IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

1229

Automatic Synthesis of SARA Design Models

From System

Kar-Wing Edward Lor

Abstract—This paper describes research which has introduced
partial automation to a requirement-driven design process. Sys-
tem design is a creative activity which requires a lot of human
judgment. Yet it is possible for the machine to assist in the process.
An interactive tool is built to assist, but not replace, the human
designer in building a system based on the requirements. System
ARchitect’s Apprentice (SARA) is an environment-supported
method for designing hardware and software systems. Starting
from the requirements, a design is made in the form of the
system’s structural and behavioral models. So far, in the design
environment that supports this method, only informal require-
ments have been involved and automation is rarely employed in
the design process. The human designer is completely responsible
for all decisions, details, and the correctness of the products.
An automatic design synthesizer has been built to bridge this
gap between the requirements and the design. Two models are
employed to represent two facets of system requirements. The
operational semantics of all constructs in the requirement models
are defined. Automatic synthesis of design structures in the SARA
domain is based on these operational definitions. The goal of the
tool is to ease the task of system design within the SARA method.

Index Terms— Computer-aided software engineering, design
automation, design synthesis, modeling of concurrent systems,
system design methodology, requirement specifications.

I. INTRODUCTION

Acommon thread running through most development meth-
ods and life-cycle models for real time systems is the
importance of stating requirements and producing a design
long before implementation begins. The requirements are
obtained in discussions with the client, and a design is pro-
duced to demonstrate the architecture of a system to meet
the requirements. The actual implementation of the system is
done as a refinement of the design.

The importance of getting the requirements and the design
on paper is recognized. Doing so forces more careful consider-
ation and permits review by others with the aim of elimination
of errors and verification that what is desired is expressed.

There are many languages, textual or graphical, for stating
requirements; some of them are more formal than others.
These languages include the Problem Statement Language
(PSL) [25], the Requirement Statement Language (RSL) [2],
Data Flow diagrams (DFD) [7], System Verification Diagrams

Manuscript received September 23, 1988; revised July 24, 1991. Recom-
mended by S. S. Yau. This work was performed at the University of California,
Los Angeles, and supported by Grants from Unisys, NCR, and the State of
California MICRO program.

K.-W. E. Lor is with AT&T Bell Laboratories, Middletown, NJ 07748.

D. M. Berry is with the Department of Computer Science, Technion, Haifa,
Israel 32000.

IEEE Log Number 9104157.

Requirements

and Daniel M. Berry

(SVD) [12], and even plain English, as well as its structured
subsets [1]. There are many established methods for producing
such requirements, including the PSL/PSA (Problem State-
ment Analyzer) Technique, System Requirement Engineering
Methodology (SREM) for RSL, Structured Analysis (SA)
for DFD’s, System Specification Verification Methodology
(SSVM) for SVD’s [4], etc. Supporting these methods, there
are tools aiding the preparation, analysis, and validation of
such requirements, such as the Problem Statement Analyzer for
the PSL/PSA technique, Requirement Engineering Validation
System for SREM, Computer Science Corporation’s in-house
tools for SSVM, and numerous commercial packages for
Structured Analysis.

At the next stage of the system life cycle, there are also
many methods to produce a design. Established methods
include the System ARchitect’s Apprentice (SARA) [10],
the Distributed Computing Design System (DCDS) [3], an
extension of SREM, the Advanced Design AutoMation System
(ADAM) [13], etc. Each of these methods has its own language
or model to express the design, such as SARA’s Structural
Model and Graph Model of Behavior, DCDS’s Distributed
Design Language, or ADAM’s Design Data Structures. Fur-
thermore, there are also languages used specifically to express
software or hardware, like various Program Design Languages
[5], [6] for software design, and a hierarchy of hardware de-
scription languages for VLSI design, as used in CMU’s Design
Automation (CMU/DA) environment [9]. Among all these
design methods, there are tools supporting one or more of the
following activities: editing, analysis, correctness verification,
simulation, performance measurement, prototyping, and imple-
mentation synthesis. These activities generally distinguish the
design phase from the requirement phase in the development
life cycle.

The subject of the research reported in this paper is the
process of obtaining designs from already given require-
ments. In other words, given a requirement document with
the requirements stated in some appropriate languages, how
does one obtain a document expressing a useful design for
a system? This design has to meet the requirements and
permit other related activities in the design phase. Heretofore
this process has been left largely to a human being—the
programmer or system designer. While some requirements
handling tools assist in the preparation of the requirements,
none of them addresses the problem of producing a design
from the requirements. PSA, for example, goes no further
than assisting in the analysis and validation of the PSL-
expressed requirements. While many design tools do provide

0098-5589/91$01.00 © 1991 IEEE

1230

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

STIMULI — LABEL —
One or more external system or Unique numerical identifier
sub-system entities from any assigned to each

source, manual or automated, that
invoke this component, e.g. an
operator request or command, a
system message, an external file, a
system state, etc.

decomposition element in the
SVD.

NAME —

A descriptive name for the
decomposition element. This
block should identify the
process; it should not
describe those process
components that modify or

RESPONSES —

One or more entities produced by
this component, e.g. a switch of
system state, an action, a message,
an invoice, etc.

constrain the process.

Fig. 1. Layout of a decomposition element.

methodological assistance to the design process, none do so
for requirements stated in an established but yet unrelated
requirement language. For example, the SARA environment
has a formal way of stating design and purports to support
requirement-driven design, but in fact has no formal way of
stating the requirements and of bridging the gap between the
requirements and design.

A knowledge-based system, called the Design Assistant,
was built to help the system designer to transform requirements
stated in one particular collection of requirements language
into a design stated in one particular collection of design
languages. As a front-end to the SARA method, the re-
quirements prepared are expressed in Data Flow Diagrams
and System Verification Diagrams. The design languages are
SARA'’s Structural Model and Graph Model of Behavior. This
particular choice of design languages was dictated by the fact
that the tool was built on top of the SARA platform. The
Design Assistant synthesizes the Structural Model and the
Behavioral Data Model from the Data Flow Diagrams, and
the Behavioral Control Model from the System Verification
Diagrams. Due to space limitations, this paper addresses only
the synthesis of the Behavioral Control Model, the focus of
this research.

This paper first reviews the SVD requirement specification
features, and then the SARA design models. While there are
certainly many other such requirement and design languages,
space limitations prevent talking about any more than those
that are used in the Design Assistant and in the example of
the paper. Then the paper describes a knowledge-based tool
for synthesizing a particular domain of SARA design from
the requirements, and an example is given to illustrate this
synthesis process. This example shows the rules used and how
they are applied. The paper concludes with an evaluation of
the approach.

II. SYSTEM VERIFICATION DIAGRAMS
AS SYSTEM REQUIREMENTS

In this research in design automation, two views are em-
ployed as the requirements of a system—namely, the func-
tional requirements and the operations concept. A requirement
analyst uses Data Flow Diagrams and System Verification
Diagrams to represent the functional requirements and the
operations concept, respectively, as suggested by a multiple-

view requirement validation method [8]. Since the facet of the
design synthesis addressed in this paper is based on the System
Verification Diagrams, this section focuses on this particular
requirement model.

The operations concept of a system is expressed in the
System Verification Diagrams (SVD), based on an under-
lying graph-based model, called the Stimulus-and-Response
Model. Its primary purpose is to demonstrate a static event-
dependency relationship among systems and subsystems. In
addition, requirements in the form of an SVD are also indica-
tive and structured enough to derive skeletons of the design
models.

An SVD is simply a directed graph in which each node
corresponds to a system/subsystem requirement specification.
A node, called a decomposition element (DE), is considered a
functional black box which takes external stimuli and produces
responses. The layout of a DE, plus the description of each of
its entities, is shown in Fig. 1.

The actual function of a DE is defined elsewhere. Each
DE is associated with a primitive process in the Data Flow
Model, the other requirement model used in this research. Each
primitive data-flow process contains text revealing its actual
input-to-output transformations. However, such internal func-
tionality is out of the scope of the design domains addressed
in this paper.

In our work, we categorize the possible stimuli and re-
sponses in the model for the sake of formal definitions. Each
response produced will eventually become part of one, one,
or more conditional or unconditional stimuli of other DE’s.
Each stimulus, in turn, may come from none, part of one,
one, or several responses produced somewhere else. They are
described in Table I.

Since the SVD is a directed graph connecting all DE’s,
this directed graph indicates the logical relations among the
DE’s or system/subsystem requirements. A logical relation
indicates sequencing, competition, and/or sharing upon arrival
of a stimulus; namely, a common stimulus. There are five
permissible logical relations in the model, as presented in
Table II.

Fig. 2 illustrates a sample SVD for a recording module
of an aircraft monitoring system. This is an example of
the SEQENTIAL-EXCLUSIVE-OR relation. The common
stimulus is the state recording in progress, or its complement,

LOR AND BERRY: AUTOMATIC SYNTHESIS OF SARA DESIGN MODELS

TABLE I
STIMULUS AND RESPONSE CLASSIFICATIONS

Stimuli or

Responses Descriptions

Physical stimulus An object such as a message, an initiation signal, a

set of data, etc.

Stimulus A particular condition imposed on a physical
condition stimulus

Synchronous An initiation signal at a specified time interval
stimulus

State stimulus The continuous truth of a condition on the system,

or one or more of its subsystems

Disjunctive
stimulus

The logical disjunction of two or more stimuli

Stimulus sequence An ordered sequence of two or more stimuli

Physical response An object such as a message string, an initiation

signal, a set of data, etc.

State response A change of the state of the system or its

subsystems

Action response An initiation of an action that produces a physical

response, or changes a system state

Alternative Consists of a condition and two responses; if the

response condition is satisfied, it produces the first response,
otherwise the second response

Response An ordered sequence of two or more responses

sequence

recording not in progress. The truth or falsity of this condition
is used to decide which of the three DE’s to invoke. This exam-
ple also consists of a physical stimulus, a state setting/clearing
response, and an action response.

III. THE SARA DESIGN METHOD

The SARA design method is a requirement-driven, top-
down design method; there exists a graphics-oriented design
environment in which such design is carried out. At the
topmost level are the requirements. Each subsequent level
is a design, each being a refinement of the requirements or
design of the level above. The bottommost level is an ultimate
realization of the requirements. If the requirements have in fact
been dealt with properly level-by-level, then the realization
correctly meets the requirements. At each design level the
system at that level is described using the two main formal
models of SARA, the Structural Model (SM) and the Graph
Model of Behavior (GMB).

1231
* recording | L3002 | recorder * recording L3003 | » record
in progres buffer has not in message
* recording | request | msg progress | normal | on device
request buffered * recording |recording
request proceed
Y
* recording | L3904 = recorder
not in buffer has
progress |buffered| no msg
* recorder | request
buffer has| proceed
msg

Fig. 2. A sample multidestination relation with a state common stimulus.

Only those aspects of the models needed to carry out the
example synthesis are discussed herein. Complete details on
the SARA method and environment are presented in [10].

A. The Structural Model (SM)

The SM represents the structure of a system. The model
has three primitives: module, socket, and interconnection. A
module represents a system component. Hierarchical decom-
position is achieved by refining a module into submodules. A
module is connected to another module by an interconnection
bridging two sockets, the modules’ communication ports.

In a typical design, there is a top-level module called
universe with no socket. The initial decomposition is to refine
it into two submodules, the desired system and its external
environment. These two submodules communicate via one
or more interconnections. This decomposition process repeats
until the system and its environment are divided into modules
small enough, with the behavior of each one precise enough
to be modeled by a single GMB.

B. The Graph Model of Behavior (GMB)

The GMB [22] models three different but related aspects
of the system: control, data, and interpretation. These three
domains are defined independently, but the primitives within
them must be consistent with each other.

The GMB control domain describes concurrency, synchro-
nization, and precedence relations in a graph using an un-
derlying theoretical model similar to that of Petri Nets [20].
The control graph is a directed hypergraph; i.e., a graph in
which the edges may have one or more sources and one or
more destinations. A control node represents an event, and a
control arc represents precedence constraints among two or
more events using the token passing mechanism.

The GMB data domain reveals the system’s data storage
units, their values at various system states, and their access
rights by the data processing units. The data graph is a bipartite

1232

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

TABLE 11

LoGICAL RELATIONS IN STIMULUS AND RESPONSE MODEL

Relations

Descriptions

F

exclusive-or

This relation is single-predecessor, multi-successor. Only one of
the successor events will occur.

]

sequential-inclusive-or

This relation is multi-successor. The stimulus conditions of the
first successor DE are checked. If they are satisfied, then
functional processing of the DE is performed. Regardless of the
result, it still checks the stimulus conditions of the remaining
successor DEs, and carries out the functions of the ones satisfied.
As a result, any combination of successor events may occur.

J

This relation is multi-successor. The stimulus conditions of the
first successor DE are checked. If they are satisfied, the event
will occur. Otherwise the second successor’s stimulus conditions
are checked, and so on. In other words, only the first satisfied

sequential-exclusive-or

successor will oceur.

-

This relation
predecessor must occur before the successor

is single-predecessor, single-successor. The

sequence
This relation is multi-successor. The successors represent the
start of parallel processes, all of which will occur, provided all of
their stimuli are there.
and

directed graph—i.e., a graph with two kinds of nodes, datasets
and data processors—and each arc, called a data arc, connects
a data processor to an accessible dataset. Each data processor
is mapped to at least one control node in the control domain.

The Interpretation Domain defines simulation timing con-
trol, data transformations of the data processor, and control
decisions of the associated control node. Any programming
language may be used for this domain. The current SARA im-
plementation, being coded in a statically scoped LISP called T
[23], uses T as the interpretation language as well. Attached to
a data processor, the interpretation code is executed whenever
the processor is invoked.

All the control and data domain primitives, as well as how
the token machine operates on them, are described in more
detail in Table IIL

IV. RULE-BASED DESIGN SYNTHESIS

This section addresses various issues in automatic design
synthesis. Previous work on intelligent design tool includes
Kowalski’s Design Automation Assistant (DAA) [15], built
on top of the CMU/DA environment, and Knapp’s Design
Planning Engine (DPE) [14], built on top of the ADAM
environment. DAA addresses automatic synthesis only in
VLSI, while DPE is an intelligent tool aiding the evolution
of a system represented in different phases of the Design Data
Structures. In our research, we build a tool that synthesizes
general hardware/software design from requirements prepared
from methods which are well-known but unrelated to the
design method itself.

Given two views of system requirements, the design syn-
thesizer helps to produce three views of the system design:
structural model, behavioral control model, and behavioral
data model of the system. This section describes the general
synthesis approach, as well as the synthesis of the behavioral
control domain in detail. Since the process is not fully auto-
matic, human input is needed in various stages of a design
session. This section also addresses the role of the human
designer.

A. The Approach of Synthesis

The design synthesis process is regulated by a collection of
design rules, representing the knowledge of the SARA design
method. A rule in this system is in the form of

(antecedent) = (consequence)

where the (antecedent) checks whether a requirement con-
struct satisfies certain conditions, and the (consequence) rep-
resents the design actions to take place in that case.

The human designer picks a portion of the requirements to
start the synthesis. The portion selected constitutes a primary
goal, in the form of

synthesize design from (selected requirements)

to be fed to a rule interpreter. The interpreter, employing a
forward-chaining scheme, then tries the rules on the primary
goal. Upon satisfaction of the antecedent, the consequence
taken is either:

* a sequence of actions which create primitives in the
SARA domain,

LOR AND BERRY: AUTOMATIC SYNTHESIS OF SARA DESIGN MODELS

* breaking up of the primary goal into subgoals, each of
which is responsible for synthesizing design objects from
a subcomponent of the originally selected component, or
* a combination of both.

The rule-based approach was selected for the synthesis because
of two reasons. First, the current set of synthesis rules is
by no means complete. It would thus be dangerous to lock
the current set of rules into a traditional imperative program
with each rule expressed explicitly as a sequence of tests.
There is always room to enhance the design knowledge by
including additional rules about domain specific knowledge,
design alternatives, and optimization decisions. A rule-based
system is more extendable in that new rules may be added at
will, without having to change the rule interpretation engine.
Second, given just a synthesized product, the human designer
may question how a particular design decision is derived, or
specifically, why certain design constructs are generated. With
a rule-based system, the sequence of rule firings serves as
a natural explanation of the decisions during the automated

design process.

B. Control Domain Synthesis

This section addresses the primary facet of the synthesis
process, the behavioral control domain. In particular, it de-
scribes the knowledge of synthesizing control node sequences
according to selected constructs in the stimulus-and-response
model. In case the control domain alone is not sufficient to
model a construct, the data and interpretation domains are
used to supplement the modeling.

Building the control domain according to the System Ver-
ification Diagrams requires in-depth knowledge of the GMB
control domain and semantics of the constructs in the stimulus-
and-response model, as well as the connection between the two
models. The very first rule applied in a session is one that takes
an SVD and creates subgoals for its components:

SVD.1
Antecedent: any SVD
Consequence: Subgoal: synthesize control

domain objects for initial relations
of SVD

Beginning with an SVD, the two essential tasks in deriving

the control graphs are:

« transform the event dependency information, i.e., the re-
lationships among the DE’s, into control node sequences,
and

* generate control node sequences from various stimuli and
responses of a DE, and connect them to the sequences
generated above.

When building the synthesizer, the most crucial step is to
establish the formal definitions, represented by the SARA
models, for all requirement constructs. These definitions are
considered operational, in the sense that an underlying token
machine governs the actual semantics. In addition, a design
process requires certain bookkeeping and optimization deci-
sions, as well as considering design alternatives. The following

1233

(((state.signal or notstate.signal)+ (state or notstate)) and Al) > Al

state.signal

notstate.signal

|
|

A2

state.node

!
1
{
\
\
\
!
!

{
(state or notstate) and A2

Fig. 3. GMB primitives to model state stimulus.

subsections present the synthesis rules of several sample
requirement constructs based on these operational definitions
and bookkeeping.

1) Synthesis Rules for Stimuli: In the System Verification
Diagram, each stimulus only represents an informal con-
cept—what invokes the decomposition element. Each concep-
tual entity must have its semantics formally defined before any
GMB synthesis can be carried out. The formal definitions of
two sample stimuli are presented in this section.

a) State Stimulus: A state stimulus, representing the con-
tinuous truth or falsity of a system condition, is modeled by a
control node sequence S. If a DE has the state as its stimulus,
a control arc from S should be ready to invoke the control
node representing the DE all of the time. In other words, an
event-invoking-arc corresponding to the state should always
have one token on it. With less than one token, it cannot
invoke the event when it should. With more than one token,
it may invoke the event when it is not supposed to. The node
sequence S should also be able to switch from state to its
complement state upon arrival of a state-switching signal. Fig.
3 shows an illustration of S. Here, the node dummy controls
the synchronization. With its associated interpretation code
specifying a delay of O time unit, it invokes state.node, the
main node of S, at every simulation time unit to ensure steady
deposit of one token on the arc state or notstate. The arcs
state and notstate head toward state.node to ensure that the
token on either of them is always lifted, preventing the tokens
from piling up.

A case analysis of the interpretation of state.node is given
as follows:

* in the case state-switching arc, state.signal is among the
triggering arcs, a token is deposited on state, and the
status state is recorded in the interpretation domain

* in the case state-switching-arc, notstate.signal is among

1234

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

TABLE III
DESCRIPTIONS OF GMB PRIMITIVES

TYPE

A named control node represents a step in a process being modeled.
A controlled data processor (see below) may be associated with a
node to provide interpretation of the process.

Example: A node N1 has a single entry arc S and a single exit arc X.

A named directed control arc represents non-volatile precedence
relations between sets of nodes. If there are more than one source or
destination nodes the arc is called complez; otherwise it is called
simple. An enabling token is placed on an arc either as a starting
state or upon termination of any of its source nodes. When a node is
initiated, its enabling tokens are absorbed.

Example: A2 and X are simple control arcs. Al is a complex control
arc whose source set consists of nodes N1, N2 and N4, and whose
sole destination is N5. S is an incoming complex control arc whose
destination set consists of N1, N2 and N3. If there were an initial
token on S, the token machine would non-deterministically invoke
N1, N2 or N3.

GRAPHICAL
S X
S
& ® ©
A2

Input Control Logic

A logical relation among the input arcs to a node specifies a
precedence condition on the token states for the node to be initiated.
An OR, >, or + in the input logic means that a token on any of the
operand arcs may initiate the node; an AND input logic means that
all operand arcs must have a token to initiate the node. One or
more tokens from the triggering arcs which satisfy the input logic
are absorbed for the node initiation. For the OR logic, a token is
absorbed non-deterministically from one of the triggering arcs; for
the > logic, a token is absorbed from the first triggering arc in the
logic; for the + logic, one token is absorbed from each of the
triggering arcs; and for the AND logic, one token is absorbed from
each arc in the logic.

Example: If A1, A2, or both A3 and A4 have tokens, then N1 can be
initiated. Tokens are lifted according to this precedence — Al and
A2, either Al or A2, A3 and Ad4.

Output Control Logic
A logical relation among the output arcs specifies which arcs have
tokens placed upon them when a control node is terminated. When
an OR output relation holds, a data processor interpretation must
decide which one or more arcs receive tokens. When an AND
relation holds, all output arcs receive tokens.

Example: When N1 is terminated, its associated controlled data
processor will decide whether tokens are to be placed on Bl and B2,
or B3 and B4.

(Al + A2) > (A3 and A4)
Al A2 A3 A4

B1 B2 B3 B4
(B1 and B2) or (B3 and B4)

A named controlled data processor represents a data transformation
object which is activated when an associated control node is
initiated. An interpretation of the data transformation and other
parameters such as time delay or resource requirements can be
associated with the data processor.

Example: Processor P1 is initiated whenever either N1 or N2 is
initiated. The control graph carries the burden of guaranteeing that
N1 and N2 are enabled in a desired sequence. Otherwise they will be
activated in a non-deterministic order, and the simulator will show
possible contention.

A named dataset represents a passive collection of data.

D1

A named date arc statically binds one or more data processors to a
dataset. The arc indicates the access rights and mechanism to the
data. The access mechanisms include non-destructive read (R),
simple write (W), destructive read (DR), first-come-first-serve read
(FCFSR), first-come-first-serve write (FCFSW), last-come-first-
serve read (LCFSR), and last-come-first-serve write (LCFSW).

Example: Processor P1 is initiated by control node N1. Pl reads
data from datasets D2 and D3, via arcs DA2 and DA3, respectively,
and writes the result into dataset D1 through arc DAL.

D3

DA3

DA2

LOR AND BERRY: AUTOMATIC SYNTHESIS OF SARA DESIGN MODELS

stim.12

Antecedent: stim is a state stimulus

1235

Ano control node sequence has been synthesized for stim yet

Consequence:
Create a control node sequence as in Fig. 3;
Connect arc STATE to PARENTNODE;

Let PARENTNODE be the node synthesized from the DE where stim belongs to

Query the human designer for the initial state, place a token on arc STATE or NOTSTATE, and record the initial

state into the interpretation code;

Assign pseudo interpretation code for node STATE.NODE —

(cond

(($trigger) include STATE.SIGNAL
($output_arc (and STATE A2))
record status ‘state’)

(($trigger) include NOTSTATE.SIGNAL
($output_arc (and NOTSTATE A2))
record status - ‘state’)

(else

(let ((Current.Status from status recorded))

(cond (Current.Status = ‘state’

($output_arc (and STATE A2))

(Current.Status = ‘-state’

($output_arc (and NOTSTATE A2))))))
Assign interpretation code for node DUMMY — ($delay 0)

stim.14

Antecedent: stim is a state stimulus

Aa control node sequence, as in Fig. 3, has already been synthesized for stim or its complement
Athe arc corresponding to stim is not pointing to a node synthesized from a DE

Consequence:
arc corresponding to stim

Let PARENTNODE be the node synthesized from the DE where stim belongs to, and the arc STATE in Fig. 3 be the

Fork arc STATE to PARENTNODE, make it an arc with multiple heads — {STATE.NODE, PARENTNODE}.

stim.2
Antecedent:

stim is a physical stimulus

Acontrol domain primitives have already been synthesized for stim

Consequence:
synthesized for
stim

If PARENTNODE ¢ headset of PHY.ARC already

Then

Let PARENTNODE be the node synthesized from the DE where stim belongs to, PHY.ARC be the control arc

Duplicate PHY.ARC and instead of its own headset, make it point to PARENTNODE.

endif

stim.5
Antecedent: stim is a physical stimulus
Anothing has been synthesized for stim yet

Consequence:

Let PARENTNODE be the node synthesized from the DE where stim belongs to

Create a no-tail control arc heading into PARENTNODE.

the triggering arcs, which indicates a switch to —state
in the system, a token is deposited on notstate, and the
status —szate is recorded in the interpretation domain

» otherwise, a token is deposited on state or notstate

according to the state status previously recorded.
This particular model only works for a binary state stimulus,
but it is trivial to enhance the node sequence to model
a stimulus of more than two states. For each additional
state, simply create an additional multihead arc, like state,
originating from the state.node. The synthesis rule for a state
stimulus is given in stim.12.

Before synthesizing any control node sequence for a stimu-
lus or response, the synthesizer also has to consider bookkeep-
ing; i.c., whether or not a node sequence already exists for a
certain requirement primitive. If it does, there is no reason to
create a replica. It requires only some minor adjustments on
the existing node sequence as well as an additional connection
between it and the synthesized node of the DE. With that in

mind, synthesis rules for stimuli and responses are based on
their operational definitions, as well as their current synthesis
statuses. For rule stim.12, there is an associated rule for
bookkeeping (stim.14).

b) Physical Stimulus: A physical stimulus may be cu-
mulative or noncumulative. A stimulus such as a toggle
signal or a message for recording is considered cumula-
tive, since all instances produced by the producer have to
be consumed eventually. A single control arc in the GMB
control domain and a dataset with properties of a queue in
the data domain are adequate to model this stimulus. Two
synthesis rules for physical stimulus are presented in stim.2
and stim.5.

2) Synthesis Rules for Responses: Corresponding to synthe-
sis rules for stimuli, there is a set of design synthesis rules
for responses. This section presents the formal definitions
of two responses, as well as their corresponding synthesis
rules.

1236

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

resp.6
Antecedent: resp is a state response
Aa node sequence, as in Fig. 3, has already been synthesized for the state, or the complement of state
Consequence: Let PARENTNODE be the node synthesized from the DE where resp belongs to, and RESP.ARC be the state-changing
stimulus arc heading into node STATE
Add PARENTNODE to the tailset of RESP.ARC
resp.14
Antecedent: resp is an action which changes a state
Aa node sequence, as in Fig. 3, has already been synthesized for state or —state
Consequence: Let PARENTNODE be the node synthesized from the DE where resp belongs to, and Fig. 3 be the node sequence

already synthesized

Construct a node sequence as in Fig. 4, with ACTION.INIT added to the tailset of NOTSTATE.SIGNAL, and
ACTION.DONE added to the tailset of STATE.SIGNAL.

an action-completion
signal

from DE's associated node

Al

action.
done

A3 A4

signal to STATE

signal to NOTSTATE

Fig. 4. Control node sequence to model state-switching action.

a) State response: A single control arc is enough to
model a state switching response. For instance, the response
that changes a system state is simply represented by the arc
state.signal or notstate.signal in Fig. 3. Suppose a node
sequence has already been constructed for the state; a synthesis
rule for this response is presented in resp.6.

b) Action response: An action which eventually changes
a system state may have an unspecified duration time. If the
completion of an action leads to the truth of a system state, it
means that in the duration of the action, state is still false, or
—state is true. To model this scenario, two control arcs are used
to represent responses state and —state. A node sequence is
then built on top of them. Fig. 4 shows how a state-switching
action is modeled. The node action.init will deposit a token
on A3, causing a system state to be false. After the action is
completed, the node action.done will put a token on A4 and
switch the system state to true. Suppose the node sequence for
state is already constructed; the synthesis rule for this action
response is presented in resp.14.

3) Modeling of Event Dependency: 1In the stimulus-and-
response model, each decomposition element represents a
system or subsystem, invoked by its stimuli to produce re-
sponses. When synthesizing control domain primitives from a
decomposition element, normally one control node is sufficient
for a DE. However, if logical relations are taken into account, it
is possible to use one control node to represent multiple DE’s,
or multiple control nodes to represent one DE, It depends on
the relation and the stimulus involved.

The modeling is straightforward if it is a SEQUENCE rela-
tion, say, originating from DE DE; and heading to DE DE;.
A control node corresponding to DE; is created, connected to
the node corresponding to DE; by a control arc.

For multidestination relations—AND, EXCLUSIVE-OR,
SEQUENTIAL-EXCLUSIVE-OR, or SEQUENTIAL-INCLU-
SIVE-OR—more possibilities arise. It depends on the number
of stimuli in the destination DE’s, and the appearance of the
common stimulus within the DE’s.

A multidestination relation means that, conceptually, upon
arrival of the common stimulus, one or more DE’s within the
group will be activated. The relation itself and the nature of the
stimulus determine the ones actually invoked. To model this
scenario with the control domain, the basic idea is to construct
a control node DEi.node for each decomposition element DE;,
each of which consists of some response-producing actions.
On top of the set of control nodes generated, there is one or
more decision nodes examining the stimulus and determining
which DEi.node to activate.

In a SEQUENTIAL-EXCLUSIVE-OR relation with the
common stimulus being a state, the truth or falsity of the
state is going to invoke one of the DE’s. The control node
sequence to define the semantics of such a relation is illustrated
in Fig. 5, in which a bold arc represents a collection of
control arcs synthesized from all the other stimuli or responses
of a DE in the said relation. The decision-making node,
DEC.NODE, deterministically decides which DE-associated
node to invoke.

The synthesis rules to create control domain objects for
this multiple-destination relation are given in Rel.2 and
GroupDE 4.

4) A Sample Synthesis: This subsection presents a small-
scaled sample synthesis of GMB objects from the require-
ments. The sample requirement is a recording subsystem. The
recording activities, as specified in the requirements, depend
on two parameters—whether or not the recorder itself is idle,

LOR AND BERRY: AUTOMATIC SYNTHESIS OF SARA DESIGN MODELS 1237

Rel.2

Antecedent: Rel is a multidestination relation — AND, EXCLUSIVE-OR, SEQUENTIAL-EXCLUSIVE-OR, or SEQUENTIAL-
INCLUSIVE-OR

Consequence: Subgoal: synthesize control domain objects for destination DE’s of Rel

GroupDE.4

Antecedent: DEs are destination of a SEQUENTIAL-EXCLUSIVE-OR relation, which is associated with a state stimulus

Consequence: Create a control node DEC.NODE;

Subgoal: synthesize a node sequence for state stimulus if necessary, let STATE be the arc representing the stimulus;
Make arc STATE point to DEC.NODE;
For DE; among DEs = {DE,, DE;, ..., DE,},
Create a node DEi.node if necessary, and an arc Ai connecting DEC.NODE and DEi.node;
Subgoal: synthesize control arcs heading to DEC.NODE, for DE;’s remaining stimuli;
Assign pseudo interpretation code for DEi.node —
response-producing code for DE;;
Assign input and output logic to DEC.NODE;
Assign pseudo interpretation code for node DEC.NODE —
(cond (($trigger) include DEI.stim
($output_arc Al))
(($trigger) include DE2.stim
($output_arc A2))

(($trigger) include DEn.stim
($output_arc An)))
For DE; among DEs,
Subgoal: synthesize control arcs originating from node DEi.node for DE;’s responses;
Subgoal: synthesize control domain primitives for DE;’s output relations;
Result control node sequence for the current group is shown in Fig. 5.

1.sti
DEl.stim DE2.stim

DEn.stim

STATE and
(DE1.stim »DE2.stim >
>DEn.stim)

DE 1.node

DEn.node

DE 1.resp

DEn.resp

DE2.resp

Fig. 5. Modeling of SEQ-XOR relation with state common stimulus.

and whether or not the recorder buffer is empty. As a result,
node sequences for system states recording in progress or
not and recorder buffer has messages or not are essential in
the recorder module. In sum, this example illustrates control
domain synthesis for a multidestination relation, two state
stimuli and responses, an action response, and a physical
stimulus.

Input to the synthesizer is the System Verification Diagram
in Fig. 2. After the firing of 13 rules, a control graph skeleton
is constructed, as shown in Fig. 6.

A4 @ XV

A4

A
()
&
rip.
state,
A13 \

A17
A10 "
(A5 and A10)
> (A6 and A15)
A7 > (A6 and A10)
request_ AgJ of
buffered A9 -
buffer_ 86
req
proceeg
Note:
rbhm.state - the state 'recorder buffer has 3
rip.state - represents the state ‘recording in progress'
rmt.i - represents the initiation of action 'record message on
device’
rmt.a - represents the completion of ‘record message on device'
N1- driver node of the multi-destination relation

Fig. 6. Control graph skeleton synthesized for recorder.

1) rule SVD.1 for the SVD for recorder.
2) rule Rel.2 for the sequential-XOR relation leading
to decomposition elements REQUEST BUFFERED,

1238

BUFFERED REQUEST PROCEED,
RECORDING PROCEED.

3) rule GroupDE.4 for the decomposition elements RE-
QUEST BUFFERED, BUFFERED REQUEST PRO-
CEED, and NORMAL RECORDING PROCEED.

4) rule stim.12 for the stimulus recording in progress.

5) rule stim.14 for the stimulus recording not in progress.

6) rule stim.5 for the stimulus recording request in RE-
QUEST BUFFERED.

7) rule stim.12 for the stimulus recorder buffer has message
in BUFFERED REQUEST PROCEED.

8) rule stim.2 for the stimulus recording request in NOR-
MAL RECORDING PROCEED.

9) rule resp.6 for the response recorder buffer has message
in REQUEST BUFFERED.

10) rule x.resp.3 for the response recorder buffer has mes-

sage in REQUEST BUFFERED.

11) rule resp.6 for the response recorder buffer has no

message in BUFFERED REQUEST PROCEED.

12) rule x.resp.3 for the response recorder buffer has no

message in BUFFERED REQUEST PROCEED.

13) rule resp.14 for the action response record message on

device in NORMAL RECORDING PROCEED.

Among the rules fired, rule x.resp.3 deals with response
produced for external context; i.e., another SVD. However,
since the system state recorder buffer has message and its
complement are only referenced in the current context, the
consequence of this rule is simply

and NORMAL

Do not synthesize anything.

C. Synthesis of Structural Model and Data Domain

Compared to the synthesis of the control domain, syntheses
of the structural and data domains of a design are straightfor-
ward. Requirements expressed in the other requirement model,
the Data Flow Model, provide the basis for structural and data
domain synthesis. Since the Data Flow Diagrams are organized
in a hierarchical manner, the synthesizer simply transforms
the hierarchical representation of the Data Flow Model to the
Structural Model, while taking care to conform to the model’s
syntax, restrictions, and semantics. On the other hand, the
Data Flow Diagrams at the lowest level are the input for data
domain synthesis. A majority of the data-flow primitives at
the lowest level may be implicitly mapped to SARA’s data
domain primitives. This also leads to a fairly straightforward
transformation.

D. Completeness of the Rule Set

There are two completeness issues. The first is the syntactic
completeness of the rule set, and the second is the degree
of automation engendered by the rule set. The set of rules
is syntactically complete, since it takes care of every possible
requirement construct. Any requirement in the form of an SVD
may be fed into the synthesizer to produce a SARA design
skeleton. In the context of a particular requirement model
as input and a particular design model as output, the model

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

transformation is complete. However, the design synthesizer
may not be considered as a completely automatic designer
replacing the role of a human. This incompleteness stems from
one or more of the following reasons:

¢ The system currently does not handle automatic syn-
thesis of the interpretation domain associated with each
control node. Synthesis of such a domain, in T code,
from some natural language specifications requires an
automatic code-synthesizer, which is generally impossible
and is outside of the scope of this research.

* In an actual design, the human designer often considers
design alternatives based on criteria like resource trade-
offs, modularity, component reusability, domain-specific
knowledge, etc. The rule set is always subject to expan-
sion because of existences of such alternatives.

* The classification of requirement entities is not primitive
enough to provide a precise correspondence between the
requirements and the design constructs. It is difficult
for the synthesizer to understand the actual semantics
of a requirement entity to generate the most concise,
appropriate design entity, even though such semantics
may be trivial to a human.

As a result, the synthesizer cannot be made completely
automatic, at least not until much more expertise about system
design and knowledge on all potential systems to be designed
are codified into the rules and engine. In other words, the
knowledge base is always subject to expansion until all
universal knowledge about hardware and software system
design is included. This is why the synthesizer can at best
serve only as a design assistant.

E. Role of Human Designer

Before, during, and after a synthesis session, certain human
involvement is required. The design synthesizer is not to
replace the human, but to design a skeleton of the system
under the direction of 2 human. The human designer assumes
three responsibilities in a design session. To start the synthesis,
he or she selects the appropriate requirement diagram for the
synthesizer to create a design. During the synthesis, he or she
interactively provides information to the synthesizer, regarding
the system being designed (e.g., the placement of a token on
arc A5 or A6 in Fig. 6, indicating the initial state of recording
in progress) and guides the synthesizer to design according
to his or her preference (e.g., select one if design alternatives
exist). Finally, after the synthesis is done, he or she patches
up the unfinished parts of the design. The finishing touch
includes connecting the tailless or headless control arcs (e.g.,
A10 and A19 in Fig. 6) to the appropriate nodes or sockets,
and converting the pseudo interpretation code to actual T
code.

V. CONCLUSION

This paper addresses a design synthesizer which aids the
human designer in a requirement-driven design method. We
conclude this paper with the status of this research, as well as
what it does and does not achieve.

LOR AND BERRY: AUTOMATIC SYNTHESIS OF SARA DESIGN MODELS

A Design Assistant prototype was developed to support
the claims in this research. The goal of this implementation
is to illustrate this concept of automatic design synthesis as
well as to test the synthesis rules. It was implemented on
the SUN workstations at UCLA, on top of a prototypical
SARA design environment [16]. Using the object-oriented
programming paradigm, this prototype consists of tools that:

* create the System Verification Diagrams and Data Flow
Diagrams, in the form of objects in the requirement
models, and

* synthesize SARA’s structural and behavioral models, in
the form of objects in the SARA domain, from the two
requirement models.

Like the original SARA design tools, the Design Assistant
is coded in T. The requirement and design primitives are
implemented as T objects. The definition of a requirement
object carries both static attributes and dynamic synthesis
statuses. Take a sample rule, stim.5; its T representation is
given as follows:

(imply (stim)
(and (cg.phy_stim? stim) (not_yet_syn?
stim))
(cg.syn_phy_stim stim))

where stim is the bound variable within the rule. Predicate
cg.phy_stim? and routine cg.syn_phy_stim are coded as T
functions. Routine eg.syn_phy_stim, by calling a sequence of
GMB object editing routines, simply creates a new control arc
object and makes it point to the appropriate node. Predicate
not_yet_syn? is an operation of the stim object.

The synthesis knowledge encoded is based on the formal-
ization of the semantics of the requirement constructs, as well
as certain trade-off, bookkeeping, and optimization decisions
during a design session. According to this knowledge, 21
rules are derived for structural model synthesis, 59 for control
domain synthesis, and 37 for data domain synthesis. This set of
rules is geared toward the general, domain-independent design
problems.

Using this prototype, a total of five syntheses were car-
ried out. These five examples were the submodules of an
aircraft monitor system. The requirements of these mod-
ules consisted of a wide range of constructs, including most
of the stimuli—physical, synchronous, state, and disjunc-
tion—most of the responses—physical, state, action and re-
sponse sequence—and three kinds of relations—SEQUENCE,
EXCLUSIVE-OR, and SEQUENTIAL-EXCLUSIVE-OR with
various forms of common stimulus. After more than 200 rule
firings, the Structural Model, Control Graphs, and Data Graphs
synthesized provided the skeleton of a SARA design model
for the aircraft monitor. After the human designer patched
up the unfinished parts of the three domains, the model was
successfully simulated by the GMB simulator. Details of all
the synthesis rules, the requirement examples, the sample
synthesis, and the design model produced are available in [17].

This research provides a better understanding and a method-
ical approach of the SARA-based design process with respect

1239

to the two requirement methods. However, its application is
not limited to any particular design models employed. To
accommodate another model, such as the Petri Nets or PDL,
as the synthesis output, simply replace the current set of rule
consequences by a new one knowing how to generate design
in the desired model.

REFERENCES

[1] R. J. Abbott, “Program description by informal English description,”
Commun. ACM, Nov. 1983.

[2] M. Alford, “A requirement engineering methodology for real time

processing requirements,” IEEE Trans. Software Eng. vol. SE-3, pp.

60-69, Jan. 1977.

M. Alford, “SREM at the age of eight: the distributed computing design

system,” IEEE Computer, pp. 36—46, Apr. 1985.

[4] P. C. Belford and D. S. Taylor, “Specification verification—a key to
improving software reliability,” in Proc. Symp. Computer Software Eng.,
Apr. 1976, pp. 83-96.

[5] D. M. Berry, N. Yavne, and M. Yavne, “Application of program design
language tools to Abbott’s method of program design by informal natural
language descriptions,” J. Syst. Software, pp. 221-247, Sept. 1987.

[6] S. H. Caine and E. K. Gordon, “PDL—a tool for software design,” in
Proc. Nat. Computer Conf., 1975, pp. 271-276.

[7] T.de Marco, Structured Analysis and System Specification.
Yourdon, 1979.

[8] M.S. Deutsch, “A multiple view paradigm for modeling and validation
of real-time software systems,” in Proc. Int. Conf. on Reliability and
Robustness of Eng. Software, Sept. 1987.

[9] S. W. Director, A. C. Parker, D. P. Siewiorek, and D. E. Thomas, “A
design methodology and computer aids for digital VLSI systems,” JEEE
Trans. Circuits Syst., vol. CAS-28, July 1981.

[10] G. Estrin, R. S. Fenchel, R. R. Razouk, and M. K. Vernon, “SARA
(System ARchitects’ Apprentice): modeling, analysis, and simulation
support for design of concurrent systems,” IEEE Trans. Software Eng.,
vol. SE-12, pp. 293-311, Feb. 1986.

[11] F. S. Etessami and G. S. Hura, “Rule-based design methodology for

solving control problems,” IEEE Trans. Software Eng., vol. 17, pp. Mar.

1991.

K. F. Fischer and M. G. Walker, “Improved software reliability through

requirements verification,” JEEE Trans. Rel., vol. R-28, pp. 233-240,

Aug. 1979,

R. Jain, K. Kucukcakar, M. J. Mlinar, and A. C. Parker, “Experiences

with the ADAM synthesis system,” in Proc. 26th ACM/IEEE Design

Auto. Conf. (Las Vegas, NV), 1989.

D. W. Knapp and A. C. Parker, “A design utility manager: the ADAM

planning engine,” in Proc. 23nd ACM/IEEE Design Auto. Conf., June

1986, pp. 48-54.

T. J. Kowalski, An Al Approach to VLSI Design. Boston: Kluwer, 1986.

E. Krell and E. Lor, “Current state of the SARA/IDEAS design

environment,” in Proc. Softfair II. New York: IEEE, Dec. 1985, pp.

218-230.

K. E. Lor, “An assistant for requirement-driven system design,” Ph.D.

diss., Computer Sci. Dept., Univ. California, Los Angeles, 1988.

M. D. Lubas and M. T. Harandi, “Knowledge-based software design

using design schemas,” in Proc. 9th Int. Conf. on Software Eng., Mar.

1987, pp. 253-262.

[19] D. Partridge, Artificial Intelligence Applications in the Future of Software
Engineering. Chichester, UK: Ellis Horwood, 1986.

[20] J. L. Peterson, Petri Net Theory and the Modeling of Systems.

wood Cliffs, NJ: Prentice-Hall, 1981.

R. Razouk, M. Vernon, and G. Estrin, “Evaluation methods in

SARA—the graph model simulator,” in Proc. Conf. on Simulation,

Measures and Modeling of Computer Syst., 1979, pp. 189-206.

R. Razouk and G. Estrin, “The graph model of behavior,” in Proc.

Symp. on Design Automation and Microprocessors. New York: IEEE,

Dec. 1980, pp. 67-76.

S. Slade, The T Programming Language: A Dialect of Lisp. Englewood

Cliffs, NJ: Prentice-Hall, 1987.

[24] G. M. Swinkels and L. Hafer, “Schematic generation with an expert

system,” IEEE Trans. Computer-Aided Des., vol. 9, Dec. 1990.

D. Teichroew and E. A. Hershey III, “PSL/PSA: a computer-aided

technique for structure documentation and analysis of information

processing system,” IEEE Trans. Software Eng., vol. SE-3, pp. 4148,

Jan. 1977.

[3

New York:

[12]

[13

Engle-

[21

[22]

[23]

[25]

1240

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

Kar-Wing Edward Lor received the B.S. degree
from the University of Maryland, College Park, and
the M.S. and Ph.D. degrees from the University of
California, Los Angeles, all in computer science.
As a student, he was involved in the high-level
language computer architecture project at the Uni-
versity of Maryland, and the SARA/IDEAS design
methodology project at UCLA. In 1988 he joined
the Data Communication Research Department of
AT&T Bell Laboratories as a member of the tech-
nical staff. His research interests include design

automation, requirement specifications, expert systems, and network manage-

ment.

Dr. Lor is a member of the ACM and the IEEE Computer Society.

Daniel M. Berry received the B.S. degree in math-
ematics from the Rensselaer Polytechnic Institute,
Troy, NY, in 1969, and the Ph.D. degree in applied
mathematics and computer science from Brown
University in 1974.

From 1972-1987 he was on the faculty of the
Computer Science Department at the University of
California, Los Angeles. Currently, he is a Professor
in the Faculty of Computer Science at the Technion,
and is a member of the technical staff of the Soft-
ware Engineering Institute. His research interests are

in software engineering and electronic publishing.
Dr. Berry is a member of the ACM and the IEEE Computer Society.

