A Time-Sharing Architecture for Complex Real-Time Systems

Jair Jehuda

Department of Electrical Engineering
Technion - Israel Institute of Technology
Technion City, Haifa 32000, ISRAEL

Abstract

In this paper we show how a real-time time-sharing RtT'S archi-
tecture can be very useful in resolving many of the formidable
problems generally posed by complex real-time systems. In par-
ticular, we address dynamic multiple job systems, running on
shared-memory multi-processor platforms. Each job is multi-
tasked, with task characieristics assumed to be complex, e.g.
some critical, some dependent, some eperiodic. Each job
may also have multiple states, and may support several alter-
nate modes of operation. Concurrent job sets, modes, states,
and even available processor capacities, are all assumed dy-
namic. To accommodate such complexities, the RtTS archi-
tecture adopts a practical divide-and-conquer approach, which
is shown to be very effective. The architecture incorporates
three distinct and independent software control layers, which
together facilitate automatic near-optimal mode selection, dy-
namic load-balancing, and reliable real-time time-sharing, in a
fully integrated manner. The job-oriented strategy allows each
job to be developed independently, as a black box with uniform
control requirements, herein described. The unigque capabilitics
of this RtTS architecture are tllustrated in a dynamic multime-
dia context, where it is shown to have several advantages over
conventional dynamic load-balancing techniques, in supporting
complex task characteristics, besti-effort system values, dynamic
critical task sets, scalability, and portability.

1 Introduction

In this paper, we show how a practical, job-oriented, real-time
time-sharing RtTS architecture, can dynamically facilitate reli-
able real-time scheduling, job load-balancing, and a maximized
system value, in complex, multiple job, shared-memory multi-
processor systems. Each job, here, is an independently devel-
oped real-time application, with several alternate modes of op~
eration. Each job mode dictates a different work load, and a dis-
tinct job reward contribution to an overall system value. Modes
of operation are selected automatically to provide the highest
attainable system value without overloading system resources.
Jobs are internally complez in the sense that they must simul-
taneously cater to several dimensions of real-time systems [1],
e.g. state-dependent work loads and job rewards, independent
and non-independent task sets, tight and loose time constraints,
hard and soft deadlines, periodic and aperiodic tasks. Concur-
rent jobs execute independently, sharing no resources other than
the CPU.

A typical example of such a system is an integrated multi-
media system designed to support multiple audio, video, MIDI,
and fax/modem I/O channels!. Each job in this example will

1The RTS architecture was designed with this application in mind.
The musical ATLAS testbed [2] is currently being implemented to demon-
strate the effectiveness of the RtTS architecture.

0-8186-7123-8/95 $4.00 © 1995 IEEE

Gilad Koren

Computer Science Institute
Bar-Ilan University
Ramat-Gan, 52900, ISRAEL

Daniel M. Berry

Department of Computer Science
Technion - Israel Institute of Technology
Technion City, Haifa 32000, ISRAEL

facilitate any of several forms of interactive entertainment, or
provide any of a variety of programmable banking, informa-
tion gathering, electronic shopping, and fax/answering machine
services. Such jobs are usually developed independently and
provided as black boz, plug-in modules. Jobs are usually multi-
tasked (or multi-threaded), and they may have complex real-
time characteristics and requirements, some of them critical.
The active set of concurrent jobs is determined online by user
preferences and requirements, and is therefore time-variant, We
also assume that available shared-memory processing resources
may vary due to possible faults and to accommodate portabil-
ity. So the active set of jobs, must be dynamically load balanced,
i.e. partitioned over the available set of processors, in a man-
ner which will guarantee the real-time schedulability of all task
sets assigned to each processor. We assume that task sets for
each job are already known to be schedulable when running on
a dedicated processor with an adequate given speed?. But the
real-time scheduling requirements for any job might be too com-
plex to be reconciled online with those of other jobs sharing the
same processor.

Furthermore, each job in this example may support several
operational mode alternatives to choose from, e.g. various mo-
dem baud rates, audio sampling rates, and video frame rates and
resolutions. Each such mode clearly has different processing re-
quirements and provides a different quality of service, referred
to as the job reward. The overall system value is a function of
the current job rewards. So job modes must therefore be au-
tomatically selected in a manner which maximizes the system
value without overloading available resources. Mode selection
and load balancing decisions are collectively referred to as meta-
control, because real-time scheduling decisions are dictated by
them.

Also to be considered are internal job states which may af-
fect current job rewards and work loads, e.g. when time-driven
activities are overdue, during time-triggered fax transmission,
or when an information gathering job awaits results being pro-
vided by remote internet activities. Meta-control decisions must
therefore be reconsidered with each significant job state transi-
tion and with each attempt to alter the active set of jobs.

Another useful example of such a system is an upgraded real-
time system in which several applications used to run on a set
of dedicated processors and we now wish to integrate them on a
smaller set of faster processors to reduce production and main-
tenance costs. Finding a solution for such systems also provides
us with a low-cost method for enhancing already developed ap-
plications, if extensions can be developed as independent jobs.

To satisfy these needs we have devised a comprehensive
software control architecture capable of supporting dynamic
load balancing, near-optimal mode selection, and the real-time
scheduling of arbitrary sets of complex jobs, in an integrated
manner. An integrated approach is essential to critical real-

2Throughout this paper we use the processor clock frequency as a
measure of processor speed or capacity.

time systems because decisions in each of realms are influenced
by each other, e.g. independent mode selectionmay determine a
set of critical tasks which cannot be load-balanced, and a load-
balancing decision may generate job subsets which cannot be
reliably scheduled. As we show in this paper, the RtTS archi-
tecture provides practical and effective solutions to all of these
problems.

1.1 Previous Work

Current solutions to dynamicload balancing [3, 4, 5, 6] are inad-
equate because they are task-oriented, i.e. individual incoming
tasks are accepted or rejected by online schedulers on an FCFS
(first-come-first-serve) basis. Such an approach could proba-
bly be extended to support jobs as atomic groups of tasks, but
it would be practical only if all task characteristics internal to
each job can be made known to the load balancing system, and
if scheduling complexities are sufficiently low. Unfortunately,
none of these conditions appear realistic when dealing with com-
plex black box jobs with multiple states and modes. Another
problem is that a FCFS policy cannot maximize system value,
since this sometimes requires the suspension of currently run-
ning jobs to accommodate incoming jobs with higher rewards.
We also know of no existing dynamic load-balancing solution
which can efficiently accommodate dynamic sets of critical tasks
requiring 100% scheduling guarantees.

Software meta-controllers have already been developed for
several experimental real-time systems, but the scope of con-
sidered adaptations have always been severely limited. In the
Spring kernel {3], for example, Meta Level Controller adap-
tations are confined to scheduling algorithms and parame-
ters. RESAS adaptations [7] include processor assignment
(load-balancing) and the management of various reallocating
time/spaceredundancies, but only one adaptation form (one de-
gree of freedom) is actually treated at a time. The GEM Adap-
tation Controller [8] supports both mode selection and load bal-
ancing, but decisions are only partially automated. None of the
cited examples provide measures of performance which enable
us to evaluate their performance in absolute terms. The RtTS
meta-control model, on the other hand, can simultaneously ac-
commodate a very large class of adaptations, with well-defined
performance measures which can be shown to be near-optimal.

1.2 Summary of Results

“ Control Layer | Level Function Typ. Rate —u
Automated 3 mode selection secs
Meta-Control & load balancing
Real-Time 2 job time-sharing msecs
Time-Sharing 1 job scheduling

Figure 1. Software Control Architecture

To greatly reduce scheduling and load-balancing complex-
ities, the RtTS architecture uses a job-oriented, divide-and-
conquer strategy, which requires that each job be internally
responsible for the scheduling of its own tasks, using arbitrary
real-time scheduling policies. As we will show, arbitrary sets of
such jobs can then be reliably time-shared on any given proces-
sor, using a very simple joint schedulability test (see Equation
(1)), without being exposed to their inner complexities. Con-
ventional time-sliced time-sharing is shown to be inadequate,

10

so we hereby introduce an earliest-deadline-first (EDF) time-
sharing scheme capable of reliably interleaving the internal job
schedules with minimal overhead. All time-sharing overheads
are fully accounted for in a manner which enables the inde-
pendent development of each job and its internal scheduling
solution, regardless of which jobs will be time-shared with it.

As depicted in Figure 1, the RtTS architecture comprises
of three fully independent software control layers. The bottom
two control layers facilitate EDF job time-sharing and inter-
nal job scheduling on any given processor, enabling each job to
use an arbitrary and independent real-time scheduling policy
to best meet its complex requirements. The top automated
meta-control layer is responsible for job mode selection and
for the load balancing of the entire set of active jobs over all
available processors. Probably the most important feature of
the real-time time-sharing scheme is that it enables simulta-
neous resolution of near-optimal mode selection and job load-
balancing. Two practical and very effective approximation al-
gorithms, QDP and G2, have been developed for this purpose,
each of them requiring only fractions of a second to produce
system values which are rarely suboptimal by more than a few
percent. This enables us to reevaluate, with reasonable over-
head, our decisions every few seconds to accommodate varying
job sets and job states. The RtTS architecture is also shown to
have considerable advantages in its load-balancing support for
dynamic critical task sets, and in its inherent scalability and
portability.

The rest of this paper is organized as follows. Section 2
introduces the black boz job paradigm, describes EDF job time-
sharing, and illustrates by example how it works. Section 3
briefly introduces automated software meta-control, with more
details being provided by [9]. Section 4 shows how job schedul-
ing, time-sharing, and meta-control layers are incorporated into
a comprehensive software architecture, most suitable for dy-
namic, multiple job, shared memory systems. We conclude in
Section 5.

2 Real-Time Time-Sharing

Real-time time-sharing is a method by which a set of real-time
jobs, Jc, can reliably share a given processor, ¢, even though
each job, 7 € J¢, has been developed independently as a black
boz. Bach job, j, consists of an arbitrary task set, 7;, with
real-time requirements and characteristics which might be com-
plex. In the bdlack bor paradigm, we assume that it would be
unreasonable to require that each job reveal all of its complex
task requirements and characteristics to external software con-
trollers. Even if we could require this revelation, we assume that
complexities might be too significant for these details to be of
any use. So we require that each job be already equipped with a
scheduling policy, 7;, which has already been found capable of
satisfying all 7; requirements when provided a processor with
a given adequate processing speed. The minimal such speed
is called the job bandwidth, bj, and an appropriate bandwidth
must be determined for every possible job mode and state. As
we will show, this job bandwidth is computed in a manner which
also accommodates worst-case time-sharing overheads.

As depicted in Figure 1, the middle job time-sharing control
layer determines when a specific job in J; will be dispatched to
processor ¢. Whenever Job j € J. is dispatched, the internal
job scheduling of 7; tasks is carried out by the =; scheduler
within the bottom control layer. The outcome is that if the
shared processor has a processing speed equal to the sum of
all bandwidths, then all 7r; schedules are essentially interleaved
without being altered or violated.

In this section, we begin by describing the black boz
paradigm and listing the responsibilities that each job has to
the upper control layers in the RtTS architecture. We then
provide a simple time-sharing schedulability test, show how job
bandwidths are calculated, and illustrate by example how it
works.

2.1 The Black Box Paradigm

The black box paradigm clearly defines how each job must ap-
pear to the upper two RtTS control layers. The following are
required of each individual job:

1. Most important, the black box paradigm requires that
each Job j can internally schedule its 7; task set using
an arbitrary predetermined scheduling policy, ;.

2. Secondly, the black box must export a bandwidth func-
tion, bj(m;), which reveals the minimal processing speed
required by 7; to schedule 7; when in job mode mj. The
value returned may vary accordingto the current internal
job state, s;. Referring back to our multimedia example,
typical fax job states would include being idle, sending,
and receiving, while typical video job states would in-
clude play, scan, fast-forward, pause, and rewind. Ide-
ally, bandwidth values for all modes and states should
be computed offline for efficient use. When calculating
7j computation times, and producing appropriate sched-
ules, the n; scheduler will always assume that it is run-
ning on a processor with this minimal processing speed.

3. Each job must also inform the upper control layers of
any change in the internal job state, so that the new
bandwidth requirments can be reconsidered.

4. To support EDF time-sharing, each job, j, must also
keep the time-sharing control layer informed of its earliest
pending deadline, d;.

5. To facilitate automated meta-control, each job must also
export a job reward function, rj(mj), which reflects the
contributed job reward if mode m; is selected in the cur-
rent internal job state, s;.

Thus all the upper control layers need to know are band-
width and reward functions, when a state-transition has taken
place, and what the earliest pending deadline is. The internal
scheduling policy and all other real-time characteristics and re-
quirements are hidden, so that each job can indeed be treated
as a black box. Most important, it enables us to develop each
job independently, without having to consider the complex re-
quirements and characteristics of other jobs.

2.2 Time-Sharing Schedulability

As previously noted, the current job bandwidth, b;, is deter-
mined such that a feasible schedule for 7; is guaranteed if pro-
vided a processor with a processing speed of at least b;. Let 8¢
denote the processing speed of processor ¢, henceforth referred
to as the processor capacity. Real-time time-sharing ensures
that any job set, J¢, can reliably time-share a processor, ¢, if
the sum of their bandwidths does not exceed the capacity of

Pprocessor ¢, i.e.
Db < pe &)

Jj€Je

11

Thus two real-time jobs can reliably time-share a 20 MHz pro-
cessor if each of them requires a 10 MHz bandwidth.

Let’s assume for a moment that job time-sharing overheads
do not exist. Then Equation (1) essentially guarantees that the
number of processor execution cycles on the shared processor,
for any given time period, is sufficient for all jobs sharing it.
Thus the total processor utilization will never exceed one during
any given period, so EDF schedule interleaving must succeed
{10].

There are, of course, various overheads which must be
treated such as critical sections where jobs must not be
preempted?, job preemption costs, and the costs of updating
and maintaining a list of all d; deadlines so that the job with
the earliest d; is always dispatched. - As we soon show, all of
these time-sharing overheads can be accommodated when com-
puting b;.

procedure UpdateEarliestJobDeadline(j, d;);
/* Job j notifies that closest deadline is d; */
begin
/* Find executing Job j’ and its deadline d’: */
Let (j/,d') = first element in JobDeadlines ;
Update j’s entry in JobDeadlines ;
ifdj<d andj#j
/* then the scheduler of job j will now take over: */
then preempt j' and dispatch j;
end;
procedure EventsHandler(j, event_type);
begin
/* This might call upon UpdateEarliestJobDeadline: */
Execute the relevant event handler of Job j;
end;

Figure 2. Updating Earliest Job Deadlines

2.3 EDF Time-Sharing

Before we deal with time-sharing overheads, lets see by example
how EDF time-sharing works. In the following code, JobDead-
lines is a deadline-ordered list of {7,d;} pairs where d; is the
earliest active deadline in Job j. Each processor, ¢ € C, has a
list of such pairs belonging to the set of jobs, J¢, which share
it. The job that has the closest (smallest) deadline in each pro-
cessor is dispatched to execute whatever task is appropriate to
its scheduling method, i.e. not necessarily the one with the
earliest deadline among ready tasks of that job. Dispatched,
here, means that the scheduling method of the dispatched tasks
takes over. As required by item 4 of Section 2.1, the Upda-
teEarliestJobDeadline procedure in Figure 2 is used by all jobs
to keep JobDeadlines up-to-date with the current d; for Job j.
The d; parameter must be zero when Job j has no pending
deadlines, whereupon the Job j element in JobDeadlines must
be deleted. The procedure must first find the earliest element
in JobDeadlines to determine the currently dispatched job, 7/,
and its earliest deadline, d’. After the d; update, the procedure
must then determine if d; is earlier than d’, whereupon j must
be dispatched if it isn’t already.

The earliest job deadline, d;, can only change when a job
task completes or when a new task is released, i.e. becomes

3For the sake of simplicity, we will overlook overheads incurred by
critical sections and the atomic nature of processor execution cycles. In-
terested readers should refer to {11}.

ready. Periodic tasks are usually released when a timer event in-
dicates that its time has come. Other tasks are usually released
by other tasks or events. As illustrated by the EventsHandler
procedure in Figure 2, each event must be promptly handled
by the event handlers of each job so that they can call upon
UpdateEarliestJobDeadline if necessary.

Al[R
B1
I
Job 1 o1

D1

\wﬁ

A2
B2
C2

Job 2

A3 N

Job3 o r ‘_

C3

— T T T

0 20

Figure 3. EDF Job Time-Sharing

Al | |
o iﬂ -
c1
D1 H
Jobl| EEmE M | WR | SRR —i%

0 20 40 60 80 100 120 140

Figure 4. Actual RM+PCP Schedulingin Job 1

Figure 3 illustrates how three sample jobs are EDF dis-
patched by the time-sharing mechanism when sharing a 4 MHz
processor. Each of these jobs have several tasks, e.g. 7 =
{4:,B1,C1,D1}. BEach job is also using a different internal
scheduling policy, m; for job 1 is dynamic Rate Monotonic pol-
icy (RM) [12] using a priority ceiling protocol (PCP) [13, 14] to
prevent priority inversion, 72 for job 2 is EDF [12, 10], and 73
for job 3 is a static cyclic executive (CE) [15, 16]. To the right
of each task we have frames which indicate when each task was
released and when it completed. Following each frame we find a
circle which marks the actual d; deadline associated with each
frame. The shaded areas within these frames indicate when the
d; deadline associated with that frame was the earliest of all
d; deadlines, causing the corresponding job to be dispatched.
Jobs are thus EDF dispatched, but the internal tasks are ac-
tually scheduled in accordance with the m; scheduling policies
employed by each job. To illustrate this point, we provide Fig-
ure 4 which shows how RM+PDP scheduling is carried out for
the tasks of job 1 whenever job 1 is dispatched. Unlike in Fig-
ure 3, the shaded areas in this case indicate when each task was
actually scheduled in accordance with the internal RM+PDP
scheduling policy being used. Letting P(i) denote the period
for task ¢, then P(A;) < P(B;) < P(C1) < P(D1), so C; has
a higher priority than Dy in an RM policy. Thus, for example,
task C'; is scheduled by the internal Job 1 policy at time 100 ms,

12

even though it was the d; associated with D; which prompted
job 1 to be dispatched at that time, because the D; deadline is
earlier than that of C;. Job schedules are thus interleaved with-
out changing or violating the original 7; task schedules within
each job. For a more formal treatment, the interested reader is
referred to [11]

This EDF real-time time-sharing scheme might seem triv-
ial at first glance. A deeper study, however, reveals that this is
not so. It is essential to the RtTS architecture that time-sharing
overheads be fully accommodated for arbitrary J. job sets with-
out having to recompute bandwidths, online, as a function of
Je. It is also essential that time-sharing overheads be mini-
mized. Conventional time-slicing, for example, is found to be
completely inadequate, since we can always devise a J. task set
which would require very minute time-slices, thereby incurring
unacceptable time-sharing overheads. As we now show, EDF
time-scheduling, on the other hand, achieves both objectives.

2.4 Time-Sharing Overheads

As previously described, to facilitate EDF time-sharing, the
time-sharing control layer must maintain a list containing the
earliest deadline, dj, for each job, j € J;, and each black box
job scheduler must ensure that its d; deadline is up-to-date.
As illustrated by Figure 2, all time-sharing activities are as-
sociated with these deadline updates, which must be carried
out by the job tasks at well-defined points of execution, e.g.
at task completion, or when an event-driven or timer-driven
interrupt handler determines that a task should be released.
Worst-case time-sharing overheads are therefore readily accom-
modated by appropriately increasing the number of processing
cycles required by each task.

For efficient maintenance, all of these deadline values are
stored in an indexed heap. Letting N denote the maximum
number of jobs in J., then the earliest deadline can always be
found at the top with O(1) complexity, while a deadline can
be inserted or deleted with O(log N) complexity. Thus worst-
case costs for deadline updates can be a priori determined as a
function of N.

As already noted, a task can cause a job preemption only
when it completes or is released. This implies that the number
of job preemptions in EDF time-sharing cannot exceed double
the total number of tasks released and completed in J.. We can
therefore account for worst-case job preemptions by augmenting
the computational requirements of each J. task by the number
of execution cycles required for two job preemptions.

2.5 Computing Job Bandwidths

We now refer again to the three sample jobs of Figure 3
to demonstrate how job bandwidths are computed and time-
sharing overheads are accommodated. Table 1 lists essential
task characteristics and requirements for these three sample
jobs. Each job has three critical tasks, with the fourth Dy task
in job 1 being non-critical. This paves the way to two possible
job 1 modes, with and without D;. In the following discussion
we consider the latter job 1 mode without D;. For simplicity,
all task sets in this example are periodic, but those of jobs 1 and
3 are not independent. As previously noted in Section 2.3, and
as indicated by Table 2, the dependencies of job 1 were resolved
by adopting RM+PCP, while those of job 3 were avoided by a
static CE.

Internal job scheduling requirements are first evaluated in
terms of execution cycles before being translated into minimal
frequency bandwidths. Bandwidth computation is clearly pol-
icy dependent, with an optimal x; being that which would pro-
vide the minimal b; bandwidth. For simplicity, we assume that
the 7; policies of Table 2 have already been determined to be
optimal, and we show only how the minimal b; bandwidths were
derived.

Net task computational requirements for task ¢ are provided
in Table 1 as numbers of execution cycles, n;. When testing the
schedulability of each job task set, the 7; schedulers must also
consider worst-case overheads, o;, for internal job scheduling,
e.g. for task preemption, also provided in execution cycles. As
indicated by Table 2, RM+PCP scheduling overheads are gen-
erally lower than EDF scheduling overheads and higher than
CE scheduling overheads. To further accommodate worst-case
job preemption overheads in a time-shared configuration, these
o0; overheads must be augmented accordingly. In the above ex-
ample, it was found that adding 2000 execution cycles to the
dedicated o; overheads was sufficient to cover two earliest job
deadline updates and two potential job preemptions per job
task.

To maximize processor utilization, we seek a job bandwidth,
b;, which is equal to the slowest processing speed required for 7;
to be schedulable by 7; while accommodating time-sharing over-
heads. To measure the loss of utilization due to time-sharing,
we also compute f; as the slowest processing speed required
for 7; to be scheduled on a dedicated processor. In both cases,
minimal processing speeds must be determined by schedulabil-
ity tests appropriate to each w; policy. In the case of job 1
with 71 = RM+PDP, we employed Rate Monotonic Analysis
(RMA) [17, 18], to consider all factors in job execution, e.g.
task periods, release times, deadlines, computation times, max-
imum block times, and context switching overheads. As previ-
ously noted, the latter three factors were provided in units of
processor execution cycles, so that schedulability tests can be
conducted for various processor speeds until the minimal speeds
are determined. In an automated schedulability test, we can use
a binary search strategy to converge to f;.

Job 2, on the other hand, uses EDF scheduling, because all
tasks in 7o are independent. EDF schedulability test are much
simpler, letting us compute minimal processing speeds directly
as a function of 7; characteristics. Letting T; and C; represent
the period and computational times for task ¢ € 7j, we can
compute the job utilization, u;, by

w=Y o,

tET;

2

whereupon 73 is schedulable if u; does not exceed one [12].

So the minimal processing frequency for EDF is equal to

Z‘. €r: T /T, ni being the number of execution cycles required
1

by task ¢, since this would maximize the processor utilization.
The C; values in Table 1 provide an additional intuitive in-
sight into why all 7; schedules are maintained. When running
on a time-shared 4M H 2z processor, the required computation
times are much shorter than when running on a processor with
an assumed frequency of f;. The f; and b; processing speeds of
Table 2, essentially differ in the assumed computation times, C;,
for each task i. When computing f;, the C; values correspond
to the number of computational execution cycles, n;, plus the
scheduling overhead execution cycles, 0;, on a dedicated pro-
cessor. When computing by, the C; values are augmented to
include time-sharing deadline updates and worst-case job pre-
emptions as determined by the o’; values for shared processors.
The o values in Table 2 are equal to the b; /f; ratios, thereby

13

reflecting the very minor utilization losses introduced by time-
sharing.

As indicated by the b; values in Table 2 and Equation (1),
a processor ¢ with a capacity of 8. = 3.9 MHz can therefore
reliably accommodate all three jobs using EDF time-sharing.
As previously mentioned, job 1 has a second mode which also
includes task Dj, which requires a slightly higher bandwidth
which is still less than 2.1 MHz. Thus, with a capacity of 4
MHz we were actually able to time-share all three jobs in Figure
3, with job 2 operating at a higher reward mode which also
required Dy,

2.6 Accommodating Interrupts

For the sake of completeness, we must point out that the above
analysis must also consider processor cycles consumed by event
handlers, e.g. the timer interrupt handler, such as EventsHan-
dler in Figure 2. To simplify the example in Table 1 we have
assumed there that these overheads are negligible!. Neverthe-
less, these overheads are readily accounted for in our model.
The most straight-forward way would be to account for each
job's event handlers within each job's bandwidth, by treating
them as internal, event-driven, tasks with zero slack time®. Ad-
ditional methods are discussed in [11].

2.7 Time-Shared Utilization

It follows from Equation (1), that overall processor utilization
in the RtTS time-sharing scheme is generally only as good as
the u; utilizations provided by each 7; solution. In the above
example, all u; utilizations are near-optimal, so these high uti-
lizations are fully maintained when time-sharing. If not for our
time-sharing scheme, we would have to apply a uniform schedul-
ing policy, e.g. EDF4+PCP, to the union of all tasks in Je,
which could actually produce a lower total utilization, since it
would have to consider worst-case blockages such as those which
would be introduced by 73 without CE. Thus time-sharing can
sometimes boost overall processor utilization when internal job
utilizations, uj, are efficient. In other cases, of course, a new
integrated scheduling solution might increase processor utiliza-
tion when u; values are low. When dealing with complex task
sets, however, seeking integrated solutions may be impractical,
so that time-sharing in such systems is the only alternative.
Thus the only relevant way to maximize processor utilization is
to design the independent jobs in a manner which can produce
high u; factors. This would appear to be a very reasonable
design objective for any software product.

We note, however, that there are ways to improve the time-
shared utilization such that it is better than the sum of its
parts, i.e. higher than the overall utilization which would have
been obtained by running each Job j with a utilization of u;
on a dedicated processor with a processor speed of b;. For
u; < 1, the surplus capacity on each dedicated processor could
be exploited by each job only for soft real-time tasks belonging
to it. When time-sharingon processor ¢, these surplus capacities

4Such assumptions are often reasonable because potential job preemp-
tion overheads are already covered by the % augmentations so that only
the deadline update overheads must be considered.

5As implied by the EventsHandler procedure, job event handlers are
actually called upon immediately, even if the job is not currently dis.
patched. This complies with EDF interleaving because their zero slack
time would require a job context switch anyway.

can be better utilized collectively by using global best-effort {19]
scheduling techniques to run the higher-reward soft tasks within
the entire set of jobs, Je.

Time-shared utilization is also improved by reducing capac-
ity fragmentation, i.e. the loss of utilization due to the need
to allocate processing capacities, B¢, which ezceed the required
minimal bandwidth, b;. Take, for example, a job with two
modes, the first requiring a bandwidth, b;, of 8 MHz and the
second being a higher service mode requiring b; = 11 MHz. If
available 8. capacities are 10 MHz and 20 MHz, then we could
allocate the 10 MHz capacity to run this job in its first mode, or
we could allocate the 20 MHz capacity to run the second mode.
In the former case, capacity fragmentation would be 2 MHz, in
the latter case it would be 9 MHz. Using time-sharing, we could
actually run two of these jobs on the 20 MHz processor, one us-
ing the first mode and the other using the second mode, with a
fragmentation loss of only 1 MHz. Thus real-time time-sharing
can increase system value and and total processing utilization
by reducing capacity fragmentation throughout the system.

3 Automated Meta-Control

The additive schedulability criteria (Equation (1)) is a unique
feature of the RtTS time-sharing scheme which enables the
software meta-control layer to simultaneously carry out near-
optimal mode selection and job load balancing for a set of jobs,
J, running on a set of processors, C. Each job, j € J, has a set
of selectable alternate modes, M, to choose from. As described
in the black box paradigm of Section 2.1, each job must provide
a bandwidth function, b;(m;), and a reward function, r;(m;),
which fully encapsulate their current time-sharing requirements
and their contribution to the system value, v, for each possible
mode m; € M;. The primary objective of the automated meta-
controller is to select job modes m; € M; which will produce
the optimal system value, v*, i.e. the highest obtainable system
value which is still schedulable. Let J. represent the job subset
allocated to processor ¢ € C, and let 8. denote the processor ¢
capacity. Then, as described in Section 2, when using a time-
sharing scheme, a given selection of job modes is schedulable if
and only if there exists a partitioning of the job set J over the
set of available processors C' such that

Vee Ot E bi(m;) < Be.

Jj€Je

©)

Finding such a schedulable partitioning is the job of the load-
balancer, whereupon fully reliable time-sharing is guaranteed
for all jobs in J. -

A meta-controller decision consists, therefore, of a set of
selected modes and a schedulable partitioning of jobs over pro-
cessors. Job sets are dynamic. Job bandwidths and rewards
are state-dependent. Thus meta-controller decisions must be
automatically made with each altered job set and each state
transition. In [9] we show that this automated meta-control
problem is equivalent to a composite binpacking and zero-one
multiple-choice knapsacking problem, which is strictly NP-hard.
Nevertheless, we have devised two very effective approximation
algorithms, QDP and G?, capable of producing near-optimal
mode selection and load-balancing solutions in fractions of a sec-
ond. Table 3 lists typical performancelevels and response times
for meta-control decisions made for 12 or 24 jobs (njobs) with 4
modes per job, running on 3 or 5 processing nodes (nprocs), in
cases which total bandwidths for maximum reward modes were
either 2 or 4 times the total capacity of the systern (maxload).
As indicated by Table 3, performance for both G2 and QDP

14

are found to be considerably better than conventional density
greedy (DG) [20], while being very comparable in their response
times. These results enable us to reevaluate our decisions ev-
ery few seconds to accommodate varying job sets and states
with reasonable overhead. QDP relies primarily on dynamic
programming, while G2 is a gradient-greedy sieve function [21].
Both algorithms have the ability to tradeoff time for perfor-
mance, and both can provide measures of performance with each
meta-controller decision made. Detailed descriptions of these
algorithms, simulations, and analytic methods, are all beyond
the scope of this paper.. Interested readers are kindly referred
to Appendix of [22] for more information and references.

4 The RtTS Architecture

As illustrated in Section 1, complex real-time systems require
a software control architecture capable of carrying out real-
time time-sharing, critical load balancing, and optimal mode
selection in an integrated manner. As described in previous
sections, this is accomplished by the RtTS architecture using
three software control layers which are fully independent. The
job scheduling layer (see Figure 1) lets each job resolve its own
scheduling problems using any arbitrary policy found to be effec-
tive. The job time-sharinglayer uses an EDF policy to facilitate
job time-sharing regardless of the policies used by the underly-
ing job scheduling layer. Together, these two layers facilitate a
practical real-time time-sharing scheme, which enables each job
to be developed as an independent black-box, which maintains
the efficiencies of the black-box solutions, and which provides us
with a simple additive schedulability test for arbitrary job sets
on any given processor. The automated meta-control layer can
then simultaneously facilitate near-optimal mode selection and
load-balancing without being concerned about the underlying
real-time scheduling policies being used.

Early on, we described a portable, fault-tolerant, integrated
multimedia system, with dynamic job sets, modes, states, and
processor capacities. System users may request different sets
of concurrent jobs at any time, and committed jobs must con-
tinue to run seamlessly when switching from one set of jobs to
another. Such systems clearly require powerful and automated
software control mechanisms for ensuring the schedulability of
these jobs while maximizing some notion of system value. Prob-
ably the most acute difficulty in this system is in the need to
cater to dynamic sets of hard tasks. The human brain is quite
sensitive to audio and video input, so the steady flow of audio
samples and video frames, and an adequate synchrony between
audio and video, are all essential to such systems. The authors
are not aware of any existing dynamic load-balancing solution
which can meet these challenges.

As we have already shown, the RtTS architecture has been
designed to support all of these formidable requirements using
practical methods. Nevertheless, the following limitations must
be considered. The software meta-control layer, for example,
cannot respond instantly and decision epochs should be ade-
quately spaced to maintain reasonable overheads. These limi-
tations are quite acceptable in the multimedia example since all
changes in the active job set and all state transitions do not-oc-
cur at high rates and they can be deferred for fractions of a sec-
ond. Other important assumptions in our current architecture
include that the computed job bandwidths are transparent to
job placement at any of the processors, and that job migration
and mode transition costs can be overlooked. These assump-
tions are also quite reasonable for shared-memory platforms and
when mode transitions consist of merely altering various rates
and resolutions. A nice feature in the automated meta-control

model is that for each job, we can consider only those proces-
sors and modes which would not require costly migrations or
transitions. For quicker responses to state-induced overloads,
we could initially reconsider only local mode selections without
load balancing, and then improve the system value with a com-
plete global evaluation after the overload has been contained.
The RtTS architecture is therefore a very flexible framework
which can be customized to meet the specific needs of each sys-
tem.

From a software engineering perspective, the RtTS architec-
ture also has significant advantages in its ability to scale well
for larger systems, and in its inherent portability. Time-sharing
schedulability tests for J. have O(N) complexity, where N is
the maximum number of jobs in J.. As described in [9] soft-
ware meta-control complexities are somewhat higher, but still
very reasonable. Internal job scheduling is accomplished with-
out prior knowledge of the number of platform processors and
their capacities. When porting to a platform, all we need to
know are the minimal bandwidth requirements for each job to
determine whether there is any processor capable of hosting it.
System values automatically improve as technology advances
and platform capacities increase. Such characteristics are rare
in conventional real-time solutions.

5 Conclusions

We have outlined a practical job-oriented approach to real-time
software control, found to be particularly efficient for complex
real-time systems. Rather than attempt to online tackle in-
tegrated and complex real-time scheduling problems, we show
how ready solutions to smaller and simpler problems can be
time-shared while maintaining their scheduling integrities and
utilizations. Rather than attempt to resolve dynamic load-
balancing at the individual task level, we show how job-level
load-balancing can be integrated with value-driven mode selec-
tion and still be resolved by very practical and effective ap-
proximation algorithms. We have also demonstrated that the
dynamic RtTS control architecture is appropriate for dynamic
sets of critical tasks, which have no known alternate solutions.

The practicality and efficiency of the approach have already
been proved by extensive simulation and analysis. The benefits
of this approach are most readily illustrated in a dynamic, mul-
tiple job, shared-memory system. Nevertheless, we believe that
it can be extended to benefit a much wider range of complex
systems, including fault-tolerant systems. An ATLAS testbed
[2], is currently being implemented to explore these possibilities.

Acknowledgments

The authors wish to thank Amos Israeli, Avi Mendelson, Jack
Stankovic, and Neeraj Suri, for reviewing earlier versions of this
paper.

References

[1] J. A. Stankovic and K. Ramamritham, “Editorial: What is
predictability for real-time systems?”, Journal of Real-Time
Systems, vol. 2, no. 4, pp. 247-254, November 1990.

J. Jehuda and D. M. Berry, “A top-layer architecture for AT-
LAS”, Tech. Rep., Department of Electrical Engineering, Is-
rael Institute of Technology, Technion, Haifa 32000, ISRAEL,
November 1994, EE Pub. 946.

J. A. Stankovic and K. Ramamritham, “The Spring kernel: A
new paradigm for real-time operating systems”, ACM Oper-
ating Systems Review, vol. 23, no. 3, pp. 54-71, July 1989.

(2

(sl

15

[4]

(5]

(6]

(8]

9

f10]

ft1]

[12]

[13]

(14

[15]

[16]

(7]

[18}

[19]

f20]

[21]

[22]

S. R.-T. and J. P. Lehoczky, “On-line scheduling of hard dead-
line aperiodic tasks in fixed priority systems”, in Proceed-
ings 11th Real-Time Systems Symposium, December 1993,
pp. 160-171.

C. McElhone, “Adapting and evaluating algorithms for dy-
namic schedulability testing”, Tech. Rep., Department of Com-
puter Science, University of York, England, February 1994.

G. Koren and D. Shasha, “MOCA : A multiprocessor on-line
competitive algorithm for real-time system scheduling”, The-
oretical Computer Science, vol. 128, pp. 75-97, 1994.

T. Bihari and K. Schwan, “A comparison of four adaptation
algorithms for increasing the reliability of real-time software”,
in Proceedings Ninth Real-Time Systems Symposium, March
1988, pp. 232-243.

K. Schwan, T. Bihari, B. Weide, and G. Taulbee, “High-
performance operating system primitives for robotics and real-
time control systems”, ACM Transactions on Computer Sys-
tems, vol. 5, pp. 189-231, August 1987.

J. Jehuda and A. Israeli, “Automated meta-~control for adapt-
able real-time software”, Tech. Rep., Department of Electrical
Engineering, Israel Institute of Technology, Technion, Haifa
32000, ISRAEL, November 1994, EE Pub. 943.

M. L. Dertouzos, “Control robotics: The procedural control of
physical processes”, in Proc. IFIP Congress, 1974, pp. 807—
813.

J. Jehuda and G. Koren, “Hybrid bandwidth scheduling for
distributed real-time systems”, Tech. Rep., Department of
Electrical Engineering, Israel Institute of Technology, Tech-
nion, Haifa 32000, ISRAEL, January 1995, EE Pub. 945.

C. L. Liu and J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in a hard real-time environment”, Journal of
ACM, vol. 20, no. 1, pp. 46-61, January 1973.

M.-1. Chen and K.-J. Lin, “Dynamic priority ceilings: A con-
currency control protocol for real time systems”, Journal of
Real-Time Systems, vol. 2, no. 4, pp. 325-346, November 1990.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance
protocols: An approach to real-time synchronization”, IEEE
Transactions on Computers, vol. 39, no. 9, pp. 1175~1185,
September 1990.

T. P, Baker and A. C. Shaw, “The cyclic executive model and
Ada”, in Proceedings Ninth Real-Time Systems Symposium,
1988, pp. 120-129.

C. Locke, “Software architecture for hard real-time applica-
tions: Cyclic executives vs. fixed priority executives”, Journal
of Real-Time Systems, vol. 4, no. 1, pp. 37-54, 1992.

M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Har-
bour, A Practitioner’s Handbook for Real-Time Analysis,
Kluwer Academic Publishers, 1993.

J. P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic
scheduling algorithm: Exact characterization and average case
behavior”, in Proceedings IEEE Real-Time Systems Sympo-
sium, December 1989, pp. 166-171.

C. D. Locke, Best-Effort Decision Making for Real-Time
Scheduling, PhD thesis, Carnegie-Mellon University, Dept. of
Computer Science, Pittsburg, Pa. 15213, 1986.

M. R. Garey and D. S. Johnson, Computers and Intractability
- Guide to the Theory of NP-Completeness, Bell Telephone
Laboratories, Inc., 1979.

J.-Y. Chung, J. W. Liu, and K.-J. Lin, “Scheduling peri-
odic jobs that allow imprecise results”, IEEE Transactions
on Computers, vol. 39, no. 9, pp. 1156-1173, September 1990.

J. Jehuda, G. Koren, and D. M. Berry, “A time-sharing archi-
tecture for complex real-time systems”, Tech. Rep., Depart-
ment of Electrical Engineering, Israel Institute of Technology,
Technion, Haifa 32000, ISRAEL, May 1995, EE Pub. 965.

Table 1. A Sample Job Set

Job 1 Job 2 Job 3
Task Ay Cy | Dy As By Cs Az B3 Cs
Period (msecs) 40 140 | 200 j| 80 | 120 | 180 || 120 | 120 | 120
Deadline (msecs) 40 140 | 120 || 80 | 120 | 180 | 120 | 120 | 120
Net Cycles n; 30K | 46K | 46K | 6K || 33K | 33K | 33K || 18K | 36K | 54K
Max Blocking Cycles 8K
C; Comput. (ms) @ 4 MHz 8 12 4 9 9 9 5 10 15
Ci (ms) Q@ f; (see Table 2) 16 24 8 40 40 40 20 40 60
B; Blocking (ms) @ 4 MHz 3 4
B; (ms) @ f; (see Table 2) 12 16
Table 2. Computing Job Bandwidths
job number J 1 2 3
job scheduling policy w; || RM+PCP | EDF | CE
job utilization factor Uy 0.97 1.00 | 1.00
job scheduling | dedicated | o; 200 1000 | 20
overhead cycles | shared o'y 2200 3000 | 2020
min processor | dedicated | f; 1.94 0.88 | 0.95
freq. (MHz) shared b; 2.00 0.90 | 1.00
time-sharing overhead ratio | «; 1.03 1.02 | 1.05
Table 3. Typical Meta-Control Performance and Response Times
Performance Response Times (msecs)
njobs | nmodes | nprocs | maxload || DG G? | QDP DG G? QDP
24 96 5 2.0 || 0.569 | 0.989 | 0.990 || 142.461 | 85.859 | 269.161
4.0 || 0.625 | 0.978 | 0.974 || 96.316 | 63.547 | 248.482
12 48 2.0 | 0.552 | 0.989 | 0.981 || 144.224 | 82.351 | 271.383
4.0 || 0.609 | 0.978 | 0.976 || 94.883 | 58.236 | 255.837
24 96 3 2.0 || 0.634 | 0.977 | 0.973 || 77.158 | 47.939 | 244.434
4.0 || 0.685 | 0.963 | 0.967 || 48.938 | 48.413 | 242.036
12 48 2.0 || 0.657 | 0.974 | 0.973 || 80.165 | 48.619 | 246.296
4.0 || 0.680 | 0.968 | 0.968 || 61.178 | 36.702 | 242.270

16

