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a Coercive, Recursive,

Block Structured Language
with Deference to Reference,

Attention to Retention,*

and Unification of Information

and Control Structures,

and Which Hag an Implementation Orientation
in Its Definition and Specification

Abstract

This paper introduces Oregano, a practical gen-
eralization of ALGOL 60, The semantic definition of
the language is in terms of an information structure
model for its implementation, the contour model,
Some of the major features are emphasized, in-
cluding that of retention (non-deallocation of still
accessible cells). The contour model is briefly de~
scribed as a cell-baged, fixed program component
model with a retentive deallocation scheme. DModes
(data types) are described as cell templates. Then,
blocks, declarations, assignments, and pointer
handling are illustrated in terms of sequences of
pictorial snapshots in the model. A wide variety of
heterogeneous and homogeneous multiple values are
described using the data structure models of their
implementation, Labels and procedures, which can
be called recurgively, are generalized to the full
status of valueg, Coroutines and iasks are intyo-
duced as simple extensions of procedure calls,-and
various synchronization devices such as locking and
events are illustrated. Finally, the practicalily and
ease of use of the language are demonstrated.

*Pun effects here were developed in collaboration
with Professor Peter Wegner.

Introduction

Oregano is a highly practical generalization of
ALGOL 60 [22] which makes use of certain features
of BASEL and ALGOL 68 {30, 2]j. The design and
semantic specification are based on an information
(data) structure model [34, 35, 37, 33}, which
speecifies semantics of linguistic features in terms
of their implementations. Oregano is a block
structure language with recursive procedures. It
provides an infinity of modes (data types) including
those of pointers, labels, and procedures. There
is a uniform treatment of values and identifiers of
any mode, Oregano has the usual declaration and
assignment features as well as pointer handling
operators. The language provides a wide variety of
heterogeneous and hornogeneous multiple values,
differentiated by complexity of structure. In addi~
tion, there is unification of control structures such
as labels, procedures, coroutines, and tasks
(parallel routines). There is one agpect of Oregano
which differentiates it from most other languages,
which makes some of the above unification possible,
and which follows from the information structure
model; namely, the concept of retention: a cell is
not deallocated until there is no access path left to
the cell. We first discuss the need for and the basic
details of the model. Then the features of Oregano
will be presented.

Need for Model

The current state of the art of semantic defini-
tions is best exemplified by the ALGOL. 88 Report [30]
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and the ULD PL/1 Definition [19]. These specifica-~
tions are difficult to read, provide little intuitive
basis for understanding the language, and provide
almost no basis for feasible implementations, Nei-
ther the user, implementer, nor designer thinks in
terms of copy rules, renaming, text modification,
unigue name generators, [38, 39] etc, The language
Oregano is an atternpt to halt this unfortunate trend
by presenting a definition of the semantics of the
language in terms of a cell-based, fixed program
component, information structure model,

Such a model is certainly helpful, if not neces-
sary, to the designer to agsure consistency and the
very possibility of ever implementing the language
being designed. It is clear that certain restrictions
of ALGOL 68 and of PL/1 stern from their probably
intended stack implementations [7, 4], even though
the reasons for the restrictions do not logically
follow from the formal definitions. Quite obviously,
an implementation model of this sort is necessary
for the implementer, for he is faced with the actual
machine and its data cells, The user can and does
benefit greatly from the knowledge of such a model,
He is able to see precisely what he is causing to
happen. Once the model is clear, what must be said
to give the computer the necessary information
becomes Intuitively clear, so that the mastering of
the syntax is made easier by the presence of the
model, Thus it is this author’'s opinion that this sort
of definition can be used as a vehicle for under-
standing design of programming languages, can form
the basis of a feasible efficient implementation, and
has intuitive appeal to the user.

Some Features of the Model

The model used for the semantic definition of
Oregano is J. B, Johnston's contour model{ll, 12,
13, 8], a cell-based model which uses a fixed pro-
gram component and a retentive scheme for deallo-
cation,

The model and language specification recognize
that the language is for specification of computations
on a computer which siores its data in memory cells.
Hence, the language specification will use the con-
cept of a cell, Identifiers will designate the loca-
tions of cells, Assignments are made by changing
the content of a designated cell, Pointers are values
which are the locations of other cells, The imple~
mentation independent notions of possession, refer-
ence {30, 36], etc., used to describe the relation
between identifiers and their values will be discarded
as being unilluminating and unintuitive.

The model used consists of twe components: the
algorithm and the record of execution. The algo-
rithm is a fixed re-entrant pure procedure copy of
the program. The record of execution contains the
variable data cells. It also copiaing several proces-
sors which are cells that control execution of the
algorithm, Bach processor hag an instruction
pointer, ip, peinting to an instruction in the algo-

rithm, Also each processor has an environment
poluter, ep, which points to an accessing environ-
ment containing data cells in the record of execution.
Execution of the algorithm is accomplished by
having the instruction pointer scan the instructions
in the algorithm step by step. When an identifier
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slgorithm record of exscution

{location designator) is encountered in the algo-
rithm, the processor uses the environment pointer
to develop the designator into the address of a cell
in the record in which the value assigned to the
identifier is stored [13, 36].

Once a cell is allocated in the record of execu~
tion it remains in existence so long as there exists
a chain of pointers from some awake processor to
the cell., This is known as the retentive dealloca-
tion scheme, {(In an actual implementation this
would be handled by reference count management [32]
and/or garbage collection [20].) With this scheme
for deallocation in the model, it becomes possible
to specify retention in the language.

In the rest of this paper, we illustrate some of
the features of Oreganoc using several example pro-
grams written in the language, ™ Each example is
accompanied by a verbal and pictorial description of
the execution of the program using the contour
model, The invariant algorithm component is
represented by one copy of the source language pro-
gram with lines numbered for reference purposes.
There is also a sequence of schematic diagrams of
the state of the record of execution at various
strategic points in the execution {afier each source
language statement, say), This sequence is called
a sequence of snapshots of the record of execution
and it corresponds to a sequence of states of an
information siructure as a result of transformations
applied to the structure,

Modes

Oregano has an infinity of modes whichare con-
gtructed bothin the syntax and in the implementation

*The syntax for Oregano has not been fixed yet, but
the intent is to have an easily used syntax which
resembles that of well-known languages such as
ALGOL 80, ALGOL 88, EULER, and PL/1., The
syntax used in the examples should be clear either
from the discussions or from familiarity with
other languages.
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model, from five basic modes and a variety of con-
structo A mode can be thought of as a template
which indicates the cell structure required to store
values of the given mode. Below is a brief listing
and description of some of the modes available in
Oregano. In most cases, the cell structure and use
of the mode will be discussed in detail in the appro-
priate section of this paper. In some simple cases,
the cell structure is shown now so that we have some
value types to work with in the examples. 'lhe

cases marked with "™ are modes whose descriptions
are outside the scope of this paper, but which never-
theless demonstrate the practical power of the lan-
guage., The ", .. " after some of the mode names
below indicates that the word itself is not a mode,
and that the word represents a general class of
modes, all of whose names begin with the word,

The five basic modes describe classes of values
which may be stored in single cells:

Mode

Description

int integer numbers [-5975 j
Ty
real real number 3.14}1,%
bool boolean values, [ }
" orue

true or false
char single character Potal
label statement label

Others are:

compl complex numbers {pair of reals)
ptr. .. a value of mode ptr amode (amode
an arbitrary mode) is a pointer to a
cell containing a value of mode
amode
e.g., pir int 5975
ptrptrreal{ - 314 ]
proc. .. procedure

heterogeneous multiple values:

fixed length--accessible only as a

whole

struct fixed length~~elements are selectable
homogenous multiple values:

array fixed length {at declaration time)

seq. .. fixed length (at allocation time-~
distinet from declaration time)

flex, .. flexible length

sparse matrix {8 la Knuth [15])

sparse. ..

routine. .. name of a particularc invocation

{call) of a procedure

cvent for communication betwoen

parallel routines

programmer defined interrupt and
action upon interrupt

value which can be any of specified
modes

pointer to value of any mode, 1.e.,
ptr union ail. ..

value of one of five hasic modes or
of mode pointer {can be stored in
one cell)

Oregano also provides for defining new modes
in terms of existing modes by use of the word
represent.
eq char, ptr list] car, pir list
mode list. Given a value of mode list, the Irst
element, selected by car, is either a sequence of
characters or a pointer to another list, and the
second element, selected by cdr, is a pointer to yet
another list. Such a defined mode becomes a tem-
plate just like any other mode.

In Oregano, modes are associated with identi~
fiers in declarations. Execution of a declaration
has a threefold effect:

1. A cell of the proper size for storing a value
of the given mode is allocated.

2. The identifier designates this allocated cell.

3. Assignments {o the identifier are restricted
s0 that only values of the given mode are stored in
the cell designated by the identifier.

Finally, it will be emphasized that, in Oregano,
all values of any mode are treated uniformly with
respect to assignment. Just as there is no restric-
tion on assignment of an integer because of scope
rules, there is no restriction to assignment of
pointers, labels, and procedures because of scope
rules. This freedom, which is not available in
MUTANT 0.5, ALGOL 68, BASEL, PL/1, and
EULER, [26, 30, 2, 19, 38] is a direct result of the
retention assumption in Oregano,

Blocks, Declarations, Assignments, and
Other Bagics

We will use an example program as the vehicle
for explaining some of the main features of Oregano:
block entry and exit, declarations, scope, assign-
ment, allocation, indirection and references,
coercion, and retention,
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- tnt x, ptr int y;
, X 1
s {int y-2
|

. ‘ Kty
> L' )

6 i ablee &
. {int x;

8 o

. Y
10 yrex
SR - )
12 =y
13 )

This program consists of an outer block {lines 1
through 13) declaring an integer x and a pointer to
an integer y. (A block is delimited by a pair of
parentheses.) The outer block contains two inner
blocks, the first (lines 3 through 5) declaring an
integer y, and the second {lines 7 through 11)
declaring an integer x. The statement parts of each
of these blocks contain several assignment state-
ments, each using the assignment operator « |
Blocks serve to govern allocation of storage for
identifiers and to define the scope in which an iden~
tifier is known. For example, the x declared in
line 1 is known in the outer block minus the second
inner block, It will be emphasized that exit from a
block does not govern deallocation of cells for iden-
tifiers,

To start with, we have just a processor™ with a
null environment pointer, ep, and an Insiruction
pointer, ip, pointing to line 1.

L

T
aglv

*See next column's footnote,
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As a result of scanning line 1, the outer block
is entered. A contour? is allocated with a declara~
tion array containing cells for the declared identi-
tiers, x and y. The ep of the processor is made to
point to this contour so that the processort!s environ-
ment consists of this contour. Conceptually we say
that the processor is nested inside this contour.
Also, the ip is moved to the next instruction in line
2. This sequencing to the next instruction occurs
after each instruction except a goto and will not be
dwelled upon any more.

T—e2

p

In line 2, the assignment, x = 1, causes a 1 to
be stored into the cell designated by the identifier x.

In line 3, a new block is entered resulting in a
new contour with a cell for a new y. The declara-
tion int y < 2 is an initializing declaration, so the
cell for y is initialized to contain 2. The new con-
tour is nested inside the old one by having the new
contour's static link point to the old contour. The
processor is then moved inside the new contour.

] 1

¥
yi2
T b
H

tBoth a processor and a contour are cells.” The
processor is a cell whose subcells are copies of
the processing units' registers. A contour is a
cell, sorme of whose subcells are the so-called
cells of the declaration array.  We will refer to
these subcells of the declaration array as cells
while remembering that the confour and declara-
tion array are all one cell.



The assignment in line 4, x ox+y, llustrates
the use of local and nonlocal identifiers., The cell
that is used is the innermost cell designated by the
used identifier as one starts at the processor and
works outward on the enclosing contours. The
search path can be described as follows. Follow
the ep of the processor fo a contour and search its
declaration array, If no cell for the desired iden~
tifier is found, follow the static link to the next
contour and repeat the search until a cell is found or
until the search fails,™

So in this example the y of the inner contour
and the x of the outer contour are used to compute
3 which is stored in the cell for the outer contour's
x. Observe that the usual scoping rules have been
thus implemented and that the inner y shields the
processor from using the outer y.

Then the first inner block is exited. The
explicit effect of a block exit is to remove the pro-
cessor from inside the current contour to inside the
next outer contour., This is accomplished by re-
setting the ep of the processor to be the static link
of the current contour. Of course the ip of the pro-
cessor is sequenced to the next instruction.

=

Observe that there is no accegs path from the
executing processor to the inner contour. Hence,
the processor can never regain the contour. This
contour can thus be deallocated.

i
Y

b

-

*A syntactically correct program is guaranteed
successiul searches by the scope conventions.

Note that deallocation has not taken place ex-
plicitly because the block was exited. Deallocation
has taken place because the contour was no longer
accessible by any path of pointers from the pro-
cessor. In this case there were no paths left afier
block exit, but we will see cases where a path has
been left and the contour is not deallocated at block
exit.

Continuing with the example in line 6, the
initialized to the integer 0. A pointer pointing to
this newly allocated cell, i.e., the address of the
new cell, is returned for assignment to the cell for
N

p

In line 7, a new block is entered resulting in
creation of a new contour with a cell for a new
declaration of x. Then in line 8, x < 2 is executed
and 2 is stored in this new cell for x.

x| 3 |
{7 ]
1y 2
It 9
4

When an assignment is to be performed, the
target cell must be explicitly designated. The
indirection operator, *, is used to designate cells
pointed to by pointer values.

In line 9, y* =~ x, the value gtored in the cell
designated by x, that is 2, is stored in the cell
designated by y*,

If the programmer wishes to point to an
already existing cell, he uses the @ operator which
returns the address of the cell designated by its
operand,
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The assignment y -

in line 10 assigns to the
cell for y a pointer pointing to the cell for x in the
inner contour. Observe thal the cell conta?n‘i,ng 2
which uged to be pointed to by the contents of the

cell for ¥ is no longer accessible, so it is deallo~
cated,

a3

RN

1
1)
L

In line 11, the second inner block is exited,
resulting in removing the processor from inside the
inner contour,

= |

s

N

The inner contour has not been deallocated
since the contour is still accessible via the pointer
in the cell for y in the outer contour, The cell for
x in the inner contour is no longer accessible by use
of an identifier, but rather through indirection on y.

In line 12, the assignment x =~ v is executed by
obtaining the integer value 2, pointed to by y and
assigning it to the cell for x in the outer contour.

N
y

The value referred to by y was obtained by a
coercion or automatic mode conversion called
dereferencing. In Oregano, the only coercions
allowed are those that obtain an already existing
value, Conversions which compute new values such

as integer to real conversion must be done explicitly.

{Generic functions are used to allow mixing modes
in expressions rather than conversion.) Further-
more, dereferencing and other coercions are per-
formed enly on the right-hand side of an assign-
ment, where the needed mode can be figured out,
Dereferencing does not occur on the left-hand side
where the assignee must be explicitly designated.

Finally, in line 13 the outer block is exited and
the processor is moved out into a null environment
since the static link of the outer contour is null.
The entire contour structure can be deallocated
since there is no access path to the structure from
the processor.

i =
i
E
o
I

The processor terminates itself because there
are no more instructions.

L]
POOF |

In the future, we will not always show the ep of
the processor and the static links of contours since
the topological nesting adequately symbolizes their
use. However, the presence of these pointers is
not to be forgotten, particularly in view of reten~
tion. Occasionally, for emphasis, these pointers
will be explicitly shown.

Retention

In the previous example, we saw retention in
operation. Consider this example which serves to
igolate the effect of retention:

1 (ptr int y;

2 {int x = 1;

3 y - @x;
4 )

5 print {y*)

L )

In most languages which have pointers as data types,
e.g., MUTANT 0.5, ALGOL 68, PL/1, BASEL and
EULER{286, 30, 14, 2, 4, 38,6, 7], the equivalent of
this program is illegal. These languages apparently
are meant to be implemented in'a stack model[34, 4,
14], Thus, a cell for an identifier ig allocated at
entry to the block in which the identifier is declared,
and this cell is released at exit from this block. lLet
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us compare the stack model and the contour model
snapshots just before exit from the itner block:

i
Cefx] 1]
% T &
i
STACK CONTOUR

After block exit, the top stack item is deleted
leaving a pointer pointing to an nonexistent cell,
The indirection on y in the print statement will fail,
However, the contour model does not deallocate its
corresponding cell (for x).

CONTOUR

Retention is not present for declared identifiers
in MUTANT 0.5, ALGOL 88, BASEL, PL/L, and
EULER; retention is present in the heaps of BASEL
and ALGOL 68 [14, 30, 20] as it is for cells in SLIP
and LISP (21, 31, 32]. GEDANKEN has retention for
all cells including those for declared identifiers,
but the author expressed reservations [24] perhaps
sternming from the lack of a good model, Oregano
has retention for all cells and the retention follows
quite logically from the model the specification is
based on,

Multicle Values

Oregano has a rather comprehensive set of
modes describing multiple values, There are two
groups of these modes: one of multiples whose ele-
ments are of heterogeneous modes and the other of
multiples of elements of homogeneous modes,

The two heterogeneous element multiples are
tuples and structures [2, 14, 30}, They are both
fixed length sequences of elements of possibly
mixed modes. Tuples are accessible and assign-
able only as a whole, while structures have pro-
grammer defined selector names to allow working
with individual components, The following illus-
trates the storage and manipulation of tuples and
Structures., The notation should be clear,
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2 L s
o

3

4 12 et

5 gl «t2;

6 realpart of s2 ~ 2.

7 intpart of 82 —= 3 * intpart of s1;

Q

The following snapshot shows the configuration of
storage after line 7 has been executed,

i
12
s

Gripsipa [ DY

Both gtructures and tuples are stored in pre-
cisely the same manner, A selector can be thought
of ag a constant index, so that application of a
selector to a struct identifier can be completely
resolved into a location designator at compile time.

The other group, that of collections of homo-
geneous values consists of three mode sets:
arrays, sequences, and flexible lists. They are
distinguished by the time at which the size (bounds)
of the multiple is set and the flexibility of the
length at run time. Arrays have bounds set at com-
pile time. Seguences and flexible liste have their
bounds set at allocation time. Arravs and
sequences are {ixed length after allocation, but
flexible lists can be stretched, shrunk or inserted
into. Storage for arrays is allocated at declaration
time, but storage for sequences and flexible lists is
allocated by execution of an explicit allocation
instruction that returns a pointer pointing to the
allocated cells,

Also, the mode of the elements may be any
mode even other arrays, sequences, or flexes. The
following illustrates some of the features of array,
seq, and flex modes.

1 (array [1:5)int a,

2 array{l:5, 2:3] int aa
3 seq int s,

4 sed seq int ss,



5 flex int £

2

7 i 0

g for j = 1105 do

9 for k= 2103 do
10 aa [j, k] — j+k;
11 a~aa |, 3];

12 s — allocseq a;

13 ss ~allocseg

(3 times allocseq(i ~i+1 times 1));

14 ss [2] [1] =~ 1;
15 gs [2] = 8;

16 f « allocflex(5 times 1 v i+1);
17 ingert{allocflex [2]) after f[2]:
18 conc (allocflex (1, 2)) to f;

19 e

In lines 1 through 6 there are declarations of
all of these types. An array can be of arbitrary
dimension but its bounds must be integer constants.
This allows the size of the space for the array in the
declaration array to be computed at compile time,
At declaration time only a descriptor cell for seqg's
and flex’s is allocated in the declaration array. A
descriptor's size may be computed at compile time
because it consists only of spaces for the upper and
lower bounds and pointers to the actual seguence or
flexible list.

12 343
[
2100
3
8
58
f |
i
o7

The for statement in lines 8, 8, and 10 assigns
to each element of aa the sum of its indexes.

o
o
&
[
Y
(&
oy
3
;

In the for statement, variable indexeg have
been used, The number of indexes, that is the
dimensionality, can be checked for correctness
against the mode at compile time. But, in genersl,
there must be a run time check for validity of vari-
able indexes. For arrays the value of the particular
index 1s checked against the bound in the declara-
tion. For gequences and flex's the bound stored in
the degcriptor is used for comparison against a
possible index, In certain cases such as in the for
loop where a variable is bound by the looping bounds
a compiler might be able to forgo a run time check,

Line 11, a ~aa] , 3] causes copying of & sub-
array of aa into the cells for array a, specifically,
the 3-row of aa whose length is equal to that of a,
and whose element mode is the same,

12345
ai41516(7:8
2100131415167
3 41561718
s
35
f 1
i 10

12

In line 12, s ~allocseqg a allocates a sequence
by creating cells Initialized to a copy of a and
returning to the cell for g both the pointer pointing
to the newly created cells and the bounds of the
sequence. Any array valued expression can be used
as the argument of allocseq.

12348

slgialsiva
200l 3 45j:ﬂ{w
3 (415161718
s8] —

38

f ]

i |0

e 13
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The identifier ss is of mode gseq seq int; it can
be assigned any sequence whose elements are all
sequences of integers., It can be assigned a square
matrix in iree form, but it is not resiricted io a
square form. Each of the elements of 55 may be a
different size sequence of integers. The assign-
ment in line 13 allocates a triangular matrix to ss.
(The expression n times x returns an array of n
elements each of whose value is x,)} The statement
results in first allocating three sequences with
successively increasing lengths and then assigning
pointers pointing to these three sequences to three
sequence descriptors, which are in turn allocated as
a sequence of sequence descriptors. The pointer
pointing to the sequence of sequence descriptors is
returned to ss. Line 14 has an assignment to the
first element of the second element of ss in

ss[2][1] = 1,

123453
aBRBE T3]
2/aa]3]4 5817 12
3 (45678 P13 3]
I BERER 3
IE N
f 1 L2 ] “Mtormer)
HE (fergeh)
T 13

Furthermore, sequences need not be allocated
all at once and in a nice pattern. A jagged array is
easy to construct, Line 15 shows assignment of an
arbitrary seq int as an element of a seq seq int:

ss{2]~ s.

1 23 45
5145678
2100314151617
3 1415181718
51151 —
s$l 3] —

f L
NEER

1§

Observe that assignment results in copying that
which is in the cell designated by the right-hand
side. Since only the descriptor is in the declaration
array only the descriptor is designated by 5. The
result of assignment is sharing of the array pointed
to by the descriptor. When an array identifier is
assigned to another array identifier as in line 11,
there is copying. The entire array is in the decla-
ration array so the entire array is designated., To
copy a sequence one might write

ss{2] -~ allocseq s or ss[2] -~ copyls)

Notice also thal passing a sequence as a parameter
results in passing only the descriptor. Kffectively
the sequence is passed by reference. To simulate
true by-value passing one has to pass a copy of the
sequence,

Flexible lists are allocated, assigned, and
shared in the same manner as sequences are. Line
18 has the statement, f = allocflex(5 times 1 ~ 1+1).
A singly linked list of The elements of the array is
created. The bounds and pointers to both the first
element and the last element are returned to the cell
for f,

The linked list arrangement allows stretching,
shrinking, and insertion without reallocation of the
entire array. ILine 17 results in insertion of a
newly allocated element initialized to 2 after the
current second element. The upper bound is
changed and the indexes of f[3] through f[5] are
shifted one number up.

p 2
sl4]s {1 ]

2i00]3|4 18] —

31 1405 113 =13
[RERE] 3
IERE] 8] 4
e S]]

o

The concatenation of {1,2] to f in line 18 makes
use of the last element pointer to quickly locate the
end of the flex where two new elements are added,
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This has been a mere sampling of the multiple
structures allowed in Oreganc. The philosophy of
design has been to design siructures of increasing
difficulty of implementation, to give different
names to each structure, to tell the programmer
what happens, and to allow him to pick the structure
explicitly for his needs. Contrast this with
ALGOL 68's scheme of classifying all of the homo-
geneous multiples under one mode, rows, with
fixed and flexible bound options. The programmer
has no idea of the expense he is causing when he
uges flex.

Labels

In Oregano, labels are treated as any other
value [16]. They can be assigned and can be passed
as parameters; identifiers can be declared to be of
mode label; and label identifiers follow the same
scope rules of use as any other identifiers. An
identifier which labels a statement is implicitly
declared in the innermost block in which the labeled
statement occurs; and the identifier is assumed to
be initialized and made read-only at declaration
time.

At any time, a processor is at some site of
activity which is specified by pointers to each of the
record and the algorithm in the form of the ep and
the ip. A goto is thought of as moving the processor
to a new site of activity, so a label must also con-
sist of an ep and an ip. The following example
illustrates label declarations, label values, and goto's.

1 (label n;

2 (zmmmms

3 n - m;

4 goto 4;

5 T =
6 )

7 Ly

8 goton

9 )

As the block beginning in line 1 is entered, a
contour is created. There are cells for n, which is
explicitly declared as a label, and for 4, which is
implicitly declared as a label. The cell for 4 is
initialized to a label value consisting of an {ep, ip)
pair. The ep of a statement label identifier is a
copy of the ep of the processor at the assumed
declaration time. The ip points to the labeled state-
ment in the algorithm {represented by a pointer to
the line number).

%w?

T2

/

Continuing with the block entry in line 2, a new
contour is created, The contour has a cell for the
implicitly declared and initialized label m.

éﬂ = =3

Then n — m in line 3 causes copying the label
value stored in the cell for m in the inner contour
into the cell for n in the outer contour. The ep of
the label value in n now points to the inner contour.

::ﬁ =5 [ =
] g 5 m -5
.

Then goto £ is encountered. The label value in
the cell for % is accessed, The ep and ip of the
processor are made to be copies of the ep and ip of
4, respectively., Execution continues in the new

accessing environment with the instruction pointed
to by the ip of the processor.

=35 [m]., {—=35]
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Since the ep of the label in n still poi to the

inner contour, this contour is retained., When a.
goto is performed, especially with a nonlocal label,

there is a potential contour deallocation. However,

contour deallocation happens t because the goto
I _— e oty

but because the is no acgess

has exited the block,
3 srocessor to the contour,

B

at line 7.
ity back inside
to execute line 5.

> the execution with got

proccssor now finds its site o
inner contour and it is rea

(A
5
[
-

Progedures

Procedures are also treated with the same
generality as other values in Oregano. Procedure
values may be assigned and passed as parameters.
The content of a procedure value is described in
detail later,

Procedure variables may be declared, A pro-
cedure value has the additional property that when
it is accessed, it gives rise to a "block” activation.

Let us consider an example with a rather simple
procedure,

1 (proc {int] int p, intb;
2 (int a +~ 0;

3 p - {nt i;

4 a - atl;
5 a+i

5 ¥

7 (int a ~ 2;

8 b~ p(2)
g )

10 )

11 b= p(2)

12 )

The identifier p is declared to be a procedure iden-
tifier which may be assigned the value of any pro-
cedure which accepts one integer parameter and
returns one integer resull., The assignment begin-

ning in line 8 is the assignment of a procedure
literal, The literal matches the mode of p; il has

one integer parameter 1 and it returns an integer

The textual so upt’ rules extend Lo pi"ow
bodies, so the nonlocal a is a use of the

ed in line 2,

To call a procedure, we need two pleg
- of the procedure body in the

information: the t¢
lgorithum and the environmenti in the record of

execution containing the proper cells for nonlocals,
Hence, a procedure value is an (ep, ip) pair.

In Oregano, parameters are passcd entirely by
value. Other parameter initialization mechanisms,
i.e., by reference and by name (procedure), are
simulated by explicitly passing reference (pointer)
and procedure values by value,

The block beginning in line 1 is entered,
creating a contour with cells for p and b, Then
another block is entered; a contour is created with ¢
cell for a initialized to 0.

T3

The assignment of the procedure literal to p in
lines 3 through 6 causes computation of a procedure
value and storage of this value into the cell for p.
The ip points to the beginning of the text of the pro-
cedure in the algorithm, i,e,, to the entry point in
the middle of line 3 {represented as " - 3.5"), The
ep is a copy of the ep of the processor at this time,
so the ep points to the current contour.

%‘b =35

| o[ 0]
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In line 7, a new block, which declares and
initializes a to 2, is entered,

Now in line 8, there is a call of p. A contour is
created with cells for both the formal parameter i
and a return pointer. The cell for i is initialized to
the value of the actual parameter 2. The cell for the
return pointer is assigned a pointer pointing to the
calling processor. The new contour is nested in the
contour pointed to by the ep of the procedure value
{the static link of the new contour is a copy of the ep
of the procedure value), This places the contour of
the call in the environment that has the cells for the
nonlocals.

A new processor is created nested inside the
new contour, i,e., its ep points to the new contour.
The ip of the new processor points to the entry point
of the procedure body which is obtained from the ip
of the procedure value. Finally, the new processor
is awakened and the calling processor is put to
sleep. The sleeping calling processor, pointed to by
the return pointer, has an ip pointing to the instruc-
tion to be resumed with at return time,

bﬂfi;%;“‘

e
ret pir | B {w*w—“\
e85
\ T35
1

The nesting of the contour for a procedure
ingide the environment pointed to by the ep of the
procedure value insures correct nonlocal linkage
merely by the outward search algorithm that has
already been used.

Now executing a — a+1 in the body of the pro-
cedure at line 4, the value in a cell for a is incre-
mented by 1. The cell used is the one corresponding
1o the @ declared in line 2, in whose scope the pro-
cedure body lies, Then in line 5, the result of a+i,
namely 3 is computed and stored in an accumulator
accessible to the executing processor (of the call).

ler [
|
i
bl
e
-
- ]

I
L

The end of the body is reached in line 6. So a
return must be performed. The accumulated result
is sent via the return pointer to an accumulator
accessible from the sleeping processor at the site of
call, The called processor is put to sleep and the
processor pointed to by the return pointer is
awakened. Now the executing processor is the one
at the calling site.

2l —=35
b

af 2 |
i 2
| ret p‘rrs g
[3)7—o 3] 785

Since the asleep processor and the contour for
the call are not accessible from the currently
execuling processor they may be deallocated.

Now at the calling site, line 8, the assignment
to b is completed. The result of the call, stored in
the accumulator, is assigned to the cell for b.

%f 3~«» 35] }
) 1 ] !

A block is exited at line 9 moving the processor
from inside the innermost contour; this contour is
deallocated. Then in line 10, another block is left,
The processor moves from inside the second to
inside the outermost contour. However, since the
second contour is pointed to by the ep of p, the
second contour is retained, -
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Now at line 11, p{2) is called. A contour is
created with a cell for i initialized to 2 and a return
pointer to the present processor. This contour is
placed inside of the retained contour since the ep of
P points to this contour. A processor is then
created to control execution of the body; the called
processor is awakened and the calling processor is
put to sleep,

p] [—=33
}[/ 3 7 —e= 1.5
|
\ @ !
i] 2
et pir | T
T —emg

The body of the procedure is computed. The
nonlocal a is incremented by 1 to 2. Then the
result, 4, is returned, and assigned to the cell forb,

Observe that the cell for a is retained even
though the block in which it is declared has been left
and the cell for a is going to be accessible only from
within an invocation of p, The a can be considered
to be private to p {similar to ALGOL own, CPL and
BASEL nonlocals {14, 2, 3]).

In closing the section on procedures, we briefly
mention that any procedure whose activation environ-
ment includes its own identifier can be called recur-
sively from within itself. One example of a recur-
sive procedure is the standard factorial routine:

1 [ {proc [int] int p, int b;

2 p - {inti;

3 ifislthenl

4 elge i *pli~-1) ) ;
5 b be=pi{3))

Since all calls on the same procedure use the ep of

the same procedure value, all contours for recursive

activations will be immediately nested inside the
same contour and not in each other. The reader

should verify that the snapshot at the time of the
third recursive call of p is like so:

It is clear that there will be no confusion as to which
i should be used in any given activation, because the
contours for the activations are disjoint.

Coroutines and Tasks

Oregano has facilities for coroutines and tasks
(parallel routines). To help manipulate these
control structures, two modes are provided: routine
and gvent. Of course, identifiers having either of
these modes follow the same scope rules as any
others. Values having any of these modes may be
assigned and passed as parameters just as any
other value,

Coroutines

To control coroutines, identifiers and values of
mode routine are used to name and retain a particu-
lar call of a procedure which is specified to be
treated as a coroutine. The retention insures the
ability to resume the same instance of call of a
coroutined procedure, The techniques and various
operators directed at coroutine implementation are
illustrated in the following skeleton of a program
{assume that the missing lines affect neither the
sequencing nor the coroutine),

1 (proc p, routine c, m;
2 poe {mmmmnn

3 resume m;

4 e

5 ¥

6 p coroutine c this m;
O

8 resume ¢;

9 e
i0 quit ¢, m;
11 )
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In line 1, the block declaring p, ¢, and m gives
rise to a contour creation. Then in line 2, a pro-
cedure value ig assigned to p. The body has been
compiled as any other procedure literal,

TG

In line 6, there is a call of p. However, there
ig additional information. The call is specified to be
a coroutine call, and this particular call or invoca-
tion is given the name ¢. Furthermore, the calling
routine, executing in the outer block, is given the
name m. These names will be used with resume
and in other communication between the two activi-
ties,

The effect on the record is as follows., A con-
tour is ated for the call nested in the contour that
the ep of p points to, Parameters, if any, are
initialized and a return peinter to the calling pro-
cessor set, A new processor to control the
execution of the procedure body is nested in the new
contour. Coroutine ¢ resulis in asgsigning to ¢ a
pointer to the called processor. This m results in
assigning to m a pointer to the oa]]mg processor,
Finally, the called processor is awakened while the
calling processor is put to sleep.

©

P =2 1
¢ - ret  pir
,.[“_j_w_. J\ / L]
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There appears to be very little difference
Pr K

between a coroutine call and a simple procedure call.

The only difference is that a pointer to the called
processor is=assigned to an identifier of mode
routine. Because of retention, the call may be left
and the called processor and its environment will
still be around for resumption.

Now in the body of the procedure, execution
proceeds until resume m in line 3 is encountered,
The operand of FesumE Thust evaluate to a value of
mode routine which in turn ig'a pointer to some
processor, Resume m merely causes pulting the
current {called) processor to sleep while awakening
the processor puinted to by the value in m.  The
processoy just put to sleep is left pointing to'the

instruction to be continued with. Also, the called
processor and the contour of the call are retained.

Now back in the main block, the m processor
continues with the instruction after the call. In line
8, there is a resume ¢, The current {calling) pro-
cessor is put to sleep and the processor pointed to
by ¢ is awakened,

T

Back in the body, the called processor continues
with the instruction after the last resume, that is, in
line 4, The execution finally arrives at the return
bracket, ). The result is that the processor pointed
to by the return pointer is awakened while the
current (called) processor is put to sleep, It is as
though a resume to the calling processor were
executed, However, since there is no gsuccessor io
the return instruction, >, the called processor
terminates,

[==7]
e
9 |

e

-3

The calling processor finally comes to line 10
where guit c, uit ¢, m merely erases the pointers. in ¢ and

m. The 1e terminated called processor and the con-

tour for the call can be deallocated,

P\\%Z

E23

3
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The assumption of retention in the language,
Oregano, makes coroutine handling a trivial exten~
sion of normal procedure calls., DNote that the
sharing of the environment between two coroutines
have been quite eleganily taken care of by the normal
scope rules combined with environmental nesting.

In the literature, two V stacks have been used fo
implement coroutines [5, 33-p327} and special con~
ventions and tricks have had to be used to obtain
sharing,

The routine name serves to name a particular
call of a procedure., To regain or otherwise use
this call, the rouiine name is used., A use of the
procedure identifier would generate a new indepen~-
dent call of the procedure. Thus, it is possible and
quite easy for there io be recursive coroutines, a
procedure call within a coroutine of the same pro-
cedure, etc., with no confusion as to which instance
of a procedure call is which coroutine and as to
which instances are plain procedure calls,

This flexibility also exiends to tasks as we see
that tasks are really another simple (albeit a little
less so) extension of procedure calls.

Tasks

A tasked procedure call is guite similar to a
plain call or a coroutine call, The main difference
ig that in the tasked call both the calling and called
processors are awake, The order of execution of
the statements of the calling and called routines is
unpredictable with subsequent unpredictable side
effects. A means of synchronizing the tasks is
needed,

Procedures may be called with a task option
and the resulting called activity optionally given a
name of mode routine,

A task may be set at a given priority and a task
can wait until an event has occurred{l, 4, 5, 8,9, 27},
Of course, there must be facilities for locking and
unlocking of resources to guarantee that only one
processor may manipulate data in poientially simul-
teneously shared resources at any given time, These
facilities are necessary for setting up waits and
event notices so that they can be completed without
interference, Also, the facilities for locking and
unlocking shouldbe made available to the programmer,
Oregano will have these features, However, at this
time the author has not decided on the implementa-
tion {and therefore the expression) of the features,
Thus, this paper avoids the topic, {Several possi-
bilities for implementation of locking and unlocking
can be found in the literature 5, 8, 9, 271}

The following outline of a program illustrates
these features of parallel processing,
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o (proc(im__'g\)p? routine t, event e;

2 p = (int i

3 e

3 ———

7 o

10
11 p{l) tagk t priority 5;

12 wait e;

13 b e )

We introduce a new construct to the model
which hasg always been present in the model but has
so far been extraneous to the discussion. There i3
a doubly linked list of the awake processors called
the ready list. The header of the ready list is
known io the operating system, and the processors
are maintained in the list in priority order. The
scheduling algorithm will be made explicit only to
the extent that processors on the ready list are the
only ones which may be executed, and that as many
of these as possible are executed given the number
of processing units in the machine,

The block beginning at line 1 has declarations
for a procedure p, a routine i, and an event &. The
format of event cells will be discussed later, but at
this time the event is set al "Not happened"”, The
ready list is shown containing the processor which
executes this block. To facilitate the linking on the
list, each processor has a pair of pointer cells and
other registers containing the state and other infor-
mation., This processor is set at awake,

a2

~ tgody list

In line 2, the procedure value is assigned in the
ugual manner. Then in line 11, there is a call of p
with a task option, p(l) task t priority 5. A contour




is created and nested in the contour pointed to by the
11 for the p neter iy initialized to

=e of the ta option, the return pointer is

Lo nil. {(The procedure body is coded in such a

¢ return pointer is nil, the ¢

Ciw ot be terminated,

cpof p, The

1led pro-
One cannot predict at

le time whether or not a procedure literal may
ha' llwz with the task optlon during execution. In
facl, a given procedure may be used in both a plai
call and a task call, 50 a general mechanism is
necded, ) A new processor to control the tasked call
is created and nested in the new contour. A pointer
to this new processor is assigned to the routine
tdentitier t, Finally, the new processor, herein-
after referred to as the called processor, is
awakened and placed in the ready list according to
the priority information given in the call statement,
I'he calling processor is not put to sleep

i
pir l

Za— rgady list

We pick an order of execution which is consistent
with the tasking and which illustrates some points.

Asgsgume that the calling processor comes fo
it e in line 12. The processor is to wait until the
event e has happened. The status of the event is
checked; it has not happened, so the calling pro-
cessor rmust be put to sleep awaiting the event ¢.
The processor must somehow be linked to the event
so that the event can signal the processor when it
has happened. The processor is put to sleep and is
removed from the ready list. The two pointer cells
used for ready list linking are used to link the pro-
cessor to a doubly linked list of all processors
awaiting ¢. The result is that the calling processor
is asleep xeady to continue at line 13, and the called
processor has been continuing to execute.

[P rpaty tist

When the called processgor scans gause € in line
8, the cell for e is accessed and its sfatus 18 set to

"Happened?, The doubly linked list is used to visit

each processor waiting for event e. When the
sleeping calling processor on the list is visited, it
is awakened and put on the ready list. The freshly
wakened processor continues with line 13 while the
called processor goes on executing in the body, To
allow an event to be reused, the programmer may
reset an event to "Not happened” by writing reset e,

]
!
T | 1
L ]
,,,,,,,, }
Q“ J‘*ﬂ‘/ﬂ—recdy list
Finally, in line 10, the return bracket is
encountered by the called processor. Since the
return pointer is nil , the processor knows it should
terminate itself, However, because of the pointer
in the cell for t, the terminated processor and the
contour pointed to by its ep are retained. To get
rid of these no-longer-useful structures, either a
quit t can be execuied to get rid of the pointer or
else when p(l) was called as a task the routine
identifier could have been left off--p(1)task priority 5.
The purpose of using a routine name in the task case
is to provide a means of communication between the

processors in such statements as terminate t or
priority (1) =17,

2]
1

BN
T
N

Because of the perspicuity of the model, tasking
has been described and implemented as a rather
simple extension of procedure calling. Further-
more, because of retention, the ad hoc PL/1 excep-
tions and abnormal terminations have been elimi-
nated., Consider the Oregano program on the
following page and its PL /1 counterpart. Notice the
nonlocal x in p; x is declared in Bl.

-

wa— ready list
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1 BO B0
r— — o
{--- BO: PROC OPTIONS (MAIN);
2 | BY (procps int x ‘;i BEGIN; DOL X FINED;
3 5‘_ <X - P P PROC; -~ ==~ X -~
4 b .y - - - BEND;
3 PR R
B2 (... B2 TGING - -
6 ¢ ( B2 BEGIN;
7 ptask CALL P TASK;
8 B3 (- B3 BEGIN; - - -
9 [ goio 4; [ GOTO L;
10 ) END;
i1 - — END;
12 1k L END;
13 Liw Ly =~
o) L. END;

Just after the task is called, the usual PL/1
forked stack implementation {4, 19] looks like {the
static links are shown):

(e

Then, when the calling task enters block B3, the
stack assumes a forked shape

83

}

2

B
81

P
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Suppose the goto 2 in block B3 is reached before
execution of the task call of p has terminated, Since
the label £ is in block BO, transferring to 4 from in
B3 has the effect of exiting blocks B3, B2, and B1.
Thus, in normal PL/l the storage for B3, B2, and
Bl is deallocated, This leaves a disastrous gap in
the stack; in particular, part of p's accessing
environment, namely the x in B1, has disappeared,

The PIL,/1 semantics saves the sitluation by saying
that the task call of p is terminated abnormally,

In Oregano, with the contour model and reten-
tion, after the task p has been called and the calling

2

processor has entered B3, we have

80

n
i
@

Now if the right-hand (calling) processor
reaches the goto 1 before the other processor term-
inates, the right-hand processor merely moves out
into the contour for BO

Bo
2] ) =5 S
o &l
/R
P [=3
) P
3

Only the contours for B2 and B3 can be deallo-
cated., The contour for Bl, containing the nonlocal
% in p's accessing environment hag been retained.
The other processor can continue until it terminates
normally.

Practicality

Oregano has been designed to be compiled into
efficient object code rather than to be executed by
interpretation. Three features are particularly
helpful in this respect: static mode checking, static
scope checking, and retention. The mode structure
of Oregano is such that all mode compatibility may
be checked for at compile time except in cases

=188~



involving modes union, pointer, and basic which are
provided as escape clauses from static mode
checking {14, 2, 30]. Programs that would otherwise
terminate because of mode incompatibility are
caught at compile time. Furthermore, the need for
time conswming run time checks for mode compati-
bility has been eliminated., The invariance of the
sted declaration structure in the algorithm and its
preservation in the record of execution allow for
compile time checking of scope validity and for gen-
eration of {i,}) pairs, i.e., { nesting height, dis~-
placement in declaration array ) pairs, as the object
representation of identifiers. The (i, i) pairs are
used in conjunction with a display (23, 11, 13] to pro-
vide rapid access of the contour of the proper height
and the proper cell in the contour at run time.* The
assumption of retention allows pointer, label, and
procedure value assignments to be performed with-
out a costly run time check (necessarily at run

time [10]) on whether or not the assignment will
resull in a block exit at a time when a cell in the
contour for the block is still pointed to.

i

Conclusion

This paper has presented the current state’ of
the development of Oregano. The primary vehicle
for designing and explaining Oregano has been an
information structure model describing its imple-
mentation, The model has allowed discovery, inclu-
sion, and explanation of powerful new features such
as retention. The model has helped in designing
and describing the wide variety of multiple value
structures. The model has assisted in wnifying and
simplifying the various control structures such as
labels, procedures, coroutines, and tasks, It is
hoped that the model oriented specification makes
these features palatable, transparent, and easily
applied by showing the user the precise effect of the
execution of his programs. The definition used
certainly makes Oregano easy to iraplement, for the
definition is but a description of a feagible efficient
implementation. Finally, the definition shown
serves to help the computer scientist study these
features with much more clarity than has been
possible with other types of definitions.
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