(#=39)

49 1 2 6 8 9 10 11 13 14 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 44 45 46 47 48 50

{47} abst_id=10

==================

correlated phrases of abstraction are

(#=13)

multi tokens |multi tokens file|s file |free format

free format |optional |file free format list character strings

optional |symbolcharacter|multi tokens file

symbolcharacter | multi tokens file |symbolcharacter multi token

correlated sentences of abstraction are

(#=29)

11 2 3 4 6 8 9 10 13 14 17 18 19 20 21 22

23 24 25 27 28 29 39 42 45 46 48 49 50

125

{48} abst_id=13

==================

correlated phrases of abstraction are

(#=13)

punctuation keyword|file m|multi tokens file

punctuation keyword file |s file |option

punctuation keywords | option|multi tokens file

multi tokens file |option | option |option multi tokens

correlated sentences of abstraction are

(#=28)

14 2 4 6 8 9 10 11 13 20 21 22 23 24 25 27

28 29 30 35 39 42 44 45 46 48 49 50

{49} abst_id=46

==================

correlated phrases of abstraction are

(#=14)

phrases |option|phrase | option| option |listed

phrase| phrase | phrases |output| tables

phrase lis|option phrase|tables output|

correlated sentences of abstraction are

(#=28)

48 1 2 6 9 11 14 23 24 26 27 28 29 30 31 32

33 34 36 37 38 39 40 41 42 47 49 50

126

C.4 Decomposition of the findphrases Case Study

find_phrases

determine_max_no
_tokens_per_phrase

read_in_punct
_keywords

read_in_multi
_tokens

read_in_ignored
_phrases

sentences

convert
_to_integer

phrases

argument_line

punctuation
_keyword_table

multi_tokens
_table

text_file

chunk_file
text_io

argument_line,
chunk_file, output_file

string_type_file

all other modules

output_file

 .

Figure 14: Decomposition of findphrases by Aguilera
Aguilera ידי על findphrases של 14:פירוק �יור

127

Appendix D Results and Data of the Flinger Missile Case Study

This appendix contains AbstFinder data and results of the Flinger Missile case study:

1. Section D.1 contains the specification document of the Flinger Missile that was used as
the specification document in this case study.

2. Section D.2 contains the ignored files that were used by AbstFinder.

3. Section D.3 contains AbstFinder generated output list of abstractions.

4. Section D.4 contains the original specification file after sifting out the abstractions
identifiers found by AbstFinder.

D.1 Source Transcript of the Flinger Missile Case Study

In this appendix section, long lines are folded at a convenient word break, right at the end
of some word. The break is denoted by a “ \” at the end of all pieces of the line but the last and at
least one space at the beginning of all pieces except the first.

Statement of Operational Need for the

Short-Range Remote-CONTROLX Real-Time Video

Attack and Reconnaissance FLINGER-MISSILE

Draft (4/25/90)

Mission Requirements

The mission of the FLINGER-MISSILE is to provide an effective defense from

ground and air targets as well a real-time, recordable video imaging

capability. Using real-time imaging, target acquisition and ordinance

delivery can be done remotely with very high accuracy. Video, time, date,

location, and orientation information is collected and can be recorded at

the ground CONTROLX subsystem and later communicated to command center

locations. Video imaging can be used to aid in the targeting capabilities

under remote CONTROLX or in autonomous mode. The operator can CONTROLX the

FLINGER-MISSILE remotely using a joystick-type CONTROLX at the ground CONTROLX

subsystem. In the autonomous mode, the imaging system will utilize infrared

detection methods for target selection. CONTROLX signals going to the

FLINGER-MISSILE and information returning from the FLINGER-MISSILE will not be\

constrained

by line-of-sight limitations. The system should be able to operate in an

all-weather environment.

Operational Objectives

FLINGER-MISSILE Subsystem. The FLINGER-MISSILE will have an operating range of five

128

miles when CONTROLX remotely and a range of fifty miles at cruising or

reconnaissance speed and a range of twenty miles at intercept speed. The

ordinance will be capable of piercing four inches of armour at intercept

speed. A "loitering" navigation mode is required to allow FLINGER-MISSILE to circle

a reconnaissance target in a radius of no more than 600 feet. Camera

rotation will compensate for revolving image. Minimum speed for altitude

sustaining cruising will be no more than 65 KNOTS and top speed at

850 KNOTS.

Ground CONTROLX Subsystem. The ground CONTROLX subsystem will allow the

operator to view the real-time video signal from the FLINGER-MISSILE, guide the

FLINGER-MISSILE using a wireless joystick-type interface, and mechanisms to CONTROLX

the following FUNCTIONX:

1. Target Circling/Infrared Targeting/Remote CONTROLX. These three mutually

exclusive FUNCTIONX are selected by the operator and will determine how the

FLINGER-MISSILE will navigate. The first two are autonomous modes thereby disabling

any joystick navigation or speed CONTROLX. Target Circling will make the

FLINGER-MISSILE circle a designated target at cruising speed to allow for effective

reconnaissance. Infrared Targeting would generally be used during the

terminal stage giving navigation CONTROLX to the internal infrared sensors to

engage the target at attack speed. The Remote CONTROLX mode will give complete

navigation CONTROLX to the operator through use of the joystick and speed

SWITCHX.

2. Speed CONTROLX. This FUNCTIONX selects between the two available speeds.

The cruise speed is generally used for reconnaissance missions or when

longevity of airtime is desired. The Attack speed is the top speed available.

3. Self Destruct. When this FUNCTIONX is selected, immediate destruction of

the FLINGER-MISSILE using the on-board ordinance is commenced. The only exception to

this is prior to launch as well as a sufficient period of time after launch to

prevent ’damage’ to operator. Normal operation of the Ground CONTROLX

Subsystem should be continued in case of the unsuccessful completion of this

FUNCTIONX.

4. Self Test. This FUNCTIONX shall be exercised immediately after the initial

power on sequence and anytime after that prior to FLINGER-MISSILE launch. This test

will confirm proper operation of all navigation, video, and infrared CONTROLX

and communications between the FLINGER-MISSILE and ground CONTROLX SUBSYSTEM.

6. Launch FLINGER-MISSILE. The selection of this FUNCTIONX will commence launching

sequence. Prior to launching, the Remote CONTROLX navigation mode shall be

selected. If the system is in Self Test, the test shall immediately terminate

129

and launching sequence is begun.

The operator will be notified of successful completion of the actions taken by

these FUNCTIONX by both audible and unique visible signals. The speed CONTROLX

SWITCHX shall reside on the joystick handle.

The real-time video display will allow the operator to view the video signal

from the FLINGER-MISSILE. The artificial horizon and compass graphical instruments

will also be displayed on the video screen.

A low power warning signal lamp will indicate an approximate one minute of

normal operation is possible on current ground CONTROLX subsystem battery. The

video screen will turn off at the point when another one minute of operation

without video is possible.

A low signal strength warning lamp will indicate a signal loss of 80% from the

FLINGER-MISSILE. This will warn the operator of impending loss of CONTROLX.

FLINGER-MISSILE Interview - 25 April 1990

S) = Scott Stevens as the Requirements Analyst

J) = John Herman as the OPERATOR

S) Operational need, talk about it being able to cruise at 65 knots in a

60 ft circular mode. If I flip SWITCHX to go up to 850 knots and try

to maintain that tight circle, something is going to happen.

J) Loitering navigation circling is going into an autonomous mode that is

not CONTROLX by OPERATOR. The OPERATOR would have to move out of that using

a SWITCHX to get out of autonomous mode to gain CONTROLX back.

S) Before FLINGER-MISSILE would accept the command to change speed, you then have

to take it out of loitering mode into manual mode. In fact, it will

not always accept all signals.

J) In the statement operational need you have two modes. Reconnaissance

mode and attack mode. The second and third FUNCTIONX CONTROLX

whether its in autonomous mode or remote CONTROLX mode. In the reconnaissance

mode, you can operate the FLINGER-MISSILE by remote CONTROLX but when you take

out of remote CONTROLX and into autonomous position, it would

immediately go into loitering mode. The autonomous position on the

SWITCHX is determined by what mode you are in.

S) We can go into reconnaissance (is it same as loitering).

130

J) No, the reconnaissance mode is separate; it affects what the other

SWITCHX will do.

S) Reconnaissance mode is straight level. It does not go around in a

circle.

J) Right. Reconnaissance mode has an affect on the second SWITCHX. When

you move it out of remote CONTROLX and you are in the reconnaissance

mode, it would go into a loiter navigation mode where it would circle.

S) Let me make sure I understand this....In reconnaissaance mode, how

fast would we be going.

J) That would depend; it would actually move fairly fast. It would

not affect speed if in remote CONTROLX mode.

S) Reconnaissance mode is not necessarily remote CONTROLX and it does not

affect speed. What does it affect?

J) It affects the autonomous mode position.

S) If in reconnaisance and manual, I would be flying at 850 knots.

J) You could very well do that.

S) What else could I do?

J) 265 knots in reconnaissance mode.

S) The other mode is reconnaissance and loitering. I’ll have one SWITCHX

that SWITCHX between the two.

J) You have reconnaissance and attack mode. In attack mode, there is no

loitering. For instance, the operator has the FLINGER-MISSILE, they see a

target; they have two separate missions: 1) is a reconnaissance mission they

want to see the troop movement on other side of bridge. They operator

moves SWITCHX to mode.

S) What mode where they in?

J) It was not even on. It does not matter; it was not launched yet. This

is the operator moving into position, he has a mission. His supervisor

told him to go out and figure out what the troop movement is.

S) But you said he moved the SWITCHX to the reconnaissance mode. Was it off

131

before? One that says reconnaissance, another that says attack and another

that says loiter.

J) No, they are mutally exclusive. The reconnaissance and attack mode.

S) Where does loiter come in?

J) That is a different SWITCHX.

S) So there are three SWITCHX?

J) No, there could be several SWITCHX.

S) I do remember something on the number of SWITCHX. Loiter, navigation,

remote CONTROLX and autonomous. Those two share a single double-throw

SWITCHX. Is that right?

J) Actually, this should be a single throw SWITCHX. It depends on the

mode of the mission. Since the ground subsystem is off,

the SWITCHX have to be in some position. When I said to move the

SWITCHX into reconnaissance mode that is only if previously in attach mode.\

Only

make sure SWITCHX is in reconnaissance mode SWITCHX. That SWITCHX being in

reconnaissance mode position would affect another SWITCHX which would determine

whether its remotely CONTROLX or in autonomous mode.

Because in reconnaissance mode, the FLINGER-MISSILE is fired and moved into\

position by

remote CONTROLX and then the SWITCHX is moved away from the remote

CONTROLX to the autonomous mode. Since it is in the reconnaissance mode, it will

then go into loitering navigaton.

S) When it first takes off in reconnaissance mode manually operated, how fast is

it flying?

J) It could go in either two different speeds.

S) How is that set?

J) By the speed SWITCHX.

S) We have one SWITCHX that has attack and reconnaissance and another SWITCHX that

says loiter and off.

J) No, it would have either the remote CONTROLX or the autonomous.

132

Remote CONTROLX is the same in either reconnaissance or attack mode because you

are CONTROLX the FLINGER-MISSILE by remote CONTROLX.

S) Alright, we have a speed SWITCHX. If the attack reconnaissance SWITCHX is on

reconnaissance and we are in remote CONTROLX, we can set speed at 850 or 65.

If we SWITCHX to autonomous, no matter what the speed SWITCHX is set to,

it drops to 65.

J) Correct, it would then circle.

S) The FLINGER-MISSILE then will not necessarily accept all of the data or would

ignore some of the data. At the same time, are we getting feedback

on the speed? That would not be useful to the OPERATOR?

J) The OPERATOR would be getting position information as much as orientation.

No they would not. The only indication of position they would be

getting would be from video.

S) The OPERATOR sees what the FLINGER-MISSILE is doing through a video monitor.

We have determined it is possible to put some of the data on the

monitor. You say that the subsystem receives the status from

the FLINGER-MISSILE. What kind of status information is it getting back

from FLINGER-MISSILE.

J) It gets orientation of the FLINGER-MISSILE...rise and climb.

S) It is getting continuous feedback on the position of things like

the rudder and the elevator and so on.

J) Right, the new information is sent back only from the FLINGER-MISSILE of the

orientation. The information needed for the artificial horizon and

the direction.

S) So you not going to send back status information on the rudder

position. If it moves, you just see that its moves. What other

kind of status are we getting back.

J) We would get back on things like whether the infrared has locked onto

an object. Whether the target is ready to be put into the auto mode.

S) Do you have preference for which of these items is displayed on the

monitor and which items are separate lamps or some other kind of

status indicator to the OPERATOR.

133

J) The most critical information during the remote CONTROLX mode would

be position information.

S) The position information is in what form other than just seeing

from the camera where you are. Anything else?

J) Right now no. Just seeting where you are on the camera determining

where you would have your artificial horizon and your directional

data. That right now is the minimum. We did think about getting

some positioning data from the global positioning satellite. We

do not know if we can do that in real time with the accurancy that

we wanted, but no that is not required.

S) The specification that came out originally said that the guidance

data was rudder position and elevator position. But you are saying

that it is going to be direction and artificial horizon. Does

that mean I am going to have to map that?

J) That is the information from the ground CONTROLX SUBSYSTEM to the\

FLINGER-MISSILE. The

FLINGER-MISSILE would then send back the artificial horizon information.

S) I do not see that anywhere. Is this a new addition?

J) This would be the statement of operational need.

S) As a OPERATOR, there is a mapping between the joystick position and

the rudder position. It is not a one-to-one mapping. The effect

of that is going to be at various times potentially the joystick

will move different amounts of time for different rutter movements.

Because you are mapping 256 positions on the joystick to 90

positions on the rutter since it is not evenly divisible, somewhere

in there you are going to have one or two movements on the

joystick all of a sudden mapped to one. As a OPERATOR, do you think

that is going to affect anything.

J) Yes, that information was there as an example. As you saw, we did

say these would not necessarily be the final values, if you want

to do one-to-one mapping. That was put in before the interface

data was in and that could be changed.

S) At this point, we do not really know what the values are going

to be. If we get the go on this, do you think we should just

start developing software so that we can handle either one-to-one

mapping or other mapping, mapping it more general.

134

J) That would depend on your communication between the interface

of the FLINGER-MISSILE software and the ground CONTROLX subsystem

software. That could be whatever needs to be the information.

Those were arbitrary at that point. They would be the

requirments if we had the interface data.

S) Besides the gun-like SWITCHX on the joystick, what other types of

SWITCHX do you think ought to be here. Are there some SWITCHX

which for one reason or another ought to have either software

or hardware fail safe kind of device.

J) Right, hardware fail safe device on the self-destruct.

S) Just hardware; we do not have to worry about software?

J) No, we would like to be able to self-destruct at any time.

S) You mentioned that there is an initial set of signals to be

interpreted: error, fatal error, radar on, or locked.

Initially means these are the ones that you’ve thought

about so far, but there may be others?

J) Right, fatal error there is a point where it would self-destruct

on its own because of an error. That would prevent the FLINGER-MISSILE

from not being CONTROLX and, at that point, it would

self-destruct.

S) The FLINGER-MISSILE takes care of all that. Is there some sort of identified

friend or foe data in here?

J) No, that would be OPERATOR CONTROLX. The operator would have an

idea. Actually, in many cases, it would not know whether it would

be a friend or foe until they would get closer to the target.

135

D.2 Ignored Files Used in the Flinger Missile Case Study

ignored-common-word-file:

the of is to an a from and as can be be being do does done did with very high

later well use using used in or at on want wanted anywhere until many new

somewhere whatever will for not by should able all have has had when more than

top are how first thereby any would make made give through this here between

two when generally immediately only now sufficient after continued case cases

shall initial that thats begin gegun successful take takes taken

these both unique also

low one normal without possible ready kind most during just anything talk

about it go going went up try tight if i into move moves moved out

get gets getting like

before allways back send sent you fact second third whether its but what same

other straight where me sure how we depend actually onto affect affects

necessarily

necessary could very else instance they see side even matter told him said

off no so three several those right since some another which alright set

put much correct

becuase was there then something under even effective affect available allow

thing either shar

throw think know knows ought different differents

really actually fairly change because things your prior selected form

loss handle seperate says determine determined prevent

ignored-application-words-file:

point knots fast single values mean minimum exclusive

850 231 range inche inches miles feet 60 65 600

flinger missile

ignored-suffixes-file:

ication cation sition tation ation ition ntion ption ction tion

ance ence ement ment sent able ered

rning ining ying ving ning ling ting ings ing

iles eeds round sist tive ious ware mage

tified pplied ified lied ited ated ired ared ined ied ted

tially ually ally lly

136

D.3 AbstFinder Results of the Flinger Missile Case Study

S U M M A R Y OF A B S T F I N D

--

of lines read from input file is 279

of abstractions found is 165

--

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

1 | 114 | 1 | 24 | operator|

2 | 116 | 1 | 17 | position |

3 | 133 | 1 | 17 | position|

4 | 11 | 1 | 15 | subsystem|

5 | 150 | 1 | 13 | information|

6 | 36 | 1 | 7 | launch |

7 | 80 | 1 | 7 | launch|

8 | 111 | 1 | 6 | circle|

9 | 63 | 1 | 6 | circle|

10 | 126 | 1 | 5 | status |

11 | 141 | 1 | 5 | mapping|

12 | 146 | 1 | 5 | mapping|

13 | 121 | 1 | 4 | orientation |

14 | 82 | 1 | 4 | troop movement |

15 | 118 | 1 | 3 | monitor|

16 | 33 | 1 | 2 | self test|

17 | 103 | 1 | 2 | speeds|

18 | 85 | 1 | 2 | mutually |

19 | 106 | 2 | 42 | remote controlx |remote controlx autonomous|

20 | 104 | 2 | 37 | speed |speed switchx|

21 | 73 | 2 | 28 | switchx|x switchx |

22 | 88 | 2 | 28 | switchx|j switchx|

23 | 89 | 2 | 28 | switchx|s switchx|

24 | 90 | 2 | 28 | switchx|j switchx|

25 | 91 | 2 | 28 | switchx|r switchx|

26 | 93 | 2 | 28 | switchx|e switchx|

27 | 94 | 2 | 28 | switchx|j switchx|

28 | 144 | 2 | 25 | operator |2 oper|

29 | 163 | 2 | 24 | operator |operator i|

30 | 138 | 2 | 16 | information|artificial horizon |

137

31 | 16 | 2 | 15 | cruising |speed |

32 | 87 | 2 | 13 | loiter|loiter |

33 | 145 | 2 | 13 | information |s information |

34 | 79 | 2 | 12 | s mode|s mode |

35 | 10 | 2 | 11 | operational |2 oper|

36 | 164 | 2 | 11 | r target|friend foe |

37 | 139 | 2 | 10 | statement operational need|j statement operational need|

38 | 55 | 2 | 10 | statement operational need |j statement operational need|

39 | 128 | 2 | 10 | target|target a|

40 | 1 | 2 | 9 | mission |requirements|

138

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

41 | 157 | 2 | 9 | signals in|s inter|

42 | 148 | 2 | 8 | mapping |software |

43 | 154 | 2 | 8 | self destruct|hardware fail safe device|

44 | 29 | 2 | 6 | destru|self destruct|

45 | 156 | 2 | 6 | self destruct|self destruct |

46 | 112 | 2 | 6 | s accept |e data|

47 | 155 | 2 | 5 | software|hardware |

48 | 113 | 2 | 5 | ack speed|feedback |

49 | 15 | 2 | 4 | ate re|camera |

50 | 162 | 3 | 53 | controlx|operator controlx|j operator |

51 | 25 | 3 | 45 | controlx|speed |speed controlx|

52 | 17 | 3 | 44 | controlx |ground |ground controlx subsystem|

53 | 160 | 3 | 42 | controlx |controlx s|self destruct|

54 | 108 | 3 | 37 | speed |speed switchx|s speed switchx|

55 | 71 | 3 | 31 | reconnaissance |reconnaissance m|reconnaissance mode|

56 | 119 | 3 | 19 | subsystem |status |s status |

57 | 54 | 3 | 12 | signals|cept s|s accept |

58 | 26 | 3 | 10 | functionx|functionx |speeds|

59 | 136 | 3 | 7 | ection |artificial horizon|direction|

60 | 134 | 3 | 7 | real time |accuracy|required|

61 | 127 | 3 | 7 | infrared |9 j inf|locked|

62 | 13 | 3 | 5 | ordinance |intercept speed|ordinance c|

63 | 161 | 3 | 5 | e data|e data |friend foe |

64 | 158 | 3 | 3 | locked|error |fatal error |

65 | 47 | 4 | 53 | controlx|operator |n operator|operator i|

66 | 67 | 4 | 48 | remote controlx |speed |speed re|remote controlx mode|

67 | 38 | 4 | 46 | remote controlx |navigation mode |launch|launching |

68 | 84 | 4 | 38 | attack |reconnaissance |loiter|reconnaissance attack |

69 | 9 | 4 | 36 | system |operat|system operat|operate |

70 | 60 | 4 | 36 | reconnaissance |loitering |s reconnaissance |reconnaissance loiteri

71 | 50 | 4 | 33 | circle |switchx|switchx |switchx m|

72 | 66 | 4 | 31 | reconnaissance |reconnaissance m|reconnaissance mode |7 reconnaissa

73 | 31 | 4 | 30 | operator|launch|time launch|launch |

74 | 48 | 4 | 26 | requirements|operator|n operator|requirements |

75 | 124 | 4 | 18 | information |ection|artificial horizon |artificial horizon directio

76 | 120 | 4 | 16 | information |s information |status |status information |

77 | 49 | 4 | 15 | operational need |t circ|cruise |s oper|

78 | 123 | 4 | 14 | orientation|information |information orientation|j information |

79 | 159 | 4 | 7 | self destruct|self destruct |error |fatal error |

80 | 147 | 4 | 6 | interface |e data|interface data|e data |

139

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

81 | 81 | 5 | 42 | mission|operator |position |e mission|operator m|

82 | 77 | 5 | 39 | reconnaissance |mission |reconnaissance mission|1 reconnaissance m|

83 | 152 | 5 | 34 | joystick type|switchx|switchx |s switchx|s switchx |

84 | 86 | 5 | 34 | attack |reconnaissance |attack mode|7 reconnaissance |reconnaissanc

85 | 153 | 5 | 32 | switchx|switchx re|57 switchx re|software |hardware fail safe devic

86 | 69 | 5 | 30 | autonomous mode|autonomous mode |position|mode p|mode position|

87 | 131 | 5 | 28 | information |camera |s position |position information |seeing camer

88 | 28 | 5 | 25 | attack |speed |attack speed|ck speed s|d speed |

89 | 95 | 5 | 20 | mission|s mode|s mode |mode m|e mission|

90 | 142 | 5 | 12 | time r|joystick |movement|movements|rutter |

91 | 132 | 5 | 9 | ection|camera |artificial horizon |artificial horizon direction|see

92 | 21 | 6 | 57 | controlx|autonomous mode|joystick |speed |navigation |speed control

93 | 137 | 6 | 54 | controlx |ground |information |ground controlx subsystem |j informa

94 | 92 | 6 | 52 | remote controlx |remote controlx autonomous|navigation |loiter|r na

95 | 110 | 6 | 45 | x autonomous |speed |speed switchx|switchx |switchx autonomous |s s

96 | 56 | 6 | 34 | attack |reconnaissance |reconnaissance m|reconnaissance mode |attac

97 | 74 | 6 | 34 | attack |reconnaissance |attack mode|j reconnaissance |reconnaissanc

98 | 117 | 6 | 33 | video |operator |s oper|operator s|monitor|s operator |

99 | 70 | 6 | 32 | reconnaissance |reconnaissance m|manual |s reconnaissance |8 s reco

100 | 45 | 6 | 18 | video |operation|video s|operation |video screen|minute operation |

101 | 135 | 6 | 17 | position |r position |ator position|rudder |elevator |rudder positi

102 | 30 | 6 | 16 | ordinance |ordinance c|functionx|functionx |destru|commence|

103 | 46 | 6 | 10 | signal|signal |nal st|e signal|warning |lamp indicate |

104 | 151 | 6 | 9 | requirements|interface |requirements |e data|interface data|s inter

105 | 96 | 7 | 56 | ground |subsystem |switchx|system s|switchx |position|subsystem s|

106 | 78 | 7 | 52 | operator |switchx|x mode|switchx |switchx m|3 operator switchx |swi

107 | 64 | 7 | 50 | reconnaissance |switchx|reconnaissance m|reconnaissance mode |recon

108 | 19 | 7 | 47 | remote controlx|target|target |targeting |infrared |target circling

109 | 101 | 7 | 41 | reconnaissance |loitering navigation|reconnaissance m|reconnaissanc

110 | 42 | 7 | 38 | video |real time video |operator |signal|operator view |video signa

111 | 20 | 7 | 33 | operator |functionx|x operator |functionx |operator n|r navig|mutua

112 | 62 | 7 | 32 | reconnaissance |reconnaissance m|reconnaissance mode |s reconnaissa

113 | 75 | 7 | 22 | attack |loitering|attack mode|mode l|mode loiter|mode loitering|att

114 | 122 | 7 | 19 | s cont|position |position r|feedback |rudder |elevator |ck position

115 | 43 | 7 | 16 | video |video s|display|video screen|artificial horizon |s displayed

116 | 34 | 7 | 15 | functionx|functionx |launch|time launch|sequence|sequence |power |

117 | 22 | 8 | 55 | reconnaissance|target|target |cruising |speed |circle |target circl

118 | 83 | 8 | 50 | reconnaissance |switchx|reconnaissance m|switchx re|reconnaissance

119 | 59 | 8 | 49 | autonomous |switchx|x mode |switchx |switchx m|autonomous position

120 | 39 | 8 | 24 | system |termina|e launch|self test|sequence |launching sequence|sys

140

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

121 | 12 | 9 | 68 | controlx re|reconnaissance |remote|remotely |controlx remotely |int

122 | 8 | 9 | 51 | controlx |information |controlx s|signal|signals|s information |s i

123 | 149 | 9 | 49 | controlx |ground |ground controlx subsystem |commun|interface |comm

124 | 27 | 9 | 49 | reconnaissance |mission|time d|speed |speed reconnaissance|cruise |

125 | 72 | 9 | 45 | reconnaissance |e reco|s mode|s mode |mode re|e reconnaissance |loi

126 | 102 | 9 | 41 | reconnaissance |operat|reconnaissance m|mode man|reconnaissance mod

127 | 40 | 9 | 36 | operator |signals|functionx|functionx |operator n|comple|completion

128 | 53 | 9 | 33 | command |speed |loitering |d speed |s accept |loitering mode|manual

129 | 143 | 9 | 30 | joystick |s joystick |joystick s|visible |position|movement|mapping

130 | 125 | 9 | 29 | information |s information r|position|r position|s status |status i

131 | 52 | 10 | 79 | controlx |x autonomous mode|operator |autonomous mode |switchx|swit

132 | 41 | 10 | 67 | controlx |controlx s|joystick |speed |speed controlx|switchx|switch

133 | 130 | 10 | 60 | remote controlx |information |information re|al inf|remote controlx

134 | 32 | 10 | 57 | operation|controlx |ground |ground controlx subsystem |system u|fun

135 | 105 | 10 | 57 | attack reconnaissance |reconnaissance s|loiter|switchx|switchx |swi

136 | 61 | 10 | 52 | reconnaissance |switchx|reconnaissance m|switchx |reconnaissance mo

137 | 97 | 10 | 52 | reconnaissance |switchx|reconnaissance m|switchx re|reconnaissance

138 | 5 | 10 | 50 | video |remote controlx |capabilit|video imaging |autonomous mode|ta

139 | 76 | 10 | 40 | mission|r target|target |operator |target se|missions|1 oper|ate mi

140 | 51 | 11 | 69 | e controlx |autonomous mode|operator|autonomous mode |loitering nav

141 | 6 | 11 | 63 | remote|controlx re|e controlx |ground |remotely |ground controlx su

142 | 107 | 11 | 62 | remote controlx re|attack |reconnaissance |controlx remote|mode co|

143 | 14 | 11 | 53 | reconnaissance |e reco|target|target |navigation |circle |navigatio

144 | 98 | 11 | 50 | reconnaissance |switchx|reconnaissance m|switchx re|reconnaissance

145 | 115 | 11 | 47 | information |orientation|operator |position |information orientatio

146 | 129 | 11 | 35 | operator|r oper|ate la|display|s displayed |indicat|separate |monit

147 | 3 | 11 | 33 | real time |remote|target|imaging |remotely |e imaging |target |ordi

148 | 37 | 11 | 19 | ection |selection|functionx|functionx |commence|launch|sequence|x c

149 | 109 | 12 | 80 | reconnaissance |attack reconnaissance |remote controlx |controlx s|

150 | 68 | 12 | 60 | remote controlx |reconnaissance |controlx s|mode re|reconnaissance

151 | 44 | 12 | 58 | controlx |operation|ground |ground controlx subsystem |signal|signa

152 | 7 | 12 | 45 | imaging |target|e imaging |target |system |autonomous mode|infrared

153 | 2 | 12 | 34 | real time |video |mission |target|imaging |record|ground |capabilit

154 | 100 | 13 | 90 | reconnaissance |remote controlx |y remote|controlx s|remote control

155 | 4 | 13 | 60 | controlx |video |record|ground |ground controlx subsystem|system |i

156 | 35 | 13 | 58 | operation|controlx |video |ground |video i|commun|ground controlx s

157 | 57 | 13 | 53 | controlx |remote controlx |controlx autonomous mode|autonomous mode

158 | 140 | 13 | 45 | joystick |operator |s oper|position|position |operator m|position r

159 | 18 | 14 | 76 | controlx |real time video |ground |ground controlx subsystem |opera

160 | 0 | 14 | 72 | real time |video |remote|controlx |remote controlx |controlx re|ope

161 | 23 | 14 | 57 | controlx |attack |target|target a|targeting |infrared |navigation |

141

162 | 58 | 16 | 93 | remote controlx re|reconnaissance |remote controlx autonomous |oper

163 | 65 | 17 | 67 | remote controlx re|reconnaissance |loiter|navigation mode |circle|r

164 | 99 | 18 | 90 | reconnaissance |controlx |remote|remotely |controlx autonomous mode

142

D.4 The Flinger Missile Transcript after Straining

of for the short and draft 4 25 90

the of the is to provide an effective defense from and air targets as well\

recordable capability

using acquisition and delivery can be done with very high

date location and is collected and can be recorded at the and later\

communicated to center locations

can be used to aid the capabilities under or

the can the using at the

the the will utilize detection methods for

going to the and returning from the will not be constrained by line of sight\

limitations

the should be able to an all weather environment

objectives

the will have an operating of five when and of fifty at or and of\

twenty at

the will be capable of piercing four of armour at

is to allow to radius of no more than

rotation will compensate for revolving image

for altitude sustaining will be no more than and top at

the will allow the to the from the guide the using wireless and\

mechanisms to the following

1

these three are selected by the and will determine how the will navigate

the first two are modes thereby disabling any or

will make the designated at to allow for effective

would generally be used during the terminal stage giving to the internal\

sensors to engage the at

the will give complete to the through use of the and

this selects between the two available

the is generally used for or when longevity of airtime is desired

the is the top available

3

when this is selected immediate destruction of the using the on board is\

commenced

143

the only exception to this is prior to as well as sufficient period of after\

to prevent damage to

normal of the should be continued case of the unsuccessful of this

4

this shall be exercised immediately after the initial on and anytime after that\

prior to

this will confirm proper of all and and communications between the and

6

the of this will

prior to the shall be selected

if the is the shall immediately terminate and is begun

the will be notified of successful of the actions taken by these by both audible\

and unique

the shall reside on the handle

the will allow the to the from the

the and compass graphical instruments will also be on the

low will an approximate one of normal is possible on current battery

the will turn off at the when another one of without is possible

low strength will loss of 80 from the

this will warn the of impending loss of

interview 25 april 1990

scott stevens as the analyst john herman as the

talk about it being able to at ft circular

if flip to go up to and try to maintain that tight something is going to\

happen

is going into an that is not by

the would have to move out of that using to get out of to gain back

before would the to change you then have to take it out of into

fact it will not always all

the you have two modes

and

the second and third whether its or

the you can the by but when you take out of and into it would\

144

immediately go into

the on the is determined by what you are

we can go into is it same as

no the is it affects what the other will do

is straight level

it does not go around

right

has an affect on the second

when you move it out of and you are the it would go into where it\

would

let me make sure understand this

how would we be going

that would depend it would actually move fairly

it would not affect if

is not necessarily and it does not affect

what does it affect

it affects the

if and would be at

you could very well do that

what else could do

265

the other is and

ll have one that between the two

you have and

there is no

for instance the has the they see they have two

1 is they want to see the on other side of bridge

they moves to

what where they

145

it was not even on

it does not matter it was not launched yet

this is the moving into he has

his supervisor told him to go out and figure out what the is

but you said he moved the to the

was it off before

one that says another that says and another that says

no they are

the and

where does come

that is different

so there are three

no there could be several

do remember something on the number of

and

those two share double throw

is that right

actually this should be throw

it depends on the of the

since the is off the have to be some

when said to move the into that is only if previously attach

only make sure is

that being would affect another which would determine whether its or

because the is fired and moved into by and then the is moved away from\

the to the

since it is the it will then go into

when it first takes off manually operated how is it

it could go either two different

how is that set

by the

we have one that has and and another that says and off

146

no it would have either the or the

is the same either or because you are the by

alright we have

if the is on and we are we can set at or

if we to no matter what the is set to it drops to

correct it would then

the then will not necessarily all of the or would ignore some of the

at the same are we getting on the

that would not be useful to the

the would be getting as much as

no they would not

the only indication of they would be getting would be from

the sees what the is doing through

we have determined it is possible to put some of the on the

you say that the receives the from the

what kind of is it getting back from

it gets of the

rise and climb

it is getting continuous on the of things like the and the and so on

right the new is sent back only from the of the

the needed for the and the

so you not going to send back on the

if it moves you just see that its moves

what other kind of are we getting back

we would get back on things like whether the has onto an object

whether the is ready to be put into the auto

do you have preference for which of these items is on the and which items are\

lamps or some other kind of indicator to the

the most critical during the would be

the is what form other than just from the where you are

147

anything else

right now no

just where you are on the determining where you would have your and your\

directional

that right now is the

we did think about getting some positioning from the global positioning satellite

we do not know if we can do that with the that we wanted but no that is not

the specification that came out originally said that the guidance was and

but you are saying that it is going to be and

does that am going to have to map that

that is the from the to the

the would then send back the

do not see that anywhere

is this new addition

this would be the of

as there is between the and the

it is not one to one

the effect of that is going to be at various times potentially the will move\

different amounts of for different

because you are 256 positions on the to 90 positions on the since it is not\

evenly divisible somewhere there you are going to have one or two on the all\

of sudden mapped to one

as do you think that is going to affect anything

yes that was there as an example

as you saw we did say these would not necessarily be the final if you want to\

do one to one

that was put before the was and that could be changed

at this we do not really know what the are going to be

if we get the go on this do you think we should just start developing so that we\

can handle either one to one or other it more general

that would depend on your between the of the and the

that could be whatever needs to be the

those were arbitrary at that

they would be the if we had the

besides the gun like on the what other types of do you think ought to be here

148

are there some which for one reason or another ought to have either or kind\

of

right on the

just we do not have to worry about

no we would like to be able to at any

you mentioned that there is an initial set of to be interpreted

radar on or

initially means these are the ones that you ve thought about so far but there\

may be others

right there is where it would on its own because of an

that would prevent the from not being and at that it would

the takes care of all that

is there some sort of identified or here

no that would be

the would have an idea

actually many cases it would not know whether it would be or until they\

would get closer to the

149

Appendix E Results and Data of the RFP Case Study

This appendix contains AbstFinder data and results of the RFP case study:

1. Section E.1 contains part of the RFP transcript that was used as the specification docu-
ment in this case study.

2. Section E.2 contains the ignored files that were used by AbstFinder.

3. Sections E.3 and E.4 contain AbstFinder generated output list of abstractions from first
and last iteration.

4. Section E.5 contains part of the already human made results.

E.1 Source Transcript of the RFP Case Study

Below are the first few pages of the RFP to allow the reader to get a sense of what is
there.

SYSTEM SPECIFICATION

FOR

UNMANNED AERIAL VEHICLE-SHORT RANGE

(UAV-SR)

SYSTEM

1. SCOPE

1.1 This specification establishes the performance, design, development,

test, and production requirements for the Unmanned Aerial Vehicle-

Short Range (UAV-SR) System, hereinafter referred to as the UAV-SR System.

2. APPLICABLE DOCUMENTS

2.1 Government Documents. The following documents, of the issue in

effect on the date of Issuance of Request for Proposal by the Government,

unless otherwise specified, form a part of this specification to the extent

specified herein. In the event of conflict between the documents referenced

herein and the contents of this specification, the contents of this

specification shall be considered a superseding requirement. The

contractual applicability of the references herein are according to the

category stated in the document listing below.

2.2 Document Tailoring. These documents have been tailored by the

Government to the maximum extent possible. The applicable portion of each

document is stated in the text of the specification where the document is

150

called out. If no portion is stated the entire document applies.

SPECIFICATIONS

(A long list of other documents is omitted)

3. REQUIREMENTS

3.1 System definition. The UAV-SR System shall provide the Military

services with a delivered system, defined as all hardware and software

necessary to meet the requirements of this section.

3.1.1 General description.

3.1.1.1 System Utilization. The system will initially be utilized by the

U.S. Army in support of Corp Commanders and the USMC in support of Brigade

Commanders.

3.1.1.2 System Configuration.

3.1.1.2.1 Description and Purpose. This section establishes the

requirement for a UAV-SR System and optional mission hardware. The system

consists of air vehicles (AVs), Modular Mission Payloads (MMPs), Airborne

Data Terminal (ADT), Ground Data Terminal (GDT), Mission Planning Control

Station (MPCS), Launch/Recovery (L/R) equipment, support equipment, and

external interface hardware.

3.1.1.2.2 UAV-SR System Configuration.

The UAV-SR systems shall be delivered to the Government and be configured to

meet the specific operational needs of each gaining service. See Table 3.1

TABLE 3.1

SYSTEM BASELINE CONFIGURATION

System Component QUANTITY

Mission Planning Control Station (MPCS) 1

Mission Planning Station (MPS) 1

Ground Control Station (GCS) 2

Ground Data Terminal (GDT) 2

Remote Video Terminal (RVT) 4

Launch and Recovery (L/R) Equipment 1

Air Vehicle (AV) w/Airborne Data Terminal (ADT) 8

151

Ground Support Equipment (GSE) 1

Modular Mission Payload (MMP)

Day/Night IMINT (D/N) MMP 8

Day Only (DAY) MMP 4

Airborne Data Relay (ADR) Payload 4

3.1.1.2.3 UAV-SR Equipment. The UAV-SR System shall include the following

equipment:

3.1.1.2.3.1 Air Vehicle (AV). The air vehicle, (comprised of an airframe,

power plant, guidance and control equipment, position/navigation

equipment, removable on board storage recorder, FAA/IFF transponder and

navigation lights, removeable emergency recovery system and airborne data

terminal (ADT)), is the airborne component of the system whose mission is to

serve as the "carrying device" for mission payloads or data link relay.

3.1.1.2.3.2 Airborne Data Terminal Equipment (ADT). This is the airborne

portion of the data link equipment used for the transmission of sensor

and AV status data from the AV to the GDT or the Airborne Data Relay (ADR)

and the reception of command data from the GDT or the ADR. The data link(s)

provide a near-real-time flow of data (sufficient to provide for effective,

timely target acquisition and command and control) to and from the UAV-SR.

3.1.1.2.3.3 Mission Planning and Control Station (MPCS). The MPCS is the

operational control center of the UAV-SR System and shall consist of three

shelters and installed operating equipment each mounted on a vehicle, two

Ground Data Terminals (GDT), and four Remote Video Terminals (RVT). One of

the shelters will serve as the Mission Planning Station (MPS) and the

others will serve as Ground Control Stations (GCS). Contained within the

appropriate shelters are ground-based navigation equipment; launch,

guidance, and recovery control equipment; data processing equipment;

communication equipment; power supplies and the data interfaces to other

systems.

3.1.1.2.3.3.1 Mission Planning Station (MPS). The MPS shall provide

facilities to plan flights for the performance of assigned missions and

will serve as a command post for the mission commander and

communication equipment for the receipt of mission assignments

from supported headquarters; for reporting of acquired data to

the supported operations centers, e.g., AFATDS/TACFIRE, to enable timely

engagements of targets located by the UAV-SR system.

3.1.1.2.3.3.2 Ground Control Station (GCS). The GCS shall provide

facilities for Air Vehicle (AV) control (launch, in flight, and recovery),

152

GDT control, relay control, mission payload control, imagery display,

receiving and transmitting data from the AV and to other MPCS

units.

3.1.1.2.3.3.3 Ground Data Terminal (GDT). The GDT is the ground based

portion of the data link. It consists of a controllable antenna which shall

be remoted a minimum of 400 meters from the GCS via redundant fiber optic

cables, a Data Link Interface Unit (DLIU) which connects to the GCS bus

structure, and the necessary power supply and distribution equipment. The

GDT receives and transmits data to the AV and is controlled by the GCS. One

GDT is attached to each GCS.

3.1.1.2.3.3.4 Remote Video Terminals (RVT). The RVT will be provided

power by the host system. See Appendix 100.

3.1.1.2.3.3.4.1 The RVT equipment shall receive, display, record, playback

and freeze IMINT sensor data (overlayed with AV position and heading,

North seeking arrow, time, and target coordinates) at a location other than

a control station (MPCS or L/R).

3.1.1.2.3.3.5 Ground-Based Support Navigation Equipment. This includes

equipment which may be located within the MPCS that is associated with the

processing of AV location and other data required for meeting mission

objectives.

3.1.1.2.3.3.6 Guidance and Control Equipment. This includes guidance and

control equipment which may be located within the MPCS as well as the

ground-based portion of the data link(s) and any guidance controls and

display consoles, command/video/telemetry instrumentation and recording

capabilities associated with performance of required mission objectives.

3.1.1.2.3.3.7 Data Processing Equipment. The MPCS also records and plays

back imagery data collected from all on-board modular mission payloads (MMP)

and, based upon the nature of the collected data, transmits selected data

in standard message text format such as RECCEXREPS and TACREPS, to the

supported unit. The MPCS is desired to be highly automated with aids to

assist operators in mission planning, MMP processing (which consists of the

ability to edit and condense the tape material, freeze frame, digitize

and produce a hard copy of an image), and report dissemination (standard

message text format for transmission on communications equipment or

external interface ports). This includes any computer and signal processing

equipment.

153

3.1.1.2.3.3.8 Communication Equipment. This is currently fielded

communication equipment which shall be used for communicating with supported

units, support of command and control, and report dissemination.

3.1.1.2.3.3.9 External Interfaces. All external interfaces shall be

conducted through standard format ports (eg; RS232, RS170) on the MPS and

GCS units. These ports shall be capable of transmitting video and digital

data.

3.1.1.2.3.4 Launch and Recovery. Equipment utilized to launch and recover

the AV. This equipment will also support BIT/BITE on the AV.

3.1.1.2.3.4.1 Launch System (LS). Equipment required to launch the air

vehicle with modular mission payloads into flight, check out AV and

payload, and hand-off to a GCS.

3.1.1.2.3.4.2 Recovery System (RS). Equipment required to recover the air

vehicle with modular mission payloads after mission completion or upon

command.

3.1.1.2.3.5 Modular Mission Payloads (MMP). Modular mission payloads are

defined as modular sensor equipment installed on-board the air vehicle to

accomplish the mission with the exception of equipment used to launch, fly,

navigate, and recover the air vehicle. Data link(s) and modular on-board

data storage recorder equipment are not considered a part of the MMP.

3.1.1.2.3.5.1 Day/Night Passive IMINT MMP. Sensor equipment installed

on-board the AV which shall provide near-real-time imagery of the target

area both day and night.

3.1.1.2.3.5.2 Day Only Passive IMINT MMP. Sensor equipment installed

on-board the AV which shall provide near-real-time imagery of the target

area during the day.

3.1.1.2.3.6 Airborne Data Relay (ADR) Payload. Equipment installed on

board the AV to accomplish two-way data link relay capability between the

ground and another AV carrying a sensor MMP.

3.1.1.2.3.7 Equipment Interface Hardware. Hardware, provided by the

contractor, necessary to interface the various components of the UAV-SR

System including, but not limited to, breakout boxes, ATE adapters, cables,

RF Test Boxes, etc., as required for operation, maintenance, and training.

3.1.1.2.3.8 Support Equipment. The UAV-SR support equipment includes all

operating, transportation, training, handling, maintenance, and checkout

equipment. This equipment is desired to be held to the lowest possible

154

density and complexity necessary to satisfy mission and force structure

requirements to include the proposed training devices by the contractor.

Military standard test equipment shall be used to the maximum extent

possible.

3.1.1.2.3.8.1 Operating and Handling Equipment. The operating and handling

equipment includes all special equipment, shelters, vehicles, integrated

power environmental control systems, slings, wiring harnesses, power

generators and all other equipment necessary to operate, support, and

transport (air, sea, rail, truck, or helicopter lift) the UAV-SR System.

Standard Government shelters or Light Weight Rigid Wall Tactical Shelter

(compatible with HMMWV model 10001) are required to be used for production.

The production UAV-SR System is required to be capable of operation and

transport on standard High Mobility Multipurpose Wheeled Vehicles (HMMWV),

5-ton trucks and trailers (See paragraph 3.2.8).

3.1.1.2.3.8.2 Maintenance Equipment. Equipment used to maintain the

UAV-SR System. This includes all equipment used to maintain, calibrate, and

repair the system. It also includes all Test, Measurement, and Diagnostic

Equipment (TMDE).

3.1.1.2.3.9 Modular On-board Storage Recorder. Equipment used to record

and playback payload and AV data during autonomous operations, in the event

of loss of data link, and on operator command.

3.1.1.2.4 UAV-SR Functional Areas. (See Appendix 10)

3.1.2 Missions. (See Appendix 200)

3.1.3 Threat. (See Appendix 200)

3.1.4 System Diagram. (See figure 1)

3.1.5 Interface Definition. The GCS and MPS shall be capable of providing

communications with TACFIRE/AFATDS and ASAS. The capability to

automatically log all incoming and outgoing formatted tactical messages

shall be provided. All digital messages received from TACFIRE/AFATDS and

ASAS shall be error checked automatically. TACFIRE/AFATDS and ASAS messages

that contain errors which are detected but cannot be corrected automatically

shall be discarded. The system shall also have the ability to free form text

messages in formats TBD by the operator on a word processor.

155

E.2 Ignored Files used in the RFP Case Study

ignored-common-words-file:

somewhere whatever will for not by should able having have has had

top are how first thereby any would make made give given throughout through

this adhere herein here between upon their greater better full

two when generally immediately only now sufficient after continued case cases

shall initial that thats begin begun successful take takes taken

these both unique also toward further neither

low one four fourth five

normal within without possible already ready kind least most during

just anything talk about it go going went down up try tight if i into

move moves moved outside out may

get gets getting like

before allways back send sent you fact second third whether its but what same

other straight anywhere me sure how we depend actually onto affect affects

necessarily

necessary could very else instance they see side even matter told him said

off no non so three several those right since some another which alright set

put much correct

was there then something under even effective affect available

thing either each shar stand consider considered describe described

throw think know knows ought different differents

really actually fairly change because things your prior selected form

overall allow all via such over

loss handle seperate says determine determined prevent

provide provides provided show showed shown

included includes including include

utilize utilized existing follow follows following change changes

current near above below bottom per unless less otherwise

the of is to an a from and as cannot can been be being do does done did

with very high where until many new while when more than among

later well use using used in or at on want wanted

ignored-application-words-file:

air vehicles vehicle uav av sr manned

operational operations operation operating handling handled examples example

requirement requirements require required requiring engineering

specification specifications specified short range systems system

knots meters inches ton american society arizona

computer software hardware mil dod std cat ieee

table figures figure diagram curve lines line margin format type

156

note appendix article paragraph paragraphs para section sections

listing contents chapter chapters series

definition defined define apply applied based denotes

consists consist contained containing contain meet increase

delete deleted dated subjected continuous continue extent maximum minimum min

ability general description purpose due needs need plus

46168 11991

23377 83286 10304 5044 5400 7793e 2167a 2168 1472 7075 8010 7438 july 1989

1000 810d 110of 160of 128k

510 280 000 462 514 125 400 232 100 200 454 220 110 117 516 779

46 45 87 14 15 01 02 03 04 05 06 10 11 12 20 35 40 50 60 70 31

0 1 2 3 4 5 6 7 8 9

iii faa iff iia iaw ii

a b c d e f g h i

ce cs rs kt hr mhz hz cm meter km db feet kb volt ber fahrenheit u s army

ignored-suffixes-file:

lications tification ification ilization ization

ication cation stration tration eration ibration ration sition ditions dition

mentation itation tation iation tration ulation llation lation

igation mination ination uation dation ation

ition ention ntion ception ption olution

tection jection lection ection uction ction tion ension nsion usion sion

formance enance dance urance arance rance tance ance ference ence encies

rement agement gement mplement lement ovement ement nment ishment hment ment

sent cident fficient ent tible ssible ible

sable eable table inable nable iable hable able

aining rning ering ining ying ving ning ling icating ulating lating ating

ifting sting itting tting eting uting cting ting

nding iding ading ding ring ings

essing sing pping icing cing lizing ishing

iles ile eeds round sist ious ware mage age

tified pplied ified lied ited tected icted rected ected cted rated

ulated ulate lated lat ints vices ories

ated mitted dered ired ire ered ared are fined tained ined ied ted ished

tially ually ically ally lly alled ded ized imize ceiver

ability sibility ibility eability bility lity ctivity ilities istics

ective ctive ative osive tive tical nical ical

ature ure ternal minal inal uffer plays play ology

lters ters 00 esign ign plicate icate ate ainer ntain

ine atic tic ote ter le ight ght accord titude cular cators ctors itors tors tural

945 01 05 20 30 87 37 40 46 47 49 14 15 16 25 60

0 1 2 3 4 5 6 7 8 9

ive er ed ing out rtial ial ity

157

E.3 AbstFinder Results on the RFP Case Study: First Iteration

S U M M A R Y OF A B S T F I N D

--

of lines read from input file is 1920

of abstractions found is 1627

--

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

1 | 12 | 1 | 226 | equipment|

2 | 13 | 1 | 226 | equipment|

3 | 72 | 1 | 226 | equipment|

4 | 503 | 1 | 226 | equipment|

5 | 647 | 1 | 226 | equipment|

6 | 1002 | 1 | 226 | equipment|

7 | 1181 | 1 | 142 | mission |

8 | 1055 | 1 | 113 | test |

9 | 85 | 1 | 95 | interface |

10 | 241 | 1 | 87 | transponder|

11 | 1406 | 1 | 87 | transponder |

12 | 474 | 1 | 82 | launch recovery l r |

13 | 476 | 1 | 82 | launch recovery|

14 | 927 | 1 | 82 | launch recovery l r |

15 | 50 | 1 | 82 | launch recovery|

16 | 199 | 1 | 66 | performance|

17 | 55 | 1 | 59 | recovery |

18 | 1599 | 1 | 59 | recovery |

19 | 1193 | 1 | 57 | launch|

20 | 3 | 1 | 40 | configuration|

21 | 6 | 1 | 40 | configuration|

22 | 472 | 1 | 37 | remote video terminal rvt |

23 | 335 | 1 | 30 | link |

24 | 145 | 1 | 30 | communication |

25 | 860 | 1 | 29 | training|

26 | 922 | 1 | 29 | shelters|

27 | 1263 | 1 | 27 | temperature|

28 | 1267 | 1 | 27 | temperature|

29 | 858 | 1 | 25 | personnel|

30 | 519 | 1 | 23 | growth |

158

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

31 | 880 | 1 | 23 | characteristics|

32 | 112 | 1 | 23 | characteristics|

33 | 1401 | 1 | 23 | growth |

34 | 635 | 1 | 22 | altitude|

35 | 223 | 1 | 22 | altitude|

36 | 677 | 1 | 22 | altitude |

37 | 1260 | 1 | 22 | altitude|

38 | 228 | 1 | 19 | speed|

39 | 645 | 1 | 18 | vibration|

40 | 489 | 1 | 18 | generators|

41 | 1291 | 1 | 18 | vibration|

42 | 1370 | 1 | 18 | vibration|

43 | 171 | 1 | 18 | generators|

44 | 882 | 1 | 17 | shelter|

45 | 1598 | 1 | 17 | action|

46 | 1035 | 1 | 16 | ilsds|

47 | 1082 | 1 | 16 | analysis|

48 | 803 | 1 | 15 | safety|

49 | 809 | 1 | 15 | safety |

50 | 1525 | 1 | 15 | field |

51 | 1535 | 1 | 15 | position|

52 | 671 | 1 | 14 | radiation|

53 | 564 | 1 | 14 | criteria |

54 | 1582 | 1 | 14 | real time|

55 | 777 | 1 | 13 | finish|

56 | 105 | 1 | 13 | organization|

57 | 1434 | 1 | 13 | mtbf |

58 | 620 | 1 | 12 | fungus|

59 | 1276 | 1 | 12 | fungus|

60 | 1359 | 1 | 12 | fungus|

159

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

61 | 1576 | 1 | 12 | navigation|

62 | 589 | 1 | 11 | applicable|

63 | 1379 | 1 | 11 | exceed |

64 | 681 | 1 | 11 | rain |

65 | 603 | 1 | 10 | humidity|

66 | 1178 | 1 | 10 | profile|

67 | 1271 | 1 | 10 | humidity|

68 | 1306 | 1 | 10 | load p|

69 | 1349 | 1 | 10 | humidity|

70 | 1441 | 1 | 10 | mtbmcf |

71 | 1464 | 1 | 10 | mtbmcf|

72 | 1469 | 1 | 10 | mtbmcf |

73 | 1403 | 1 | 9 | 30 analog bandwidth |

74 | 947 | 1 | 8 | instrumentation|

75 | 970 | 1 | 8 | grounding terminal|

76 | 185 | 1 | 8 | survivability|

77 | 1221 | 1 | 8 | ilsds|

78 | 1353 | 1 | 8 | dust |

79 | 1363 | 1 | 8 | acceleration|

80 | 1418 | 1 | 8 | fuel |

81 | 656 | 1 | 8 | mechanical shock|

82 | 664 | 1 | 8 | acceleration|

83 | 84 | 1 | 7 | threat|

84 | 1433 | 1 | 7 | definitions|

85 | 1611 | 1 | 7 | telemetry|

86 | 1154 | 1 | 6 | retest|

87 | 525 | 1 | 6 | elapse time |

88 | 221 | 1 | 6 | endurance|

89 | 1281 | 1 | 6 | icing|

90 | 1284 | 1 | 6 | salt fog|

160

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

91 | 1355 | 1 | 6 | salt fog|

92 | 543 | 1 | 6 | 21 main memory|

93 | 613 | 1 | 6 | icing|

94 | 1555 | 1 | 6 | lat long |

95 | 626 | 1 | 6 | salt fog|

96 | 580 | 1 | 6 | availability|

97 | 1301 | 1 | 5 | loaded |

98 | 523 | 1 | 5 | coverage|

99 | 998 | 1 | 5 | lighting |

100 | 904 | 1 | 5 | filters |

101 | 902 | 1 | 5 | filters|

102 | 1491 | 1 | 5 | bit error rate|

103 | 1340 | 1 | 4 | sand dust|

104 | 623 | 1 | 4 | color |

105 | 1136 | 1 | 4 | burn test|

106 | 226 | 1 | 4 | maneuver|

107 | 554 | 1 | 4 | water|

108 | 906 | 1 | 4 | exhaust blower|

109 | 650 | 1 | 4 | exception |

110 | 1563 | 1 | 4 | meteorolog|

111 | 648 | 1 | 4 | exception|

112 | 1195 | 1 | 3 | penetration|

113 | 91 | 1 | 3 | legend|

114 | 1038 | 1 | 3 | regulations|

115 | 837 | 1 | 3 | plastic|

116 | 890 | 1 | 3 | inter |

117 | 622 | 1 | 3 | s fung|

118 | 1 | 1 | 3 | utilization|

119 | 796 | 1 | 3 | workmanship|

120 | 854 | 1 | 3 | logistics|

161

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

151 | 28 | 2 | 105 | data terminal | ground data terminal gdt |

152 | 132 | 2 | 105 | data terminal | ground data terminal gdt |

153 | 1479 | 2 | 92 | ground |l ground |

154 | 643 | 2 | 89 | environment| induced environment|

155 | 1243 | 2 | 87 | trans| transit |

156 | 910 | 2 | 80 | electr| electrical power|

157 | 848 | 2 | 79 | electron| r electr|

158 | 1122 | 2 | 69 | performance | performance parameters|

159 | 1339 | 2 | 69 | mpcs l| mpcs l r |

160 | 1473 | 2 | 66 | system| subsystem |

161 | 215 | 2 | 61 | recovery | emergency recovery |

162 | 542 | 2 | 60 | capability |expansion c|

163 | 140 | 2 | 59 | recovery | recovery site|

164 | 53 | 2 | 57 | launch | launch ls |

165 | 139 | 2 | 57 | launch | launch site|

166 | 1560 | 2 | 57 | s launch | ls launch |

167 | 364 | 2 | 54 | airborne data | airborne data relay adr |

168 | 9 | 2 | 52 | component |quantity|

169 | 1489 | 2 | 42 | operator| avo operator|

170 | 8 | 2 | 40 | configuration| baseline configuration|

171 | 997 | 2 | 39 | mination| shelter |

172 | 442 | 2 | 38 | display | display s|

173 | 676 | 2 | 38 | condition| condition |

174 | 33 | 2 | 37 | remote video terminal| remote video terminals rvt |

175 | 1600 | 2 | 37 | t remote video terminal| rvt remote video terminal|

176 | 1124 | 2 | 36 | functional | functional audit|

177 | 62 | 2 | 35 | imint |passive imint mmp|

178 | 1621 | 2 | 35 | station| ws work station|

179 | 1241 | 2 | 33 | tactical | vibration|

180 | 870 | 2 | 31 | relay| relays|

162

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

181 | 887 | 2 | 30 | temperature |limits|

182 | 493 | 2 | 30 | communication| communications|

183 | 1219 | 2 | 30 | training| surrogate training|

184 | 1248 | 2 | 30 | testing| e3 te|

185 | 1448 | 2 | 30 | operate | operate time|

186 | 124 | 2 | 30 | video | video bus|

187 | 1129 | 2 | 28 | accepta| acceptance tests|

188 | 1168 | 2 | 26 | reliab| reliability|

189 | 556 | 2 | 26 | reliab| reliability|

190 | 888 | 2 | 25 | personnel | personnel space|

191 | 1591 | 2 | 24 | position navigation| posnav |

192 | 349 | 2 | 23 | digital| cmd digital|

193 | 348 | 2 | 23 | digital| cmd digital|

194 | 1400 | 2 | 23 | growth goal| growth goals |

195 | 772 | 2 | 22 | report |d usamicom technical report rd te |

196 | 770 | 2 | 22 | report | usamicom technical report rd te |

197 | 988 | 2 | 21 | phase l|e load|

198 | 246 | 2 | 21 | navigation | navigation lights|

199 | 409 | 2 | 21 | target| targets|

200 | 1523 | 2 | 20 | t test| fat test|

201 | 773 | 2 | 20 | light| lightning|

202 | 1543 | 2 | 19 | accord| accordance |

203 | 224 | 2 | 18 | rate | rate climb|

204 | 1245 | 2 | 18 | vibration| random vibration|

205 | 401 | 2 | 17 | analysis | analysis plot|

206 | 1605 | 2 | 17 | t trans|small unit transceiver|

207 | 859 | 2 | 16 | ilsds| ilsds |

208 | 106 | 2 | 16 | ilsds| ilsds |

209 | 108 | 2 | 16 | ilsds| ilsds |

210 | 109 | 2 | 16 | ilsds| ilsds |

163

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

211 | 1014 | 2 | 16 | ilsds| ilsds |

212 | 806 | 2 | 16 | ilsds| ilsds |

213 | 1342 | 2 | 15 | solar | solar radiation|

214 | 845 | 2 | 15 | surface|metal |

215 | 1384 | 2 | 15 | solar | solar radiation|

216 | 687 | 2 | 15 | criteria| drop c|

217 | 491 | 2 | 15 | truck| trucks trailers|

218 | 639 | 2 | 15 | solar | solar radiation|

219 | 177 | 2 | 15 | truck| trucks trailers|

220 | 1427 | 2 | 14 | subscri| mtbf |

221 | 1578 | 2 | 14 | protection a| nfpa |

222 | 779 | 2 | 13 | finish| finish |

223 | 1510 | 2 | 13 | day night| n day |

224 | 1580 | 2 | 13 | organ| organic |

225 | 1409 | 2 | 12 | auto track|track |

226 | 1175 | 2 | 12 | ilsds |aging |

227 | 183 | 2 | 12 | d mobility| road mobility|

228 | 986 | 2 | 12 | circuit | circuit breakers|

229 | 1579 | 2 | 12 | navigation| navigation|

230 | 987 | 2 | 12 | circuit | circuit breakers |

231 | 1415 | 2 | 11 | auto |search |

232 | 568 | 2 | 10 | mtbmcf |f hour|

233 | 818 | 2 | 9 | desired| implementation|

234 | 547 | 2 | 9 | memory|implement |

235 | 1624 | 2 | 9 | aircraft| wing |

236 | 471 | 2 | 7 | gdt a| gdt attached gcs|

237 | 1548 | 2 | 7 | intelligence| intel|

238 | 1549 | 2 | 7 | input |input output|

239 | 345 | 2 | 7 | link | fade |

240 | 1622 | 2 | 7 | vision | revision m|

164

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

361 | 686 | 3 | 21 | rd te |radiation| radiation |

362 | 1367 | 3 | 18 | vibration| vibration | vibration shock|

363 | 1092 | 3 | 18 | safety |ty tests| safety tests|

364 | 170 | 3 | 18 | comply | compl|f comp|

365 | 1085 | 3 | 18 | qualifi| qualification | qualification tests|

366 | 1615 | 3 | 17 | anned | unmanned | unmanned aerial |

367 | 1244 | 3 | 16 | mobility | endurance| mobility e|

368 | 500 | 3 | 16 | contained | self | self contained |

369 | 104 | 3 | 15 | organization| concept| organization |

370 | 196 | 3 | 15 | nuclear |biological chemical |nuclear biological chemical|

371 | 996 | 3 | 15 | service| wiring | service|

372 | 1470 | 3 | 15 | hours |t hours |attempt |

373 | 662 | 3 | 14 | service| service | service s|

374 | 680 | 3 | 14 | relative | humidity|humidity |

375 | 852 | 3 | 14 | umentation| document| documentation|

376 | 1461 | 3 | 13 | mtbf | mtbf m| mtbf mtbf |

377 | 1617 | 3 | 13 | l trans|verse |universal transverse mercator|

378 | 872 | 3 | 12 | e mmp | simulate | simulate m|

379 | 1144 | 3 | 11 | rejection |retest| retest|

380 | 404 | 3 | 11 | elements| plots|ts ele|

381 | 1480 | 3 | 10 | istic |administrative logistic |t administrative |

382 | 1428 | 3 | 10 | comput| compute| computed |

383 | 1412 | 3 | 10 | sistance | jam resistance|resistance |

384 | 333 | 3 | 10 | sistance|resistance| jam resistance|

385 | 1351 | 3 | 9 | measurement|final c| measurements last hrs final cycle|

386 | 1032 | 3 | 9 | inherent |ensure | lru inherent bit ensure bit met|

387 | 1025 | 3 | 9 | inherent |ensure | lru inherent bit ensure bit met|

388 | 1581 | 3 | 9 | radio|radio |net radio protoc|

389 | 193 | 3 | 9 | survivability e|enhance| survivability enhancement|

390 | 1273 | 3 | 9 | measurement|final c| measurements last hrs final cycle|

165

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

421 | 693 | 4 | 82 | transpo| transpor| transport| transportability|

422 | 205 | 4 | 82 | flight|program| preprogrammed | flight|

423 | 771 | 4 | 80 | electro| electrostatic |discharge| electrostatic discharge esd |

424 | 114 | 4 | 80 | performance | characteristics| performance character| performance

425 | 591 | 4 | 80 | environment| environment| mode |environment |

426 | 236 | 4 | 77 | flight| flight |mination | flight termination |

427 | 419 | 4 | 76 | payload| payload | payload p|d plan|

428 | 1495 | 4 | 74 | interface|sensor |or interface|sensor i|

429 | 528 | 4 | 72 | processing |source|sources|resources|

430 | 1068 | 4 | 71 | conditions|specti| condition| inspection con|

431 | 1213 | 4 | 71 | recovery | recovery e|engine s| recovery en|

432 | 377 | 4 | 68 | capability | comput| computers| computers c|

433 | 1552 | 4 | 68 | support | support |integrated |integrated support plan|

434 | 1209 | 4 | 63 | recovery| recovery| return | return recovery|

435 | 449 | 4 | 62 | display |maintain | maintain | display |

436 | 617 | 4 | 61 | flight| flight | icing| flight de|

437 | 1594 | 4 | 60 | recovery |recovery ai| recovery |a reco|

438 | 179 | 4 | 54 | power |cables| power c| power cables|

439 | 1490 | 4 | 54 | console|operator co|operator con|operator console|

440 | 1488 | 4 | 53 | display|location |location d| display|

441 | 857 | 4 | 51 | training| personnel | personnel t| training|

442 | 735 | 4 | 51 | design|k design| 2000 | soldering |

443 | 740 | 4 | 48 | standard | standard p|ard part| standard parts|

444 | 1224 | 4 | 47 | program| qualifi| qualification | qualification program|

445 | 34 | 4 | 47 | power | power |ower ho|t power |

446 | 1477 | 4 | 46 | airborne data terminal| adt airborne |dt airborne data | adt airbor

447 | 1112 | 4 | 44 | function|functions|functions su| verification |

448 | 728 | 4 | 44 | material|process|s process| materials processes|

449 | 1553 | 4 | 44 | planning |information |strate|s joint s|

450 | 1047 | 4 | 42 | respon|specti|inspection| inspection|

166

E.4 AbstFinder Results on the RFP Case Study: Last Iteration

S U M M A R Y OF A B S T F I N D

--

of lines read from input file is 1912

of abstractions found is 251

--

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

1 | 10 | 1 | 6 | program|

2 | 53 | 1 | 5 | amming|

3 | 147 | 1 | 5 | particular |

4 | 148 | 1 | 5 | partic|

5 | 171 | 1 | 5 | mission |

6 | 36 | 1 | 4 | equal |

7 | 39 | 1 | 4 | tability|

8 | 112 | 1 | 4 | manufacture|

9 | 8 | 1 | 4 | conce|

10 | 226 | 1 | 4 | equal |

11 | 35 | 1 | 3 | board |

12 | 1 | 1 | 3 | compr|

13 | 42 | 1 | 3 | accom|

14 | 47 | 1 | 3 | assum|

15 | 61 | 1 | 3 | board |

16 | 69 | 1 | 3 | tinent|

17 | 99 | 1 | 3 | rable |

18 | 118 | 1 | 3 | nonop|

19 | 126 | 1 | 3 | energ|

20 | 133 | 1 | 3 | compl|

21 | 138 | 1 | 3 | graphi|

22 | 170 | 1 | 3 | function|

23 | 205 | 1 | 3 | appro|

24 | 239 | 1 | 3 | assum|

25 | 246 | 1 | 3 | position|

26 | 250 | 1 | 3 | recon|

27 | 26 | 1 | 2 | exhib|

28 | 48 | 1 | 2 | planne|

29 | 49 | 1 | 2 | minutes |

30 | 52 | 1 | 2 | accept|

167

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

31 | 2 | 1 | 2 | records |

32 | 54 | 1 | 2 | integ|

33 | 55 | 1 | 2 | succe|

34 | 58 | 1 | 2 | access|

35 | 27 | 1 | 2 | ensity |

36 | 63 | 1 | 2 | defin|

37 | 64 | 1 | 2 | defin|

38 | 66 | 1 | 2 | scan |

39 | 67 | 1 | 2 | scan |

40 | 68 | 1 | 2 | sequent|

41 | 30 | 1 | 2 | enhance|

42 | 70 | 1 | 2 | recogni|

43 | 72 | 1 | 2 | ident|

44 | 77 | 1 | 2 | ablity|

45 | 80 | 1 | 2 | rection|

46 | 82 | 1 | 2 | mulate|

47 | 85 | 1 | 2 | derati|

48 | 90 | 1 | 2 | package|

49 | 93 | 1 | 2 | stand|

50 | 95 | 1 | 2 | ventilati|

51 | 96 | 1 | 2 | permi|

52 | 31 | 1 | 2 | servic|

53 | 100 | 1 | 2 | types |

54 | 101 | 1 | 2 | types |

55 | 102 | 1 | 2 | exhib|

56 | 103 | 1 | 2 | guide|

57 | 105 | 1 | 2 | appro|

58 | 106 | 1 | 2 | mounted|

59 | 108 | 1 | 2 | config|

60 | 111 | 1 | 2 | aded p|

168

E.5 ASSR - Allocated System Software Requirements for the RFP

The following pages contain part of the Allocated System Software Requirements for the
RFP generated by the human experts.

169

170

171

E.6 Sub-abstractions of Testing Abstraction (Summary)

S U M M A R Y OF A B S T F I N D

--

of lines read from input file is 163

of abstractions found is 160

--

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

1 | 155 | 1 | 53 | test equipment|

2 | 159 | 1 | 18 | t test|

3 | 56 | 1 | 13 | acceptance tests|

4 | 73 | 1 | 6 | retest|

5 | 79 | 1 | 4 | test re|

6 | 76 | 1 | 4 | 1 test|

7 | 5 | 1 | 2 | minimum f|

8 | 45 | 2 | 36 | tests |detailed test|

9 | 157 | 2 | 18 | t test|built test|

10 | 71 | 2 | 9 | corrective action |corrective action retest|

11 | 42 | 2 | 9 | qualification |qualification tests|

12 | 69 | 2 | 8 | rejection |retest|

13 | 48 | 2 | 7 | ty tests|safety tests|

14 | 140 | 2 | 6 | accordance |test levels |

15 | 10 | 2 | 5 | test fa|test fat |

16 | 63 | 2 | 5 | n test|burn test|

17 | 158 | 3 | 67 | test equipment|t test |built test |

18 | 160 | 3 | 59 | equipment|test measurement diagnostic equipment|e test |

19 | 28 | 3 | 56 | test equipment |facilities|equipment f|

20 | 150 | 3 | 41 | performing |tests |safety |

21 | 7 | 3 | 27 | t test|built test|performing |

22 | 122 | 3 | 22 | ct test |complete|impact test |

23 | 39 | 3 | 22 | inspection|inspections tests|special inspections tests|

24 | 149 | 3 | 15 | consist|environment|test levels |

25 | 46 | 3 | 10 | environmental|environmental |environmental tests|

26 | 78 | 3 | 5 | report|test re|test report|

27 | 30 | 4 | 65 | test equipment |inspection |accordance |equipment acc|

28 | 50 | 4 | 22 | t test |built test |demonstration|test d|

29 | 145 | 4 | 19 | test s|flight |ain test |phases|

172

30 | 152 | 4 | 14 | operation|operational |operational te|operational test|

173

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

31 | 109 | 5 | 60 | ct test |procedure|test p|test procedure|impact test |

32 | 2 | 5 | 57 | equipment |equipment t|test measur|urement |test measurement diagno

33 | 27 | 5 | 49 | tests |inspection|inspections tests |special inspections tests|spec

34 | 49 | 5 | 40 | tests |design |tests demonstrate |safety |demonstrate s|

35 | 26 | 5 | 29 | facilities|test fa|government |verification |government co|

36 | 115 | 5 | 26 | tance |test c|test car|distance |e test car|

37 | 118 | 5 | 18 | test c|test car|test car r|buffer cars|e test car|

38 | 113 | 5 | 17 | test c|test car|test car |buffer cars |locomotive|

39 | 90 | 6 | 63 | operati|equipment |storage |temperature |operating test temperature

40 | 153 | 6 | 40 | tests |conducted |s conducted |tests con|tests conducted |cted f|

41 | 156 | 6 | 36 | program|test p|acceptance test|test pro|test program|acceptance tes

42 | 24 | 6 | 34 | test p|provisions |test plan|verification pro|s ident|compliance |

43 | 67 | 6 | 25 | test a|approv|acceptance test|acceptance test |acceptance test appr

44 | 20 | 6 | 24 | test b|t test |built test |mission |built test bit |built test bit

45 | 89 | 6 | 17 | operati|training|temperature |t operati|operating test temperature

46 | 1 | 7 | 59 | equipment |test equipment |equipment ma|d test |standard |rd test|m

47 | 32 | 7 | 51 | test me|method|s procedure|methods |s procedures|ds pro|test method

48 | 123 | 7 | 51 | rd test|tests |tests i|maintain |d tests|impact|step m|

49 | 60 | 7 | 43 | performance|tests |conducted |design |s conducted |tests con|tests

50 | 16 | 7 | 40 | tests |design|y tests |ty tests |humidity |tested |dity test|

51 | 61 | 7 | 30 | program|test p|maintain|test pro|test program|support|maintainabili

52 | 138 | 7 | 28 | exposure |s test|posed |examination|ts test|examination con|examina

53 | 116 | 7 | 25 | tance |test c|commodity |test car|test car |buffer cars|distance |

54 | 14 | 7 | 25 | cluding |test b|t test |built test |quantit|comply |built test bit

55 | 18 | 7 | 24 | test b|t test |built test |mission |built test bit |mission critica

56 | 41 | 7 | 24 | st insp|test i|inspection |t inspection|compliance |mainta|tained |

57 | 31 | 8 | 64 | test equipment |1 test|inspection |equipment qu|accuracy |quality |

58 | 4 | 8 | 64 | test equipment |equipment t|control|environment|facilities|environm

59 | 97 | 8 | 60 | equipment |test s|withstand |equipment sub|subjected |herein|equipm

60 | 17 | 8 | 59 | equipment |equipment t|s equipment |ground |provisions |ds pro|equi

174

E.7 Sub-abstractions of Safety and Fail Abstractions

S U M M A R Y OF A B S T F I N D

--

of lines read from input file is 15

of abstractions found is 14

--

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

1 | 3 | 1 | 15 | safety|

2 | 5 | 1 | 15 | safety |

3 | 6 | 1 | 15 | safety |

4 | 12 | 1 | 15 | safety |

5 | 2 | 2 | 15 | safety |safety f|

6 | 10 | 2 | 15 | safety |safety tests|

7 | 14 | 2 | 15 | safety |safety h|

8 | 11 | 3 | 15 | safety |tests |demonstrate|

9 | 13 | 3 | 15 | safety |tests |perform|

10 | 4 | 3 | 15 | safety |safety p|safety f|

11 | 1 | 4 | 15 | flight |safety |flight termination |safety h|

12 | 7 | 4 | 15 | safety |qualification environmental safety te|safety tests|tests |

13 | 0 | 4 | 15 | flight |safety |flight termination |safety p|

14 | 8 | 5 | 15 | safety |qualification environmental safety te|qualification environ

175

S U M M A R Y OF A B S T F I N D

--

of lines read from input file is 46

of abstractions found is 45

--

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

1 | 36 | 2 | 44 | failure |mean time mission critical failure mtbmcf |

2 | 19 | 2 | 43 | failure |failure reporting|

3 | 5 | 2 | 43 | failure|personnel |

4 | 37 | 3 | 44 | failure|mission |mission failure|

5 | 45 | 3 | 44 | failure|mtbmcf |mean time mission critical failure|

6 | 14 | 4 | 44 | failure|mission critical failure|mission critical failures|built te

7 | 9 | 5 | 44 | failure|mission critical failure|mission critical failures|built te

8 | 42 | 5 | 44 | failure |failure r|system|subsystem|subsystem |

9 | 20 | 5 | 43 | failure |failures|failures |testing |s occur|

10 | 4 | 6 | 45 | failure|function |s fail|s failure|function result|operate |

11 | 2 | 6 | 44 | failure |mission |mission critical failure|mean time mission critic

12 | 16 | 6 | 43 | failure|failures|failures |t isolate |bit isolate |failures single

13 | 31 | 7 | 45 | failure |mission critical failure |s mission critical failure|syste

14 | 1 | 7 | 44 | recovery |recovery d|failure|event |manual |ency re|catastrophic |

15 | 6 | 7 | 44 | damage |failure |protection d|power |equipment |power failure|failu

16 | 24 | 8 | 45 | failure |s failure|failure da|testing |corrective action |ss fail|a

17 | 34 | 8 | 45 | failure|mission |failures|failures |t mission |mission failures |s

18 | 25 | 8 | 44 | failure pr|deficiencies |deficiencies d|corrective action |criteria

19 | 32 | 8 | 44 | failure |failure mtb|mean time |mission |e failure|reliability |mea

20 | 7 | 8 | 44 | damage |failure|function |protection d|power |equipment |power fail

21 | 3 | 9 | 45 | failure|mission |mission critical failure|failures|mission critical

22 | 12 | 9 | 44 | failure|mission critical failure|mission critical failures|failures

23 | 33 | 9 | 44 | failure|manual|mission |failures|failures |technical |mission failu

24 | 11 | 9 | 44 | failure|mission critical failure|mission critical failures|failures

25 | 23 | 9 | 15 | establ|s fail|ss fail|criteria |systems|control |components |s comp

26 | 17 | 10 | 44 | failure|mission |failures|failures |isolat|percent mission |additio

27 | 0 | 10 | 44 | recovery |recovery d|failure|event |failure |damage |maintenance |d

28 | 39 | 10 | 44 | failure |mission |s mission |function|function result|malfunction |

29 | 30 | 11 | 45 | failure |mission |s mission |s failure|components |ss fail|ess fail

30 | 22 | 11 | 44 | failure |ency re|addition|failure reporting|deficienc|timely |failu

176

------ |------ |------ |------ |---------------------

#) | abst# | corr_ | corr_ | correlateted-phrases

| |phras# |lines# |

------ |------ |------ |------ |---------------------

31 | 15 | 11 | 44 | failure|mission critical failure|mission critical failures|equipmen

32 | 28 | 11 | 7 | t fail|uring |s proc|activity |activity de|procuring activity |rete

33 | 10 | 12 | 44 | failure|mission critical failure|mission critical failures|equipmen

34 | 26 | 12 | 44 | failure pr|s appro|uring |activity |corrective action |failure pro

35 | 18 | 12 | 43 | failure|manual |failures|failures |isolat|t isolat|isolation |bit i

36 | 35 | 13 | 44 | maintenance |failure|mission |failures|l mission |personnel |equipm

37 | 13 | 13 | 44 | failure|manual |mission critical failure|mission critical failures

38 | 40 | 14 | 45 | failure |failure mtb|mean time |failures|e failure|failures |e fail

39 | 41 | 14 | 45 | failure|mission |failures|operate |failures |t mission |mission fai

40 | 27 | 15 | 46 | failure |t failure|uring |defects |activity de|respons|correcti|inv

41 | 43 | 15 | 45 | failure|mission |failures|operate |failures |t mission |failures i|

42 | 21 | 15 | 44 | design|failure |detect |proced|failure reporting|deficienc|timely |

43 | 8 | 16 | 45 | maintenance |failure|mission critical |failures|equipment |failures

44 | 38 | 16 | 44 | failure |catastrophic |mission |critical |function |personnel |equi

45 | 44 | 19 | 36 | recovery |mission |s fail|equipment |launch |e fail|t fail|t missio

177

E.8 Results of findphrases on the RFP Case Study

********** 268 equipment

********* 252 /

******* 195 data

****** 155 mission

***** 143 mil -

***** 138 test

***** 130 - sr

***** 130 uav -

***** 130 uav - sr

**** 112 - std

**** 110 - std -

**** 110 std -

**** 107 |

**** 100 ground

**** 98 control

**** 97 mil - std

**** 97 the uav

**** 97 the uav -

**** 97 the uav - sr

**** 95 mil - std -

*** 90 - sr system

*** 90 sr system

*** 90 uav - sr system

*** 89 the system

*** 70 mpcs

*** 69 performance

*** 67 the av

** 66 payload

** 66 time

** 63 power

** 62 recovery

** 59 mmp

** 54 flight

** 53 government

** 52 launch

** 51 equipment shall

** 50 maintenance

** 50 support

** 49 operator

** 48 tests

** 45 shall be capable of

** 44 storage

** 43 electrical

178

** 43 standard

** 43 the equipment

** 41 components

** 41 gcs

* 40 gdt

* 39) ,

* 39 , the

* 39 - 810d

* 39 - std - 810d

* 39 link

* 39 std - 810d

* 39 the mpcs

* 38 be provided

* 38 mps

* 38 of mil

* 38 of mil -

* 37 environmental

* 37 method

* 36 contractor

* 36 l

* 35 imint

* 35 relay

* 35 subsystem

* 34 data link

* 34 electromagnetic

* 34 of mil - std

* 34 station

* 32 air vehicle

* 32 day

* 32 design

* 32 planning

* 32 see appendix

* 32 temperature

* 31 reliability

* 31 shelters

* 31 video

* 30 command

* 30 the contractor

* 30 training

* 29 conditions

* 29 r

* 29 sensor

* 29 terminal

* 28 - sr system shall

* 28 / r

179

* 28 be subjected

* 28 interface

* 28 l /

* 28 l / r

* 28 non -

* 28 procedure

* 28 testing

* 27 airborne

* 27 appendix 100

* 27 display

* 27 failure

* 27 may be

* 27 total

* 26) 3

* 26 environments

* 26 mission planning

* 26 on the

* 26 operate

* 26 personnel

* 26 shall be subjected to

* 26 the government

* 25 , shall

* 25 100)

* 25 appendix 100)

* 25 phase

* 25 speed

* 25 status

* 25 the system shall

* 24 adr

* 24 digital

* 24 electronic

* 24 growth

* 24 parts

* 24 requirements of

* 24 see appendix 100

* 24 subsystems

* 24 transport

* 23 bit

* 23 degradation

* 23 modular

* 23 to the test

* 22 (confidential

* 22 , see

* 22 , see appendix

* 22 be subjected to the

180

* 22 characteristics

* 22 confidential

* 22 equipment ,

* 22 military

* 22 see appendix 100)

* 22 support equipment

* 22 test of

* 22 the capability

* 22 the equipment shall

* 22 unit

* 22 x

* 22 | |

* 21 %

* 21 (confidential ,

* 21 (confidential , see

* 21) (

* 21 +

* 21 , see appendix 100

* 21 a minimum

* 21 acceptance

* 21 airborne data

* 21 as a

* 21 confidential ,

* 21 confidential , see

* 21 confidential , see appendix

* 21 failures

* 21 hours

* 21 imagery

* 21 installed

* 21 meet the

* 21 of the system

* 21 program

* 21 system shall be

* 21 the test of

* 21 to the test of

* 21 x |

* 21 | x

* 21 | x |

* 20 (s

* 20 (s)

* 20 - 1

* 20 car

* 20 damage

* 20 facilities

* 20 imint mmp

181

* 20 procedures

* 20 quality

* 20 s)

* 20 specified in

* 20 subjected to the test

* 20 the equipment shall be

* 20 the requirements

* 20 with a

* 19 1)

* 19 and recovery

* 19 at least

* 19 av and

* 19 capability to

* 19 data terminal

* 19 equipment shall be subjected

* 19 location

* 19 modular mission

* 19 of method

* 19 para 3

* 19 part

* 19 rate

* 19 shelter

* 19 the data

* 18 , shall be

* 18 / hr

* 18 2)

* 18 accordance

* 18 accordance with

* 18 at the

* 18 board

* 18 c -

* 18 conducted

* 18 fault

* 18 in accordance

* 18 in accordance with

* 18 inspection

* 18 inspections

* 18 mtbf

* 18 on -

* 18 processing

* 18 qualification

* 18 rvt

* 17 "

* 17 (1

* 17 (2

182

* 17 2 ,

* 17 3)

* 17 area

* 17 be conducted

* 17 control station

* 17 criteria

* 17 critical

* 17 data relay

* 17 fungus

* 17 is required to

* 17 level

* 17 rain

* 17 selectable

* 17 test of method

* 17 the test of method

* 17 this specification

* 17 transit

* 17 used to

* 16 ’

* 16 (1)

* 16) shall

* 16 - c

* 16 - |

* 16 4)

* 16 70 -

* 16 =

* 16 communications

* 16 downlink

* 16 environment

* 16 ilsds

* 16 interfaces

* 16 mission payload

* 16 payloads

* 16 physical

* 16 production

* 16 remote

* 16 safety

* 16 shall meet

* 16 shall operate

* 16 station (

* 16 the capability to

* 16 the mission

* 16 the mps

* 16 use of

* 16 vibration

183

* 16 weight

* 16 wind

* 16 within the

* 16 withstand

* 16 | -

* 15 (2)

* 15 - board

* 15 - in

* 15 altitude

* 15 and control

* 15 and shall be

* 15 approved

* 15 bus

* 15 communication

* 15 consist of

* 15 corrective

* 15 ft

* 15 induced

* 15 launch and

* 15 of the uav

* 15 of the uav -

* 15 on - board

* 15 on a

* 15 operating ,

* 15 part of

* 15 primary

* 15 real

* 15 recorder

* 15 shall include

* 15 shall meet the

* 15 shock

* 15 such as

* 15 tactical

* 15 target

* 15 terminal (

* 15 the air

* 15 the operator

* 15 the performance

* 15 work

* 14 ’ s

* 14 - c -

* 14 21

* 14 activity

* 14 adt

* 14 and other

184

* 14 coating

* 14 common

* 14 compliance

* 14 contract

* 14 contractor shall

* 14 devices

* 14 except

* 14 external

* 14 fat

* 14 ground data

* 14 is the

* 14 materials

* 14 mil - c

* 14 mil - c -

* 14 mobile

* 14 must

* 14 of this

* 14 performed

* 14 prior to

* 14 radiation

* 14 shall consist

* 14 shall consist of

* 14 specified performance

* 14 the requirements of

* 14 with mil

* 14 with mil -

185

Appendix F Using Abstraction Network of Findphrases Case Study

Figure 15 contains snapshots of using the abstraction network of the findphrases case
study. Figure 15-a is the COVER of the database seen when entering the browser of Hyperties.
On the top of the screen appears the name of the database, FINDPHRASES ABSTRACTION
NETWORK. The user can Enter Knowledge Base, or get information About This Knowledge
Base, or call for Help. Figure 15-b is the INTRODUCTION screen after entering the database
from the COVER. This screen was created by the author, and is a list of all the abstractions of
findphrases. The INDEX window in Figure 15-e is generated automatically by Hyperties and
contains also the list of findphrases abstractions (titles), plus all the technical articles connected
to the visual display (Hyperties defaults). The user, looking at the INTRODUCTION screen,
chooses one of the abstractions, for example text_file, and gets a description screen about that
abstraction article (See Figure 15-c).

Then, he or she can remove it if it is not interesting, or choose to Read This Article. Fig-
ure 15-d shows the content of the TextFile abstraction article. The keywords identifying the
other abstractions, e.g., “phrases”, “symbolcharacters”, “output”, “punctuation”, etc., are the
automatically generated links to other abstractions and are in a color different from than of the
text. So, the reader may choose to read the text sequentially by using Next pg, or to follow the
links associatively. On the bottom of the screen, there are user buttons: Backup for backtracking
according to the HISTORY Screen (See Figure 15-f), Search for any string, Help, Index, and
Exit. Upon pushing Index, the user gets the INDEX screen (See Figure 15-e). On the INDEX
screen, there is the History button used for getting the HISTORY screen (See Figure 15-f) in
order to see the reader’s path in case he or she gets lost. Hyperties always keeps the history of
the navigation path and enables the user to backtrack in this path (See Appendix F.2).

Table 4 shows the links in the findphrases abstraction network, which were automati-
cally generated according to the actions described previously of the second stage of REGAE.
Those automatically generated links are actually cross-reference-type links, as suggested by the
REGAE flight-passenger example in Section 1.5. Almost every abstraction is connected to
almost every other. Most of the connections are bi-directional. Thus, the graphic description of
this hypertext is really a web and will not help solve the orientation problem. Since the version
of Hyperties used does not permit adding new designs, a graphic decomposition of the network
cannot be generated. From the use of this example, it is clear that a graphic description such as
shown in Figure 14 in Appendix C.4 is desirable.

It is the belief of this author that the nature of the diagram in a requirements environment
be completely unspecified. The elicitor should be free to draw whatever diagram he or she
believes will be meaningful to the client.

After constructing the abstraction network, five sentences were found that are not con-
tained in any abstraction. Most of them were not important, and did not give new information.
Only two of them were connected to the text by context, such as “Consequently, ...”, and they
did not give any new information too. Just to be on the safe side, these sentences were collected
to a garbage collector abstraction. Moreover, the original transcript was kept in the text nodes,

186

with pointers to and from the sentences of the abstraction nodes, in order to be able to examine
sentences of abstractions in their original context.

phrases

text_file

argument_line

sentences

chunk_file

multi_token

output_file

string_file

punctuation

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(2) (3)(1) (4) (5) (6) (7) (8) (9)
The abstraction

is linked to:

x x x x x x

x x x x

x x x x x x x x

x x x x x

x x x

x x x x x x x

x x x x x x x

x x x x x

x x x x x x x

Table 4: The links generated automatically by AbstFinder.
AbstFinder ידי על אוטומטית שנו�רו הקשרי� :4 טבלה

187

Figure 15: Hyperties with findphrases
findphrases ע� Hyperties :15 �יור

188

Figure 15: Hyperties with findphrases (Cont.)
findphrases ע� Hyperties :15 �יור

189

Figure 15: Hyperties with findphrases (Cont.)
findphrases ע� Hyperties :15 �יור

190

F.1 Makefile for generating links automatically

#---

makefile: for generate automatically links identified abstractions

for Hyperties (according to Hyperties mark-up language).

#---

macro definitions

SOURCES =

target definitions

a1.phrase: abst.1.phrase abst.Ph.1

remove TABs

fmt -s abst.1.phrase > a1

preapare links of <L> phrase <

sed -f abst.Ph.1 a1 > a1.phrase

rm a1

a2.text: abst.2.text abst.Ph.2

remove TABs

fmt -s abst.2.text > a2

preapare links of <L> phrase <

sed -f abst.Ph.2 a2 > a2.text

rm a2

a3.argu: abst.3.argu abst.Ph.3

remove TABs

fmt -s abst.3.argu > a3

preapare links of <L> phrase <

sed -f abst.Ph.3 a3 > a3.argu

rm a3

a4.sentenc: abst.4.sentenc abst.Ph.4

remove TABs

fmt -s abst.4.sentenc > a4

preapare links of <L> phrase <

sed -f abst.Ph.4 a4 > a4.sentenc

rm a4

a5.chunk: abst.5.chunk abst.Ph.5

remove TABs

fmt -s abst.5.chunk > a5

preapare links of <L> phrase <

191

sed -f abst.Ph.5 a5 > a5.chunk

rm a5

a6.token: abst.6.token abst.Ph.6

remove TABs

fmt -s abst.6.token > a6

preapare links of <L> phrase <

sed -f abst.Ph.6 a6 > a6.token

rm a6

a7.output: abst.7.output abst.Ph.7

remove TABs

fmt -s abst.7.output > a7

preapare links of <L> phrase <

sed -f abst.Ph.7 a7 > a7.output

rm a7

a8.string: abst.8.string abst.Ph.8

remove TABs

fmt -s abst.8.string > a8

preapare links of <L> phrase <

sed -f abst.Ph.8 a8 > a8.string

rm a8

a9.punc: abst.9.punc abst.Ph.9

remove TABs

fmt -s abst.9.punc > a9

preapare links of <L> phrase <

sed -f abst.Ph.9 a9 > a9.punc

rm a9

#--

CorrPhrases.abst: contains the phrases that identify the abstractions

#--

abst.puncuation: punctuation keyword file|

abst.phrases: phrase | phrases

abst.argument: argument | optional |

abst.string: character|symbolcharacter|string

abst.chunk: free format |

abst.text: arbitrary text|input |

abst.muli-token multi tokens file|

abst.output: output| tables |tables output|

abst.sentence: sentence |

#---

192

Abst.Ph.2: contains the script for generating links in abst.text (2)

#---

s/ punctuation/ <L>punctuation<\L>/g

s/ Punctuation/ <L>Punctuation<\L>/g

s/ phrases/ <L>phrases<\L>/g

s/ Phrases/ <L>Phrases<\L>/g

s/ phrase/ <L>phrase<\L>/g

s/ Phrase/ <L>Phrase<\L>/g

s/ argument/ <L>argument<\L>/g

s/ Argument/ <L>Argument<\L>/g

s/ arguments/ <L>arguments<\L>/g

s/ Arguments/ <L>Arguments<\L>/g

s/ symbolcharacters/ <L>symbolcharacters<\L>/g

s/ Symbolcharacters/ <L>Symbolcharacters<\L>/g

s/ symbolcharacter/ <L>symbolcharacter<\L>/g

s/ Symbolcharacter/ <L>Symbolcharacter<\L>/g

s/ characters/ <L>characters<\L>/g

s/ Characters/ <L>Characters<\L>/g

s/ character/ <L>character<\L>/g

s/ strings/ <L>strings<\L>/g

s/ Strings/ <L>Strings<\L>/g

s/ string/ <L>string<\L>/g

s/ String/ <L>String<\L>/g

s/ free format/ <L>free format<\L>/g

s/ Free format/ <L>Free format<\L>/g

s/ multi-tokens-file/ <L>multi-tokens-file<\L>/g

s/ Multi-tokens-file/ <L>Multi-tokens-file<\L>/g

s/ multi-tokens/ <L>multi-tokens<\L>/g

s/ Multi-tokens/ <L>Multi-tokens<\L>/g

s/ multi-token/ <L>multi-token<\L>/g

s/ Multi-token/ <L>Multi-token<\L>/g

s/ tokens/ <L>tokens<\L>/g

s/ Tokens/ <L>Tokens<\L>/g

s/ token/ <L>token<\L>/g

s/ Token/ <L>Token<\L>/g

s/ tables output/ <L>tables output<\L>/g

s/ Tables output/ <L>Tables output<\L>/g

s/ output/ <L>output<\L>/g

s/ Output/ <L>Output<\L>/g

s/ tables/ <L>tables<\L>/g

s/ Tables/ <L>Tables<\L>/g

s/ table/ <L>table<\L>/g

s/ Table/ <L>Table<\L>/g

#---

193

a2.text: is the abstraction network node (article) for abst.text

after activating makefile.link

#---

1 findphrases find repeated <L>phrases<

12 No assumptions are made about the standard input, thus it

may be an arbitrary text

13 The program parses the text into words and <L>symbolcharacters<

30 The standard <L>output<

with the lines numbered and the <L>punctuation<

times (i e , printed three times in place) so that they can be

spotted easily, a frequency ranked <L>table<phrases<

36 Note that the definition of ‘‘phrase’’ is independent of the

number of times it occurs in the sentences

194

F.2 Example of using Hyperties with logging (findphrases)

Wed Sep 9, 1992 16:02:57 BROWSER START => FPHRNET

Wed Sep 9, 1992 16:02:58 ARTICLE ENTRY => COVER

Wed Sep 9, 1992 16:03:03 ARTICLE ENTRY => INTRODUCTION

Wed Sep 9, 1992 16:03:28 ARTICLE ENTRY => CHUNK_FILE

Wed Sep 9, 1992 16:04:01 ARTICLE ENTRY => INTRODUCTION

Sun Sep 13, 1992 18:37:54 BROWSER START => FPHRNET

Sun Sep 13, 1992 18:37:54 ARTICLE ENTRY => COVER

Sun Sep 13, 1992 18:37:59 ARTICLE ENTRY => INTRODUCTION

Sun Sep 13, 1992 18:38:31 ARTICLE ENTRY => PHRASES

Sun Sep 13, 1992 18:41:08 ARTICLE ENTRY => INTRODUCTION

Sun Sep 13, 1992 18:41:29 ARTICLE ENTRY => TEXT_FILE

Sun Sep 13, 1992 18:43:37 ARTICLE ENTRY => INTRODUCTION

Sun Sep 13, 1992 18:43:51 ARTICLE ENTRY => ARGUMENT_LINE

Sun Sep 13, 1992 18:45:41 ARTICLE ENTRY => INTRODUCTION

Sun Sep 13, 1992 18:45:51 ARTICLE ENTRY => SENTENCES

Sun Sep 13, 1992 18:46:34 ARTICLE ENTRY => INTRODUCTION

Sun Sep 13, 1992 18:47:05 ARTICLE ENTRY => CHUNK_FILE

Sun Sep 13, 1992 18:47:42 ARTICLE ENTRY => INTRODUCTION

Sun Sep 13, 1992 18:47:51 ARTICLE ENTRY => MULTI-TOKENS-FILE

Sun Sep 13, 1992 18:49:18 ARTICLE ENTRY => INTRODUCTION

Sun Sep 13, 1992 18:49:30 ARTICLE ENTRY => OUTPUT_FILE

Sun Sep 13, 1992 18:50:48 ARTICLE ENTRY => INTRODUCTION

Sun Sep 13, 1992 18:50:59 ARTICLE ENTRY => STRING_TYPE_FILE

Sun Sep 13, 1992 18:52:07 ARTICLE ENTRY => INTRODUCTION

Sun Sep 13, 1992 18:52:15 ARTICLE ENTRY => PUNC_KEYWORD_FILE

Mon Sep 14, 1992 14:30:39 BROWSER START => FPHRNET

Mon Sep 14, 1992 14:30:39 ARTICLE ENTRY => COVER

Mon Sep 14, 1992 14:30:45 ARTICLE ENTRY => INTRODUCTION

Mon Sep 14, 1992 14:32:17 ARTICLE ENTRY => PHRASES

Mon Sep 14, 1992 14:32:29 ARTICLE ENTRY => INTRODUCTION

Mon Sep 14, 1992 14:32:38 ARTICLE ENTRY => PHRASES

Mon Sep 14, 1992 14:33:20 ARTICLE ENTRY => PUNC_KEYWORD_FILE

Mon Sep 14, 1992 14:33:40 ARTICLE ENTRY => PHRASES

Mon Sep 14, 1992 14:33:51 ARTICLE ENTRY => INTRODUCTION

Mon Sep 14, 1992 14:34:21 ARTICLE ENTRY => PHRASES

Mon Sep 14, 1992 14:34:47 ARTICLE ENTRY => INDEX

Mon Sep 14, 1992 14:38:15 ARTICLE ENTRY => OUTPUT_FILE

Mon Sep 14, 1992 14:47:17 ARTICLE ENTRY => TEXT_FILE

Mon Sep 14, 1992 14:47:33 ARTICLE ENTRY => OUTPUT_FILE

Mon Sep 14, 1992 14:47:48 ARTICLE ENTRY => INDEX

Mon Sep 14, 1992 14:48:28 ARTICLE ENTRY =>]HELP

Mon Sep 14, 1992 14:48:32 ARTICLE ENTRY => INDEX

Mon Sep 14, 1992 14:48:37 ARTICLE ENTRY => PHRASES

195

Mon Sep 14, 1992 14:48:44 ARTICLE ENTRY => INTRODUCTION

Mon Sep 14, 1992 14:48:59 ARTICLE ENTRY => COVER

Mon Sep 14, 1992 14:49:03 ARTICLE ENTRY => INTRODUCTION

Sun Sep 20, 1992 18:48:20 BROWSER START => FPHRNET

Sun Sep 20, 1992 18:48:20 ARTICLE ENTRY => COVER

Sun Sep 20, 1992 18:48:28 ARTICLE ENTRY => INTRODUCTION

Sun Sep 20, 1992 18:49:32 ARTICLE ENTRY => TEXT_FILE

Sun Sep 20, 1992 18:49:44 ARTICLE ENTRY => INDEX

Sun Sep 20, 1992 18:49:55 ARTICLE ENTRY => TEXT_FILE

Sun Sep 20, 1992 18:50:53 ARTICLE ENTRY => SEARCH

Sun Sep 20, 1992 18:51:03 ARTICLE ENTRY => TEXT_FILE

Sun Sep 20, 1992 18:51:10 ARTICLE ENTRY => INDEX

Wed Jan 6, 1993 14:24:40 BROWSER START => FPHRNET

Wed Jan 6, 1993 14:24:40 ARTICLE ENTRY => COVER

Wed Jan 6, 1993 14:26:48 ARTICLE ENTRY => INTRODUCTION

Sat Jan 16, 1993 00:30:30 BROWSER START => FPHRNET

Sat Jan 16, 1993 00:30:30 ARTICLE ENTRY => COVER

Sat Jan 16, 1993 00:30:34 ARTICLE ENTRY => INTRODUCTION

Sat Jan 16, 1993 00:54:29 BROWSER START => FPHRNET

Sat Jan 16, 1993 00:54:30 ARTICLE ENTRY => COVER

Sat Jan 16, 1993 00:54:35 ARTICLE ENTRY => INTRODUCTION

Sat Jan 16, 1993 00:59:30 BROWSER START => FPHRNET

Sat Jan 16, 1993 00:59:30 ARTICLE ENTRY => COVER

Sat Jan 16, 1993 00:59:35 ARTICLE ENTRY => INTRODUCTION

Sat Jan 16, 1993 01:05:54 ARTICLE ENTRY => TEXT_FILE

Sat Jan 16, 1993 01:06:17 ARTICLE ENTRY => INDEX

Sat Jan 16, 1993 01:06:34 ARTICLE ENTRY => HISTORY

Sat Jan 16, 1993 01:11:22 ARTICLE ENTRY => INDEX

Sat Jan 16, 1993 04:07:18 ARTICLE ENTRY => PUNC_KEYWORD_FILE

Sat Jan 16, 1993 04:08:24 ARTICLE ENTRY => INDEX

Sat Jan 16, 1993 04:08:39 ARTICLE ENTRY => TEXT_FILE

Sat Jan 16, 1993 04:08:45 ARTICLE ENTRY => INTRODUCTION

Sat Jan 16, 1993 04:08:50 ARTICLE ENTRY => TEXT_FILE

Sat Jan 16, 1993 04:14:37 BROWSER START => FPHRNET

Sat Jan 16, 1993 04:14:37 ARTICLE ENTRY => COVER

Sat Jan 16, 1993 04:20:45 ARTICLE ENTRY => INTRODUCTION

Sat Jan 16, 1993 04:20:59 ARTICLE ENTRY => TEXT_FILE

Tue Jan 19, 1993 02:12:21 BROWSER START => FPHRNET

Tue Jan 19, 1993 02:12:21 ARTICLE ENTRY => COVER

Tue Jan 19, 1993 02:12:28 ARTICLE ENTRY => INTRODUCTION

Tue Jan 19, 1993 02:30:51 BROWSER START => FPHRNET

Tue Jan 19, 1993 02:30:51 ARTICLE ENTRY => COVER

Tue Jan 19, 1993 02:30:56 ARTICLE ENTRY => INTRODUCTION

Sun Jan 31, 1993 01:00:01 BROWSER START => FPHRNET

Sun Jan 31, 1993 01:00:01 ARTICLE ENTRY => COVER

196

Sun Jan 31, 1993 01:00:29 ARTICLE ENTRY => INTRODUCTION

Sun Jan 31, 1993 01:40:56 ARTICLE ENTRY => TEXT_FILE

Sun Jan 31, 1993 01:53:59 ARTICLE ENTRY => INDEX

Sun Jan 31, 1993 02:08:07 ARTICLE ENTRY => HISTORY

Sun Jan 31, 1993 02:28:08 BROWSER START => FPHRNET

Sun Jan 31, 1993 02:28:08 ARTICLE ENTRY => COVER

Sun Jan 31, 1993 03:06:02 ARTICLE ENTRY => INTRODUCTION

197

F.3 Hyperties input file with mark-up (findphrases)

In this appendix, long lines are folded at a convenient word break. The break is denoted by a “\” at the end of all pieces of the
line but the last and a space at the beginning of all pieces except the first.

<IE>ARGUMENT_LINE<\IE>

<H>(3) Argument_line<\H>

<D>Argument_line abstraction contains sentences about: argument, option<\D>

<C>

6 The n argument is optional and if present provides a

number number serving as the maximum length <L>phrase<\L=PHRASES> (to be

described later) to be tallied

7 If this argument is not present, if it does not supply a

number, or if the supplied number is outside the reasonable range

of greater than zero and less than or equal to 50, then number

is taken as 10

9 The optional ignored-phrases-file contains one-per-line a

list of <L>phrases<\L=PHRASES> to be ignored in the tallying (see below)

11 The optional <L>multi-tokens-file<\L=MULTI-TOKENS-FILE> contains in <L>free format<\L=CHUNK_FILE> a

list of those <L>character strings<\L=STRING_TYPE_FILE> consisting of more than one

<L>symbolcharacter<\L=STRING_TYPE_FILE> (see below) which are to be taken as <L>multi-tokens<\L=MULTI-TOKENS-FILE>

(see below)

12 No assumptions are made about the standard <L>input<\L=TEXT_FILE>, thus it

may be an arbitrary <L>text<\L=TEXT_FILE>

14 These in turn are formed and classified into <L>tokens<\L=MULTI-TOKENS-FILE> and

<L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords based on the information provided by the

<L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file and, when the m option is present,

the <L>multi-tokens-file<\L=MULTI-TOKENS-FILE>

29 If the b option is used along with the

ignored-phrases-file, then <L>phrases<\L=PHRASES> which begin with an ignored

<L>phrase<\L=PHRASES> are also ignored in the tallying

198

39 When the b option is present, a <L>phrase<\L=PHRASES> which begins with an

ignored <L>phrase<\L=PHRASES> is not to be tallied

45 abort accept access all and array at begin body

case constant declare delta digits do else elsif end

entry exception exit for function generic goto if in is

limited loop mod new not null of or others out package

pragma private procedure raise range record rem renames

return reverse select separate subtype task terminate then

type use when while with xor <L>Multi-tokens-file<\L=MULTI-TOKENS-FILE>

47 If the option is present, then only the unique <L>phrases<\L=PHRASES> that

are not wholly and everywhere contained in another <L>phrase<\L=ARGUMENT_LINE> are

listed in the <L>tables of the output<\L=OUTPUT_FILE>

48 In addition to the already specified <L>output<\L=OUTPUT_FILE>, if the option is

present, then all the <L>sentences<\L=SENTENCES> are listed; if the option is

present, then all the <L>tokens<\L=MULTI-TOKENS-FILE> are listed; if the option is present,

then the <L>output<\L=OUTPUT_FILE> is verbose with the <L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords listed,

and when the m , and respectively the x , option is present,

the <L>multi-tokens<\L=MULTI-TOKENS-FILE>, and respectively the ignored <L>phrases<\L=PHRASES>, are listed

49 If the option is present, then upper and lower case

distinctions are to be applied in determining whether a <L>phrase<\L=PHRASES> is

in a <L>sentence<\L=SENTENCES>

<\C>

<IE>CHUNK_FILE<\IE>

<H>(5) Chunk_file<\H>

<D>Chunk_file abstraction contains sentences about: free format (file).<\D>

<C>

3 DESCRIPTION All files mentioned in the synopsis

provide their data in what is referred to as free format subject

to particular restrictions to be described for each case

4 In free format, the items of the file may be entered zero or

several per line with a mixture of blanks and tabs before, in

199

between, and after the items

8 The <L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file contains in free format a

list of those <L>character strings<\L=STRING_TYPE_FILE> to be taken as

<L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords (see below)

10 In each line, the <L>tokens<\L=MULTI-TOKENS-FILE> (see below) are in free format

11 The optional <L>multi-tokens-file<\L=MULTI-TOKENS-FILE> contains in free format a

list of those <L>character strings<\L=STRING_TYPE_FILE> consisting of more than one

<L>symbolcharacter<\L=STRING_TYPE_FILE> (see below) which are to be taken as <L>multi-tokens<\L=MULTI-TOKENS-FILE>

(see below)

<\C>

<IE>COVER<\IE>

<C>

<STL=COVER>FINDPHRASES ABSTRACTION NETWORK<\C>

<IE>INTRODUCTION<\IE>

<H>Introduction<\H>

<C>

This knowledge-base is a model of an abstraction oriented hypertext based on the findphrases case study.

Findphrase served as a case study becuase its decomposition is already known.

<NP>

The abstractions taken from Aguilera’s program decomposition are:

Data Abstraction<TAB><TAB>Identifying Keywords

(1) <L>phrases<\L=PHRASES><TAB><TAB><TAB>phrase(s)

(2) <L>text_file<\L=TEXT_FILE><TAB><TAB><TAB>input, arbitrary text

(3) <L>argument_line<\L=ARGUMENT_LINE><TAB><TAB>argument, option

(4) <L>sentences<\L=SENTENCES><TAB><TAB><TAB>sentence(s)

(5) <L>chunk_file<\L=CHUNK_FILE><TAB><TAB><TAB>free format

(6) <L>multi_tokens_file<\L=MULTI-TOKENS-FILE><TAB>multi, token(s)

200

(7) <L>output_file<\L=OUTPUT_FILE><TAB><TAB>tables, output

(8) <L>string_type_file<\L=STRING_TYPE_FILE><TAB>strings, character(s)

(9) <L>punc_keyword_file<\L=PUNC_KEYWORD_FILE><TAB>punctuation keyword(s)

<NP>

Aguilera was acting the RA, and those data abstractions were found by Aguilera in implementing findphrases

The next page is some technical information on Hyperties, supplied automatically when generating a new hypertext form\

the inside environment of Hyperties.

<NP>

This article, INTRODUCTION, can be used for an introductory article, or a table of contents.

The article called "<L>DESIGN INFORMATION<\L=]DESIGN INFORMATION>" includes information about how to use this design,\

and the graphics files included with it.

You might also want to see the <L>Help System<\L=]HELP>, or explore the Search and Index screens by selecting the\

buttons at the bottom of the screen.

<\C>

<SC>let $srchstr = "(none)"<\SC>

<IE>MULTI-TOKENS-FILE<\IE>

<H>(6) Multi_tokens_file<\H>

<D>Multi_tokens_file abstraction contains sentences about: multi tokens file<\D>

<C>

2 SYNOPSIS findphrases number

<L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file ignored-phrases-file

multi-tokens-file

7 If this <L>argument<\L=ARGUMENT_LINE> is not present, if it does not supply a

number, or if the supplied number is outside the reasonable range

of greater than zero and less than or equal to 50, then number

is taken as 10

201

8 The <L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file contains in <L>free format<\L=CHUNK_FILE> a

list of those <L>character strings<\L=STRING_TYPE_FILE> to be taken as

<L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords (see below)

10 In each line, the tokens (see below) are in <L>free format<\L=CHUNK_FILE>

11 The optional multi-tokens-file contains in <L>free format<\L=CHUNK_FILE> a

list of those <L>character strings<\L=STRING_TYPE_FILE> consisting of more than one

<L>symbolcharacter<\L=STRING_TYPE_FILE> (see below) which are to be taken as multi-tokens

(see below)

14 These in turn are formed and classified into tokens and

<L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords based on the information provided by the

<L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file and, when the m option is present,

the multi-tokens-file

21 whatever is in the <L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file ; the

<L>symbolcharacter strings<\L=STRING_TYPE_FILE> are called <L>punctuation<\L=PUNC_KEYWORD_FILE> and the

wordcharacter <L>strings<\L=STRING_TYPE_FILE> are called keywords Multi-token

22 whatever is in the multi-tokens-file Token

23 any word, <L>symbolcharacter<\L=STRING_TYPE_FILE>, or multi-token which is not listed

in the <L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file <L>Sentence<\L=SENTENCES>

24 list of tokens delimited on each side by <L>punctuation<\L=PUNC_KEYWORD_FILE>/keyword

<L>Phrase<\L=PHRASES>

25 one or more consecutive tokens occurring within one <L>sentence<\L=SENTENCES>

27 The maximum length <L>phrase<\L=PHRASES> that has to be considered is that

of number tokens

45 abort accept access all and array at begin body

case constant declare delta digits do else elsif end

entry exception exit for function generic goto if in is

limited loop mod new not null of or others out package

pragma private procedure raise range record rem renames

return reverse select separate subtype task terminate then

type use when while with xor Multi-tokens-file

48 In addition to the already specified <L>output<\L=OUTPUT_FILE>, if the option is

202

present, then all the <L>sentences<\L=SENTENCES> are listed; if the option is

present, then all the tokens are listed; if the option is present,

then the <L>output<\L=OUTPUT_FILE> is verbose with the <L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords listed,

and when the m , and respectively the x , option is present,

the multi-tokens, and respectively the ignored <L>phrases<\L=PHRASES>, are listed

<\C>

<IE>OUTPUT_FILE<\IE>

<H>(7) output_file<\H>

<D>Output_file abstraction contains sentences about: tables (of the) output<\D>

<C>

7 If this <L>argument<\L=ARGUMENT_LINE> is not present, if it does not supply a

number, or if the supplied number is outside the reasonable range

of greater than zero and less than or equal to 50, then number

is taken as 10

19 any printable <L>character<\L=STRING_TYPE_FILE> which is neither a wordcharacter nor a

blank Word

30 The standard output consists of a copy of the <L>input<\L=TEXT_FILE> as is,

with the lines numbered and the <L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords overstruck two

times (i e , printed three times in place) so that they can be

spotted easily, a frequency ranked table of the repeated <L>phrases<\L=PHRASES>

31 i e , those appearing more than once among the <L>sentences<\L=SENTENCES>; that

is the entries of the table are given in order of decreasing

frequency, and an alphabetically ordered table of the repeated

<L>phrases<\L=PHRASES>

32 In the two tables, the entry for a repeated <L>phrase<\L=PHRASES> consists

of

34 In printing the repeated <L>phrase<\L=PHRASES> itself in a table entry, the

underscores, , ‘‘_’’, are printed as blanks

41 Only the repeated <L>phrases<\L=PHRASES> show up in the tables of the output

47 If the option is present, then only the unique <L>phrases<\L=PHRASES> that

are not wholly and everywhere contained in another <L>phrase<\L=PHRASES> are

203

listed in the tables of the output

48 In addition to the already specified output, if the option is

present, then all the <L>sentences<\L=SENTENCES> are listed; if the option is

present, then all the <L>tokens<\L=MULTI-TOKENS-FILE> are listed; if the option is present,

then the output is verbose with the <L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords listed,

and when the m , and respectively the x , option is present,

the <L>multi-tokens<\L=MULTI-TOKENS-FILE>, and respectively the ignored <L>phrases<\L=PHRASES>, are listed

<\C>

<IE>PHRASES<\IE>

<H>(1) phrases<\H>

<D>Phrases abstraction contains sentences about: phrase(s), repeated phrases,

ignored phrases.<\D>

<C>

1 findphrases find repeated phrases in an arbitrary <L>text<\L=TEXT_FILE>

2 SYNOPSIS findphrases number

<L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file ignored-phrases-file

<L>multi-tokens-file<\L=MULTI-TOKENS-FILE>

6 The n <L>argument<\L=ARGUMENT_LINE> is optional and if present provides a

number number serving as the maximum length phrase (to be

described later) to be tallied

9 The optional ignored-phrases-file contains one-per-line a

list of phrases to be ignored in the tallying (see below)

24 list of <L>tokens<\L=MULTI-TOKENS-FILE> delimited on each side by <L>punctuation<\L=PUNC_KEYWORD_FILE>/keyword

Phrase

26 The main job of this program is to tally the occurrence of

all phrases in all <L>sentences<\L=SENTENCES>

27 The maximum length phrase that has to be considered is that

of number <L>tokens<\L=MULTI-TOKENS-FILE>

28 If the ignored-phrases-file is provided, then the phrases

given in the file are to be ignored in the tallying

29 If the b option is used along with the

204

ignored-phrases-file, then phrases which begin with an ignored

phrase are also ignored in the tallying

30 The standard <L>output<\L=OUTPUT_FILE> consists of a copy of the <L>input<\L=TEXT_FILE---> as is,

with the lines numbered and the <L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords overstruck two

times (i e , printed three times in place) so that they can be

spotted easily, a frequency ranked <L>table<\L=OUTPUT_FILE> of the repeated phrases

31 i e , those appearing more than once among the <L>sentences<\L=SENTENCES>; that

is the entries of the <L>table<\L=OUTPUT_FILE> are given in order of decreasing

frequency, and an alphabetically ordered <L>table<\L=OUTPUT_FILE> of the repeated

phrases

32 In the two <L>tables<\L=OUTPUT_FILE>, the entry for a repeated phrase consists

of

33 a sequence of asterisks indicating the phrase’s frequency as a

percentage of the maximum frequency; in this one asterisk

represents 10%, the actual number of occurrences of the repeated

phrase, the repeated phrase itself, and a list of the numbers of

all lines containing the beginning of the repeated phrase

34 In printing the repeated phrase itself in a <L>table<\L=OUTPUT_FILE> entry, the

underscores, , ‘‘_’’, are printed as blanks

36 Note that the definition of ‘‘phrase’’ is independent of the

number of times it occurs in the <L>sentences<\L=SENTENCES>

37 An ignored phrase is simply one to be ignored in the

tallying but not in searching for phrases

38 A phrase which contains an ignored phrase which itself is not

ignored is to be tallied

39 When the b option is present, a phrase which begins with an

ignored phrase is not to be tallied

40 A repeated phrase is one whose final tally is greater than

one

41 Only the repeated phrases show up in the <L>tables of the output<\L=OUTPUT_FILE>

42 Typically, the ignored-phrases-file will contain so-called

205

noise phrases such as ‘‘a’’, ‘‘an’’, ‘‘the’’, ‘‘of’’, ‘‘of the’’,

etc plus any useless phrases found in previous runs of the program

46 This configuration is suited for finding

repeated phrases in Ada (Ada is a trademark of the U S Department

of Defense) or in an Ada-based program design language

47 If the option is present, then only the unique phrases that

are not wholly and everywhere contained in another phrase are

listed in the <L>tables of the output<\L=OUTPUT_FILE>

48 In addition to the already specified <L>output<\L=OUTPUT_FILE>, if the option is

present, then all the <L>sentences<\L=SENTENCES> are listed; if the option is

present, then all the <L>tokens<\L=MULTI-TOKENS-FILE> are listed; if the option is present,

then the <L>output<\L=OUTPUT_FILE> is verbose with the <L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords listed,

and when the m , and respectively the x , option is present,

the <L>multi-tokens<\L=MULTI-TOKENS-FILE>, and respectively the ignored phrases, are listed

49 If the option is present, then upper and lower case

distinctions are to be applied in determining whether a phrase is

in a <L>sentence<\L=SENTENCES>

<\C>

<IE>PUNC_KEYWORD_FILE<\IE>

<H>(9) Punctuation_keyword_file<\H>

<D>Punctuation_keyword_file abstraction contains sentences about:punctuation keyword(s)<\D>

<C>

2 SYNOPSIS findphrases number

punctuation-keyword-file ignored-phrases-file

<L>multi-tokens-file<\L=MULTI-TOKENS-FILE>

8 The punctuation-keyword-file contains in <L>free format<\L=CHUNK_FILE> a

list of those <L>character strings<\L=STRING_TYPE_FILE> to be taken as

punctuation/keywords (see below)

14 These in turn are formed and classified into <L>tokens<\L=MULTI-TOKENS-FILE> and

punctuation/keywords based on the information provided by the

punctuation-keyword-file and, when the m option is present,

206

the <L>multi-tokens-file<\L=MULTI-TOKENS-FILE>

20 any sequence of wordcharacters delimited on each side by

whitespace or a <L>symbolcharacter<\L=STRING_TYPE_FILE> Punctuation/Keyword

21 whatever is in the punctuation-keyword-file ; the

<L>symbolcharacter strings<\L=STRING_TYPE_FILE> are called punctuation and the

wordcharacter <L>strings<\L=STRING_TYPE_FILE> are called keywords <L>Multi-token<\L=MULTI-TOKENS-FILE>

23 any word, <L>symbolcharacter<\L=STRING_TYPE_FILE>, or <L>multi-token<\L=MULTI-TOKENS-FILE> which is not listed

in the punctuation-keyword-file <L>Sentence<\L=SENTENCES>

24 list of <L>tokens<\L=MULTI-TOKENS-FILE> delimited on each side by punctuation/keyword

<L>Phrase<\L=PHRASES>

30 The standard <L>output<\L=OUTPUT_FILE> consists of a copy of the <L>input<\L=TEXT_FILE> as is,

with the lines numbered and the punctuation/keywords overstruck two

times (i e , printed three times in place) so that they can be

spotted easily, a frequency ranked <L>table<\L=OUTPUT_FILE> of the repeated <L>phrases<\L=PHRASES>

44 Punctuation-keyword-file

45 abort accept access all and array at begin body

case constant declare delta digits do else elsif end

entry exception exit for function generic goto if in is

limited loop mod new not null of or others out package

pragma private procedure raise range record rem renames

return reverse select separate subtype task terminate then

type use when while with xor <L>Multi-tokens-file<\L=MULTI-TOKENS-FILE>

48 In addition to the already specified <L>output<\L=OUTPUT_FILE>, if the option is

present, then all the <L>sentences<\L=SENTENCES> are listed; if the option is

present, then all the <L>tokens<\L=MULTI-TOKENS-FILE> are listed; if the option is present,

then the <L>output<\L=OUTPUT_FILE> is verbose with the punctuation/keywords listed,

and when the m , and respectively the x , option is present,

the <L>multi-tokens<\L=MULTI-TOKENS-FILE>, and respectively the ignored <L>phrases<\L=PHRASES>, are listed

<\C>

<IE>SENTENCES<\IE>

<H>(4) Sentences<\H>

207

<D>Sentences abstraction contains sentences about: sentence(s)<\D>

<C>

23 any word, <L>symbolcharacter<\L=STRING_TYPE_FILE>, or <L>multi-token<\L=MULTI-TOKENS-FILE> which is not listed

in the <L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file Sentence

25 one or more consecutive <L>tokens<\L=MULTI-TOKENS-FILE> occurring within one sentence

26 The main job of this program is to tally the occurrence of

all <L>phrases<\L=PHRASES> in all sentences

31 i e , those appearing more than once among the sentences; that

is the entries of the <L>table<\L=OUTPUT_FILE> are given in order of decreasing

frequency, and an alphabetically ordered <L>table<\L=OUTPUT_FILE> of the repeated

<L>phrases<\L=PHRASES>

36 Note that the definition of ‘‘phrase’’ is independent of the

number of times it occurs in the sentences

48 In addition to the already specified <L>output<\L=OUTPUT_FILE>, if the option is

present, then all the sentences are listed; if the option is

present, then all the <L>tokens<\L=MULTI-TOKENS-FILE> are listed; if the option is present,

then the <L>output<\L=OUTPUT_FILE> is verbose with the <L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords listed,

and when the m , and respectively the x , option is present,

the <L>multi-tokens<\L=MULTI-TOKENS-FILE>, and respectively the ignored <L>phrases<\L=PHRASES>, are listed

49 If the option is present, then upper and lower case

distinctions are to be applied in determining whether a <L>phrase<\L=PHRASES> is

in a sentence

<\C>

<IE>STRING_TYPE_FILE<\IE>

<H>(8) String_type_file<\H>

<D>String_type_file abstraction contains sentences about: strings, characters<\D>

<C>

8 The <L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file contains in <L>free format<\L=CHUNK_FILE> a

list of those character strings to be taken as

<L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords (see below)

11 The optional <L>multi-tokens-file<\L=MULTI-TOKENS-FILE> contains in <L>free format<\L=CHUNK_FILE> a

208

list of those character strings consisting of more than one

symbolcharacter (see below) which are to be taken as <L>multi-tokens<\L=MULTI-TOKENS-FILE>

(see below)

13 The program parses the <L>text<\L=TEXT_FILE> into words and symbolcharacters

17 blank , tab , newline , beginning-of-file , end-of-file

Wordcharacter

18 letter , digit , Symbolcharacter

19 any printable character which is neither a wordcharacter nor a

blank Word

20 any sequence of wordcharacters delimited on each side by

whitespace or a symbolcharacter <L>Punctuation<\L=PUNC_KEYWORD_FILE>/Keyword

21 whatever is in the <L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file ; the

symbolcharacter strings are called <L>punctuation<\L=PUNC_KEYWORD_FILE> and the

wordcharacter strings are called keywords <L>Multi-token<\L=MULTI-TOKENS-FILE>

23 any word, symbolcharacter, or <L>multi-token<\L=MULTI-TOKENS-FILE> which is not listed

in the <L>punctuation<\L=PUNC_KEYWORD_FILE>-keyword-file <L>Sentence<\L=SENTENCES>

<\C>

<IE>TEXT_FILE<\IE>

<H>(2) Text_file<\H>

<D>Text_file abstraction contains sentences about: input, arbitrary text<\D>

<C>

1 findphrases find repeated <L>phrases<\L=PHRASES> in an arbitrary text

12 No assumptions are made about the standard input, thus it

may be an arbitrary text

13 The program parses the text into words and <L>symbolcharacters<\L=STRING_TYPE_FILE>

30 The standard <L>output<\L=OUTPUT_FILE> consists of a copy of the input as is,

with the lines numbered and the <L>punctuation<\L=PUNC_KEYWORD_FILE>/keywords overstruck two

times (i e , printed three times in place) so that they can be

spotted easily, a frequency ranked <L>table<\L=OUTPUT_FILE> of the repeated <L>phrases<\L=PHRASES>

36 Note that the definition of ‘‘phrase’’ is independent of the

209

number of times it occurs in the sentences

<\C>

<IE>]ABOUT THIS DESIGN<\IE>

<H>ABOUT THIS DESIGN<\H>

<D>This knowledge base was created with Hyperties(r) Version 3.0 from Cognetics Corporation. For more information\

please contact:

Cognetics Corporation 609-799-5005

55 Princeton-Hightstown Road 800-229-TIES

Princeton Jct, NJ 08550 609-799-8555 (FAX)

<\D>

<IE>]DESIGN INFORMATION<\IE>

<H>ABOUT THIS DESIGN<\H>

<D>This article contains a description of some of the features of this knowledge base design.

<\D>

<C>

<RULER=10p,110p>This visual design is in EGA (640 by 350 by 16) graphics mode.

<LARGE>HELP SYSTEM<N>

A group of articles which make up a small help system are included in this knowledge base, and can be accessed from the\

HELP button or with the F1 hotkey. All of these articles have names beginning with "]HELP".

<LARGE>ARTICLES IN THE KNOWLEDGE BASE<N>

The article called "}LOOKUP ERROR" is displayed if a target article is missing when a link is selected. It can be edited\

to contain any text.

The article called "COVER" will be displayed first by the Browser. If the "COVER" is missing, the article "INTRODUCTION"\

will be displayed.

Variables used by this design are initialized in the Entry Script to the article "INTRODUCTION".

<LARGE>GRAPHICS NEEDED FOR THIS DESIGN<N>

210

There are several graphics files needed for this design. When the Author creates a new knowledge base using this design,\

it also copies those files to the same directory. All of the graphics files have names that begin the short name for\

the design (for example VGA2-DEF.PCX, EGA3-DEF.PCX).

<NP>

<LARGE>STYLESHEETS<N>

The stylesheets included with this design are:

<IN>DEFAULT <IN>This stylesheet will be used for most articles. No special command is needed to access this stylesheet.

<IN>COVER <IN>This stylesheet is used by the COVER article, and links to the INTRODUCTION article.

<IN>HELP <IN>This stylesheet is used by the Help System, and includes a limited set of buttons at the bottom of the screen.

<IN>INDEX <IN>This stylesheet is used only by the Index Screen.

<IN>HISTORY <IN>This stylesheet is used only by the History Screen.

<IN>SEARCH <IN>This stylesheet is used only by the Search Screen.

The text window in the DEFAULT stylesheet is 484 by 245 pixels, with the upper-left corner at 98, 37

<NP>

<LARGE>FONTS AND COLORS<N>

The article <L>]STYLE VIEW<\L=]STYLE VIEW> is used for viewing stylesheets, and contains a display of the fonts and\

colors available in this design.

Here are the colors as they display in the text window. The numbers are used in the formatting <<COLOR=n> command, and\

in the color specifications in the stylesheets.

<color=0>ZERO<color=1>ONE <color=2>TWO <color=3>THREE <color=4>FOUR <color=5>FIVE <color=6>SIX <color=7>SEVEN\

<color=8>EIGHT <color=9>NINE <color=10>TEN <COLOR=11>ELEVEN <color=12>TWELVE <color=13>THIRTEEN\

<color=14>FOURTEEN <color=15>FIFTEEN<color=*>

211

The palette for this design is:

<GRAPHIC=PALETTE,C>

<\C>

<IE>]EXPORTED TEXT<\IE>

<H>]EXPORTED TEXT<\H>

<C>

<TEXTFILE=EXPORT.TXT><\C>

<IE>]HELP<\IE>

<H>HELP<\H>

<C>

<stl=help><RULER=30p,60p,90p,120p>Help is available on the following topics

<TAB><L>Hot Keys<\L=]HELP: HOT KEYS>

<TAB><L>About Hyperties<\L=]HELP: ABOUT HYPERTEXT>

<TAB><L>Exporting and Printing Articles<\L=]HELP: EXPORT>

<\C>

<IE>]HELP: ABOUT HYPERTEXT<\IE>

<H>HELP: ABOUT HYPERTEXT<\H>

<C>

<stl=help>Hypertext is a special kind of computer database - or knowledge base - designed for use in accessing text or\

graphical material.

Hyperties(r), the hypertext software used to create this knowledge base uses an encyclopedia model in which a number of\

articles on different topics are included in a book, and cross-references between topics allow a reader to delve more\

deeply into a subject, or read supplementary material.

Like a published book, a hypertext knowledge base has both an author and readers. Reading is also called\

<L>browsing<\L=]HELP: BROWSING> and the program that displays the knowledge base is called the Browser.

As a knowledge base is created, the information is organised into small chunks called "articles’ which are grouped\

212

together into an electronic book. Cross-references are included in the text of an article. Text that is marked as a\

reference to another article is called a <L>link<\L=]HELP: LINKS>. Illustrations can also be included in an article.

In addition to the text of the article, there are commands on the screen which help a reader navigate through the\

knowledge base. These commands are called <L>buttons<\L=]HELP: BUTTONS> because you select them by putting the\

cursor on them and "pressing" them with the ENTER key or a mouse click. Many of the buttons also have <L>hot\

keys<\L=]HELP: HOT KEYS> which can be used, to make browsing even easier.

<\C>

<IE>]HELP: BROWSING<\IE>

<H>HELP: BROWSING<\H>

<C>

<STL=HELP>The Browser is the program used to read a Hyperties knowledge base. In fact, you are using it right now!

To select a <L>link<\L=]HELP: LINKS> or a <L>button<\L=]HELP: BUTTONS>, use the mouse or cursor keys to move to the\

highlighted term and press ENTER or click the mouse.

You can quickly move the cursor to any word by pressing the first letter or that word. Many of the buttons also have\

<L>hot keys<\L=]HELP: HOT KEYS> which can be used.

<\C>

<IE>]HELP: BUTTONS<\IE>

<H>]HELP: BUTTONS<\H>

<D>A button is a command on the screen. Most buttons are "super links" which provide navigational short-cuts through\

the knowledge base.<\D>

<IE>]HELP: EXPORT<\IE>

<H>HELP: PRINTING AND EXPORTING<\H>

<C>

<STL=HELP><RULER=36P>There are several hot-keys to help you export small blocks of text, export an entire article, or\

send the text of an article to a printer. These hot-keys are available in any article in this knowledge base. If you\

forget them, press F1 twice at any time to see a hot-key reference list.

213

TO PRINT AN ARTICLE:

<INDENT>Press F7. The entire content of the article you are reading will be sent to the printer attached to your LPT1\

printer port. The content of the article is sent as ASCII text, with no printer control codes or formatting commands.\

Short descriptions in popup boxes cannot be printed using this button.

<NEWPAGE>TO EXPORT AN ENTIRE ARTICLE TO A FILE:

<IN>Press F3. A dialog box will ask you to enter a name for the file to save the article in. The content text of the\

article will be saved in this file.

<IN>If the file you name already exists, it will be replaced with the new file created using this button.

<NEWPAGE>TO COPY PART OF AN ARTICLE TO THE CLIPBOARD FILE:

<IN>Press F4. The selector bar will disappear, and be replaced by a cross-hair cursor. Mouse users will see the\

pointer blink briefly.

<IN>Use the arrow keys or mouse to move the cursor to the upper-left corner of the text you want to clip. Press ENTER\

or click the mouse.

<IN>Use the arrow keys or mouse to drag a box over the text you want to clip. When all of the text is enclosed in the\

box, press ENTER or click the mouse again. The cursor will blink, and the selector bar will re-appear. The text\

within the drag box is added to the end of a file named EXPORT.TXT on your default directory.

<NP>TO VIEW ALL OF THE TEXT YOU HAVE CLIPPED AND SAVED:

<IN>Press CTRL-F4. This will jump you to an article which displays the text you have clipped using the F4 function.\

This text is already in a file on your local drive named EXPORT.TXT. You can use the F3 button to save it to a\

different file name.

Graphics are not printed, or exported by Hyperties.

<\C>

<IE>]HELP: HISTORY<\IE>

214

<H>CTRL-H FUNCTION: DIRECTIONS FOR USE<\H>

<D>The History function lists the user’s path of articles back to the beginning of the knowledge base. The articles most\

recently viewed appear on the top of the list. All of these articles can be selected for re-viewing.

The History Screen can be accessed by selecting the History button from the Search Screen or Index Screen, or by\

pressing F6 from any screen.

<\D>

<IE>]HELP: HOT KEYS<\IE>

<H>HELP: HOT KEYS<\H>

<C>

<stl=help><RULER=30p,140p,310p,410p>MOVING AROUND AN ARTICLE

<TAB>ESC<TAB>Return to Previous Article

<TAB>PgDn<TAB>Go to Next Page of Article

<TAB>PgUp<TAB>Go to Previous Page of Article

<TAB>HOME<TAB>Go to First Page of Article

<TAB>END<TAB>Go to Last Page of Article

HYPERTIES FEATURES

<TAB>HELP<TAB>F1<TAB><L>HISTORY<\L=]HELP: HISTORY><TAB>F6

<TAB><L>SEARCH<\L=]HELP: SEARCH><TAB>F2<TAB><L>PRINT<\L=]HELP: EXPORT><TAB>F7

<TAB><L>EXPORT<\L=]HELP: EXPORT><TAB>F3<TAB>LOG NOTES<TAB>F8

<TAB><L>CLIPBOARD<\L=]HELP: EXPORT><TAB>F4<TAB>RESTART<TAB>F9

<TAB><L>INDEX<\L=]HELP: INDEX><TAB>F5<TAB>QUIT<TAB>F10

<\C>

<IE>]HELP: INDEX<\IE>

<H>CTRL-F FUNCTION: DIRECTIONS FOR USE<\H>

<D>The Index is an alphabetical listing of all the articles in a knowledge base. Any article can be selected from the\

list for browsing.

215

The Index Screen can be accessed by selecting the Index button, or pressing F5.<\D>

<IE>]HELP: INTRO<\IE>

<H>HELP: BROWSING<\H>

<D>Browsing - reading a Hyperties knowledge base is easy. In fact, you are using it right now! Links (highlighted\

phrases in the text) and buttons are used to move from article to article. To select a link or button, click on it,\

or move the selector bar to it and press ENTER.

<\D>

<IE>]HELP: LINKS<\IE>

<H>]HELP: LINKS<\H>

<D>A link is a word or phrase in the text which is marked as a reference to another article which contains additional\

information on the link topic.<\D>

<IE>]HELP: SEARCH<\IE>

<H>HELP: SEARCH<\H>

<C>

<stl=HELP>Hyperties includes a full-text search facility.

You can search for all occurrences of a word or group of words within the knowledgebase. This provides a quick way to\

locate specific articles containing certain words or terms of interest.

To begin a search, select the Search button, or press F2, to go to the Search Screen. On the Search Screen, select the\

"SEARCH STRING" button and press ENTER.

You then enter a word to search for. If you want to search for articles that contain more than one word you can join\

them with an AND (or &) or OR (or |). For example:

meat and potato

meat & potato

After you press ENTER to indicate that you are done entering the search string, a list of all articles containing the\

word or words will be displayed.

216

You can then select any article from the list to read. The articles which contain the search string most are at the\

top of the list, so you can use this order to help you decide which article to read first.

The list is saved until you do another search and you can return to it at any time to select another article. The list\

is erased when you exit the knowledgebase.

<NP>

ADVANCED SEARCHING:

You can make a longer search string, for example:

(beef or veal) and (potato or pasta)

to conduct a very specific search.

<\C>

<IE>]HELP: TEMPLATE<\IE>

<H>]HELP: TEMPLATE<\H>

<D> F1 F2 F3 F4 F6 F7 F8 F9 F10

HELP SEARCH EXPORT CLIP HISTORY PRINT LOG RESTART QUIT

ESC - LAST ARTICLE; PGDN/PGUP - NEXT/PREV PAGE;

HOME/END - FIRST/LAST PAGE; CTRL-F4 - VIEW EXPORT CLIPBOARD<\D>

<IE>]STYLE VIEW<\IE>

<H>DEFAULT<\H>

<C>

<STL=DEFAULT>This article is used to display a stylesheet with the VIEW command on the stylesheet index. The standard\

font table is named STANDARD, and uses several fonts. You can add to the fonts now available, or customize the tables.\

In addition to the normal font, the fonts now in the font table are:

<XS>EXTRA SMALL (Monospaced font HTBIT08R)

<IN>ABCDEFG abcdefg 1234567890 !@#$%ˆ&*()

<SMALL>SMALL (Monospaced font HTBIT14N)

217

<IN>ABCDEFG abcdefg 1234567890 !@#$%ˆ&*()

<LARGE>LARGE (Proportional font HTHEL20R)

<IN>ABCDEFG abcdefg 1234567890 !@#$%ˆ&*()

<VL>VERY LARGE (Proportional font (HTHEL24R)

<IN>ABCDEFG abcdefg 1234567890 !@#$%ˆ&*()<NORMAL>

<NP>The complete character set for the default and "normal" font (HTBIT14R) is:

1- 10 <CHAR=1><CHAR=2><CHAR=3><CHAR=4><CHAR=5><CHAR=6><CHAR=7><CHAR=8><CHAR=9><CHAR=10>

11- 20 <CHAR=11><CHAR=12><CHAR=13><CHAR=14><CHAR=15><CHAR=16><CHAR=17><CHAR=18><CHAR=19><CHAR=20>

21- 30 <CHAR=21><CHAR=22><CHAR=23><CHAR=24><CHAR=25><CHAR=26><CHAR=27><CHAR=28><CHAR=29><CHAR=30>

31- 40 <CHAR=31><CHAR=32><CHAR=33><CHAR=34><CHAR=35><CHAR=36><CHAR=37><CHAR=38><CHAR=39><CHAR=40

41- 50 <CHAR=41><CHAR=42><CHAR=43><CHAR=44><CHAR=45><CHAR=46><CHAR=47><CHAR=48><CHAR=49><CHAR=50

51- 60 <CHAR=51><CHAR=52><CHAR=53><CHAR=54><CHAR=55><CHAR=56><CHAR=57><CHAR=58><CHAR=59><CHAR=60>

61- 64 <CHAR=61><CHAR=62><CHAR=63><CHAR=64>

65- 90 ABCDEFGHIJKLMNOPQRTSUVWXYZ

91- 96 [\]ˆ_‘

97-122 abcdefghijklmnopqrstuvwxyz

123-126 {|}˜

128-170

!"#$%&’()*

171-179 +,-./012

219-223 []ˆ_

224-254 ‘abcde fghijklmno pqr}tuvwxy z{|}˜

<NP><LARGE>Box Draw Characters<N>

IMKM; ZDBD? IMQM; ZDRD? ZDBD? UM8

LMNM9 CDED4 GDED6 FMNM5 FMXM5 TM>

: : : 3 3 3 : 3 : 3 : 3 @DADY VD7

HMJM< @DADY HMOM< @DPDY SD=

<NP>You can display text in any color you want. Here are the colors as they display in the text window, and their\

numbers:

218

<color=0>ZERO<color=1>ONE <color=2>TWO <color=3>THREE <color=4>FOUR <color=5>FIVE <color=6>SIX <color=7>SEVEN\

<color=8>EIGHT <color=9>NINE <color=10>TEN <COLOR=11>ELEVEN <color=12>TWELVE <color=13>THIRTEEN\

<color=14>FOURTEEN <color=15>FIFTEEN<color=*>

Links are displayed <L>like this<\L=]DESIGN INFORMATION> one, which links to an article with information about this\

design.

<\C>

<IE>}LOOKUP ERROR<\IE>

<H>ZZZ LOOKUP ERROR<\H>

<D>This article is not here yet.<\D>

219

