
1

Formal Methods: The Very Idea�

Some Thoughts About Why They Work When They Work

Daniel M. Berryay

aComputer Science Department, University of Waterloo,
200 University Ave. W., Waterloo, Ontario N2L 3G1, Canada

The paper defines formal methods (FMs) and describes economic issues involved in their ap-
plication. From these considerations and the concepts implicit in “No Silver Bullet”, it becomes
clear that FMs are best applied during requirements engineering. A explanation of why FMs
work when they work is offered and it is suggested that FMs help the most when the applier is
most ignorant about the problem domain.

1. INTRODUCTION

This paper is something that I have been meaning to write for some time now. I have been
giving a talk whose title is that of this paper to a variety of audiences. In each case, the discus-
sion generated was interesting and supplied more material for the ever growing talk. When
I received the invitation to attend the Monterey Workshop on Engineering Automation for
Computer-Based Systems, I saw an opportunity to present the talk to an audience of almost
entirely formal methods people, including some of the pioneers. The talk was much better
received than I thought it might be given its controversial nature. Moreover, all speaking par-
ticipants at the workshop were required to produce a paper for the proceedings. The paper that
I wanted to write is the result.

Because the paper represents more my personal opinion rather than some rigorously estab-
lished scientific conclusion, the paper uses first person when referring to the author.

I have benefited particularly from an electronic discussion in 1995 with Martin Feather.

1.1. Author’s Background
My current area of research is Requirements Engineering (RE) [5]. The focus of this area

is on how to get requirements for software-intensive computer-based systems (SWICBSs). It
is now recognized, as is explained in the body of this paper, that determining the requirements
for SWICBSs is the hardest part of their development, and difficulties in determining these
requirements are the source of a vast majority of errors found in delivered SWICBSs. The RE
area is interested in understandingwhy a method of determining requirements works when it
does andwhya method of determining requirements fails when it does.

�with apologies to James H. Fetzer [15]
yon sabbatical leave from Computer Science Department, Technion, Haifa 32000, ISRAEL, with part of work done
at GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany



2

1.2. Outline of Paper
This paper starts of with a brief definition of FMs. It then gives some feeling for the eco-

nomics of applying FMs to the development of SWICBSs. Fred Brooks’s observation of “No
Silver Bullet” is recalled for what it says about the difficulty of determining SWICBS require-
ments. The paper offers that the most useful time to apply FMs is in the requirements engineer-
ing phase of SWICBS development. Not all applications of FMs lead to high quality SWICBSs.
However, when they do succeed, there appear to be two factors working for that success, the
second time phenomenon and qualities of the people who push for and engage in FMs.

So as not to lose readers who believe in FMs and who see parts of this paper as arguing
against their use, please consider that I believe in FMs and use them when appropriate. I used to
work for a company that sells FM technology and applies FM to clients’ SWICBS development
problems, including for secure operating systems. Moreover, I did some fundamental work on
the underlying theory of one FM a long time ago [3]. The reader will see that I am generally
in favor of FMs, but there are serious problems of which we must be aware. The paper offers
some unconventional ideas as to why FMs are successful when they are.

2. DEFINITIONS OF FMs

Basically, an FM is any attempt to use mathematics in the development of a SWICBS, in
order to improve the quality of the resulting SWICBS. For the purpose of this paper, I am trying
to include in the realm of FMs anything anyone working in FM claims is an FM. If I have
neglected to include one, my apologies. Please inform me by e-mail and include a reference to
literature about it. For fuller discussions, see the papers by Hall, Leveson, and Wing [21,25,29],
and papers cited therein.

There are three main groups of FMs, verification, intensive mathematical study of key prob-
lem, and refutation. Each group is described; its strengths, weaknesses and costs are considered,

2.1. Verification
The first group of FMs are those that attempt to provide a basis by which the software of

a SWICBS can be formally proved to be a correct realization of a specification embodying
its requirements. Strictly speaking, the code is proved consistent with a formal specification.
Rarely, however, is the full proof carried out. Nevertheless, the FMs in this group all have as
their goal the production of at least one part of a full proof of correctness. Within this group,
there are many levels of formality and completeness. Here, by “completeness” is meant that
of application and not that of a mathematical theory. Some of the FMs of this group can be
characterized as some collection of levels of Table 1. In this table, the notation “P$ C” means
“partial through complete”, “C” means “complete”, and “P” means “partial”.

In each verification level, the items in parentheses are included in what is verified to be
consistent by virtue of transitivity provided by lower level proofs. Only the items outside the
parentheses are directly involved in that level’s proof. In Level 2, “basic correctness” means
verification that the requirements specification satisfies any available independent specification
of the correctness criterion, e.g., security.

A typical FM in the group described by Table 1 consists of some collection of levels. Some-
times only Level 1 and Level 7 are carried out with no verification. Rather, the doing of the
formal specification allows much to be learned about the SWICBS to be developed before car-
rying out the actual development. Much more is learned this way than when only an informal,



3

1 P$ C formal specification of requirements
2 P$ C verification of consistency and basic correctness of requirements

specification
3 P$ C formal specification of design
4 P$ C verification of consistency of requirements and design specifications
5 P$ C formal specification of code
6 P$ C verification of consistency of (requirements), design, and code spe-

cifications
7 C code
8 P$ C verification of consistency of (requirements, design, and) code spec-

ifications and the code

Table 1

natural language specification is written. Sometimes only Level 1 is carried out for the purpose
of documenting the requirements of the SWICBS, on the grounds that a formal specification is
the most precise.

Applying FMs of this group drives up the cost of SWICBS development as high as 2 fold over
applying normal systematic methods of writing just the code if only Levels 1 and 7 are carried
out, 10 fold if Levels 1 through 4 and then 7 are carried out, and even higher if more verification
is carried out. These are the rules of thumb that were applied in the company mentioned above
that sold FM technology.

2.2. Intensive Study of Key Problems
The second group of FMs are the intensive mathematical study of one or more difficult aspects

of the SWICBS. These are an attempt to avoid the heavy costs of the verification FMs. Rather
than specifying the entire SWICBS, only the difficult or problematic parts of the SWICBS are
considered. For example, if the job is to build a secure operating system that guarantees that
only authorized users gain access to any specific file, instead of specifying the whole operating
system and proving its security, one could focus on the security-relevant portion of the system
at the specification, design, or code level, or at some combination of these. While this focusing
is considerably cheaper than dealing with the full system, it is fraught with a serious danger of
overlooking something thatis security relevant. One cannot be certain that the ignored portions
of the system are not security relevant, that they do not impact and they are not impacted the
parts designated as security relevant and therefore under study. To prove that the ignored parts
are not security relevant turns the FM into a costly verification. Nevertheless, as one gets
experience with a class of applications, he or she becomes more certain about what can safely
be ignored.

I would classify into this group any development in which theoretical knowledge is used to
make the development of a program more systematic. The most common example of this phe-
nomenon is compiler writing, which borrows heavily on the theory of phrase-structure gram-
mars and has spawned its own collection of theory.

The rules of thumb that I have heard are that these intensive study FMs drive the development
cost up from 2 through 5 fold, depending on the complexity of the problem and depending on



4

1 C study of one difficult aspect of requirements e.g., security, safety
2 C study of one difficult aspect of design
3 C study of one difficult aspect of code

Table 2

how many levels of the study are carried out.

2.3. Refutation
The elements of the third group of FMs take an entirely different approach, that of refuta-

tion rather than verification [27], that is, instead of trying to prove that the SWICBS meets its
requirements, one tries to refute the claim that it does. The advantage is that the correctness
claim can be refuted by one counter example, while a proof must consider all possible cases.
There are two kinds of refutation. One kind are those based on computable properties of some
specification of the SWICBS. The second kind are those based on execution of some specifica-
tion of the SWICBS on test data. Note that neither of these can be verification of correctness;
correctness is not a computable property, and testing can be used to show the presence of errors,
never their absence [11].

Given a specification of the complete SWICBS, as in Level 1 of the verification group of
FMs, two examples of computable properties that can be used to refute the claim of correctness
are:

� type checking in the specification

� cross reference checking in the specification

A type error, undefined identifier, or defined, but unused identifier can be the symptom of a
more serious error, which a thinking human being should be able to spot given the evidence.

Given a specification of the complete SWICBS, as in Level 1 of the verification group of FMs,
if the language of the specification is executable, e.g. OBJ [19] or INATEST [23,13] one should
be able to execute the specification either with actual data or symbolically. The execution with
test data may show errors in the specified SWICBS. Alternatively, one might be able to build
a finite state model of the SWICBS, either directly or by simplifying the model or abstracting
away some of the complexity. Execution of the finite state model with test data can show errors.
In addition, if the model is finite state, there are computable checks, e.g., reachability analysis,
that can be used to show the presence of problems. This group of activities is called model
checking.

While locating an error by refutation is not guaranteed, in practice, model checking does
expose errors, just as does execution of the finished SWICBS. However, as is shown in Sec-
tion 5, it is highly preferable for an error to be exposed early in the life cycle than later after
deployment of the finished SWICBS.

The refutation approaches cost that of Levels 1 and 7 of the verification group plus only 5–
50% for the refutation, That is, refutation drives the cost of development up to between 2.05
and 2.50 fold, and this is cheaper than with full verification.



5

2.4. Programming Itself as an FM
Remember that a program itself is a formal specification. A programming language is a

formally defined language with precise semantics just like Z, in fact, even more so than Z, which
purposely leaves some things undefined. One could not prove the consistency of specifications
and code if code were not formal. Therefore, programming itself is an FM in the sense that
writing a formal specification is an FM. Remember that programming is building a theory from
the programming language and library of abstractions, i.e., the ground, up, just like making new
mathematics.

2.5. General Limitation of FMs
An ultimate problem with any of these FMs that are based on a specification of the SWICBS

under design is the accuracy of this specification. If it does not specify what is desired, that
is, it is not right, code that is consistent with this specification does not do what is desired.
The specification could be wrong for an error of commission or an error of omission. The
specification could deal with a given situation in an inappropriate way, e.g., shutting down an
aircraft engine that is in an inconsistent state. The specification could fail to deal with an issue
entirely or could even fail to detect the presence of the issue.

2.6. Economic Realities of FMs
For most software, it is just not worth the cost to apply FMs; one can get more than acceptable

quality by inspection [14] for up to 15% more and absolutely superb results by just doing the
software twice at the cost of about 100% more. However, for highly safety- and security-critical
systems, for which the cost of failure is death or is considered very high, FMs are necessary to
achieve the required correctness and are well worth the cost.

David Notkin [9] observes about model checking that sometimes it is necessary to make
simplifying assumptions in the model to get a model tractable enough to be checked. This
necessity creates a dilemma. Without simplification, the specification cannot be analyzed and
critical problems might be overlooked. However, simplifications might hide critical problems,
especially as abstraction is used to collapse a number of states into one. In the end, it is an
issue of costs. Which problems cost more, the ones overlooked by lack of analysis or the ones
overlooked by simplification?

On the other hand, there is evidence that careful use of FMs during RE of a SWICBS can
eliminate enough errors from ever showing up later in the development of the SWICBS, when
they are very expensive to fix, that the cost of the later development is reduced enough that the
total cost of an FM-assisted development is no more or even less than than that of an unassisted
development [21,22]. See Section 5 for more information about the cost to fix errors as a
function of the development stage in which they are found.

3. ERRORS AND REQUIREMENTS SPECIFICATIONS

One thing that has been learned over the years is that most errors are introduced into SWICBSs
during the requirements discovery, specification, and documentation stages, to the tune of be-
tween 65 and 85%. The coding stage introduces only about 25% of the errors ever introduced
into a SWICBS [6]. Verification of the consistency of code to specification is by far the most
expensive FM. Therefore, it is not clear how useful code verification is if only 25% of the errors
are introduced during coding, and these errors are probably the easiest to fix. It seems that it is



6

more cost effective to spend just 15% more for inspections than to spend more than 10 fold to
fix errors introduced during coding. Therefore, the focus of FMs must be on requirements.

4. NO SILVER BULLET (NSB)

Not so long ago, Fred Brooks observed that, with respect to software development, “There’s
no silver bullet” [8] that will suddenly and miraculously make programming fundamentally
easier than it has been. He classifies software difficulties into two groups, theessenceand the
accidents. The essence of building software is devising the conceptual construct itself. This is
very hard, because that conceptual construct is of arbitrary complexity, it must conform to the
given real world, it constantly changes, and it is ultimately invisible. On the other hand, most
productivity gains have come from fixing accidents. The accidents are the current technology
that is used to develop the software. Examples of such accidents and their solutions are

� really awkward assembly language eliminated by high-level languages,

� severe time and space constraints eliminated by the introduction of big and fast comput-
ers,

� long batch turnaround time eliminated by time-sharing operating systems and personal
computers,

� tedious clerical tasks for which tools are helpful eliminated by those tools, such asmake,
rcs, xref, spell, grep, fmt, and

� the drudgery of programming user interfaces eliminated by tools for building graphic
interfaces such as X Windows, Java, Visual Basic and other GUI libraries.

These have been significant advances, and they have made coding significantly easier and less
error prone. However, again, these advances attack only the minority of errors introduced by
coding and do nothing about the essence.

Unfortunately, the essence has resisted attack. We have the same sense of being overwhelmed
by the immensity of the problem and the seemingly endless details to take care of, and we pro-
duce the same kind of brain-damaged SWICBSs that makes the same stupid kind of mistakes, as
we did 30 years ago! The source of these errors is that we just did not understand the conceptual
construct that was to be constructed. We overlooked details or have some details wrong.

5. FMs AND THE ESSENCE OF SOFTWARE

Another way to describe the essence is “requirements”, not specifications, which are just
a statement of requirements, but the requirements themselves. FMs just do not help identify
requirements. They do not help us crack the essence.

There is a myth going around. Some FMs evangelists claim, “Ifonlyyou had written a formal
specification of the system, you wouldn’t be having these problems. Mathematical precision in
the derivation of software eliminates imprecision.” Yes, formal specifications are extremely
useful in identifying inconsistencies in requirements specifications, especially if one carries
out some minimal proofs of consistency and constraint or invariant preservation. Interestingly,



7

writing a program implementing the specification also helps identify inconsistencies in the spec-
ification; programming is another FM.

Contrary to the claim of these evangelists, FMs do not find all gaps in understanding. As
Gordon and Bieman observe, omissions of functions are difficult to recognize in formal specifi-
cations [20], just as they are in programs. von Neumann and Morgenstern [28] say, “There’s no
point to using exact methods where there’s no clarity in the concepts and issues to which they
are to be applied.”

Indeed, Oded Sudarsky, in a private discussion over coffee, pointed out the phenomenon of
preservation of difficulty. Specifically, difficulties caused by lack of understanding of the real
world situation are not eliminated by use of FMs; instead the misunderstanding gets formalized
into the specifications, and may even be harder to recognize simply because formal definitions
are harder to read by the clients. Sudarsky adds that formal specification methods just shift
the lack of understanding from the implementation phase to the specification phase. The air-
bubble-under-wallpaper metaphor applies here; you press on the bubble in one place, and it
pops up somewhere else.

Phase in which error is detected

1

2

5

10

20

50

100

R
el

at
iv

e 
co

st
 to

 c
or

re
ct

 e
rr

or

Preliminary
design

Detailed
design

Code and
debug

Integrate Validate Operation

Figure 1

FMs do have one positive effect, and it is a big one. Use of them increases the correctness
of the specifications. Therefore, you find more errors of commission at specification time than
without them, saving considerable money for each bug found earlier rather than later. Remem-
ber, the cost to repair an error goes up dramatically as the project moves towards completion
and beyond. Figure 1 shows a graph relating the relative cost to repair an error as a function
of the SWICBS development stage in which the error is found. Note that the cost scale on the
y-axis is logarithmic, and the graph itself looks exponential even on a logarithmic scale. It saves
lots of money to find errors earlier, and FMs help find errors earlier. However, these errors are
of commission rather than of omission.



8

In general, the more time spent studying the requirements, the easier it is to control costs. The
graph in Figure 2, adapted from that by Forsberg and Mooz [16], plots data that show dramatic
reductions in cost overruns of 25 NASA projects as greater portions of total project budgets are
spent on the study phases. These projects include the Hubble Space Telescope, Pioneer Venus,
and Voyager. Clearly, after a longer study phase,

1. the requirements specification is more complete and thus development encounters fewer
surprises that would delay the project completion,

2. it is easier to more accurately estimate the total resources needed for development, or

3. both.

180

160

140

120

100

80

60

40

20

0

0 5 10 15 20 25

P
er

ce
n

ta
g

e 
C

o
st

 O
ve

rr
u

n

Study Phase Cost as a Percent
of Development Cost

Figure 2

Another reason FMs do not help identify requirements very well is that requirements always
change—it is inherent in the software—and formalization requires freezing the requirements
long enough to write the specification and carry out the verifications. Meir Lehman identifies
concept of E-type system [24]. It is a system that solves a problem or implements an application
in some real world domain. Once installed, an E-type system becomes inextricably part of the
application domain, so that it ends up altering its own requirements. As an example, consider a
bank that exercises an option to automate its process and then discovers that it can handle more
customers. It advertises and gets new customers, easily handled by the new system but beyond
the capacity of the manual way. The bank cannot back out of automation. The requirements of
the system have changed from being just optional to being required. Also, daily use of a system
causes an irresistible ambition to improve it as users begin to suggest improvements. Who is
not familiar with this phenomenon, either as a customer or as a developer? In fact, data show



9

that most maintenance is not corrective, but for dealing with E-type pressures! See Figure 3.
Formalization of the requirements does nothing to make the details of these kinds of changes
more predictable.

Perfective

Adaptive

Corrective

O
th

er

Figure 3

6. SECOND TIME PHENOMENON

In 1985, I published a paper with Jeannette Wing that suggests that FMs work, not because
of any inherent property of FMs as opposed to just plain programming, which is really also
an FM, but rather, because of the second time phenomenon [2]. If you do anything a second
time around you do better, because you have learned from your mistakes the first time around.
Indeed, Fred Brooks says: “Plan to throw one [the first one] away; youwill anyway!” [7] In
other words, you cannot get it right until the second time. If you write a formal specification
and then you write code, you’ve done the problem formally two times. Of course, the code will
be better than if you had not done the formal specification. It is the second time! Note that
writing an informal specification and then writing code does not have the same effect. It is too
easy to handwave and overlook details and thus fail to find the mistakes from which you learn.
It has to be two formal developments, specifications or code, for the second-time phenomenon
to work.

Observe how the two-time approach is requirements centered. One is not going to fix imple-
mentation errors this way, because the second time is not the same implementation as the first
time. Even if they were the same, one can introduce new errors in the rewrite. The focus of the
first specification or coding effort is on understanding the essence and eliminating requirements
errors. The focus of the second is on implementing the understood essence. As Euripedes says,
“Second thoughts are always wiser”.

7. THE IMPORTANCE OF IGNORANCE

In a recent article, “Importance of Ignorance in Requirements Engineering” [4], I report on
my and Orna Berry’s experiences in practicing ignorance hiding [1] in requirements engineer-
ing. I observed that I seem to do best when I am in fact most ignorant of the problem domain.
For example, I had been called in as a consultant to help a start-up write requirements for a
new multi-port Ethernet switching hub. I protested that I knew nothing about networking and
Ethernet beyond nearly daily use of telnet, ftp, and netfind. At one point, earlier in my life, I had



10

worried that the ether in Ethernet cables might evaporate! Despite my ignorance, I did a superb
job, in fact, better than I normally do in my areas of expertise. By being ignorant of the appli-
cation area, I was able to avoid falling into the tacit assumption tarpit. The experience seems to
confirm the importance of the ignorance that ignorance hiding is so good at hiding. It was clear
to me that the main problems preventing the engineers at the start-up from coming together to
write a requirements document were that all were using the same vocabulary in slightly differ-
ent ways, none was aware of any other’s tacit assumptions, and each was wallowing deep in his
own pit. My lack of assumptions forced me to ferret out these assumptions and to regard the
ever so slight differences in the uses of some terms as inconsistencies.

My conclusion is that every requirements engineering team requires a person who is ignorant
in the application domain, theignoramusof the team, who is not afraid to ask questions that
show his or her ignorance, and who will ask questions about anything that is not entirely clear.
It is not claimed that expertise is not needed. On the contrary, experts are needed to provide
the material in which to find inconsistencies. Also, there is a difference between ignorance
and stupidity; the ignoramus cannot be stupid. On the contrary, he or she must be an expert in
general software system structures and how computer-based systems are built. He or she must
be smart enough to catch inconsistencies in statements made by experts in fields other than his
or her own, inconsistencies in their tacit assumptions, to abstract well, and to get to the bottom
of things. Most importantly, he or she must be unafraid to ask so-called stupid questions to
expose all tacit assumptions. (This is part of smartness since usually stupid people are afraid to
ask stupid questions for fear of exposing their stupidity.)

The final recommendation is that each requirements engineering team needs at least one
domain expert, usually supplied by the customer and at least one smart ignoramus.

As a consequence of these observations, resumes of future software engineers will have a
section proudly listing all areas of ignorance. This is the only section of the resume that shrinks
over time. The software engineer will charge fees according to the degree of ignorance: the
more ignorance, the higher the fee!

Soon after publication of the Importance of Ignorance paper, I received an e-mail letter from
Martin Feather. He wrote,

I have often wondered about the success stories of applications of formal meth-
ods. Should these successes be attributed to the formal methods themselves, or
rather to the intelligence and capabilities of the proponents of those methods? Typ-
ically, proponents of any not-yet-popularised approach must be skilled practitioners
and evangelists to [help bring the approach] &... to our attention. Formal methods
proponents seem to have the additional characteristic of being particularly adept at
getting to the heart of any problem, abstracting from extraneous details, carefully
organizing their whole approach to problem solving, etc. Surely, the involvement of
such people would be beneficial to almost any project, whether or not they applied
“formal methods.”

Daniel Berry’s contribution to the February 1995 Controversy Corner, “The Im-
portance of Ignorance in Requirements Engineering,” provides further explanation
as to why this might be so. In that column, Berry expounded upon the beneficial ef-
fects of involving a “smart ignoramus” in the process of requirements engineering.
Berry argued that the “ignoramus” aspect (ignorance of the problem domain) was
advantageous because it tended to lead to the elicitation of tacit assumptions. He



11

also recommended that “smart” comprise (at least) “information hiding, and strong
typing &... attuned to spotting inconsistencies &... a good memory &... a good
sense of language&...,” so as to be able to effectively conduct the requirements
process.

Formal methods people are usually mathematically inclined. They have, pre-
sumably, spent a good deal of time studying mathematics. This ensures they meet
both of Berry’s criteria. Mastery of a non-trivial amount of mathematics ensures
their capacity and willingness to deal with abstractions, reason in a rigorous man-
ner, etc., in other words to meet many of the characteristics of Berry’s “smartness”
criterium. Further, during the time they spent studying mathematics, they were
avoiding learning about non-mathematics problem domains, hence they are likely
to also belong in Berry’s “ignoramus” category. Thus a background in formal meth-
ods serves as a strong filter, letting through only those who would be an asset to
requirements engineering.

8. NATURE’S LAST LAUGH

Don Gause [17] points out that there are two kinds of people involved in the development of
any SWICBS, developers and customers. Each person divides the universe of discourse (UoD),
the domain of the SWICBS, into two parts, what he or she knows (K) and what he or she does
not know (DK). The effect of these orthogonal partitions of knowledge divides the UoD into
four parts as is shown in Figure 4. The problem is that we do not know the size of the DKs.
We like to think that after studying the problem a long time and, the DKs have been reduced
to a tiny fraction of the Ks. However, the DKs could be bigger than the Ks like the proverbial
rest (as opposed to the tip) of the iceberg. Even if, in fact, the DKs are small compared to the
Ks, the DKs can never be eliminated. The parts of the DKs that cannot be eliminated are called
“nature’s last laugh” by Don Gause. Examples of nature’s last laugh include cold fusion and all
previously accepted but now discredited theories of the universe.

Developers
Know Don’t Know

Customer Know
& Users Don’t Nature’s Last

Know Laugh (DK�DK)

Figure 4

The importance of the ignoramus comes through loud and clear. Every RE team requires a
smart ignoramus relative to the real world domain of the system under design, who is not afraid
to ask questions to reduce his or her DK in an attempt to get his or her K to include the client’s
and users’ K. He or she must not be stupid; in fact, he or she must know enough about system
architecture to be able to formulate enough of a model to prompt the questions. Maybe this is



12

the role of FMs, to increase the Ks, but that is all it can be. It must be accepted that there will
always be the DK, nature’s last laugh that no one will find unless someone is lucky enough to
ask the right ignorant question.

9. ANOTHER EXPERIENCE

A complementary paper in this issue by David Robertson [26], considers how attempts to use
FMs in the early stages of SWICBS design can fail. He describes his experiences trying to teach
applied mathematicians to apply temporal logic to specifying a reactive system. The experience
is more evidence of the importance of ignorance in writing specifications.

Robertson’s group was collaborating for the first time with a group of computer-using applied
mathematicians that knew temporal logic theory inside and out, but had never applied this theory
to specify any system. They were asked to specify in temporal logic a domain that practically
invited temporal specification. As Robertson described it in e-mail to me, it “was an obvious
application which could be done in a short time using simple temporal relations and forms of
inference which were pedestrian by comparison to those with which the temporal logic group
is familiar.” After an initial failure to specify, the mathematicians asked Robertson, with some
embarrassment, to write a prototype for them. He rapidly turned out a Prolog program, of less
than 100 lines of the kind that a bright second year undergraduate should be able to write. This
prototype proved to be enough of a trigger, and the mathematicians are now happily turning out
specifications of more complex systems.

The mathematicians simply could not take the first step without something concrete to help
them. Robertson believes that the difficulty was that they lacked training in problem represen-
tation. As happens with students who are unable to apply the theory they learn to problems,
the mathematicians had not developed any intuition about how to abstract away the details of a
complicated problem in order to get a useful specification. Robertson believes that “it is often
easier to produce the sort of idealised system I described above if you are ‘just ignorant enough’
about logic not to be drawn into too complex modelling at an early stage but ‘just smart enough’
not to make logical goofs and to be able to transfer the initial prototype to more experienced
hands. People in this line of work need to retain a certain amount of wide-eyed ignorance of
the domain — otherwise they would be tempted to model problems too deeply, which is fun but
seldom profitable.”

10. SOCIAL PROCESSES AND FMs

It is also my belief that the proper context for FMs in the development of SWICBS is in the
highly social process of requirements engineering. This recalls the 1979 DeMillo, Lipton, and
Perlis paper, “Social Processes and Proofs of Theorems and Programs” [10]. They observed
that mathematical proofs work because of the social processes in and around them that help to
ensure that only correct theorems get published; even then they are not all correct. They argued
that the proofs required by FMs applied to programming are generally carried out by grunt
mathematicians working alone and without the benefit of social interaction, because, unlike
publishable proofs in mathematics, proofs about programs are quite simply and frankly boring.
Bored grunt mathematicians make mistakes. Proofs without social processes are not trustworthy
enough for the needs of systems critical enough to justify the cost of FMs.

The verification community has actually solved this problem by replacing grunt mathemati-



13

cians by theorem proving programs that never get bored and, once they have matured as pro-
grams, never make mistakes. Therefore, today, no one advocating FMs would even suggest that
humans would do any of the verification, except of the most interesting theorems, for example,
which would arise in an intensive study approach, described in Section 2.2. This solution is not
my point. My point is of the necessity of the social processes and the usefulness of those so-
cial processes to a requirements discovery effort. Using theorem proving programs could even
reduce the amount of thinking that the humans on the project do and work against discovery of
missing requirements.

Indeed, inspections as described by Fagan [14], amount to an attempt to inject social pro-
cesses into finding faults in developed software and related documents. Inspections set up a
bit of a competition between the programmmers and the inspectors. The programmers try their
damndest to write code in which the inspectors will fail to find faults, and the inspectors try their
damndest to find faults in the programmers’ code. Thus, inspections are fun! Moreover, inspec-
tors are people who are not part of the development team and are thus, ignoramuses with respect
to that development. All descriptions of inspection of which I am aware stress the importance of
the inspectors not being part of the development team [18,12]. Arndt von Staa reminds us that
independent verification and validation (IV&V) teams are no more than collections of ignora-
muses, with respect to the development itself, whose duty is to find flaws in the development.
Their independence and thus, ignorance, is considered essential for their success.

11. HAWTHORNE EFFECT

Ric Hehner offered another possible explanation for the FMs success stories, at least those
involving a FMs expert joining a real project in an experimental application of some FM. A
study performed in the 1930’s in Hawthorne, Illinois showed that the mere act of studying
individual behavior can impact it. A participant in an experimental application of a FM may
try harder, even if he or she is not the FMs expert, and succeed simply because he or she
is in an experiment and is being observed. This observation suggests turning all SWICBS
developments into experimental applications of FMs, by supplying to each development project
a newly graduated FMs expert itching to try out his or her favorite FM on a real project. Of
course, there may not be enough FMs experts to go around!

12. CONCLUSIONS

It is my belief that FMs work when they work, not so much because of formality, but rather
because of

1. what is learned when applying FMs, that can be applied in the next round of development
and

2. the nature of the people who willingly and enthusiastically apply FMs.

Despite the weakness of FMs at discovering new requirements, FMs work best when they are
being applied to the RE stage of SWICBS development to help understand and correct the
requirements.

Probably the most important implication of the observations in this paper is a better approach
to convincing industry to routinely apply FMs in the development of SWICBSs. Heretofore, we



14

have tried to sell FMs by showing that applying FMs yields significant quality improvements
even though the development costs may increase and by showing that the increased FM-induced
costs are in fact less than the sum of the original development costs without FMs plus the main-
tenance costs that are avoided by the use of FMs. Perhaps industry is so used to considering
maintenance costs as costs to develop the next version, which are necessary anyway, that it does
not see the cost reduction as a benefit. Perhaps we should be selling FMs as a way to entice top-
notch thinkers, super abstracters, smart ignoramuses, FMs experts, to join their development
projects. Good managers know that personnel quality has a far bigger impact on a development
project than any technology, such as a development method [6].

ACKNOWLEDGMENTS

I thank the anonymous referees, Joanne Atlee, Don Cowan, Steve Easterbrook, Martin Feather,
Sol Greenspan, Anthony Hall, Ric Hehner, Axel van Lamsweerde, Maria Viera Nelson, Dave
Robertson, John Rushby, Arndt von Staa, and Meyer Tanuan for comments on earlier drafts.

REFERENCES

1. Berry, D. M. and Berry, O., “The Programmer-Client Interaction in Arriving at Program
Specifications: Guidelines and Linguistic Requirements,”Proceedings of IFIP TC2 Work-
ing Conference on System Description Methodologies, (Ed. E. Knuth), Kecskemet, Hun-
gary, May 1983

2. fBerry, D. M., Wing, J. M.g, “Specification and Prototyping: Some Thoughts on Why They
Are Successful,”Proceedings of TAPSOFT Conference, pp. 117–128, Berlin, Springer,
March 1985

3. Berry, D. M., “Towards a Formal Basis for the Formal Development Method and the Ina Jo
Specification Language,”IEEE Transactions on Software Engineering, SE-13:2, 184–201,
1987

4. Berry, D. M., “The Importance of Ignorance in Requirements Engineering,”Journal of
Systems and Software, 28:2, 179–184, February 1995

5. Berry, D. M. and Lawrence, B., “Requirements Engineering,”IEEE Software, 15:2, March
1998

6. Boehm, B. W.,Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ,
1981

7. Brooks, F. P. Jr.,The Mythical Man-Month: Essays on Software Engineering, Addison
Wesley, Reading, MA, 1975

8. Brooks, F. P. Jr., “No Silver Bullet,”Computer, 20:4, 10–19, April 1987
9. Chan, W., Anderson, R. J., Beame, P., Burns, S., Modugno, F., Notkin, D., and Reese,

J. D., “Model Checking Large Software Specifications,”IEEE Transactions on Software
Engineering, SE-24:7, 498–520, July 1998

10. DeMillo, R. A., Lipton, R. J., and Perlis, A., “Social Processes and Proofs of Theorems and
Programs,”Communications of the ACM, 22:5, 271–280, 1979

11. Dijkstra, E. W.,A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976
12. Ebenau, R. G. and Strauss, S. H.,Software Inspection Process, McGraw Hill, New York,

1994



15

13. Eckmann, S. and Kemmerer, R. A., “INATEST: an Interactive Environment for Testing
Formal Specifications,”Proceedings of the Third Workshop on Formal Verification, Pajaro
Dunes, CA, February 1985,Software Engineering Notes, 10:4, August 1985

14. Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Development,”
IBM Systems Journal, 15:3, 182–211, 1976

15. Fetzer, J. H., “Program Verification: The Very Idea,”Communications of the ACM, 31:9,
September 1988

16. Forsberg, K. and Mooz, H., “System Engineering Overview,”Software Requirements En-
gineering, Second Edition, (Eds. R. H. Thayer and M. Dorfman), IEEE Computer Society,
Washington, 1997

17. Gause, D., “Understanding Requirements,” Tutorial, Colorado Springs, CO, April 1998
18. Gilb, T. and Graham, D.,Software Inspection, Addison Wesley, Wokingham, UK, 1993
19. Goguen, J. A. and Tardo, J., “An Introduction to OBJ: A Language for Writing and Testing

Formal Algebraic Program Specifications,”Proceedings Conference on Specifications of
Reliable Software, Boston, 1979

20. Gordon, V. S. and Bieman, J. M., “Rapid Prototyping: Lessons Learned,”IEEE Software,
15:1, 85–95, January 1995

21. Hall, A., “Seven Myths of Formal Methods,”IEEE Software, 7:5, 104–103, September
1990

22. Hall, A., “Using Formal Methods to Develop an ATC Information System,”IEEE Software,
13:2, March 1996

23. Kemmerer, R. A., “Testing Formal Specifications to Detect Design Errors,”IEEE Transac-
tions on Software Engineering, SE-11:1, January 1985

24. Lehman, M. M., “Programs, Life Cycles, and Laws of Software Evolution,”Proceedings of
the IEEE, 68:9, 1060–1076, September 1980

25. Leveson, N. G., “Guest Editor’s Introduction: Formal Methods in Software Engineering,”
IEEE Transactions on Software Engineering, SE-16:9, September 1990

26. Robertson, D., “Pitfalls of Formality in Early System Design,”Proceedings of the Monterey
Workshop on Engineering Automation for Computer Based Systems, Carmel, CA, October
1998, andScience of Computer Programming, this issue, 2001

27. Rushby, J., “Calculating with Requirements,”Proceedings of the Third IEEE International
Symposium on Requirements Engineering, pp. 144–146, IEEE Computer Society, Annapo-
lis, MD, January 1997

28. von Neumann, J. and Morgenstern, O.,Theory of Games and Economic Behavior, Princeton
University Press, Princeton, NJ, 1944

29. Wing, J. M., “A Specifier’s Introduction to Formal Methods,”IEEE Computer, 23:9,
September 1990


