Contents

Abstract

1 General Description

1.1 Batch vs. WYSIWYG Drawing Programs

1.2 Goal and Requirements for WD-pic o0

1.3 Prototiping Method
2 Existing Systems

2.1 Batch . . .

22 WYSIWYG . . oo

2.3 Conclusions

3 High Level Design

3.1 Basic Design Idea L
3.2 Two ways of creating picture and its internal representation in the WD-pic .
3.3 Conditional classification of Pic language elements
3.4 Conclusions

4 User Interface

4.1 Main Windowo
4.2 Pictokens
4.3 Drawing directionso L
4.4 Drawing element parameters
4.4.1 Sizecontrol
4.4.2 Placecontrol
443 Linestyle
444 Fillstyle . .. 00 o
4.4.5 Attributesame Lo
4.5 Menubar L
4.5.1 File popup menu
4.5.2 Edit popup menu Lo
4.5.3 Viewpopup menu.o
4.5.4 Structures popup Menu
4.5.5 Defaults popup menuo
4.6 Conclusions

5 Implementation

5.1

Data
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

structures
Pic compiler execution and its data structures
Methods of picture representation in WD-pic
WD-pic execution scheme and its data structures
Pic data structures o o oo
Drawing data structures 0oL

S T LN NN

N e

12
12
12
13
16
16
16
16
16
16
17
17
17
17
17
17

5.1.6 Changes to the Pic compiler’'scode 21

5.1.7 Summaryo e e e 26
5.2 Internal program organization Lo 26
5.2.1 Callback function as a connection between the graphic interface and
data structures oL 26
5.2.2 Push buttons Callback function - ButtonFunction 27
5.2.3 General description of push buttons treatment functions. 27
5.2.4 Pic token treatment. oL 28
5.2.5 Element parameter treatment00 0L 31
5.2.6 Drawing directions treatment L0000 32
5.2.7 File popup menu callback function 32
5.2.8 Fdit popup menu callback function 000 33
5.2.9 View popup menu callback function 35
5.2.10 Structures popup menu callback function 00 36
5.2.11 Defaults popup menu callback function 36
6 Evaluation of usability of WD-pic 38
6.1 Method 38
6.2 Figuresin Thesis Lo 38
6.3 Author’s Assessment Lo 44
6.4 Advisor Assessment oL L 47
7 Conclusions and Future Work 48
Appendix A L 50
A1 A new element addition L o0 50
A.2 Changing a direction of a picture Lo 50
A.3 Changing the sizeof anelement Lo, 50
A4 Changing a place of an element L0 51
A5 Line style changing Lo o 53
A6 Fill style changing Lo 53
A.7 Changing an element size according to the size of last element of the same
kind . ..o 54
A8 File popup menu 54
A9 Edit popup menu 54
A0 View popup menu 55
A11 Structures popup menul e 55
A2 Defaults popup menu 56
Appendix B 57
B.l Pictext list 57
B.2 Object array 57
B.3 Pic String array 59

Bibliography 60

List of Figures

1 Connection between WD-pic, Pic and TROFF.
2 Principal execution steps in WD-pic from GUI event to the picture
3 MainWindow of WD-pic.o o
4 Pic tokens and their parameters.
5 Connection and data flow between Pic and TROFF
6 Connection between object array and string array
7 WD-pic executiono
8 Connections between the Pic text list, the object array and the string array
9 Connection between the interface and either data structures or Pic text . . .
10 Simpleexample
11 Sizes dialog for box or ellipse L.
12 Direction dialog for line, arrow or spline

List of Tables

Table of size names and their default values.
Table of callback functions for all elements of interface

June 26, 1997

Abstract

The Pic language is a TROFF preprocessor for drawing line drawing in UNIX environ-
ments. In this work, a classification of the elements of the Pic language is introduced, and
a convenient graphical interface, corresponding to this classification, WD-pic, for Pic users
is developed in the X Windows environment, using Motif. WD-pic combines graphics and
text building and editing of pictures, and it produces pictures on a screen and a correspond-
ing internal representation, which is fully compatible with the Pic language. The displayed
pictures in WD-pic are realized partly with the help of the existing Pic compiler and partly
with new code. The original Pic compiler’s source code was modified and incorporated as
a separate process in WD-pic. Creating pictures in WD-pic was tested and compared with
writing description of the same pictures in the Pic language and creating the same pictures

with the help of zfig.

1 General Description

1.1 Batch vs. WYSIWYG Drawing Programs

Picture drawing software comes in two different varieties:

e batch, such as Pic, and

e WYSIWYG (What You See Is What You Get) direct manipulation, such as zfig, idraw,
MacDraw, etc.

The advantages of batch drawing software are:

e The user can insert or delete an element or change its size or location without destroying
the entire picture.

o [t is easier to manipulate large groups of elements treated as a unit.
The disadvantages of batch drawing software are:

e The user cannot see the picture as it is being composed, and because of it he/she could
have problems with proportions, sizes, text string lengths, etc.

o [t is easier to make an error.
The advantages of WYSIWYG, direct-manipulation drawing software are:
e The user can see the whole picture.

o [t is easier to make decisions about such matters as exact types of elements, for example
box or circle, element sizes, positions of text string, etc., and to avoid obvious errors.

The disadvantages of WYSIWY G, direct-manipulation drawing software are:
e A change of one element can destroy an entire picture.

o [t is not comfortable to manipulate large groups of elements, for example changing the
default size for all boxes or changing the direction of elements in the picture.

1.2 Goal and Requirements for WD-pic

We want to get the best of both worlds in the form of a combination batch, WYSIWYG,
direct-manipulation drawing program, called WD-pic (WYSIWYG, Direct-manipulation
Pic drawing program), an enhancement of the well-known batch Pic program that works
with the same Pic language[l1,2,4]. The Pic language is ideally suited for the kinds of
diagrams occuring in Computer Science documents. That is it should be possible to get
a box drawn by either clicking box button or by typing "box”. However, even in direct
manipulation, the batch defaults should hold. The internal representation of any picture is
an editable Pic language description of the picture in the style that a human would enter.

WD-pic Pic TROFF

Figure 1: Connection between WD-pic, Pic and TROFF.

In this work we tried to make an internal representation of a picture close to what a human
would write as possible. For example, if the user wants to draw a line, connecting a specific
corners of two boxes, he/she would write something like “line from first box.ne to second
box.sw”, which is more understandable then “line from 1.00245 to 3.52671”7. In order to
follow this goal, we sometimes need to constrain the WD-pic interface.

WD-pic is a UNIX system line drawing program. It is intended chiefly for technical
document illustration, such as flow charts, state diagrams and so on. Pictures, interactively
created by WD-pic can be saved as batch Pic programs, and batch Pic programs can be
displayed and edited interactively with the help of WD-pic.

In Fig.1, we see the connection between WD-pic, Pic, and TROFF.

1.3 Prototiping Method

This thesis is intended to report on an example of prototyping to determine actual require-
ments starting from a vague idea of the general requirements.

The mission was to decide the requirements and design of an interchangeable batch-
WYSIWYG drawing system based on the picture desciption language for the batch program
Pic. This is a case in which the requirements and design affect each other in that what is not
implementable is not requirable (and of course, vice versa). The hard part of this mission
is to simultaneously determine a reasonable way to structure the software that would meet
the requirements and to determine the best user interface that makes the switching between
batch and WYSIWYG input as seamless as possible.

The method used to refine the requirements and to get a first implementation of WD-
pic is the traditional requirements exploration prototyping method. A prototype is rapidly
programmed to a first version of the requirements. Users get to play with the prototype to
discover inappropriate requirements. The requirements are adjusted and a new round begins.
The process continues until satisfactory requirements and an implementing prototype are
obtained or until it is determined that the path of decisions taken cannot yield satisfactory
requirements without throwing out most of the work done so far.

In the case of word-processing software such as WD-pic, the prototypes can be exercised
to produce the figures that will be used in the documentation of the software. Indeed, all of
the figures in this thesis were produced by the author using WD-pic. Having a set of real-life

examples, as opposed to toy, concocted examples, assures a good exercising of the problem
domain that is to be covered by the software. Furthermore, these same examples give a way
to evaluate the software against real-life uses.

Requirements exploration prototyping requires being able to rapidly put together a new
version of the program with maximum reuse of what has been done before and is not dis-
carded. Consequently, some time was spent to identify a syntax directed structure for the
basic interpreter. In addition, to make it easy to change the content of the user interface
decisions, i.e., what is printed in a prompt to the user and what is expected from the user as
a response and as confirmation, it was decided to use a prepackaged library of user-interface
widgets. While this choice did make it relatively easy to change the program as requirements
were changed, it did end up standing in the way of meeting one of the goals, namely that of
interchangeability of batch-style, textual and direct manipulation inputs.

2 Existing Systems

The existing drawing systems come in two different flavors, batch and WYSIWYG. A number
of each of these are described in this chapter. It will be seen that none of them meet the
requirements set out for WD-pic. First it is clear that any program which is either batch or
WYSIWYG cannot meet the requirements of being interchangeably batch and WYSIWYG.
Therefore the criticisms are focused on such issues as whether batch-like defaults are available
in a WYSIWYG system, whether its internal representation is accessible, understandable,
and editable by the user, and how close the internal representation of a picture is to what a
human would write to get the same figure in the same language.

2.1 Batch

Two of the main batch drawing programs are Pic and ideal, both AT&T products. Both
are troff preprocessors. pic is an imperative system in which one gives explicit commands
for a sequence of figure items to be drawn, one after the other. ideal is a declarative system
in which one describes what is in the picture and give equations whose solutions provide
values for the constants needed to place and size figure items. Both output troff commands
which explicitly draw the figure in terms of points, lines, ellipses, and splines, which are the
basic troff drawing commands. A third program is MetaPost, a METAFONT to PostScript
translator. METAFONT is a combination imperative, declarative system normally used to
specify glyphs for a font. Since a glyph is just a drawing, clearly one can use METAFONT to
specify arbitrary drawings. The output of MetaPost is a sequence of PostScript commands
that draw the specified figure.

Of the three, for the kinds of figures that are normally drawn in computer science technical
literature, Pic has the simplest interface, because it has exactly the right set of primitives
and defaults that a flow diagram the sequence of processes P1, P2, and P3 can be specified
by the Pic commands

“box “P17; arrow; box “P2”; arrow; box “P3” 7.

No other batch drawing program has such a simple specification of the flow diagram.

Of course, all of these have all the drawbacks of batch programs and none of the advan-
tages of the WYSIWYG, direct manipulation programs.

2.2 WYSIWYG

There are a large variety of WYSIWYG, direct manipulation drawing programs. It seems
that every operating system builder has one and there are still others supplied by third
parties. This section reviews a representative collection in a more tabular fashion. They are

1. Adobe Illustrator (Al)
2. wdraw

3. MacDraw

4. PageDraw

5. Paint

6. PowerPoint

7. zfig

Al is produced by Adobe and it runs on all three major platforms, PCs with Windows,
Macintoshes with MacOS, and Suns with UNIX. idraw is a public domain program dis-
tributed in source form and can be run on any platform with a C compiler. MacDraw is
produced by Apple and runs on Macintoshes with MacOS. PageDraw is another public do-
main program that runs on PCs with Windows. Paint is produced by Microsoft and runs on
PCs with Windows. PowerPoint is produced by Microsoft and runs on PCs with Windows.
Actually PowerPoint is a general formatting system for making slide shows and has a picture
drawing palette to enable drawing pictures for these slides. zfig is a public domain program
distributed in source form and can be run on any platform with a C compiler and X windows,
as it assumes the X protocol for accessing the graphic screen on which to draw the pictures.

All of them have a very similar user interface with a palette of drawing figures, it seems,
always on the left side of the screen and an associated drawing canvas. The palettes all
provide basically the same primitive drawing items, including boxes, lines, circles, ellipses,
etc. The more advanced of these, such as Al and xfig, provide an additional collection of
buttons that provide a very complete set of locally and globally applicable manipulation
commands such as scaling, rotating, translating, etc.

In all of them, after clicking a primitive item, e.g., box, it is necessary to explicitly place
and size the item with the mouse on the drawing canvas. None provide default positioning
and sizing such as provided by Pic.

The saved files for A, idraw, PageDraw, and zfig are in plain ASCII format, with that of
the first three being PostScript and that of the fourth being a representation found in no other
program. All of these formats are editable by the user, although in the opinion of the author’s
advisor, only that of zfig is really intuitive to the user with commands one-for-one with visible
objects on the canvas. While all are editable, the user faces a danger that after editing, it

will not be in a form interpretable by the program, i.e., the resulting specification is not well
formed. The user should always save a back-up copy to allow restoring to an interpretable
specification should the editing hopelessly mess up the specification. Note also that none of
these programs were designed on the assumption that the user would be manually editing
the saved file; hence they take no pains to insure clarity of the representation. MacDraw,
Paint, and PowerPoint all produce binary saved files to protect the manuafacturers’ trade
secrets. For the systems whose saved representation is not PostScript and is therefore not
directly printable, there is a way to generate a PostScript description of the saved figure.
In all the programs, in the printable PostScript representation, either the saved file itself
or one obtained by translation from it, the constant numbers defining positions and sizes
are multi-digit numbers with long fractional parts, e.g., 2.079573454, decidedly not what a
human being would choose to write, e.g. 2 or even 1.25. Moreover, in the case of Paint, the
PostScript is that of a bitmap rather than a sequence of commands to draw the figure.

2.3 Conclusions

All of the reviewed programs are really only either batch or WYSIWY G. None are both.

The closest that comes to being both is Picasso, which is intended to be a WYSIWYG
version of Pic. However, it does not allow editing of the internal pic from within Picasso.
If one edits it externally, there is the problem of assuring that the result is syntactically and
semantically correct. Picasso simply breaks when it attempts to set itself up on an internal
representation that is not syntactically or semantically correct.

The same problem holds for zfig and Al whose internal representations are fairly obscure,
but ASCII files.

The internal representation of zfig has for each object a line consisting of a list of numbers,
the first being the object type, and the rest being its parameters, the last of which are the
defining ordered x,y pairs. It is hard to edit this internal representation to yield another
meaningful, zfig interpretable internal representation and a good picture. Note that the
author’s advisor does this editing all the time to effect changes that are a pain to do with
the standard interface, e.g., change all occurence of a particular word to another or to change
all rectangles into circles, but he constantly backs up internal representation files in case he
makes errors that are too messy to undo.

The internal representation of Al is a rather obscure PostScript that interprets to a pic-
ture only in the presence of a prolog defining the abbreviated instructions that are used in
the internal representation. Thus, it is hard for the user to read, understand, and modify
the internal representation in a manner that yields syntactically and semantically correct
PostScript and a good picture. The same holds for idraw’s internal representation. It is
claimed by the authors of both Al and idraw, that any PostScript program can be con-
verted into a form readable by the program to allow imported PostScript programs to be
manipulated in a WYSIWY G fashion.

Every single one of the WYSIWYG programs known to this author requires placement
of objects in the canvas. That is when the box is requested by clicking on the box button,
the mouse must be used to position the box in the canvas. The user must click the mouse
on two points or click on one corner and drag to the opposite corner. None put the box

in a default position or as the next item in the current path, as is the default with both
the Pic internal representation of Picasso and in the PostScript internal representation of of
the canvas drawing. Moreover, when one looks at the Pic or PostScript generated for these
internal representions or the Pic or PostScript obtained by fig2dev from an zfig internal
representation, one sees lots and lots of multi-digit real numbers as x and y values, even if
all items in fact are of default size and placement. Moreover, the Pic code generated for a
box is four lines connecting the corners expressed as a pair of multi-digit real number.

Therefore, it is fair to say that no existing system meets the stated initial and key
requirements for WD-pic.

3 High Level Design

3.1 Basic Design Idea
In WYSIWYG drawing software, which is used in Graphical User Interface (GUI) envi-

ronments, it is possible to make all screen drawing with the help of the mouse and to use
keyboard input to insert text. Each action with the mouse or keyboard is called an event.
The principal execution steps in WD-pic in going from a GUI event to the picture on the
screen are shown in Fig.2.

1. WD-pic gives to each kind of event, invoked by the user interface, a unique number,
called a token.

2. The Pic interpreter belonging to WD-pic transforms the unique number into drawing
data structures and simultaneously into an internal representation in the the Pic lan-
guage. When the Pic compiler translates Pic text into TROFF format, it creates data
structures, for producing text in TROFF format. When we run the Pic compiler on
Pic text, created by WD-pic, we get drawing data structures. These data structures
are equivalent to the drawing data structures created by WD-pic itself.

3. The drawing data structures are used for drawing the picture on the screen. Of course,
this picture is the same as the picture created by Pic, TROFF, etc. given as input the
Pic text produced by WD-pic.

3.2 Two ways of creating picture and its internal representation
in the WD-pic

There are two ways to create a picture and its representation in WD-pic:
o using the WYSIWYG graphic interface to draw the picture,
e writing a textual description of the picture in the Pic language.

From the user’s point of view, these two ways are equivalent in the final effect.

Event
generated by GUI

WD-pic
Unique Pic drawing)
number interpreter data structures picture

Picinternal
representation

Figure 2: Principal execution steps in WD-pic from GUI event to the picture

1. When the user draws a picture on a screen using the graphic interface, he/she simulta-
neously creates the picture’s internal representation in the Pic language. This internal
representation not only saves the geometric and drawing characteristics of a picture’s
elements, such as coordinates of center, sizes, line style, etc., but also the relationship
between elements. The graphic interface allows placing one element relative to another,
specifying the size of one element relative to that of another, etc.

2. When the user changes the Pic file corresponding to a picture with the help of a text
editor, he/she immediately sees a changed picture on the screen. After that the user
can continue to work with the picture using the graphic interface. Note that, the WD-
pic interface allows passing freely from WYSIWYG picture drawing to editing of the
internal representation and vice versa.

At any given time, the picture on the screen is the same as the picture created via Pic,
TROFF, etc. with the accumulated internal representation as input. For each picture el-
ement, all its parameters, for example size, line style, etc., can be defined explicitly with
the help of the WD-pic interface. If a parameter is not defined, then it is assigned the cor-
responding Pic default value. Each new element is placed always at the current insertion
point, which is by default, the end point of the last element. WD-pic allows placing the ele-
ment in any place in a picture, using explicit instruction, that redefine the current insertion
point while describing a new element. Simultaneously, the description of this element in Pic
format is added to the current insertion point in the internal representation. The current
insertion point has a visual manifestation as well as being the place in the internal represen-
tation after which the new tokens go. At any time, this accumulated internal representation
(AIR) can be converted into a Pic file by adding special symbols to the beginning and to
the end. After the insertion of a new element, the picture displayed on the screen is the
same as that generated on paper by submitting the AIR to Pic piped to TROFF, with the
geographic center of the two pictures being the same.

3.3 Conditional classification of Pic language elements

It is convenient for our purposes to divide the main elements of the Pic language into five
groups:

e Pic tokens: box, circle, ellipse, line, spline, arrow, move, text, arc, and the
special symbol “;”.

e Drawing directions: parameters, that influence the rest of the picture. There are four
such parameters, up, down, left, and right.

e Element parameters: some of them can be united into groups.

Group Pic elements
Sizes width, height
radius, diameter
Directions up, down, right, left
Line style solid, dotted, dashed, invisible
Sources and destinations from, to
Places at, with ... at
Arrow heads > <=, < —>
Adjustments above, below, right, left
Arc directions clockwise

Other element parameters are fill and same

o Default values: scale, boxwid, boxht, linewid, lineht, circlerad, arcrad, el-
lipsewid, ellipseht, movewid and moveht

e Operators: if ... then ... else ... and

for ... to ... by ... do ...

3.4 Conclusions

All of the issues described above affect the user interface, which is the subject of the next
chapter, and ultimately the requirements of the program under consideration.

10

sJajeneded

LU

. .
uoT3Ia41p

Butme.g

.
H

azd1] (o]
xayl [aroa1ot
anoll MOddE

autyds

auty

g

a
o
.

FLIEY0T

(=)

4

uo RyTaed g F[ME4S] =eJnionJgs meth 313 8114

1d-am

-pic.

11

MainWindow of WD

Figure 3

4 User Interface

4.1 Main Window

WD-pic starts up with the main window shown in Fig.3.
There are three parts in the main window:

e the button panel in the left part of the main window.
e the menu bar

o the drawing area with vertical and horizontal scrollbars, used to reveal additional parts
of the drawing area

The button panel is divided into three parts in accordance with the Pic language classifica-
tion that was given earlier:

e Pic tokens
o drawing directions
e clement parameters

Each of these parts contains buttons, in principle, for each of the elements of these classifica-
tions described above. However, due to space limitations, at any time, only these elements
that are legal to choose at this time are displayed. This, of course, helps the user to avoid
what would be a syntax error in the Pic language.

4.2 Pic tokens

The Pic tokens part of the button panel contains ten push buttons; one push button for
each Pic basic element; box, line, arrow, circle, ellipse, arc, spline, move, text, and

“:” . The last is used to mark the end of the current element description.

4.3 Drawing directions

In Pic, there are four drawing directions, up, down, left, right, which control the direc-
tion of drawing from the point in which they are pushed. The buttons for directions contain
arrows indicating the direction. Accordingly, these buttons are called arrow buttons.

12

4.4 Drawing element parameters

Element parameters allow the user to change the size of an element, its placement, or its
line style, to fill a box, circle or ellipse, to change an arc’s direction, to put an arrowhead
on a line, spline, arrow, or arc, or to specify the adjustment of text. There are default
values for all these parameters in the Pic language. For example, the default line style for
all elements is solid, the only placement is at the current insertion point, the default fill
value for box, circle, or ellipse is 0.3, and the default arc direction is counterclockwise. If
any parameter is not given for any element, the default applies. In the table below, the size
names and their default values are presented.

description parameter | value(inches)
width of a box boxwid 0.75
height of a box boxht 0.5
width of an ellipse ellipsewid 0.75
height of an ellipse ellipseht 0.5
radius of a circle circlerad 0.25
radius of an arc arc 0.25
horizontal line length linewid 0.5
vertical line length lineht 0.5
horizontal move length || movewid 0.5
vertical move length moveht 0.5

All defaults are chosen so that many typical diagrams that computer scientists make in
technical papers can be produced entirely with elements without any parameters. This
means that in WD-pic, these diagrams can be constructed almost entirely by clicking ele-
ment buttons one after the other, using the keyboard only for text.

In the beginning, the drawing element parameters part of the button panel is empty. After
the user selects an element from the Pic token part, then a set of push buttons appears,
each of which allows the user to define a different drawing parameter of the current element.
The parameters for box, circle, and ellipse are:

1. sizes - to change the element’s size.
2. lines - to change the element’s line style.

3. place - to change the element’s place.
4. fill - to fill the element.

5. same - the element has the same size as the previous element of this kind.
The parameters for line, arrow, and spline are:

1. direction - to change the element’s direction.

13

2. line - to change the element’s line style.
3. from - to - to change the beginning and the end of the element.
4. — > - to put an arrowhead on the element .

5. same - the element has the same size as the previous element of this kind.

The parameters for arc are:

1. radius - to change the element’s radius.

2. invisible - to make the element invisible.

3. from - to- to change the beginning and the end of the element.

4. direction - to choose the direction of the element, which may be either counterclock-
wise or clockwise.

5. — > to put an arrowhead on the element.

The parameters for move are:

1. direction - to change the direction of the element.

2. to - to choose the end point of the element, which may be relative to another element
of the picture.

3. same - the element has the same size as the previous element of this kind.

The parameters for text associated with an element are:
1. adjust - to specify the adjustment of the text relative to its position.

2. to element - to return to the push button set, corresponding to the element, containing
this text.

Text associated with an element is the only kind of Pic element that can be embedded in
another one. In order to allow the user to continue to work with the enclosing Pic element,
the parameter to element was introduced.

The parameters for self-standing text are:

1. place - to choose the text’s position.

2. adjust - to specify the adjustment of the text relative to its position.

In Fig. 4, a structure showing which parameters appear for each Pic token is presented.

14

Pic tokens

box line
circle spline arc
elipse arrow
Parameters Parameters Parameters Parameters
sizes direction direction radius
lines line to invisible
place from-to same from-to
fill -> direction
same same ->

text
text)
associated with) | -Standing
text
element
Parameters Parameters
adjust place
to element adjust

Figure 4: Pic tokens and their parameters.

15

4.4.1 Size control

For each kind of Pic basic element, except text, of course there is a push button in the
corresponding push button set, that allows controlling the element’s size.

For a box, circle, or ellipse this is the size push button. The size of aline, arrow, or
spline can be changed with the help of the direction push button. For an arc, the radius
push allows to change a size of element. For a move, this is the place push button.

4.4.2 Place control

As for size control, for place control there is also a push button that allows controlling the
element’s placement.

For a box, circle, and ellipse, it is the place push button. For an arrow, line, spline,
or arc, there is a from-to push button, which allows placing the beginning of the arrow,
line, spline or arc, and its end.

4.4.3 Line style

The lines push button serves for selecting a line’s style. There are four possible line styles:
solid, dotted, dashed and invisible.

4.4.4 Fill style

In Pic, the attribute fill applies only to box, circle and ellipse.

4.4.5 Attribute same

The push button set for each element except text and arc contains the push button same.
This push button serves for changing the size of the current element according to the size of
last element of the same kind.

4.5 Menu bar

The menu bar contains five popup menus:

o File

o Fdit

o View

o Structures

o Defaults

The menu bar can be conditionally divided into two parts. The first part, containing the F'ile,
Edit, and View popup menus, corresponds to the interaction of the graphic interface with
the file and the displayed picture. The second part, containing the Structures and Defaults
popup menus, corresponds to the operator group and default group of Pic language elements.

16

4.5.1 File popup menu

The File popup menu has the following items: New, Save Current File, Store as New File,
Read File, and Quit. These options allows the user to start a new picture, to save a picture,
to save a picture with a new name, to read a picture, and to finish work with WD-pic.

4.5.2 Edit popup menu

The Edit popup menu has the following items: Select element, Insert, Add, End Insert/Add,
Modify attribute, Delete, and Text edit. These options allows the user to select any element
of a picture, to add a new group of elements before or after the selected element, to finish
new element addition, to modify an attributes of the selected element, to delete the selected
element, and to change a picture useing text editor.

4.5.3 View popup menu

The popup menu View contains only one item: File View., which allows the user to view
any existing Pic file and also the Pic text corresponding to the current picture.

4.5.4 Structures popup menu

WD-pic provides the possibility of using Pic if statements and for loops. These items
were regarded as not really appropriate or feasible for direct manipulation as they represent
repeatedly conditionally performed requirements of button clicks. Therefore it was decided
to use a menu interface for them. The Structures popup menu contains two options, Loop
and if ... then ... else. for if statements and for loops accordingly.

4.5.5 Defaults popup menu

WD-pic provides scale and default sizes control. For this purpose, the popup menu Defaults
contains three items, Scale, New defaults, and Reset.

4.6 Conclusions

The elements of the user interface follow the structure of the language elements described
earlier in Section 3. This assists in the prototyping effort in that whenever there is a change
to the structure of the language or to the way dealing with an element of the language, the
place in the interpreter affected by the change is clear.

17

Interface
to
TROFF

PIC
compiler

PIC
Data Structures

Figure 5: Connection and data flow between Pic and TROFF

5 Implementation

5.1 Data structures
5.1.1 Pic compiler execution and its data structures

In order to understand the behavior of WD-pic, we need to analyze the execution of the Pic
compiler and the data structures created by Pic compiler.

In Fig. 5, the connection between and the data flow between Pic and TROFF is pre-
sented.

Schematically, we can represent a run of the Pic compiler as the following sequence of
steps:

e The Pic compiler gets a Pic file, i.e. program, written in the Pic language, describing
a picture, as input.

e Using lexical and syntax analysis, the Pic compiler translates the input into special
data structures, containing all the necessary geometric and drawing information.

e Using these data structures, the Pic compiler produces a description of the same
picture in the TROFF language.

It seems natural to use the data structures, created by Pic, with some changes, in WD-
pic. It gives the possibility to simplify the interface of WD-pic with the Pic compiler and
allows, in some cases, to use the Pic compiler directly for creating drawing data structures,
as will be described later.

Fig. 6 presents two data structures of the Pic compiler, the object array and the string
array.

e Object array - an array of picture elements. Each element in the object array contains
a pointer to an object structure. Each object structure contains an element type (box,
circle, etc.), an element geometry, a line style, a fill mode, etc. Also an object structure
contains two indexes of elements in the string array. The first, o_nt1, is the index of the
element, containing a first text string, that belongs to the Pic element corresponding
to the object structure. The second, o_nt2, is the index of the element containing the

18

o_ntl

o2 String array

T

Object arr

B

o ntl /

o_nt2

o_ntl 7
o_nt2

Figure 6: Connection between object array and string array

19

File
Interface
. : PIC PIC
WD-pic - compiler Data Structures to
GUI : P TROFF
—=
1

WD-pic
Data Structures

Figure 7: WD-pic execution

first text string which does not belong to the Pic element corresponding to the object
structure.

e String array. Each element of the string array corresponds to a text, which may be
associated with a picture element or may be self standing, and also contains the text’s
adjustment (left, right, up, down) type.

5.1.2 Methods of picture representation in WD-pic

A picture is represented in WD-pic in two different ways:

o with the help of drawing data structures, structures containing all necessary geometric
and drawing information for each element of the picture.

e with the help of a data structure containing a representation of the Pic text, “Pic
data structure” for brevity.

Of course, a connection exists between the drawing data structures and the Pic data
structure.
5.1.3 WD-pic execution scheme and its data structures

In Fig. 7, we can see the scheme of a WD-pic execution. WD-pic has two kinds of input
data:

o data structures, created by the Pic compiler.

We have this data when the user wants to read a text file in the Pic language. Then
this file is passed to the Pic compiler as input. In turn, the Pic compiler creates all

20

necessary data structures and passes them to the WD-pic for it to draw the picture.
This passing is indicated by the arrow marked “2” in Fig. 7.

o user data, created with the help of the graphic interface. In this case, there are two
types of input data treatment:

1. For the first type, WD-pic either creates new data structure elements or adds new
information to existing ones. This data flow is indicated by the arrow marked

“1” in Fig. 7.

2. For the second type, created by the interface, a picture representation in the Pic
language is used. WD-pic changes only this representation and uses it to create
a file according to the Pic standard. This file is passed to the Pic compiler as
input data. The Pic compiler creates all necessary data structures and passes
them to the WD-pic for it to draw the picture. This passing is indicated by the
arrow marked “2” in Fig. 7. This method is used, when complex calculations are
needed, for example, to change box, circle, or ellipse sizes, to place an element,
etc.

5.1.4 Pic data structures

An internal picture representation in the Pic language is stored in the memory as a linked
list, called the Pic text list. This data structure allows carrying out such operations, as an
insertion of a new element into the list and a deletion of an element from the list. Appendix
B contains a detailed description of Pic text list

Each element of the Pic text list corresponds either to a Pic element, to a Pic operator,
or to a Pic default size change.

5.1.5 Drawing data structures

As was mentioned earlier, the drawing data structures were borrowed with some additions
from the Pic compiler. In the Pic compiler, all information necessary for drawing is con-
tained in the elements of the object array. We use this object array in WD-pic. However,
in order to keep a connection between an element’s drawing information and its description
in the Pic language, a new data field was added to the structure of the object array ele-
ment. This data field allows accessing to the corresponding element of the Pic text list. The
detailed description of object array is shown in Appendix B.

In Fig. 8, we can see connections between the Pic text list, the object array, and the
string array.

WD-pic also uses the string array. Each element of the string array contains the drawing
information for its text

5.1.6 Changes to the Pic compiler’s code

Because we want the Pic compiler to create the data structures that can be easily trans-
formed to WD-pic data structures, some changes were made to the original Pic compiler.

21

Pic ptr

o_ntl
o_nt2
Pic Text List .
String array
/ Object arr
Pic ptr
onl ——
o_nt2
\

o_ntl 7
o_nt2

Figure 8: Connections between the Pic text list, the object array and the string array

22

In this subsection we are using italic font for code, which was added to the Pic compiler,
and normal font for its original code.

A new array was added, the Pic text array. Its elements have the same structure as an
element of the Pic text list of WD-pic, and contain the same information. The code below
contains a description of the Pic text array element structure:

typedef struct Def{

char *curString;

int curStringLength;
} PicTextDef;

The following variables were added to the Pic compiler’s code:

/* a pointer to the beginning of the Pic text array */
PicTextDef *picText;

/* the index of the current element of Pic text array */
int curNumPicText;

/* the maximum number of elements in the Pic text array */
int maxNumPicText;

Here is the initialization of the Pic text array:
picText = (PicTextDef *) grow((char *)picText, ”PicTextDef”,
maxNumPicText += 1000, sizeof(PicTextDef));

For compatibility with WD-pic, the new field, PicTextUnion, was added to the object array.
This field contains an index of the corresponding element of Pic text array.

Besides the changes in the data structures, some additions were made to the Pic com-
piler’s code. The main additions were in the lexical analysis part. For each Pic word,
function CreatePicElementText was added. This function builds the Pic text array. For
example, for the word ellipse we have now the LEX code:

<A>ellipse { if (MarkStruct ! = String_pic){
CreatePicElement Text(!ElemRef, "ellipse”, ELLIPSE);
ElemRef = 1;

1
return(yylval.i = ELLIPSE);

}

The function CreatePicElementText adds a new element to the Pic text array. This ele-
ment contains a pointer to the string ellipse. This function makes all necessary changes to
the Pic text array. In WD-pic, the analogous function makes all necessary changes to the

23

Pic text list. Because these functions are very important, we give here the code of one of
them, which is used in Pic compiler.

This function gets as input:
textElement, a Pic word,
Element, its code,
NewElem, a parameter that marks a Pic element that is not inside a Pic operator, a box,
arrow, circle, ellipse, spline, move, self-standing text, or the first word of a Pic opera-
tor (for or if).

For a Pic word that is marked by NewFlem, we begin a new element in the Pic text
array. For all other Pic words, we just add a new word to the string of the current Pic text
array element.

void CreatePicElementText(NewFElem, textElem, Element)
it NewElem;
char* textElem;

it Element;

{

it length;
char *ptr;
char *text;
mnt i

/% If textElem contains a full Pic word we add a blank to the end of the word */
if (Element = 999)

length = strlen(textElem) + 1;

text = malloc(length * sizeof(char));
strncpy(text, text Elem,length -1);
teztflength-1] =’ 7

1

else

/% If textElem contains only one symbol, figure or letter, which
is part of number or label, we don’t add a blank */

{

length = 1;

text = malloc(sizeof(char));
text[0] = textElem[0];

/***

There are two possible cases :

1. a new element in the picture or the header of a structure t.e., an if

or a loop, that requires a new element addition to the Pic text array

2. An existing element parameter or the body of a structure that
must be added to the string of Pic text array element. This siring

already contains a Pic element description or a Pic structure

24

header.

***/
/***/

picText is a pointer to the beginning of Pic text array.

curNumPicText is the index of the current Pic Text Array element.
HHHHARAAFFTAARAATKARASTIAAASSHKIAAAKARAATTARASTAAASSHKRAAAKARAASKARASIHAAAA |

if (NewElem) {

[RHRFFAFFFXE New element or structure header *¥FFFx*FFAF/
curNumPicText++;

if (curNumPicText >= mazNumPicText) {

picText = (PicTextDef *) grow((char *)picText,
"PicTextDef”, mazNumPicText += 1000,
sizeof(PicTextDef));

picText[curNumPicText]. curString =
(char®*)malloc(length * sizeof(char));

struepy(pic Text[curNumPic Text]. curString, text, length);
picText[curNumPicText]. curStringLength = length;

}
else {

JRRFFAFAFEXE Blement parameler or body of a structure *FFF*FFFFAEX/
picText[curNumPicText]. curString =

(char®)realloc(pic Text[curNumPic Text]. curString,
(picText[curNumPicText]. curStringLength += length) * sizeof(char));
ptr = picText[curNumPicText]. curString +

(picText[curNumPicText]. curStringLength - length) * sizeof(char);
strucpy(ptr, text, length);

}
free(text);

1

In the YACC code of the Pic compiler for ELLIPSE is the definition

prim: ELLIPSE attrlist { $% = circgen(51); }

In the function circgen(), new elements are added to the object array and the string
array. In order to establish connection between the object array and the Pic text array, the
new string was added to the function:

p->PicTextUnion. Num = curNumPicText;

Here, p is a pointer to the object array element corresponding to the ellipse.

25

WD-pic Set of Data .
. callback picture
interface . structures

functions

Figure 9: Connection between the interface and either data structures or Pic text

5.1.7 Summary

Using Pic compiler data structures, we created the WD-pic data structures, allowing us to
store all necessary information for working with a picture via both graphical interface and
a text editor interface. After that, we modified the Pic compiler data structures in order
that they conform to the WD-pic data structures. Also we changed the Pic compiler code
so that it supports the modified data structures.

5.2 Internal program organization

5.2.1 Callback function as a connection between the graphic interface and data
structures

In previous sections, we described the interface of WD-pic and the picture representations in
WD-pic. The user can change the picture with the help of elements of the interface via data
structures. Also, using elements of the interface, he/she can deal with the file, containing the
Pic text corresponding to the picture. In Motif, each element of interface has a set of events,
each of which can be treated by a callback function. We can consider callback functions,
corresponding to each element of the WD-pic interface as a connection between the graphic
interface and either the data structures or the Pic file (Fig. 9).
In the table below, the callback functions for all elements of the interface are listed:

Elements of the interface Callback functions

Push buttons ButtonFunction
File popup menu FileCb

Edit popup menu EditCb

View popup menu ViewCb

Defaults popup menu DefaultChb
Struct popup menu StructCb

26

Button Function, StructCb and DefaultCb correspond to Pic language elements.
FileCb, EditCb and ViewCb correspond to interactions of the graphic interface with the
file and the current picture.

5.2.2 Push buttons Callback function - ButtonFunction

All push buttons, described in the interface part, share one and the same callback function,
called ButtonFunction. Each push button has a unique number. After the user has pushed
chosen push button, Button Function starts its execution with the push button’s unique
number as a parameter.

ButtonFunction executes in two steps:

1. It returns the background and the foreground of the previously selected push button,
(if present) to the original and reverses the background and the foreground of the
currently selected push button.

2. It calls function Interpreter with the push button’s unique number as a parameter.

The function Interpreter, according to its parameter, chooses the proper treatment
function for the selected push button.

5.2.3 General description of push buttons treatment functions.

All treatment functions translate events, invoked by the user interface, into a string or
substring of Pic lexical tokens, which must be added to the Pic picture representation.
Some of these functions do not need additional information, for example treatment functions
corresponding to box, move, or circle push buttons. Some of them do need additional
information, for example, the treatment function corresponding to the text push button.
Such functions create a new elements of interface in order to get this information. Each
treatment function executes in two modes:

o Append mode, corresponding to an addition of a new string or substring to the end of
the Pic picture representation.

e [nsert mode, corresponding to an insertion of a new string or substring in the Pic
picture representation.

In Subsection 5.1, we described two methods of treatment of input data, invoked with
the help of graphic interface. All treatment functions can be divided into two groups:

o Callback functions, which implement in append mode the first method.
e Callback functions, which implement in append mode the second method.

In insert mode all treatment functions implement the second method. Realization of the
first method doesn’t introduce any problems, but realization of the second method is more
complex and needs detailed explanation:

27

1. WD-pic, creates a empty character array in memory . All strings from Pic text list are
copied into this array. Also special Pic symbols are added to the beginning and end
of the array. At the end, this array contains the Pic text corresponding to the picture
on the screen.

2. WD-pic, using fork and exec UNIX system calls, creates a child process, which executes
the Pic compiler.

3. With the help of a pipe, WD-pic establishes a connection with its child process.
4. The standard input of Pic compiler is redirected to the pipe.

5. Using the pipe, WD-pic delivers the string to the Pic compiler as an input and waits
for data structures produced by Pic.

6. The Pic compiler starts execution.

7. When the Pic compiler finishes its execution it sends the new data structures to WD-
pic using the pipe

5.2.4 Pic token treatment

Here is a part of function Interpreter code.

case (_BOX) :
/* Call of treatment function for box */
BoxFunction();
/* If push button parameter set for box exists then break */
if (currentPanelNumber == 0) break;
/* If exists push button parameter set for any Pic
token except box then destroy it */
if (currentPanelNumber = -1)
XtDestroyWidget(buttonFrameParam);
/* Create push button set for box */
BoxParameters();

currentPanelNumber = prevPanelNumber = 0;

break;

This code calls the treatment function for the Pic token box and creates the push but-
ton parameter set for box. For other Pic tokens, the same operations are executed.

The treatment functions for a box, line, arrow, ellipse, circle, arc, and spline first
of all check the current mode, append or insert, and then execute the following steps:

e For append mode, they update the data structures using first method of graphic input
treatment. This method for Pic tokens is explained in detail below.

28

1. If there is a free place in the object array, it is used as a pointer to the structure,
corresponding to the new object. If the object array is full, its length is increased
by a constant number, and the first free place is used as a pointer to this structure.

2. The structure corresponding to the new object is filled according to Pic defaults
and the current state of the picture.

3. A new element, containing a string in Pic format that corresponds to the Pic
token is added to the Pic text list and the pointer to the new element of the Pic
text list is inserted into the object structure.

Here is some code from the treatment function for box. This part corresponds to
the append mode execution. This code creates and fills the object structure, that was
described in the previous section.

obj* ptr;

ElemReference = 0;

/* In function Create Obj free place searching in object array and object structure creation are
executed */

ptr = CreateObj(2);

/* CurrentX and CurrentY are coordinates of the current insertion point */
ptr— >ox = CurrentX;
ptr— >o_y = CurrentY,

/* Calculations of coordinates of the box center and coordinates of the new current insertion point.
These calculation depend on the current picture direction */

if (CurDirection == R_DIR) {

ptr— >o_x += 0.5 * MyDefaultTable[0].pixel;
CurrentX += MyDefaultTable[0].pixel;

}

if (CurDirection == L_DIR) {

ptr— >o_x -= 0.5 * MyDefaultTable[0].pixel;
CurrentX -= MyDefaultTable[0].pixel;

}

if (CurDirection == U_DIR) {

ptr— >o_y -= 0.5 * MyDefaultTable[1].pixel;
CurrentY -= MyDefaultTable[1].pixel;

}

if (CurDirection == D_DIR) {

ptr— >o_y += 0.5 * MyDefaultTable[1].pixel;
CurrentY += MyDefaultTable[1].pixel;

}
/* Structure filling */

29

ptr— >o_type = BOX;

ptr— >omntl = ptr— >ont2 = NumText;

ptr— >o_mode = CurDirection;

ptr— >o_count = 2;

ptr— >o_val[0] = MyDefaultTable[0].pixel;

ptr— >o_val[l] = MyDefaultTable[1].pixel;

ptr— >o_attr = 0;

ptr— >o_ddval = MyDefaultTable[14].pixel;

ptr— >o_fillval = MyDefault Table[18].pixel;

/* Addition of the new element, containing pointer to the string “box” to the Pic text list */
CreatePicElement Text(!ElemReference,” box” ,BOX);

/* Establishing pointer to the corresponding Pic text list element */

ptr— >PicTextUnion.Ptr = curPicText;

e For insert mode, we use the second method of graphic input treatment:

1. The new element is inserted into the Pic text list. This element contains a
pointer to the string in the Pic language corresponding to the Pic token.

2. The second method of data treatment, described above, is executed.

After either updating the old data structures or getting new data structures, the treat-
ment function

o executes all necessary geometric calculations, using the object array.
o draws the resulting picture.

The treatment function for move executes all those steps, except last two in the normal
mode (geometric calculation and drawing).

The treatment function for text, different from other Pic token treatment functions,
needs additional information. In order to get this information, it creates a standard prompt
dialog in which user is asked to insert a string.

There are two kinds of text in the Pic language:
1. text, associated with a Pic element.
2. self-standing text.
For each kind of a text, there is a different treatment in the append mode.

e lor text associated with a Pic element:

30

1. Add this text to the string of the Pic text list element corresponding to the Pic
element containing this text.

2. If there is a free place in the string array, insert into it the new element. If string
array is full its length is increased by a constant number and the first free place
is used for the new element.

3. Change field, o_nt2, in the object structure corresponding to the Pic element
with which the string is associated.

o For self-standing text.

1. Add a new element to the Pic text list.
2. Insert a new element into the string array, as was described earlier.

3. Create a new object structure in the object array the same way as was done for
the other Pic tokens.

For insert mode, the treatment function just changes the Pic text list as was described
before and uses the Pic compiler to get new data structures. After updating or receiving new
data structures from the Pic compiler, the treatment function for text executes following
steps:

1. geometric calculation based on the object array

2. drawing

5.2.5 Element parameter treatment

Earlier, we defined two methods of treatment of input data, invoked with the help of the
graphic interface. In the classification of the Pic language (Chapter 3), almost all element
parameters were divided into groups. Now, parameters from these groups and parameters,
which are not united into groups can be divided according to their treatment method in the
append mode. Below is the list of parameter groups and parameters that are treated by the
first method in the append mode:

1. Line Styles group
2. Directions group

3. Arrow Heads group
4. Adjustment group
5. fill parameter

6. at parameter from the Places group, when the user wants to place an element by the
coordinates of its center

31

Below is the list of parameter groups and parameters, which are treated by the second
method in the append mode:

1. Sizes group

2. Sources and destinations group

3. Places group, except the at parameter for placing element by its center
4. Arc directions group.

5. same parameter

5.2.6 Drawing directions treatment

The treatment function for drawing directions executes the following steps:
1. Define a current mode (append or insert).

2. Add to the Pic text list a new element containing a pointer to the string with the
chosen direction name.

3. In append mode, give to the global variable Direction a new value.

4. In insert mode, execute the second method of the graphic input treatment.

5.2.7 File popup menu callback function

This callback function chooses a treatment function for the selected menu item.

o The treatment function for the menu item New is:

1. Destroy the Pic text list, object array, and string array.
2. Clear the drawing area.
3. Create the empty object array and the empty string array.

4. Assign the default values.

o The treatment function for the menu item Save Current File is:

If the Pic file, corresponding to the picture has no name yet, i.e., the picture was not
read from the file and was not saved before, then the treatment function for the Store
as new File item is called.

Otherwise, starting from the beginning of the Pic text list, strings in Pic format from
each element of the list are written to the file. Of course, to the beginning and to the

end of the file, the special Pic symbols, .PS and .PE, are added.

32

o The treatment function for the menu item Store as New File is:

1. A file selection dialog is created in order to give the user the possibility to choose
a file name.

2. The Pic text is recorded into the file the same way as for the Save Current File
item.

o The treatment function for the menu item Read File is

1. Destroy the Pic text list, object array, and string array.
2. Clear the drawing area.

3. A file selection dialog is created in order to give the user the possibility to choose

a file.

4. Using the fork and exec UNIX system calls, create a child process to execute the
Pic compiler.

5. With the help of a pipe, establish a connection between WD-pic and the child
process.

6. The standard input of the Pic compiler is redirected from the chosen file.
7. Pic compiler begins its execution.
8. When the Pic compiler finishes its execution, it sends new data structures to
WD-pic using the pipe.
We can see that this method looks like the second method of graphic input treatment,
except that Pic compiler’s input is redirected from the file and not from the pipe.
o The treatment function for the menu item Quit quits the WD-pic execution with the
help of the UNIX system call exit
5.2.8 FEdit popup menu callback function

Edit popup menu callback function chooses a treatment function according to the selected
menu item.

o Select element: The treatment function for this item establishes the handler function
for a mouse press event in the drawing area. In order to select a picture element the
user must press the left mouse button at some point of the drawing area belonging to
the element. Pressing the mouse button invokes the handler function, which executes
the following steps:

33

1. Search for the element in the object array whose screen coverage includes the
coordinates of the point.

2. The selected object array element is a pointer to the structure that contains the
field with the address of the corresponding Pic text list element. The special
pointer to the current element of the Pic text list, curPicText, is established
pointing to this Pic text list element. The special pointer to the previous element
of Pic text list is established pointing to the previous element of the current Pic
text list element.

3. The selected element is redrawn with a double line by the function DrawSe-
lectElement.

Here is code for element selection:

/* (x, y) are coordinates of the point, selected with the help of mouse */
X = event— >X;

y = event— >y;

/* Searching an element containing the point (x,y) */

sel_obj = FindObj(x,y);

if (sel_obj!= NULL)

{

/* curPicTexl is a pointer to the Pic text list element, corresponding to the chosen object */

curPicText = sel_obj— >PicTextUnion.Ptr;
/* prevPicText is a pointer to the Pic text list element, previous to the element, pointed by curPicText

*/
prevPicText = DefinePrev(curPicText);
IsSelect = 1;

/* redrawing of the selected element by double line */

DrawSelectElement(sel_obj);
CurElemNum = DefineElemNum(sel_obj); }

o Insert: The treatment function for this item establishes insert mode.

o Add: The treatment function for this item:

1. establishes insert mode, and

2. reestablishes the previous pointer to the current pointer, and the current pointer
to the next element of the current Pic text list element.

o I'nd Insert—Add: The treatment function for this item cancels insert mode.

34

o Modify attribute: The treatment function for this item creates a dialog, containing a
text window with a Pic string describing the selected object. The pointer to this string
is contained in the current Pic text list element. After the user has finished changing
the string, the pointer to the new string replaces the pointer to the old one in the

current Pic text list element.

o Delete attribute: The treatment function for this item deletes element of the Pic text
list corresponding to the current drawing object. After that it gets a new data struc-

tures from the Pic compiler, as was described for the second method of graphical input

treatment. Finally, it redraws the picture.

o Text edit: The treatment function for this item:

. creates a temporary file named tempXX.pic, where XX is the current process

number. Using the Pic text list, it writes into this file the text in Pic format
corresponding to the current picture, and after that closes this file.

. creates a child process with the help of the fork system call, and waits for its

completion.

. the child process in turn invokes the text editor named by the environment vari-

able EDITOR with the help of the exec system call.

. after the user has finished changing tempXX.pic and has closed the editor, the

parent process continues its execution and invokes the Pic compiler as described
earlier, with standard input redirected from the temporary file.

. after getting new data structures, the picture is redrawn, and the temporary file

is deleted.

5.2.9 View popup menu callback function

The View popup menu contains only one item, View. The callback for this item

1. creates a prompt dialog, in order to get a file name.

2. if the user didn’t insert file name, all strings from Pic text list elements are copied into

a one character array in the memory with addition of special symbols to the beginning
and to the end. If the user inserted a file name into the prompt dialog, the file is read

into a character array.
3. creates a scrolled text, containing a Pic file.

4. destroys the temporary file, if one was created.

35

5.2.10 Structures popup menu callback function

The callback for the Structure popup menu chooses functions for treatment of loop and ...
then...else items.

e The treatment function for loop

1. creates a dialog, which allows the user to insert the loop’s index, the high and
low boundaries and the step.

2. creates a temporary file and writes the Pic text corresponding to the current
picture into the file and adds the string “from indez-name = low-boundary to
high boundary by step -name do ...” to the current insertion point of the file.

3. executes the same steps as for the Text edit item of the Edit menu.
o . The treatment function for if ... then ... else

1. creates a temporary file and writes the Pic text corresponding to the current
picture into the file and adds the string “if ... then ... else to the current insertion
point of the file.

2. executes the same steps as for the Text edit item of the Edit menu.

5.2.11 Defaults popup menu callback function

The Defaults popup menu callback function chooses a treatment function according to the
selected menu item. All information related to the Pic default sizes is contained in the
special default table, containing all Pic default values. Each table element has the following
structure:

char name[11];

int pizel;

double inch;

double def_inch

Here

e name - is the name of the default parameter.

e pixel - is the current parameter value in pixels.

e inch - is the current parameter value in inches.

o def_inch - is the Pic default value for the parameter in inches.

The items of the Default popup menu allow the user to change the value of any parameter.

36

o New scale.

The treatment function for this menu item executes following steps:

1.
2.

Create a prompt dialog, allowing the user to insert new value of scale.

Read the new scale value and changes the pizel and the inch fields for all element

of the default table.
Replace the old scale value by the new one.

Add a new element, containing a pointer to the string “scale = new_scale_value”,
to the Pic text list.

If the current mode is insert, then the second method of graphic input treatment
is executed.

o New Default.

The treatment function for this item executes following steps:

1.

Create a dialog, containing a list of all default parameters and their current
values. The user can change these current values.

For each default parameters, check if it was changed. If a parameter was changed,
make all necessary changes in its default table element, corresponding to the new
value.

For each changed default parameter, add to the Pic text list a new element,
containing a pointer to the string “default value name = new_default_value”.

If the current mode is insert, then the second method of graphic input treatment
is executed.

o Reset.
The treatment function for this menu item executes following steps:

1.

Find all default table elements for which the current default value is not equal
to the Pic default value.

. Create a dialog, containing the names of all such elements. This dialog allows

resetting either some of their values or all of them.

For each reset parameter, replace its inch value by its def_inch value and recal-
culate its pizel value, using screen metrics.

If any of parameters were reset, for all such parameters, add to the Pic text list
a new element containing a pointer to the string “reset default value name”. If
all parameters were reset add to the Pic text list a new element containing a
pointer to the string “reset all”.

If the current mode is insert, then the second method of graphic input treatment
is executed.

37

6 Evaluation of usability of WD-pic

6.1 Method

As stated in the introduction, it is desired that the evaluation be as realistic as possible,
consisting in using WD-pic to build diagrams that are like those in real-life as much as
possible. Accordingly, it was decided to use WD-pic to prepare all the figures in this report.
The rationale is that the pictures in this report are typical of those needed in computer
science documents, precisely the domain of pic.

The author used WD-pic to draw all of these figures and others that were not used. The
author had become an expert in WD-pic by virtue of having written it; she knew exactly what
is allowed and what is not and exactly what would do the job and what would not. Thus,
she represents the expert user. As mentioned, she used what she learned from doing these
drawings to discover problems with the requirements of WD-pic and to suggest alternative
behaviors.

The author’s advisor used WD-pic to draw a few pictures for papers he was writing.
Although he is an expert in Pic and can generate Pic code for a picture on the fly, he was
a total novice in the use of WD-pic and actually encountered quite a few difficulties, some
of which led to changes in the software’s requirements.

Both compared their efforts to make drawings with WD-pic to their efforts to make the
same drawings with zfig, which they were both expert at.

This chapter first shows an example of making the same drawing in zfig and WD-pic in
order to give the reader a flavor of the way these comparisons went. A number of pros and
cons of WD-pic are apparent from this example. Next, the WD-pic generated Pic code for
many of the figures shown in this book is shown. These show that the main goal of human-
like Pic as the internal representation has been achieved. The author’s advisor agrees that
he would make Pic very much like these if he were specifying them in normal batch Pic.
Finally comes a list of the drawbacks of WD-pic. These all amount to problems with the
current requirements for WD-pic, requirements that will have to change if WD-pic is ever
to be a successful software system. It will be seen that many of these come from constraints
that were observed to meet the main goals and many of these come from the original choice
of using a set of widgets to build the user interface.

6.2 Figures in Thesis

Here are texts of Pic files that correspond to pictures presented in this work. Please note
how close these are to what a skilled human user of Pic would write.

Fig.1

.PS
right
A0 :box ”WD-pic”

38

arrow

Al :ellipse width 0.9 height 0.6 ” Pic file”
arrow

box ”Pic”

arrow

box "TROFF”

arrow

circle radius 0.4 ”Picture”

arrow from AQ .s down lineht *1
circle same ” Picture”

arrow from Al s

circle same ” Disc”

.PE

Fig.2

.PS

down

ellipse width 1.2 height 0.8 ”Event” ” generated by GUI”
arrow

box ”WD-pic”

arrow

AQ :ellipse width 0.9 height 0.7 ”Unique” ”number”
right

arrow right linewid from AO .e

A0 :box width 0.8 height 1 ”Pic” ”interpreter”
arrow

circle radius 0.6 ”drawing” ”data structures”

arrow

box width 1 ”picture”

arrow from A0 .s down linewid *1

circle same ”Pic internal” ”representation”
.PE

39

Fig.4

.PS

scale =1.1

movewid =0.27

A2 :box width 1 height 0.7 ”Pic tokens”

A3 :ellipse at A2 -(2,1.9)same width 0.8 height 0.7 "box” ”circle” ”ellipse”
move

A4 :ellipse same ”line
move

Ab :ellipse same ”"move”

move

A6 :ellipse same ”arc”

move

A7 :ellipse same ”text”

arrow from A2 .sw to A3 .n

arrow from A2 .sw to A4 .n

arrow from A2 s to A5 .n

arrow from A2 .se to A6 .n

arrow from A2 .se to A7 .n

arrow from A3 .s down 0.30

box width 0.8 height 0.5 ” Parameters”
arrow down 0.30

box height 0.3 ”sizes”

box same ”lines”

box ”place” same

box same ”fill”

2”9 2”9

spline” ”arrow”

box same ”same”

arrow from A4 .s down 0.30

box width 0.8 height 0.5 ” Parameters”
arrow down 0.30

box height 0.3 ”direction”

box same ”line”

box same ”from-to”

box same 7 — >”

box same ”same”

arrow from A5 .s down 0.30

box width 0.8 height 0.5 ” Parameters”
arrow same

box height 0.3 ”direction”

box same ”t0”

box same ”same”

arrow from A6 .s same

box width 0.8 height 0.5 ” Parameters”
arrow same

box height 0.3 "radius”

box same ”invisible”

box same ”from-to”

box same ” direction”

box same 7 — >”

A8 :ellipse at A7 +(-0.10 -1)width 1 height 0.6 dashed ”text ” ”associated with” ”element”
arrow same

40

box width 0.8 height 0.5 ” Parameters”
arrow same

box height 0.3 ”adjust”

box same ”to element”

A9 :ellipse at A7 +(1.2 -1)same dashed ”self-standing” ”text”
arrow same

box width 0.8 height 0.5 ” Parameters”
arrow same

A0 :box height 0.3 ”place”

arrow from A7 .s to A8 .n

arrow from A7 .sto A9 .n

box same with .nw at A0 .sw ”adjust”
.PE

Fig.7

.PS

move down 1 right 1.5

box width 1.2 height 0.8 ”PIC” ”compiler”

arrow

ellipse width 1.2 height 0.8 ”PIC” ”Data Structures”
arrow

circle radius 0.5 ”Interface” "to” ”TROFF”

.PE

Fig.8

.PS

down

”Object array”

move down 0.49

A9 :box width 0.6 height 0.3
A1l :box same

A13 :box same

move right 1.50 up moveht *6
down

A10 :box” ..

A0 :box height 0.2 ”ont1”
A2 :box same ”"ont2”

box ”7...”

move

Al12 :box ”..”

A4 :box height 0.2 ”ont1”
Ab :box same ”ont2”

box ”7...”

move

Al4 :box ”..”

AT :box height 0.2 ”ont1”
A8 :box same ”"ont2”

” ”

box ”..

41

move right 2.00 up moveht *9
down

”String array”

move down 0.30

Al :box

box

A3 box

box

box

box

A6 :box

arrow from AQ .e to Al
arrow from A2 .e to A3
arrow from A4 .e to A3
arrow from A5 .e to A6
arrow from A7 .e to A6
arrow from A8 .e to A6
arrow from A9 to A10 .nw
arrow from All to A12 .nw
arrow from Al13 to Al4 .nw
.PE

Fig.9

.PS

linewid =0.4

arrow ”File” above

move left linewid *1 down lineht *1

arrow right linewid *1 ”GUI” above

move up 0.24

right

Al :box width 0.8 height 0.8 ”WD-pic”
arrow

BO :box same ”PIC” ”compiler”

arrow

AQ :ellipse width 1.2 height 0.8 "PIC” ”Data Structures”
arrow

circle ”Interface” ”to” "TROFF” radius 0.5
arrow

A3 :arrow from A0 .s down lineht *2 \
then left linewid *4 \

to Al s

A2 :arrow from Al .s down lineht *2
ellipse same " WD-pic” ”Data Structures”
71”7 at A2 +(-0.09 ,-0.53)

72”7 at A3 +(-1.13 ,-0.94)

box with .nw at BO +(-0.7 ,0.8)width 4.3 height 1.5 dotted
.PE

42

Fig.10

.PS

down

”Object array”

move down 0.5

A9 :box width 0.6 height 0.3
A1l :box same

A13 :box same

move right 1.50 up moveht *6
down

A10 :box height 0.2 ”Pic ptr”
box ” ...”

A0 :box height 0.2 ”ont1”
A2 :box same ”"ont2”

box ”7...”

move

A12 :box height 0.2 ”Pic ptr”
box ”7...”

A4 :box height 0.2 ”ont1”
Ab :box same ”ont2”

box ”7...”

move

A14 :box height 0.2 ”Pic ptr”
box ”7...”

AT :box height 0.2 ”ont1”
A8 :box same ”"ont2”

box ”7...”

move right 2.00 up moveht *9
down

”String array”

move down 0.30

Al :box

box

A3 box

box

box

box

A6 :box

arrow from AQ .e to Al
arrow from A2 .e to A3
arrow from A4 .e to A3
arrow from A5 .e to A6
arrow from A7 .e to A6
arrow from A8 .e to A6
arrow from A9 to A10 .nw
arrow from All to A12 .nw
arrow from Al13 to Al4 .nw
move left 3.00 up moveht *6
down

?Pic Text List”

move down 0.30

43

A1b :box

arrow

Al16 :box

arrow

A1T :box

spline from A10 .w left linewid *3 down lineht *1 \
then left linewid *1 down lineht *1 to A15 — >
spline from A12 .w left linewid *1 up lineht *1 \
then left linewid *2 up lineht *1 \

then left linewid *1 down lineht *1 \

then left linewid *1 down lineht *1 to A16 — >
spline from Al4 .w left linewid *3 to A17 — >

.PE
Fig.11
.PS
ellipse width 1 height 0.6 ”WD-pic” ”interface”
arrow
Al :circle radius 0.6 dashed ”Set of” ”callback” ”functions”
arrow
box width 0.8 height 0.6 ” Data” ”structures”
arrow

A0 :box width 0.8 height 0.6
box at A0 ”picture”

arrow from Al .s down lineht *1
A2 :line left 0.50 down 0.30 \
then right 0.50 down 0.30 \
then right 0.50 up 0.30 \

then left 0.50 up 0.30

”Pic text” at A2 +(0 ,-0.3)
.PE

6.3 Author’s Assessment

WD-pic was utilized to produce a large number of pictures. Some of them are provided
throughout this text.

First of all, it must be mentioned that it is simpler and faster to draw pictures with
the help of the WD-pic than to create and correct Pic files directly, using standard UNIX
text editor such as vi, because we provide all the possibilities for forming Pic file but add
additional options for direct graphical online editing.

A popular tool for producing line drawing, which is supplied in the X Windows envi-
ronment is zfig drawing editor. From the comparative study of WD-pic and zfig following
conclusions can be derived.

e For simple linear diagrams such as chains of element (boxes, circles, or ellipse), pos-
sibly containing text, and connected by lines, arrows or spline, for example Fig.
1, Fig. 2, Fig. 5, WD-pic is more comfortable to use than zfig. This occurs because
by default Pic produces chains of drawing elements with default sizes and placement.

44

O—O

Figure 10: Simple example

Such kind of pictures can be produced simply by clicking push buttons with subsequent
adjustment of sizes and insertion text without adjustment or placement of elements.

For example the Fig. 10 was produced with the help of WD-pic and zfig. In WD-pic
the following sequence of actions was executed.

1. Click the push button ecircle.
2. Click the push button line.
3. Click the push button circle.

4. Click the push button same.
In zfig the following sequence of actions was executed.

1. Click the push button for circle.

2. Adjust the circle size.

3. Click the push button for line.

4. Adjust the line length and direction.
5. Click the push button copy.

6. To copy the first circle and adjust it position.

In WD-pic for the all elements, we use the default sizes and don’t need to adjust sizes
or positions of elements .

e Here is the Pic text generated by WD-pic for this picture:
circle

line
circle same

45

Here is the Pic text generated by fig2dev from the picture, created in zfig:

circle at 1.000,9.025 rad 0.255
circle at 2.012,9.012 rad 0.255
line from 1.256,9.012 to 1.756,9.012

From this example, we can see that the Pic text generated by WD-pic is more user-
friendly. Also the Pic text generated by WD-pic can be easily reused in other picture,
reusing the text created by fig2dev is more difficult, because the coordinates of the
circles and of the line’s end points are defined explicitly.

Changing position or size of one element in zfig can destroy entire picture. In WD-pic,
this destruction can be avoided because connections between elements are realized in
the picture’s internal representation.

For example if we want to change the circles sizes in the Fig 10 using zfig we need to
change size of first circle, readjust line, destroy the second circle, copy the first circle,
and readjust the new second circle. On the other hand, in WD-pic, we need only to
change the size of the first circle.

In WD-pic we can easily insert new elements in the middle of an element chains and
easily delete elements from the chain without any changes in the following part. In
zfig we need to divide the figure into the parts on opposite sides of the insertion point
and move at least one of them to make room for the inserted element.

On the other hand, WD-pic, in its present realization, is more limited then zfig in drawing
complex non-regular pictures. However, once the picture is drawn in WD-pic, it is easier to

correct such pictures because of features described above. WD-pic’s set of primitive elements
is poorer. It also doesn’t have the full set of element manipulations that zfig has.

We can say that WD-pic has the following shortcoming, independently of Pic limitations

1.

It is impossible to change sizes of a box, circle or ellipse by direct mouse manipula-
tion.

It is impossible to change position of a box, circle or ellipse by direct mouse manip-
ulation.

It is impossible to insert an entire file into the Pic specification by direct mouse ma-
nipulation.

. Editing functions such as Copy and Paste, working with clipboard, and Undo are not

available.

It is impossible to choose a font for a text string.

46

6. It is impossible to delete simultaneously a number of independent elements from the
picture by direct mouse manipulation.

7. It is impossible to print the displayed picture, directly from WD-pic.

It follows from the author’s experience using WD-pic

1. that it is preferable to construct a picture sequentially, according to the order of element
in the picture,

2. that it is desirable to understand clearly connections between elements before starting
to draw the picture and to use the possibilities of WD-pic, such as placing one element
relative to another.

3. that the user must work in the insertion mode with care, especially if he needs to change
directions in the process of insertion, because the initial part of a picture influences
the rest and it could lead to many difficulties for complex insertion. Sometimes it is
better to make an insertion using the Tezt edit option of the Fdit menu.

6.4 Advisor Assessment

Besides the author, the advisor of the author exercised the prototype, although not as
extensively as the author. Recall that the advisor was also the customer for the program
and was responsible for supplying the requirements for WD-pic. He exercised the prototype
for two main purposes:

1. to determine if the prototype captured his intentions.
2. to use it to make some figures that he needed for papers he was writing.

He knew the batch program Pic very well, often able to write Pic descriptions of figures
strictly from imagining the figure. He did not know WD-pic well and, initially had to ask
the author how to do certain things.

He reports tremendous satisfaction when using WD-pic to prepare diagrams for which
he could either think the description in real time or for which he prepared a hand-written
draft of the specification ahead of time. In these cases, things went super fast as he was able
to click buttons for the commands in rapid sequence much much faster than typing out the
commands with the help of an editor, that is it was much much faster to click the box button,
then the arrow button, and then the box button, click, click, click, that it was to type out
“box; arrow; box”. When a button click had to be accompanied by text entry, such as for
the textual contents of a box, the WD-pic was not quite as satisfying, because the entry of
text required a dialog window to pop up, the text to be entered, and then that entry to be
confirmed by clicking “Yes”; this is considerably slower than just typing the text enclosed
by standard double quote marks. Still even less satisfying and in many cases, a down right
nuisance were the heavily parameterized commands and changing already entered commands.
These involved many many pop-up windows each of which demanded confirmation that it
had understood what had just been entered. Moreover, selecting the drawing object to which

47

or after which to apply parameters required pulling down and clicking a menu item rather
than simply pointing at the object with the mouse. Thus, to him, WD-pic leaves much to
be desired in direct manipulation. He found it much less painful to just edit the internal
Pic representation to add the paramters or new objects anywhere, and got into the habit of
using WD-pic to rapidly produce a first version and then to use his favorite text editor for
all subsequent changes.

7 Conclusions and Future Work

WD-pic has met some of its goals but not all of them. It certainly is interchangeably batch
and WYSIWYG. It certainly produces human-like Pic code as its internal representation.
The user can certainly produce diagrams that are simple to express in Pic much much faster
with WD-pic than with other systems, as these require simply a series of button pushes and
typing of simple text in text windows and no movement of the mouse to the drawing canvas.

The program that was produced has the right design except for the lexical portion and
the use of standard widgets, and the user interface is clumsy in the less used parts of the
language.

The problems in the user interface are not fixable given the decision to use standard wid-
gets. These widgets require bringing up an interaction window when it is desired to input
tokens from the key board and these windows require confirmation of the input. The pro-
fusion of pop-up windows that present themselves when one begins to have parameters and
deviate from the defaults is inundating. Each one takes time to fill and demands confirma-
tion. It would be much much nicer to be able to simply type what needs to be typed directly
to a window that comes up under where the cursor is pointing without having to wait for it
to come to the screen and for the mouse to point to it and without having to confirm what
has been typed. This would also make it easy to use the mouse in place of textual description
of places. Of course doing so means using an entirely different set of user-interface widgets,
ones that seem to differ from the standard that seems to have established itself among most
applications running on X, Windows, and MacOS. It may even be necessary to program it
from scratch.

The decision to use standard widgets, wrong in retrospect, was taken to make it easy to
prototype, i.e., to rapidly explore different options and be able to throw out what has been
done already without feeling that a lot of work has been wasted. This is the first time, in the
author’s advisor’s experience, that the requirements of the prototyping process prevented
adopting good requirements for the software.

The other main deficiency is in direct manipulation. It would be nice to be able to place
a box where the cursor points rather than at the default position or a position specified by
explicitly writing positioning parameters either via pop up window or via the editor in the
internal representation. The problem with these direct manipulations is that they get in the
way of adhering to the goal of keeping the internal representation similar to what a human
would write. If one can place a box anywhere on the canvas, one will find Pic code like

box at 1.234297, 5.8593683

in the internal representation.

48

The idea of laying out grids that have spacing equal to the value of pic variables was
good, but is a pain to set up with the pop up window interface. It would be nice if the
variables could be selected by mouse when they are simple, and have to be typed only when
they involve expressions. Even better would be for the grid to have a default spacing of
moveht vertically and movewid horizontally. Moreover, it would be nice if the origin of the
grid could be a point selected by direct manipulation, with gravity pulling to predefined and
non-numerically specified points such as the eight corners of a box, .n, .e, .s, .w, .ne, .se, .sw,
and .nw.

To add more direct manipulation will require more creativity to come up with interfaces
that constrain it in a natural and unobtusive way to that which corresponds to what humans
want. That is the challenge for the designer of the next version.

49

Appendix A
User Manual

A.1 A new element addition

In order to add a new element to the picture user need to click on the corresponding push
button from the Pic tokens part of the button panel. The new element is placed in the
drawing area with default drawing and geometric parameters. This element is placed at the
current insertion point. At any time, the accumulated drawing is centered in the drawing
area. Simultaneously, a corresponding string is added to the Pic internal representation. If
immediately after choosing some element, such as box, circle etc., the text push button
is chosen, then text is inserted into the element. In order to create self-standing text user
must press the “;” push button before pressing text push button in order that the current
text not be considered as part of the previous element. For example, when the user clicks
on the box push button, the string box is added to the current insertion point in the Pic
file, the following picture is added to the current insertion point on the drawing area, and

the whole accumulated picture is centered again.

A.2 Changing the direction of a picture

In order to change a direction of a picture the user must click on a arrow button whose
arrow points to the desired direction. For example, when the user clicks on a arrow button
whose arrow points to the right, the string right is added to the current place in the Pic file.
The effect of this is to cause the picture to grow to the right from the current insertion point
on the screen. If the current insertion point is not the end, then this may cause portion of
the picture to change their orientation entirely when the picture is redrawn.

A.3 Changing the size of an element

In order to change a size of a box, circle, or ellipse the user need to click on the size
push button. When this push button is pressed, a dialog appears in the lower left corner of
the main window.

This dialog has two labeled text windows: for box and ellipse, they are width and
height, for circle, they are radius and diameter. The dialog also has two push buttons
“OK” and “Cancel”. In Fig. 11, we see sizes dialog for a box or an ellipse. The user must
insert the required parameters into the text windows. For a circle, he/she needs to insert
only one of them. If the user defines the parameters and then presses the push button “OK”
then the element in the drawing area immediately changes its size according to the inserted
values. Simultaneously, the corresponding substring is added to the current place in the Pic
internal representation. For example, result of changing a box’s size is the addition of the

50

-Eancel

r

=

Figure 11: Sizes dialog for box or ellipse

substring width x height y to the string in the Pic text that describes the box.

The size of aline, arrow, or spline can be changed with the help of the direction push
button. Selection of this push button calls a dialog, which is shown in Fig. 12.

The user can insert data directly into the text windows, labeled by “dX” and “dY”. Alter-
natively, the user can select an arrow button, corresponding to the current text window and
choose one of the standard Pic sizes from a menu that pops up after the button is pressed.
After pressing the “OK” push button, a grid is imposed on the picture with its cell sizes dX,
dY, assuming valid dX and dY. The user can choose end points for all segments of a line or
an arrow or end points for a spline’s guiding lines on this grid by the left mouse button.
He/she can finish the task by pressing the middle mouse button or by choosing a new element
from Pic tokens. After each chosen point, the line, arrow, or spline immediately changes
its view. Simultaneously, the string like left linewid * x up lineht * yis added to the current
place in the Pic internal representation.

For an arc, the radius push button invokes the same dialog as the size push button for a
circle with the same action.

For a move, the place push button calls the same dialog as the direction push button for
line, arrow, and spline with the same action, except that the user can choose only one
point on the grid.

A.4 Changing the place of an element
In order to change a placement of a box, circle, and ellipse, the user need to click on

the place push button. Selection of this push button invokes a dialog that offers two kinds
of element placement.

51

LineDirection

I
=l

Figure 12: Direction dialog for line, arrow or spline

1. Place the element by its center, using the at option.
2. Place the element by one of its corners, using the with option.

There is a toggle button for each option. If the chosen option is to place the element by
its corner, a new dialog is invoked, and it asks the user to point to the suitable corner with
the left mouse button. If the chosen option is to place element by its center or if the user
has chosen a suitable corner of the element, a new dialog appears. This dialog offers three
ways to place the element,

1. by the coordinates of its center or corners.

2. relative to another, labeled element. If this element has no label yet, then label will
be added automatically.

3. relative to a numbered object of chosen kind, for example relative to the first box.
After selection of the suitable option, the user must
e for the first option, choose one point in the drawing area

e for the second and the third options, choose an element and after that click on the
required point. If this point is a corner of the object then in the Pic text, it will be
entered as the element’s corner.

Here are examples of Pic texts, generated by each option for circle placement.
e first option: “circle rad z at x, y”.

e second option:

“ Al box
circlerad z at Al + (z, y)”

52

e third option:
“ box

circle rad z at first box + (x, y)”

For an arrow, line, spline, or arc, there is a from-to push button, which allows placing
the beginning of the arrow, line, spline or arc, and its end. Selection of the push button
invokes a dialog, that offers two instances of the element placement in order to

1. place the beginning of the object with the from option, and
2. place the end of the object with the to option.

After that, the same dialog as for a box, circle, and ellipse offers the user three ways
to place beginning or end of the element, and the user must execute the same actions as in
the previous case.

Here are a few examples of the Pic text generated for placement of the beginning and the
end of a line:

e first option: “line from (z,y) up x1 left y1 to (z,w)”.

e second option:

“ Al box
A2 circle

line from Al.n up x left y then down 2 to B1”

e third option:
“ box

circle

line from first box to second circle.w”

A.5 Changing Line Style

In oreder to change a line style of an element the user must click on the lines push button.
The corresponding dialog offers four possible line styles: solid, dotted, dashed and invis-
ible. For each option there is a toggle button. If no line style is selected, then the default
solid is used.

For example, when the dotted line style is selected the substring dotted is added to the
current place of the Pic internal representation.

A.6 Changing Fill Style

33

When the user click on the fill push button the corresponding dialog is appeared The dialog
contains a slider, with the help of which the user can set a gray scale value. An example of
the corresponding Pic internal representation is the string “box fill 0.5”

A.7 Changing an element’s size according to the size of last el-
ement of the same kind

When the user want to change the size of the current element according to the size of
last element of the same size he/she need to click on the push button same.
An example of the resulting Pic internal representation is:
“ box wid x
box same”

A.8 File popup menu

The File popup menu has the following items: New, Save Current File, Store as New File,
Read File, and Quit.

1. New: Start a new picture.

2. Save Current File: If the current picture has a name i.e., it was saved before or it was
loaded by Read File, then the Pic internal representation is saved with the same name,
otherwise the user is asked for a new name and the Pic internal representation of the
picture is saved in the file with the new name.

3. Store as New File: The user is asked for a name, and the internal representation of the
current picture is saved in a file with this name.

4. Read File: The user is asked for a name of a file. If a file with this name exists and the
file doesn’t contain any syntax error, it is loaded as a Pic file, and then the represented
picture is displayed in the drawing area. Otherwise, if the Pic file contains errors, then
a new window, named “Frrors and warning messages” displaying the error messages is
opened.

5. Quit: Exit WD-pic.

A.9 Edit popup menu

The FEdit popup menu has the following items: Select element, Insert, Add, End In-
sert/Add, Modify attribute, Delete, and Text edit.

1. Select element: After choosing this option, the user can select any element on the
drawing area. The selected element will be drawn by double line. After Select element,
any of the Insert, Add, Modify attribute, and Delete options can be chosen.

54

2. Insert: If the user has selected this option then each new element will be added before
the selected element, until the End Insert/Add option is selected.

3. Add: If the user has selected this option, then each new element will be added after
selected element, until the End Insert/Add option is selected.

4. End Insert/Add: The user selects this option to finish an addition or insertion of new
elements into the picture.

5. Modify attribute: 1f the user has selected this option, a new dialog appears in the center
of the main window. It contains text window with the Pic string corresponding to the
selected element. In the button panel, in the element parameters section appears a
push button set corresponding to the selected element. The user can change element
attributes directly in the text window or with the help of the element parameters push
buttons. If he/she prefers the push buttons, all changes immediately appear in the
text window and, of course, in the drawing area.

6. Delete element: Delete the selected element.

7. Text edit: WD-pic allows two ways to edit a picture, by graphic editing and text
editing. The previous six options are for graphic editing. This Text edit option allows
editing the text of the Pic internal representation. If environment variable EDITOR is
defined in the containing UNIX system, for example EDITOR = vi, then after selection
of this option, the editor named by EDITOR is opened on the current intermediate
representation. The user can change the Pic text as he/she wants. After user exits
from EDITOR, the resulting changed picture immediately appears on the drawing
area, if of course, the changed Pic text is a correct Pic program. Otherwise, if the
changed Pic text contains errors, then a new window, named “Errors and warning
messages” is opened. Also, a dialog is opened that informs the user that a new file
ERROR.pic was created and this file contains the changed Pic text. The original
internal representation is lost.

A.10 View popup menu

The popup menu View contains one item: File View.

1. File View: After user has selected this option, a standard prompt dialog immediately
appears in the center of the main window. This dialog asks the user for the name
of a file. The user must insert a file name and press the “OK” push button. If the
push button was pressed without having given a file name, then the user is presumed
to want to see the Pic text corresponding to the current picture. The user can see
desired text in a newly created window “View”. This new window contains a “OK”
push button. After this button is pressed, the window is destroyed.

A.11 Structures popup menu
The Structures popup menu contains two options, Loop and if ... then ... else.

35

1. Loop: 1f this option is selected, then a dialog pops up on the screen in the center of
main window. This dialog allows inserting the loop index, the high and low boundaries,
and the step. After that, the user can press the “OK” push button and the preferred
text editor is opened the same way as in the Text edit item of the Edit menu. But this
time, the Pic text contains a string “for ... = ... to ... by ...” according to the user’s
choice. The user fills in the missing body of the loop. After the user exits the text
editor, the changed picture immediately appears in the drawing area.

2. If ... then ... else: After selecting this option, the preferred text editor is opened
immediately. The Pic text will contain a string “if ... then ... else”. The user fills in
the missing expression and commands. After the user exits the text editor, the changed
picture immediately appears on the drawing area.

A12 Defaults popup menu

The popup menu Defaults contains three items, Scale, New defaults, and Reset.

1. Scale allows the user to change the picture’s scale. When the user selects this item
a new dialog pops up on the screen in the center of the main window. The user can
insert a new scale value.

2. New defaults allows the user to change size defaults. When the user selects this item,
a dialog pops up on the screen. The dialog contains a table of all current size defaults.
The user can change any of these.

3. Reset allows the user to reset all defaults to their beginning values. When the user
selects this option, a dialog pops up on the screen. The dialog contains a table of all
default sizes that were changed. There is a toggle button near each size. Pressing a
particular toggle button means to reset the corresponding size to its old default. This
dialog also contains the toggle button RESET ALL. By pushing this toggle button,
the user resets all default sizes to their beginning values. This affects only the part of
the picture described by the text after the current insertion point. All changes take
effect on the picture displayed right after editing this dialog.

56

Appendix B
B.1 Pic text list

Each element of the Pic text list contains the following fields:

char *curString;
int curStringLength;

where,

1. curString is a pointer to the string written in the Pic language.

2. curStringLength is the number of characters in this string.
Here are examples of strings:

e corresponding to a Pic element:
“Al: box dotted width 17

or “circle rad 1 “CIRCLE””

e corresponding to a Pic operator:

“fori =1 to 10 by 2 do {

circle radius 0.5 * ¢

}77

e corresponding to a Pic default size change:

“boxwid = 1.57

or “reset boxwid’

B.2 Object array

We can see below a full description of the object array element structure with the changes,
necessary for using it in the WD-pic:
union {
PicTextDef *Ptr;
int Num;
}PicTextUnion;
int o_type;
int o_count;

57

Here:

int o_nobj;

int o_mode;
float o_x;
float o_y;

int o_ntl;

int o_nt2;

int o_attr;

int o_size;

int o_nhead;
void *o_symitab;
float o_ddval;
float o_fillval;
ofloat o_valfl];

PicTextUnion is a pointer, which contains either the address of the element of the Pic
text list in WD-pic itself or the index of an element in the Pic text array in the Pic
compiler.

o_type is an object type. It may be BOX, LINE, ARROW, CIRCLE, ELLIPSE, LINE,
SPLINE, MOVE, or TEXT.

o_count is the number of elements in the array o_val, which is described below.
o_nobj is the index of the element in the object array.

o_mode is the direction for drawing the element. It may be R_DIR, for the right
direction, L._DIR, for the left direction, UP_DIR, for the up direction, and DOWN_DIR,

for the down direction.

o_r, o_y are the coordinates for positioning the element; for a box, circle, or ellipse
they are the coordinates of the geometric center, for a array, line, spline, arc, or
move, they are the coordinates of the beginning, for a text they are coordinates of
the left or right boundary or the center, depending on the text’s adjustment type.

o_nt1 is the index of the string array element that contains the first text string that
belongs to the object.

o_nt2 is the index of the string array element that contains the first text string that
does not belong to the object. If no text string belongs to the object, then o_nt1 and
o_nt2 have the same number.

o_attr contains the following information :

(a) the kind of arrowhead for a line, spline, arrow, or arc.

(b) the line style.

38

(c) the fill mode for a box, circle, or ellipse.

(d) the arc direction.

10. o_size, o_nhead, o_symtab, and o_ddval are not used by the WD-pic, but are needed for
compatibility with the Pic compiler.

11. o_fillval is a fill value.

12. o_valf] is an array whose length is usually more than 1, and it contains additional
information, depending on the element type:

(a) for a box, the width and height.
(b) for a circle or ellipse, the two radii, which are equal for a circle.

(c) for a line, spline, or arrow, the number of parts, the relative coordinates of
the end points, the absolute coordinates of the last point, and the width and the
height of the arrowhead, if any.

(d) for an arc, the coordinates of the end points, and the width and the height of
arrowhead, if any, and the radius.

(e) for a text the width and height.
B.3 String array

Each element of the string array contains following fields:
int t_type;
char t_op;
char t_size;
char *t_val;

here,

1. t_typeis the string’s adjustment, which may be LDJUST, RDJUST, ABOVE, BELOW,
or CENTER.

2. t_op and t_size are not used, but are needed for compatibility with the Pic compiler.

3. t_valis a pointer to the string.

59

References

1]

2]

3]

[4]

Brian W. Kernighan. PIC - A language for Typesetting Graphics. Software - Practice
and Experience, vol. 12, pp. 1-21 (1982)

Narain Gehani. Document Formatting and Typesetting on the UNIX System. Second
edition. Silicon Press, 1987.

Kenneth H. Rosen, Richard R. Rosinski, and James M. Farber. UNIX SYSTEM V Re-

lease 4. An introduction for new and experienced users. Osborne Mc Graw-Hill 1990.

David Barron and Nike Rees. Text Processing and Typesetting with UNIX. Addison-
Wesley 1987

UNIX Programmer’s Manual. Vol 1-2, Holt, Reinhart, and Winston, 1983

Brian W. Kernighan and Rob Pike. The UNIX Programming Environment. Prentice
Hall, 1984

Marc J. Rochkind. Advanced UNIX Programming. Prentice Hall, Inc, 1985

Adrian Nye. Xlib Programming Manual. O'Reilly & Associates, Inc, 1990

Xlib Reference Manual. O’Reilly & Associates, 1991

Adrian Nye and Tim O’Reilly. XToolkit Intrinsics, Programming Manual, OSF/Motif
Edition. O’Reilly & Associates, 1990

XToolkit Intrinsics, Reference Manual. O’Reilly & Associates, 1990

Dan Heller. Motif Programming Manual for OSF/Motif Version 1.1. O’Reilly & Asso-
ciates, 1991

InterViews Reference Manual idraw, 1989

User commands xfig, fig2dev

60

[15] Adobe Hlustrator. Tutorial. Adobe System Incorporated, 1992

61

