
Formal Desc ri ptions of Prograrmiing Concepts, E.J . Neuhold (ed .)
North-Holland Pub l ish ing Corrpany , (1978)

MODELS OF HIERARCHICAL MACHINE SUPPORT

%t*# D. M. Berry
Computer Science Department

Un iversity of California
Los Angeles , California 90024

M. Erlingert @

H~ghes Aircraft Co .
Computer Science Department

University of California
Los Angeles, California 90024 El Segundo , California

J . B. Johnston&t
Computer Science Department
New Mexico State University

Las Cruces , New Mexico 88003

A. von Staa
§

Departamento de Informatica
Pontiffcia Universidade Catolica

Rio de Janeiro , Brasil

90230

In a multilevel hierarchically designed and implemented operat ing
system , there are several methods for supporting the abstract
machine a t any level : interpretation , enmasterization ,
virtualization , compilation , and software extension. This paper
presents examples of each method and describes a framework for
characterizing any method as a pair of informati on structure
models and mappings between them. The framework i s used to de­
scribe t hree of the methods and their examples (descriptions of
the other methods may be found in [BEJS77]) . The paper concludes
wit h a view of an entire system as a possible multipeaked tower
of such models .

1 . Introduction

There is much talk about building a system hierarchically , bottom- up from a raw
machine [Dij68 , Bri70 , ZR68 , Bau73, Den73, Goo73] . Each level implements a
higher level machine in terms of the primitives offered at that level . A typical
system is shown in Figure 1 . 1 .

This research was supported in part by the National Science Foundation , Grant No .
DCR74- 08659 .

tThi s research was supported in part by the U. S . Energy Research and Development
Administration, Contract No . EY- 76- S- 03- 0034 , PA 214 (formerly E(04- 3) - 34 , PA 214) .

* This research was suppor ted in part by IBM do Brasil .

#~his research was supported in part by the National Science Foundation , Grant.No .
OIP 73- 07346 A02.

§This research was supported in part by the CNPq (BRASIL) - NSF (USA) interchange
program .

&This research was supported in part by the National Science Foundation , Grant No .
MCS 75- 15997 .
~is research was supported in part by Hughes Aircraft Co . ' s Ph . D. Fellowship .
~ 1977 by D. M. Berry , M. Erlinger, J. B. Johnston and A. von Staa

.J.JU DCKKY , ~KLlNG~K, JOHNS TON, VON STAA

360/67 -------.....
;/ 2067 \

(1 l 2 3 4 5 6 9 7 8

Figure 1.1

The machines from the lowest l evel on up are :

1. The raw IBM 2067 microprogrammable host machine
2 . A system 360 model 67 microprogrammed on the 2067
3 . A vi rtual machi ne monitor CP 67 which is the 360/67 extended with a number

of rout i nes for managing vir tual machine
4 . A virtual 360 , supported by CP 67 which looks like a traditional 360
5 , NUCLEUS/360 provi ding the basic supervisor routines which use the pri

pri vileged instruc~ions

6. Operating System/360 (OS/360) which is NUCLEUS/360 extended by a number of
useful packages , compile~s , utility routines and access methods

7 . A PL/1 machine suppor ted by compilation of PL/ 1 programs into 360 machi ne
code combined with OS super visor calls (i.e ., "OS machine" instructions)

8 . A LISP interpreter written in PL/1
9 . A user ' s programs written in LISP

Even cursory examination of the multilayered system shows that the progress i on
from layer to layer is not done i n a uniform manner . Five different methods can
be identified .

HIERARCHICAL MACHINE SUPPORT 559

l) Inter pret ation - The simulation of a computation at one level by di rect
manipulation of the data structures for that level by a program written
in the language of the next lower level . I f t he lower level is a micro­
programmable machine , interpretation is often called emulation . The steps
from levels 1 to 2 and 7 to 8 are the examples of interpretation and the
f ormer is the one example of emulation .

2) Enmasterization - Extension of a machine not capable of performing certai n
privileged instructions by use of a non- privileged supervisor call in­
struction to cause trapping to supervisor state in which the privileged
instructions may be performed . The jumps f rom levels 2 to 3 and from 4 t o
5 are the cases of enmasterization in out exampl e .

3) Virtualization - Support of a machine nearly ident ical to the support i ng
machine with nearly the same execution speed as the supporting machine .
I t requires that all sensitive instructions directly dealing with a re­
source be privileged and it usually uses enmasterization to have the sup­
porting machine do the privileged instructions on behalf of the supported
machine . The step from levels 3 to 4 is t he example of virtualization .

4) Compi lation - Translation of a source program i n the language of the im­
plemented machine to an object program in the language of the implementing
machine whose effect as seen by the user is the same as the s ource pro­
gram. The progression from levels 6 to 7 is the example of compilat ion i n
our hierarchy .

5) Software extension - The " extensi on" of a language capabl e of calling pro­
cedures in the language by a s et of procedures written in the l anguage .
The language i s made to appear more powerful in that at least the user of
t he procedures does not have to wri te them . This method of support i s
used in moving from levels 5 to 6 .

If t he input of the user program is considered a language t hen the step from
levels 8 t o 9 may be considered an example·of interpretation.

This paper is a shortened vers i on of a much larger work , [BEJS77] , which attempts
to clarify the differences between these methods of machine support . In [BEJS77],
each method as described in terms of mappings between two Information Structure
Models (I SMs) [Weg71] , and each ISM is a variant of the Contour Model [Joh71] .

In t his paper we first define ISMs and ISMs for programming languages and then
describe a portion of the CM sufficient for our purposes . The concepts of the
Implemented and the Implementing Machines are offered, and we give a framework
for our method descriptions by characterizing what a support method really is in
terms of machines and mappings between machines . Then two of the methods are
described in terms of t hese characterizing mappings . For descriptions of the
other methods see [BEJS77] .

The impetus for writing this work came from our attempt to understand "Nested
Interpreters and System Structure" by Michael J . Manthey [Man75] . This report
describes a contour model of multilevel i nterpretation . We have t aken a different
approach to modeling t his part i cular phenomenon and have extended the approach to
other and mixed methods of support .

2. Nondeterministic Information Structure Models

We will define a machine , real or abstr act , by giving a nondeterministic informa ­
tion structure model (NDISM) t hat behaves like the machine . A computation of a
program in the language of the machine will be described as a sequence o f snap­
shots (instantaneous descriptions , core dumps) taken between successive instruc­
tion executions . Each computat ion starts off with an i nitial snapshot S0 and

proceeds through success ive snapshots s1 ,s2 , •• •• Each snapshot i s obtained from

"t<he previous by exe·cut i on of some instruction , that is , by the appli cation of

..JVV HERRY , ERLINGER, JOHNSTON, VON STAA

some transformation . Since some of the machines in [BEJS77] have multiple proces­
sors , it may be nondeterministic as to which instruction is executed next . Conse­
quently the transformation is nondeterministic ; that is, it maps a snapshot to a
set of snapshots .

Therefore , we define a NDISM as a three tuple, (I , I 0 ,F), where I is a countable set

of all possible snapshots , r
0

is Lhe subset of I which is the set of all possible

i nitial s napshots , and F is a transformation which maps a snapshot to a set of
snapshots .

Definition 1 . M = (I,I
0

, F) is a nondeLerministic information structure model
(NDISM) if and only i f

1) I is a countable set of objects called snapshots .

2) r
0
cr is the set of objects called initial snapshots .

3) Fis a transformation of the form F : I~ P(I) , where P(I) denotes the set
all subsets of I 1

The transformation is applicable to a given snapshot i f the transformation maps
the snapshot to a non- null set of snapshots . A snapshot is transformable i f the
transformation is applicable to it ; otherwise it is intransformable .

Definition 2. Let M = (I,I0 ,F) be an NDISM; let s e: I be a snapshot. Then ,

l) F is applicable to s if and only if F(S) ..).
r 0.

2) s is transformable if and only if F is applicable to S.

3) s is intransformable i f and only if S is not transformable •

A computation is a sequence of snapshots satisfying certain i nitial and inductive
conditions ; i . e . , if the sequence is non- empty , then the first snapshot in the
sequence , s

0
, is an element of 10 ; and, for all Si in the sequence, Si e: F(Si_1) .

However , this is not enough . Suppose <s 0 , s
1

, s 2 ,s3> is a computation . Then

clearly t he sequences <S
0

> , <s
0

, s
1

> and <S0 , s
1

, s 2> all sat i sfy the initial and

inductive conditions and thus appear to be computations even though they are all
"incomplete" subsequences of a computation . To fix this hcle in t he definition
we add the stipulation that a computation is a sequence that is also not a proper
initial subsequence of any other sequence satisfying the initial and inductive
conditions .

Definition 3 . Let M = (I , I 0 , F) be an NDISM . Then the sequence C =
<s0 , s

1
, • • • , ~i , •• • > is a computation in M if and only if

1) for all S .
1

in c , s.
1

e: I ,

2) if c t- <> (the empty sequence) , then s0 e: IO ,

3) for all s . in C with i > o, S. E F(S .
1

) , and
1 1 1 -

4) for all sequences D satisfying 1) , 2) and 3) above , c is not a proper
initial subsequence of D1

We say that C is a computation of s 0 in M if the first snapshot of C is s0 •

Al so , for an NDISM M, we define the function M to give all computat ions in M of
a given s 0•

Definition 4 . Let M = (I , I 0 ,F) be an NDISM ; let s0 E I 0 . Then

HIERARCHICAL MACHINE SUPPORT 56 1

1) C is a computation of s
0

in M if and onl y if

a) c 1 <> is a computati on in M.
b) The first s napshot in C i s so .

2) M(S
0

) = {cjc is a computation of s
0

in M} f

Since ever y snapshot of a computation C except the first is obtained by t r ans­
forming the previous , it i s clear that there is at most one intransformabl e snap­
shot in C (there may be none , if C does not hal t) and i f there is an intransform­
able snapshot in C, it must be the last one .

THEOREM l . Let M = (I , 10 ,F) be an NDI SM; let C be a computation in M. Then

l) There exists at most one snapshot s € I in C such that S is intransform­
able .

2) If S € I is a snapshot in C such that S is intransformable , t hen is the
last snapshot in C.

3) If S E I is t he last snapshot in C, then S is intransformable1

We now have the right t o speak of the un i que int ransformable snapshot S of a
computation if such a snapshot exists . We call a computation that has one a
halting computation and we call the intransformable snapshot the final snapshot
of t he computation .

Definiti on s. Let M = (I , I 0 ,F) be an NDI SM ; let C be a computation in M. Then

l) C halts i f and onl y if for some s € I , s is in C and S is intransformable ,

2) final(C) is defined if and only if C halts ,

3) final (C) = s if and only if S is in C and s is in transformable I

So far , NDISMs and computations have been defined independently of machines and
their languages . Since the NDI SMs given in t he sequel are for modeling machines
and the execution of programs in their languages , we must add assumptions under
which an NDISM will be considered a model of a machine MACH with machine language
L. In most machines and languages, we have input and output capabilities . There­
fore , we assume that for each NDISM, M, modeling a machine MACH with language L,
there are snapshot component selection functions called i nputM and out putM which

select t he input and output lists of a snapshot . We also assume that there is a
set of input lists , INPUT , and a set of output lists , OUTPUT , in which all possi­
ble input lists and output lists of integers , reals , booleans and character
strings may be found .

Furthermore , we as9ume t hat there exists an ini~iation function initM' which pro­

duces a n ini tial snapshot of M from a gi ven program p in L and a given o i n INPUT .
The inputM and initM f unctions are assumed to be related in the f ollowi ng manner :

the inputM of an initial snapshot s
0

is o if and only if for some program p in L,

s0 is the result of initiation with p and 6 .

Assumption l . Let M = (I , 10 , F) be an NDISM for a machi ne MACH with language L.
Then

1) there exist countable sets INPUT, and OUTPUT of lists of i ntegers , reals ,
booleans and character strings . The empty list , <> , is in both INPUT and
OUTPUT .

2) there exist functions , inputM : I +INPUT and outputM : I + OUTPUT .

3) ther e exists a function , i nitM: (LXINPUT) + I 0 •

4) for all s0 € I 0 , inputM(S0) = o i f and only if for some p € L, ini tM(p ,o)
= so •

562 BERRY , ERLINGER, JOHNSTON, VON STAA

Therefore , the set of computations in M of the program p in L with input o is
denoted by M(initM(p ,o)) .

Since we are concerned onl y with NDISMs for machines, we shall refer to them
simply as NDISMs in the discussions that follow,

In t his paper , all of our examples involve machines with one processor ; thus ,
t here will be at most one successor to a given snapshot . An NDISM for which this
is true is called a deterministic ISM (DISM) .

Definition 6, Let M = (I , I
0

,F) be an NDISM . Then

M is a deterministic informat ion structure model (DISM) if and only if
for all S € I ,

cardinality (F(S)) s 1 1

If we restrict our atTention to DISMs , t hen a number of notational s i mpli fications
are possible .

Notation 1 . Let M = (I , 1
0

,r) be a. DISM. Then t:ie notation i n the left column shall
be used in place of the corre sponding notation in the right column :

F(Si) = si+1 si+1 € F(Si)

F(S .) is undef ined
l.

3. Contour Model

F(S.) = ¢
l.

t he one element of M(S
0

) I

The conTour model, introduced by Johnst on [Joh69a , b , 71] is an NDISM which , be­
cause of the pictorial nature of its snapshots , has proved to be particularly
suited for describing a variety of computational phenomena . These include nested
declaration programming languages [Bry74a , OFP78], machines [Org73], and Multics­
like systems [Joh75] , For a more complete description of its pedagogic use s ee
[Bry74b].

The model we use here is the basic model enhanced by modification suggested in
[CDMPS73 , JBM74] . Because most operating syst ems are written in languages with
compile o~ link edit time binding of nonlocal identifiers , i . e ., those of the
Algol family , we will restrict oursel ves to considering t he static- b inding ver­
s ion of the cont our model suitable for modeling The Algol family . In the termi­
nology of [Joh73], we will use the STATIC compl ete identifier b inding strategy.
This version has been defined in VDL [Bry75].

3. 1 Snapshots
I n the contour model (CM), a snapshot consists of a time- invariant algorithm and
a time- varying record of execution .

The algorithm consists of a sequence of instructions embedded in a nest of algor­
ithm contours . See figure 3 . 2 for an algorithm corresponding to the source pro­
gram of figure 3 . 1 . Each algorithm contour corresponds to a block or procedure .
The instruct i ons or contours nested inside contour a A correspond to statements or
blocks or procedures nested inside the block or procedure corresponding to
contour A.

An algorithm cont our has in its upper left hand corner a declaration array with
one subcell for each identifier declared in the corresponding block or procedure ;
in the subcell lies the identifier paired with its type . If an algorithm contour
is that of a procedure its declaration array will have as its first subcell , an
entry explicitly declaring a vari able to hold the return label of a call .

2. l

2.2
2.3

4

5. l

5.2

5.3

6 . 1

6.2

6.3

7

8

I

a
p

a

p

__ ,

HIERARCHI CAL MACHINE SUPPORT

begin int a;
2 proc p = (int i)void:
3 a :=i;
4 begin int a;
5 a:=2;
6 p(a)
7 end
8 end

Figure3.l

ENTERBLOCK
INT

PROC AENTERPROC
AOR , p I et rET LABEJ

MAKEPROC' INT I
STOD ADR,a

VAL,i
ENTERBLOCK - STOD

aT J INT I RETURN
I ADR,a I

C,2 I

I STOD
VAL, p
VAL,a

_ CALL , l ,0
EXITBLOCK
EXITBLOCK

Figure 3.2

ENTERBLOCK
INT

PROC ~ENTERPROC

p:=makeproc(l); C(ret RET LABEL
ENTERBLOCK ; INT

aT INT] a :=i
a :=2; RETURN
p(a)
EXITBLOC K
EXITBLOCK

Figure 3.3

.
I

'
I
I

I
I
i
I
I
I
I
I

2.4

3 . l

3.2
3.3
3.4

563

\

I
t

:>b4 BERRY , ERLINGER , JOHNSTON , VON STAA

The instructions i n most of our examples will be int ermediate level polish style
instruct ions . In Lhis case each instruction corresponds to a basic semantic
primitive , e . g ., evaluat i on of a variable on the l e ft hand side of an assignment ,
evaluation of the value of a variable or of a constant , performance of some
operati on such as the arithmetics , logicals , comparisons , assignment , etc., block
entr y or exit , procedure call or return , goto , etc .

In other cases , for the sake
may be used as instr uctions .
algorithm of figure 3 . 2 .

of compression , h i gh level source language statements
See figure 3 . 3 f or a higher level rendit ion of the

The record of execution consists of a nest of record contours with a set of proces­
sors a nd processes. See the right half of rigure 3 . 4 for the record of a snap­
shot i n the computation of the algori thm of figure 3 . 2 .

Each record contour is an activation of an algori thm contour , i . e . , that of a
block or a procedure . The algorithm contour is sai d to be the antecedent of the
record contour , but s i nce There may be more than one acTivation of a given algor­
ithm contour (due to perhaps recursion or mulLiprocessi ng) , The record contour is
~descendent of the algorithm contour .

Ea ch record contour , c , contains

1) a static link pointing to the record cont our D nested about C; D is a
d~scendent of the a lgorithm contour nest ed about C' s antecedent . We
typically do not show thi s link , as i t is represented quite a dequately by
the graphi cal nesting of the contours

2) a value array consisting of subcells pa iring the i dentifiers declared in
C' s antecedent wi th their values .

We depart from t he usual CM and distinguish bet ween processors and pr ocesses .
The designations are level- relative ; at a given level a processor is a sel f run ­
ning processing unit capable of executing instructions and effecting the required
changes TO the memory ; a process is a data cell not capable of executing but
serves inst ead as a receptacle capable of remembering the state of a processor
at some instant in time . It musT be emphasized that this distinction is only
level- relative , for a process at one level may be considered a processor at the
next higher level .

I f a model r epresents a "real" machine , t hen the processors wi ll be the processing
units of the machine , and their number will be f i xed t hrough all computations , In
any case , the number of processes at any level can and does vary through a compu­
tation as they are allocated and deallocated . In all of our examples t here will
be precisely one processor , model ing the one CPU of the machine .

A processor consists of at least a site of activity and a stack . 0Ther components
may be introduced later . The s i t e of activity is composed~

1) an instruct i on pointer , ip , pointing to the next instruction , i , to be
executed by the processor; and

2) an environment pointer , ~· pointing to a record contour which is a
descendant of the algor i thm contour nested about the instruction i .

The stack is used t o store the temporari es resulting from a polish evaluation of
expressions and is composed of

l) a stack poi nter , sp , point i ng to a s ufficient l y large vector of subcells
for stori ng t he t emporary val ue s

2) a t op_of_s t a ck poi nter , ts , pointing to the first free subcell on top of
the sta ck .

We shall gener ally i gnore the exact details of the implementation of the stack
and instead shall consider only its abstract beha vi or as exhi bited by the usual

a
p

a

p

HIERARCHICAL MACHINE SUPPORT

ENTERBLOCK

INT ! a =S
PROC Af ENTERPROC---......__ l p . l J

ADR ~ ret RET LABEL f---+- i 7

MAK~:ROC I i INT I ~·-··-~·...___, _ __..,..,,__~
STOD ' AOR,a 0->re t j \ J "'[\

VAL' i i I 2 I~

:;~~RN r- - 1-- - ----TI -1~ ENTERBLOCK

aJ INT J
ADR,a

C,2

STOD

VAL,p

VAL,a

CALL, 1 ,0

EXITBLOC K-

EXITBLOC K

al gorithm

~

Fi gure 3. 4

ENTERBLOCK---------~

I NT

ADR, p ll re t l RET LAB EL
PROC Af ENTERPROC

MA KEPROC ' i I INT
I

STOD ADR,a

VAL, i

ENTERBLOCK STOD

aJ INT J RETURN

ADR,a

C,2

STOD

VAL,p

VAL,a

CALL,1,0

EXITBLOCK

EXITBLOCK

Figure 3. 5

f _--r __ ___,

aJ 2]

record of execution

EJ B
output input

565

566 BERRY , ERLINGER , JOHNSTON, VON STAA

stack operati ons , push , pop , top , and is_empty [LZ74] .

A process is a data cell consisting generally of the same components as a
processor .

We shall typically denote a processor by a solid TI and a process by a hollow
In the interest of reducing pointer clutter (otherwise known as spaghetti) , the
ep of a processor or process will rarely be shown ; instead the processor or pro­
cess will be placed directly inside the contour to which its ep points . Also we
shall eschew the sp of a processor or process by drawing the stack vector to which
it points as a cup directly below the processor or process; additionally the ts
shall be only implied by showing the vector up to and including the top subcell .

A processor or process TI has an accessing environment . If n ' s ep is NIL the ac­
cessing env]ronment is said to be empty . Otherwise , n ' s accessing envi ronment is
the list , c1 , . • • , en• with n~l of record contours such that n ' s ep points to c

1
;

for 2Sisn , C. 1
1 s static link points to C.; and C ' s static link is NIL. In other

i - · i n
words, n ' s environment is t he list of contours from inside- out that surround it .
Anytime, in the course of instruction execution , a processor accesses an i denti­
fier , it uses the first occurrence of a subcell for the identifier in its
accessing environment .

A cell (i . e ., a record contour or a process) in t he record of execution is said
to be accessible to a processor if it is pointed to by a value in a processor or
in a cell which is accessible to a processor . An allocated record cell remains
allocated until it is no longer accessible to a processor , whereupon it may be
deallocated .

The various I/0 files used by the program in the algorithm are considered part of
the record because t hey are time varying . We will assume all two of our files to
be stream files [JW 74] . A file consists of a stream of characters including
blanks of some f inite length plus a cursor pointing to the next position from
which to read or into which to write . The two files are the input and the output
f iles . If a program is not doing input or output or both , we may not show the
input or output or both files in the snapshot .

3 . 2 Values
Beside the usual s e t of boolean , i nteger, real , character, and pointer values ,
there are the procedure and label values .

A procedure value consists of all information , save for actual parameters, needed
to do a call : the value has two components

1) an ip pointing to the entry point of the procedure body ,
2) an ep pointing to a descenda nt of the algorithm contour of the block or

procedure nested about the proceuure body . This ep identifies the acces ­
sing environment containing the subcells for all nonlocal identifiers of
the procedure body .

A label value consists of all inf ormati on needed to move the processor to a new
site of activity and to continue evaluation of whatever expressions the new site
is i n the midst of . Thus a label value is composed of

1) an ip pointing to the labeled instruction ,
2) an ep pointing to a descendant of the algorithm contour of the block pro­

cedure nest ed about the labeled instruction ,
3) a stack containing the temporaries needed to continue executi on at the

label ed instruction .

The ep of a procedure value and the ep and the stack of a label ~alue are copies
of those of the processor just after entry to the block containing the procedure

I
.I

HIERARCHICAL MACHINE SUPPORT

or the labeled stat ement.

3 . 3 Initial Snapshots and in itCM

Given a program p in the contour model algorithm language and an input list o,
initCM constructs t he following initial snapshot

1) The algorithm is p .
2) The record contains only

a) a single processor whose

567

1) ip points to the first instruction of p
2) ep is NIL
3) stack is empty

b) an input file whose stream is set to 6 and whose cursor is set to point
to the first posit ion

c) .an output file whose stream is blank and whose cursor i s set to point
to the first position .

Fi gure 3 . 5 shows the initial snapshot formed from the program of figure 3 . 2 and
the input stream 11 5 "

3 . 4 Transformation
The transformation for the single processor contour model i s the fol lowing four­
step procedure :

Let TI be the processor .

1) If n ' s ip does not point to an instruction , i . e ., it is NIL , then halt the
computation .

2) Fetch the instruction inst pointed to by n ' s ip .
3) Sequence n ' s ip to poi nt to the next instruction if there is one ; if not

set n ' s ip to NIL .
4) Execute inst .

The execute fOrtion of the transformation is what causes the changes to the snap­
show resulting from the performance of an instruction . We shall describe the
execution of most instructions as they are introduced, but a few key instructions
merit a brief description now .

ENTERBLOCK : Allocate a record contour for the algorithm contour being
entered by t he instruction , set the new contour ' s static link t o a copy
of n ' s ep , and reset n ' s ep to point to the new contour .

EXITBLOCK : Reset n ' s ep to a copy of the static link of the record contour
that n ' s ep points to (this may leave a record contour inaccessible) .

CALL , n , m: Assumes that the top values on the stack are actual parameters
ordered from last to first , the n+lth value on the stack i s a procedure
value , and the procedure requires m-:local variables . Allocate a record
contour with space for one return label , n parameters, and m local varia­
bles . Pop and pass each parameter value into the appropriate subcell of
the new contour . Set the new contour ' s static link to a copy of the
procedure ' s ep . Save n ' s current site of activity into the ret urn label
cell of the new contour (the i p already points to the instruct ion after
the CALL) . Reset n ' s ip and ep to that of the procedure value while
replacing the procedure value in t he stack by a reference to the new
contour .

ENTERPROC : Reset n ' s ep t o a copy of the reference to a record contour on
top of the stack . Pop the reference .

RETURN : Reset n ' s ip and ep to those of the return label i n the first sub­
cell of the record contour pointed to by n ' s ep .

See [Joh71, Or g73 , CDMPS7 3 , and OFP78] f or examples of computations i n the model .

568 BERRY , ERLINGER, JOHNSTON , VON STAA

4 . The Implemented and Implementing Machine

In all the methods of supporting a machine , there is an implemented machine which
is supported in some manner by an implementing machine . In this section we estab­
lish some notation that will be used to discuss all the methods . Recall that we
are restri cting ourselves in this paper to deterministic models ,

4 . 1 Definitions
A. Implementeg Machine

1) Md = (Id , Id
0

,Fd) is the implemented machine whose machine language is Ld .

2) The program executed by a computation in Md will usually be called Pd .
3) The Computation Md(initMd(Pd , o)) , for some input o , consists of the snap-

shots Sd0 , Sd1 , • • • , Sdi , • •• o

Sometimes the usage is sloppy and it names the implemented machine s i mply by its
language . However there are, in general, many machine architectures capable of
executing a given language, and while it is somewhat irrel evant to the user of
the l anguage what the architecture is , it makes all the difference in t he world
to the implementor of the language what architecture is to be implemented .

To allow easier comparison of the methods of support , i n all of our examples , Md
will be the CM with a postfix polish machine language Ld . The meaning of each
instruct i on of Ld either will be obvious or will be explained as ic is introduced.

B. Implementi ng Machine

1) Mg = (Ig, Ig
0

, Fg) is the implementing machine whose machine language is Lg .

2) The pr ogram executed by a computation i n Mg will usually be called Pg.
3) The computation Mg(initMg(Pg , o)) for some i nput 6 consists of the snap-

shots Sg0 , Sg1 , .•• , Sgi • ·· oo

The implementi ng machine in all our examples will be the CM executing either

1) a high level Algol 58- l i ke language
or 2) a post- fix polish language .

The preference will be to use the former unless the discussion of the method re­
quires t he post- fix polish language . Any construct used in either kind of
language either will be self- explanatory or will be explained as i t is used .

4 . 2 Formal Requirements for Methods of Supporting Machines
All methods of supporting Md by Mg may be described by a single commuting d i agram

Md(Sdo) Md(Sdo)

outputMd
NOTE :

Md=outputMdoMd
Md

Mg=outputM9oMg
Mg outputMg

Figure 4.1

We are given the implemented machine Md . A method of supporting Md may be charac­
terized by a loading mapping A, the implementi ng machi ne Mg , and an equivalence
criterion . '

HIERARCHICAL MACHINE SUPPORT 569

The loading mapping
A! Ido + Igo

maps the implemented initial snapshots to the implementing initial snapshots and
embodies

1) compilation, if any , of the source program Pd and
2) setting up some representation of the implemented initial snapsho~ in the

various parts of the implementing initial snapshot .

We shall take as the equivalence criterion the identity mapping I on the output of
the implementing computation to the output of the implemented computation .

Thus a method of support for Md is simply a pai r (A, Mg) .

It is required for any method (A , Mg) for supporting Md that

for all . Pd in Ld and
for all o in INPUT ,

Md(initMd(Pd , o)) = Mg(A(initMd(Pd , o)))

i . e . that

~=~oA

Stated simply, it is required that the implementing computation produce the same
result as the implemented computation , i . e . either both do not halt or both halt
and produce the same output.

However , in practi ce , it turns out that this simple requirement is too weak .

1) Proving that the equation holds is difficult because it requires that a
whole computation be dealt with as if it were one step .

2) It is only by looking at the outputs of intermediate steps of the compu­
tations that two nonterminating computations can ever be judged as
different

3) More insight into the difference between the methods can be gained by
comparing corresponding snapshots in the implemented and implementing
computation .

Therefore we prefer t o use a stronger inductive statement of the requirements
which implies the holdi ng of the weaker requirements given above .

outputMd

outputMg

Sg .
J

Fi gure 4. 2

We require for each method (A , Mg) of supporting Md that there exists a mapping
~ : Ig +Id such that for all Pd in Ld and all o in INPUT , if Sd

0
= initMd(Pd ,o) ,

1) ~(A(Sd0)) = Sd
0

2) If ~(Sg.) =
~ 1

Sd . and Sd . is not a final snapshot
J J

I

570_ BERRY , ERLINGER, JOHNSTON, VON STAA

then J f i nite m~l such that
a) <f>(Sgi+m) = Sdj+l

and b) output(Sg .) = Sd .
1 i+m J+

3) If </>(Sg .) = Sd . and Sd . is a final snapshot
- l. J -- J
then :l finite m~O such that
a) Sg. is a final snapshot i+m
b) <I> (Sg .) = Sd .

i +m J
and c) output(Sg.) = output(Sd .) .

i+m J

That i s) we require that there is a mapping~ which allows the implemented snap­
shots to be extracted from the implementing snapshots in such a way that

1) The initial implemented snapshot may be obtained from The initial imple­
menting snapshot, and the outputs of the two snapshots are The same .

2) If a t some point an implementing snapshot Sgi maps to a nonfinal imple-

mented snapshot Sd., then at most some fin i t e number of implementing
J

computation s t eps wi ll yield a snapshot Sg. which maps to the next im-. i+m
olemented snapshot Sd . 1 and which has the same output as Sd . 1 •
•]+] +

3) If at some point an implementing snapshot Sg . maps t o a final implemented
l.

snapshot Sd . (which , of course , is t he final snapshot of its computation) ,
J -

then at most some finite number of implementi ng computation steps) includ­
ing none , will yield the f i nal snapshot Sg . of the implementing computa­

i+m
tion which maps to Sd ., the final implemented snapshot , and which has the
same out put as Sd .• J

J

This formulation of the requi rements is clearly stronger than is required jusT to
be able to say that the implementing computation produces the same result as the
implemented computation . It says that the implementing computation simulates t he
implemented computation step- by- step . The latter implies t he former but not vice
versa .

Note that this formulation of simulation assumes that the implementing computation
requires at least one step to simulate one s t ep of the implemented computation .
This assumpti on causes no difficulty , for , as we shall see , all of our implement­
ing models do require at least one step and possibly more To do one step in the
i mplemented model .

I f all we are interested in is that the implementing model produce the same result
as the implemented model then the pair (A , Mg) suffices to characterize a method
of support . If we insist that the implementing model in some sense simulates the
i mplemented model then A, Mg) and <P are needed to characterize a method . Because
examination of <P does shed some light on the nature of the methods of support and
t hey are all in some sense s imulations , we use the latter means of characterizing
a method of support .

Accordingly , in the remaining sections , as a method is described we shall describe
i nformally Mg , the implementing model , A, the loading map , and <P) the implemented
snapshot extraction map .

5 . Interpretation

In interpr etation , the snapshot of the implemented machine is contained entirely
as a data structure wi thin the record of execution of the snapshots of the imple­
menting ma chine . In part i cular , the processors of the implemented machi ne become

HIERARCHICAL MACHINE SUPPORT 571

processes in the sna pshot data struct ure . The processor of the implement i ng
machine , under di rection of a program call ed an interpreter , manipulates its
representation of the snapshot of the implemented machine to reflect the
computation in the implemented mach ine .

5 . 1 Single Process Interpretation
In the case that the implemented mach i ne has a single processor , the interpreter
program in the algorit hm of t he implementing machine is of t he following form (In
the following

x:·:
means "X dereferenced" and

x. <;

means the "C component of X") :

begin

end

ref process current ;
instruction inst ;
ref snapshot snap ;

while current:': . ip;inil do
---fetch inst +-current '°' . ip'°';

od

increment : current '°' . i p +- current'°' . ip+length(inst) ;
execute case inst . opcode in

' ADR ' ¢ pushes address of variable whose identifier
is arg1 of i nst ¢

push (current:': . 5tack , reference to cell for
(inst . arg1)) ,

' READINT ': ¢ assumes reference to stream input file is on
top of stack , replace s reference by next integer
in stream ¢

infil e +- top(current*. stack) ;
replace top(current'''. stack , the next integer from

(infile)) ,
' STOD ' ¢ assumes value on t op of stack and reference

below that , ass i gns value to referred t o cell ,
pops value and reference ¢

2nd (current*. stack)* +- top(current* . scack) ;
pop t wice (current"' . stack) ,

' VAL' ¢ pushes value of vari able whose identifier is
arg1 of inst ¢

push (current:': . stack , value of cell for
(inst . arg1)) ;

' HALT ' ¢ set i p to nil ¢
current'°' . ip + nil

esac

Figure 5 . 1

572 BERRY , ERLINGER, JOHNSTON , VON STAA

The interpreter declares at least the following variables (which in the case of
an emulation would be assigned to registers of the host machine) :

l)~ to contain a reference to the process representing the
implemented processor
to contain the currently executed instruction 2)~

3)~ to contain a reference to the area contai~ing the entir e snapshot
of t he implemented machine . Th is area contains the process
referred to by current

The main part of the interpreter is a loop which repeatedly has the processor take
the process through a fetch , increment and execute cycle . Once the next instruc­
tion has been fetched and the process ' s ip advanced , a case determines which in ­
struction to perf orm and directs the processor in modifying the snapshot referred
to by ~~aE in accordance with the semantics of the selected instruction .

Figures 5. 3 through 5. 5 show a nonconsecutive sequence of skeletal snapshots from
the implementing computation supporting the implemented comput at i on of the
program fragment shown in figure 5. 2.

ENTERBLOCK
DECLARE ,n , INT ¢ assembiy pseudo instruction ¢
DECLARE , sysin , REF FILE

ALGORITHM
ADR , n ¢ get address of n ¢

CONTOUR Cl
VAL , sys in ¢ get reference to file sys i n ¢

READ INT ¢ replace ref with next integer in sys in
stream ¢

STOD ¢ assign integer to n ¢

EXITBLOCK

Figure 5. 2

In this case , A simulates starting up the i nterpreter , l oading the program to be
interpreted , setting the (interpreted) process ' s i p to point to the first in­
struction of the program , and leaving the (interpreting) processor ready to begin
a fetch , increment , and execute cycle .

1) In the algorithm is the i nterpret er .
2) In the record are

a) the processor sitting inside a record cont our for the outer block of
t he interpreter ready to execute the statement labeled ~

b) a representation of the ini tial implement ed snapshot with
1) the processor of the implemented snapshot turned into a process

with identical content , and
2) the files of the implemented snapshots represented by like initial­

i zed files of the implementing snapshot.
c) In the record contour for the outer block of the interpret er ,

1) current is initialized with a pointer to the process in t he repre­
~on of the implemented snapshot

2) ~ is init ialized to point to t he representation of the imple­
mented snapshot .

See figure 5. 6 for a schematic diagram of this loading map .

whi le

fetch:

case

I READINT':

esac
od

while

fetch :

case

I READ INT I :

'll:

esac
od

end

HIERARCHICAL MACHINE SUPPORT 573

ENTERBLOCK

n INT n

sysin REF FI LE sys in ~

ADR, n _!--t---~r-u-1

VAL ,sysin ____-1-
READINT~ v
STOD 1-------i~

. __v t\
EXITBLOCK v .__ __ __.

'------ ____.,._.._L----.

\

current ~ J
inst VA~~ysin ~ !

Nsnap

~Tl
I

Figure 5.3

ENT ERB LOCK

n INT

sysin REF FILE

current

inst
snap

AOR,n
VAL,sysin
READ INT
STOD

EXITBLOC K

READ INT

Fi gure 5. 4

n

sys in

:> / 4 tlt KKY , tKLlNGt K, JOHNSTON, VON STAA

ENTERBLOCK

while n INT n

od

fetch:
sysin REF FILE sys in

case ADR,n ~I
VAL,:~ysin ~ J'
READ INT v1-----1
STOD 5~

EX IT BLOCK V'---------'
I READINT':

\

current --i-__./[//
inst READ INT
1----~----l

~ snap i-

-

esac

ENTERBLOCK
n INT

sysin REF FILE

n

.
ADR,n
VAL,sysin
READ INT
STOD

.
EXITBLOCK

ENTERBLOCK
INT

sysin REF FILE
.

t'---TI
I

Fi gure 5. 5

n

s sin

-,-,

Figure 5. 7

~-n---1----1/'i\
sys in

ADR,n ~

VAL,~~ysin J.-­
READINT
STOD

.
EXITBLOCK

Figure 5.8

-

-

.,

·i

~I

II

')

begin

while

fetch:

case

I READ INT I : .•

esac
od

end

HIERARCHI CAL MACHINE SUPPORT 575

IT);,-

LJ

output input

current
inst ,.....,........

snap

output input

Fi gure 5.6

BERRY, ERLINGER, JOHNSTON , VON STAA

The <P mapping may be viewed >': as f ollows : Consider t he implementing computa tion

cg = <Sgo , Sg1 · ·· ·' Sgi '""" > .

Ta ke in order of appearance in Cg those snapshots in which the processor ' s ip
points to t he statement labeled fetch to obtain the sequence

I I I I

Cg = <Sg0 , Sg1 ... , Sgj , . . . >

Then form the implemented computation

Cd = <Sd
0

, Sd1 , .• • , Sdj , • •. >
1

of the same length as Cg such chat for all j ,
1 t

O~j~length (Cg) , Sd .
J

variable with the process of Sg . pointed to by the value of the~
J

a processor of identical content .

is t hat part

turned into

Consequencly , applyi ng t his ~ to t he sequence of snapshots embodied by figures
5.3 to 5. 5 , all snapshots but those of figures 5 . 3 and 5 . 5 would be dropped co

I

form Cg, and these would be converted by ~ to the i mplemenced skeletal snapshots
shown in figures 5 . 7 and 5. 8 .

6 . Enmasterization

In enmasterization , the implemented language is called the user language,and the
implementing language is called the master or supervisor language . In the typical
computing system , it is not desirable to g i ve t o the user and his or her language
direct control over some or all the resources of t he system , e . g ., the processor ,
t he various i nput/output devices , etc . Consequently , on machines supporting such
systems , instructions giving the user direct access to these resources e . g . , l oad
processor , start read , start write , etc . , are made privileged . A user program is
not allowed t o execute privileged instructions , but a master or supervisor program
is allowed to execute privileged instruct ions . In order for the user program to
access one of these resour ces , it must somehow request t he supervisor to access
the resource on its behalf , performing the resource related operat i on , and
reporting back to the user program when t he operation is completed .

One method of requesting supervisor help requires one processor and no processes .

6 . 1 No- process enmasterization
In no- process enmasterization , the user pr ogram executes a special supervisor call
instruction whose argument tells which operation the supervisor is t o perform on
its behalf . As a result of the supervisor call , a trap occurs bringing control
to the supervisor . A trap is roughly a procedure call combined with a processor
mode change - from user to master mode . Control returns to t he user program at
t he instruction after the s upervisor call by means of a special return which also
changes the processor ' s mode - from master to user mode .

Al so caus ing traps are s uch events as time slice end , illegal op code, a ttempted
use of privileged instruction by user , etc .

To model this phenomenon , in the algorithm of the implementing machi ne must be a

»strictly speaking~ should not be defined on a computation to a computation , but
rather on a snapshot t o a snapshot . However, it is easy to construct the correct
~ from the one descri bed . If TI. ip in the implementing snapshot does not point to
the statement labeled fe tch , the true ~ includes the finite process of executing
in Mg unt il TI . ip does p;:;1!it to the statement labeled ~. We will use t his
slightly incorrect but convenient view of ~ from now on •
.I. I ' I
1If Cg is not finite then length (Cg) is taken a s 00 •

HIERARCHICAL MACHINE SUPPORT 577

special supervisor routine . This routine examines the argument of the supervisor
cal l and branches to the supervisor subroutine which performs the requested oper­
ation us i ng whatever instructions , privileged or otherwise , are necessary to do
the job . (For simplicity , we a ssume that t he argument of the supervisor call i s
the ip of the selected subroutine ; if desired , a simple branch table can easily
be added to make the argument values independent of where the subroutines happen
to be ,) At the end of each of these subroutines i s a r e turn to the supervisor
caller .

There i s exactly one processor , and beside the basic site of activity and stack
components, the processor has a U/M bit ind i cat i ng whether the processor is i n
user or master mode , The processor may execute a privileged instruction only i n
master mode .

A place is needed to store a procedure value denoting t he supervi sor routine . The
processor must know where this place is so it can do the supervisor call , but it
is des irable , for reasons of security , that t hi s place be invisible to the user .
We store t his procedure in a special register of the processor , the supervisor
procedure value register (our di agrams show this at the bottom of the s tack) .

Both the user routine and the supervisor routine may need to call some system
ut ility routines which do not use privileged instructions . These must be declared
in a place visible to both the user and the supervi sor routines . We t herefore
assume that there is a syst em block declaring and initializing these r outines .
The user program ' s outer block and the supervisor routine are nested inside this
block . Over in the r ecord , all user program record contour s and supervisor rou­
tine record contours are nested inside a record contour for t he system block . In
the subcells of this contour are the (ip ,ep) pair s for the various system utility
routines .

If we assume that an ord i nary procedure call and return do not change the mode of
a processor , t hen we have the possibili ty of keeping the supervisor routine which
contains all the instances of privileged instructions as small as possible . A
s ection of code whi ch forms a widely useable module and which does not use any
privileged instruction may be made an ordinary procedure separate from the super­
visor routine but c allabl e from it and the user routines .

In f i gure 6 . 1 , we s how fragments of a user program and of the supervi sor rout ine
for a possible system .

user. code
ENTERBLOCK
DECLARE , n , INT
EQU , readint , some integer

ADR , n
SVC , readint
STOD

:
__J;_XITBLOCK
supervisor routine:

entrypoint : ENTERPROC

¢ supervisor call ¢

DECLARE , mode , BIT
DECLARE , code , I P
VAL , code ¢ get SVC code ¢
BRANCH ¢ use code as address to branch to ¢

1
I

578 BERRY, ERLI NGER , JOHNSTON , VON STAA

readint: ALLOC ,80
STARTREAD

¢ allocate buffer, leave pointer to buffer in stack ¢
¢ when it ' s done , t he input is in buffer pointed to

by reference on top of stack ¢
WAI TREAD ¢ loop on t his instruction until read i s done ¢
VAL , extr act i nt ¢ push procedure va lue for system procedure

extract int ¢
ALLOC CALL CONTOUR ¢ and call this procedure ¢
CALL ¢ which replaces reference to string on top of s t ack

by integer it finds in string ¢
SRETURN ¢ return from supervisor call ¢

Figure 6. 1

In these fragments

1) SVC , x is the supervisor call; its execution proceeds as follows : A contour
~-----;:;ith subcells for a return label, a moj~, and a £8Qg is allocated and

linked to the system environment which declares t he var ious system
procedures, e . g .,~. The processor ' s current site of activity
(its ip already points to t he next instruct ion) and its current mode
are saved i n t he return l abel and ~ subcells of the contour . The
instruction argument x is s t ored in the £8Qg subcell . The processor
t hen sets its mode to M and does a goto to the entry point of t he
supervisor routine using the (ip ,ep) pa ir in the s uper visor procedure
value register .

2) ~.E£Il.!.E.l':! , a pri vileged instruction , returns from a supervisor ca ll : The
processor simply resets i ts site of activity and mode from t he r e turn
label and mode subcells of the contour point ed to by its current ep .
As a result of th is instruction, this contour may become inaccessible
and thereby be deallocated.

3) STARTREAD and WAITREAD are privileged instructions which initiate a read
~ait u~ read is done . When t he read is done , t he record

r ead is stored in the buffer referred to by t he pointer on t op of the
stack .

Observe that because a fresh contour is allocated for each superv isor call , t he
processor ' s current mode i s saved in this contour , and SRETURN restores the pr o ­
cessor ' s mode from the s aved mode, supervisor calls may occur even in t he super­
visor routine or in rout ines called from it; even r ecursive supervisor subroutines
are poss ible .

As a c onsequence of t he development above, it may be seen that the implemented
machine , whose language Ld comprises only the nonprivileged ins t ructions, including
the supervisor call , is really a submachine of t he implement i ng machine, whose
language Lg comprises all the instructions, i ncluding the privi leged ones . Thus

Ld c Lg

i. e . the user l a nguage is a proper subset of the master language. The set Lg- Ld
includes all t he possible supervisor routines .

From the point of view of t he implemented machine, each supervisor call with a dif­
ferent argument must be considered a separate instruction whose effect in one com­
putation step is the same as t hat of the sel ected supervisor subroutine in t he im­
plementing machine . Thus for example in the implementing machine implied by t he
user program of figure 6 . 1 , ~ is a single instruction which gets one
integer from the next input record and pushes that integer into the processor's
stack .

Figures 6 . 2 through 6 . 5 show a ~equence of some skeletal snapshots from the

I' '

ENTERBLOCK
system routines
including
extract int

ENTERBLOCK
nl INT

ADR,n
SVC,tei!dint
STOO

ENTERBLOCK
system routines
including
extract int

ENTERBLOCK
nl INT

AOR,n
SVC, tta.Jli nt
STOO

EXITl3LOCK

ENTERPROC
~ret RT LOL
mode BIT
code IP

VAL,code
ORAN CH

'

readint:ALLOC,80
STARTREAO
WAIT READ
VAL,extractin~
CALL,1,0
SRETURN

'
'

EXITBLOCK

t5

input

;i::
H
[rJ

~
;:tl

@
H

~
t""'

5:
@
H

~

~
;g
0
;:tl
~

Vl
-.J
\0

.,
~-

<O
c
-s
m

°'
U1

ENTERBLOCK
system routines
including
extract int

ENTERBLOCK
nl INT j . .

AOR,n
SVC,reac;lint STOD .,,,.,_ ___

.
EXITBLOCK .
ENTERPROC.------

1 I

ENTERPROC -<'/
~ret RT LBL
mode BIT
code I IP
VAl-~C:ode
BRANCH .

r~g_i_n.t: ALLOC ,80
STARTREAD
HAI TREAD
VAL ,extract in~
CALL, l ,0
SRETURN

EXITBLOCK

~
5 t

'--input

_,,,

.,
~.

<O
c
-s m

°'
~

ENTER!3LOCK
system routines
including
extractint

ENTERBLOCK
n I I NT

ADR,n
SVC,i:_~_t
STOD

EXIT!3LOCK

ENTERPROC
Nret
mode I BIT
code I IP
VA[,code
BRANCH

readint : ALLOC , 80
~STAR TREAD

WAITREAD
VAL ,extractin
CALL ,l ,0
SRETURN

EXITBLOCK

l(ret
mode j _ _ u
code

5 t
input

V>
00
0

°"' l"TJ

1:3
~

t"1
;.<:!
t""'
H z
~
:>J

c....
0

2
en

C5 z

<:
0 z
en

~

HIERARCHICAL MACHINE SUPPORT 58 1

computation of the program fragments of figure 6.1.

It is useful to observe tha t the implementing machine is itself support'ed by a
lower level meta-machine; it is in this meta- machine that the procedure ca l l - like
response to the supervisor call is programmed.

For the construction we have given for no-process enmasterization, the loading
map A is quite straightforward . However , we must first modify the init function
for the implemented machine . Since the various nonprivileged system routines are
written in the implemented language Ld and are callable from programs in Ld , the
implemented machine must also have the system outer block . Examining the top half
of figure 6 . 6 , we see

1) in the algorithm, the system outer block declaring and initializing the
system routines and containing the user program

2) in the record, the processor sitting inside a record contour for the sys­
tem outer block ready to execute the first instruction of the user program .
The subcells of the record contour are init i alized with (ip , ep) pairs for
the system routines . Also in the record are the usual input and output
files .

This is the initial implemented snapshot .

The loading merely

1) Inserts the supervisor routine algorithm contour and code into the system
outer block algorithm contour.

2) Adds a supervisor procedure value register to the processor and initial­
lizes it with an ip pointing to the supervisor r outine entry point and an
ep pointing to the system outer block record contour.

3) Sets the processor to the user mode .

See figure 6 . 6 for an illustration of this A mapping .

The ~ mapping for the two models is equally as straightforward . Consider the
computation

Cg = Sg0 , Sg1 , .. . , Sgi ,. · .

in the implementing machine . Remove f rom this sequence all snapshots in which the
processor is in master mode to obtain the sequence

I) I

Cg = Sg0 , Sg1 , . .. , Sgj , ...

Then f orm the implemented computat i on

from Cg

1)
2)

Cd = SdO , Sd1 , ... , Sdj, ...

by taking each Sg . and
J

removing the supervisor procedure value register from the processor ,
removing from the system outer block code the code for the supervi sor
routine ,

3) removing the mode indication (which is necessarily u) from the processor .

to obtain Sd . .
J

Applying the first part of this construction to the s equence of i mplementi ng snap­
shots embodied by figures 6 . 2 through 6 . 5 eliminates all ·but the snapshots in
figures 6 . 2 and 6 . 5 . Applying the rest of the construction to these yields the
skeletal implemented snapshots of figures 6 . 7 and 6 . 8.

Note , fina lly t hat for enmasterization, ~ is almost one- to- one reflecting the fact
that most of the implemented machine ' s instruct ions are executed directly in the
implementing machine . Contra st t hi s with interpretation where ¢ i s many- to - one
reflecting the fact that many interpreter steps are needed to advance one step in

BERRY , ERLINGER , JOHNSTON , VON STAA

ENTERBLOCK
sys tem
routines

EXITBLOCK

ENTERBLOCK
system
routines

J
A

J
-------.;-

J
n

LJ

J
u

t--t---TT

I I
ENT ERP Roe·~~,__~--+--+--{+--] J "-,} ,______._ _ __,

M-et RTLBL
mode BIT
code IP
VAL, code
BRANCH

SRETURN

EXITBLOCK

Figure S;6

o~ I I I \

1t : :f
I 'U U ' I I

output input

LJ~
output input

I
I

HIERARCHICAL MACHINE SUPPORT

ENTERBLOCK
system routines
including
extract int

ENTERBLOCK
n I NT

ADR,n
SVC,readint
STOD

EXITBLOCK

ENTERPROC

EXITBLOCK

ENTERBLOCK
system routines
incl uding
extract i nt

ENTERBLOCK
n I INT

ADR,n
SVC,readint
STOD

EXITBLOCK

ENTERPROC

EXITBLOCK

8
input

Figure 6.7

@
input

Figure 6.8

583

584 BERRY, ERLINGER , JOHNSTON , VON STAA

t he implemented ma chine .

8 . The Tower of //SYSBABEL [Bib?? , Sam 69 , MLB76]

In this final chapcer , we recons ider t he entire mult i level system given in ~igure
1 .1 and give a new view of it .

First consider any two consecucive levels of t he system . There is a ~ map from
the snapshots of the lower (implementing) level to the corresponding snapshots of
the upper (implemented) level .

IMPLEMENTED
SNAPSHOT

IMPLEMENTING
SNAPSHOT

Figure 8.1

Now topologically contort the l ower level snapshot so that t he upper l evel snap­
shot may be phys i cally superimposed on the contorted snapshot so t hat each imple­
mented component l ies on top of its implementing component s . That is , in the
superimposition :

1) given a component x in the lower level snapshot , x is at least partially
covered by each component y of the upper l evel snapshot in whose construc­
tion under $ x participates .

2) g i ven a component y in the upper level snapshot , y a t l east partially
covers each component x of the lower level snapshot whi ch participates in
y ' s construction under$.

This contorti on may be a bi t contrived and t ortuous especially for support methods
involving compilat ion and , in any case, if t he l ower level snapshot represents an
intermediate state in the transition from an upper level snapshot to the next .
However , in principle this contort i on should a l ways be possibl e.

For example , the applicat i on of the $ map for single process interpretation con­
vert s the snapshot of figure 5 . 3 to t hat of figure 5 . 7 . This conversion results
in the superimposition shown in f igure 8 . 2 .

In this kind of a superimposition any vert ical line t hat cuts both snapshots pas­
ses through an implemented cell and its representation i n the implementing
snapshot .

In general , t he lower level snapshot will be physically larger than the upper , as
the l ower level snapshot usually has extra code and data , e . g. , an interpreter
and its own variables, which help the implementation but wh ich do not direct ly
represent anything in t he upper level . In no case , will the lower level snapshot
be smaller than the upper.

Carrying this superimposition to the enti re multilevel system of figure 1 .1, we
get something similar to our Tower of //SYSBABEL shown in figure 8 . 3. In i t any
vertical line cutting through all of the snapshots cut s through a cell in t he LISP
i nterpreter snapshot at t he top level and suc h succeeding lower level ' s represen­
tation of it~ The l owest level computation i s moving the· fastest ; each lower
level must do; perhaps , many steps to push the next higher level through one step ;
and the highes t l evel is moving the slowest . The picture is that of a mult i-

HIERARCHI CAL MACHINE SUPPORT

Fi gure 8.2

TOWER OF / / SYSBABEL
Figure 8.3

585

586 BERRY , ERLI NGER, JOHNSTON, VON STAA

geared (old-fashi oned) adding machine (the authors are old enough to remember
them) where the lowest level is the unit's gear, the highest level is the billions

9 .
gear , a nd the lowest level gear must move 10 teeth to move the highest level gear
one tooth.

9. Conclusion

We have attempted to characterize the multilevel system phenomenon from an
Information Structure Model point of view . We first identifi ed several methods of
supporting one machine by another . We then gave an Information Structure Model
framework for considering a method of support as a pair of models , one implement­
ing and one implemented , together with two mappings , a loading and a simulation
map , between them . Then three of the ident ified methods of support were described
in terms of t he two models and the two mappings . We concluded WiLh an overal l
view of a multilevel system as a tower of models .

10 . Bibliography

[Bau73]

[Bry74a]

[Bry74b]

(Bry75]

(BEJS77]

(Bri70]

[CDMPS73]

[Den73]

(Dij 68]

[Goo73]

[Joh69a]

[Joh69b]

Bauer , F . L. (ed). , Advanced Course on Software Engineering, Berlin :
Springer Verlag (1973) .

Berry , D. M. , "On the Design and Specification of the Programming
Langua ge Oregano ," Computer Science Department , UCLA , UCLA- ENG- 7388
(1974) .

Berry , D. M. , "The Use of Information Structure Models in Programming
and Teaching of Programming Languages ," Proceedings of Second
Jerusalem Conference on Information Technology (August 1974).

Berry , D. M., "Definition of the Contour Model in the Vienna Def i n i­
tion Language," M&M Note #40 , Computer Science Dept ., UCLA (October
1975) .

Berry , D. M., M. Erlinger, J . B. Johnston , A. von Staa, "Models of
Hierarchical Machine Support: Interpretation , Enmasterization ,
Virtualization, Software Extension, and Compilation , " IM #155 ,
Computer Science Dept ., UCLA (1977).

Brinch Hansen, P ., "The Nucleus of a Multi-Programming System, " CACM
13:4 (April 1970).

Chirica , L. M., T. A. Dreisbach , D. F. Martin, J . G. Peetz, and A.
Sorkin , "Two PARALLEL Euler Run Time Models : The Dangling Reference,
I mposter Environment and Label Problems ," Proceedings of ACM Symposium
on High Level Language Computer Architecture , SIGPLAN Notices 8 :11
(1973).

Dennis, J . B. , "The Design and Const ruct ion of Software Sy st ems," in
Bau73 (1973) .

Dijkstra, E. W., "The Structure of 'THE' Multiprogramming System ,"
CACM 11 :5 (May , 1968) .

Goos , G. , "Hierarchies ,u in Bau73 (1973).

Johnston , J . B., "Structure of Multiple Act ivit y Al gorithms," Proceed­
ings Third Annual Princeton Conference on Information Sciences and
Systems (1969).

J'ohnston , J . B. , "Structure of Multiple Activity Algorithms ," Proceed­
ings of Second ACM Symposium on Operating Systems Principles (1 969) .

[Joh71]

[Joh73]

[JBM74]

[Joh7S]

[LZ74]

[Man75]

[Org73]

[OFP78]

[TW71]

[Weg71]

(ZR68]

[Sam69]

[MLB76]

[Bib??]

[JW74]

DISCUSSION

HIERARCHICAL MACHINE SUPPORT

Johnston , J . B., "The Contour Model of Block Structured Processes , "
in TW71.

Johnston , J . B. , "Identifier and Environment Bindings i n Nested
Declaration Computations," Proceedings of Seventh Annual Princeton
Conference On Information Science and Systems (1973) .

Johnston , J . B., D. M. Berry , and D. P. Murphy , "Expression Stack
Management in Nested Declaration Computations ," Proceedings Eighth
Annual Princeton Conference on Information Science$ and Systems
(1974) .

Johnston , J . B. 11
/\ Model of the Connective Structure of Segmented

Virtual Storage Systems , " NMSU-CS- TR-75- 01, Computer Science Dept .,
New Mexico State University (January 1975).

587

Liskov , B. H. and S.N. Zilles , "Programming with Abstract Data Types ,"
SIGPLAN Notices 18 :11 (April 1974).

Manthey , M. J . , "Nested Interpreters and System Structure ," Matematisk
Institute , Aarhus Universetet (September 1975).

Organick , E. I. ,_computer System Or2anization· The B5700/B6700
Series, New York: Academic Press (1973) .

Organick, E. I. , A. I. Forsythe , and R. P . Plummer , Programming
Language Structures, New York: Academic Press , in press .

Tou , J . T., and P. Wegner (Eds.) , Proceedings of ACM Conference on
Data Structures in Programmin Lan a es, SI GPLAN Notices 6 : 2
February 1971).

Wegner, P ., " Data Structure Models for Programming Languages ," in TW71 .

Zurcher , F . W. and B. Randall , "Iterative Multi-Level Modelling - A
Methodology for Computer System Design ," I FI P Congress '68 (August
1968) .

Sammet , J . E. Programming Languages : History and Fundamentals, Englewood
Cliffs : Prentice Hall (1969)
Marcotty , M. , H. F . Ledgard, G. V. Bochrnann, "A Sampler of Formal
Definition", C. Surv . 8 : 2 (June 1976) .

Hertz, H. H. (Ed .) , The Pentateuch and Haftorahs (Second Ed .) London :
Soncino (1964) .

Jensen , K., and N. Wirth , PASCAL User Manual and Report , B"erlin :
Springer Verlag (1974)

Andrei Ershov: I s your model observational or implementational?

Berry: Observat i onal.

Jack Dennis: You have given us some tools and some descriptive models . What
should we l earn from your work?

JOO DISCUSSION

Berry: What we have gained is a clearer understanding of what actually happens
in a system. For instance, we have clarified the difference between a process
and a processor at a gi ven l evel .

Dennis : I did some thinking some years ago about hierarchical models, and was
led to the conclusion that the fewer level , the better, because the user program
which is executing at the outermost level depends on the correctness of all of
the levels below it . If you are interested in simplicity , and confidence that
systems work correctly, it seems that you should reduce the number of l evels .

Berry: I agree we should try to keep the number of levels down . The purpose of
what I p r esent is to show what exists . Perhaps by understanding what exists , we
can see what should exist.

Lawrence Flon: I don ' t understand why many levels cause difficulty , because the
program is correct if it can be shown to operate correctly given that the topmost
level satisfies its specifications .

Dennis : You are correct . But the more compl ex and elaborate the implementation
is , the more likely it is that the implementation does not reflect its specifi­
cations . So one worries about the confidence the user of an outer level machi ne
has that the machine meets its specifications. My plea is that the underlying
hardware be much more accommodating to the program structur e and methodology
desireable at the user level. Then the overall structure of the system will be
simpler , increasing user confidence in its correct operation .

Malcolm Newey: Jack seems to be arguing against modularity. He proposes pushing
all the levels into one level .

Dennis : That hurts me very much , of course . The whole machine should support
modulari ty of programming at the outermost l evel . To me, modularity is the
ability to take programs that have been written and use them as building blocks
to build other programs which in turn become new building bl ocks , etc . There is
no such relationship in the l evel s of an onion .

Berry: In a sense , a module may be thought of as presenting a machine, and the
act of composing a higher level module as construction of a higher level machine
(as described in the models in the paper) . This seems to be what he (Newey) is
implying by his comment .

Dennis : If you r egard the onion as representing a modular scheme for building
larger elements out of simpl e r ones , then I challenge you to take two l evels of
the onion and define some sensible way of combining them to form a new level .

Berry: Yes, they ' re not composable . Maybe that ' s why nobody likes these systems .

1!

FORMAL DESCRIPTION
OF PROGRAMMING CONCEPTS

Proceedings of the IF IP Working Conference on

Formal Description of Programming Concepts

St. Andrews, N. B., Canada, August 1-5, 1977

ed ited by

ERICH J. NEUHOLD

University of Stuttgart,

Stuttgart, Germany

1978

NORTH-HOLLAND PUBLISHING COMPANY

AMSTERDAM•NEW YORK•OXFORD

IF IP T C-2 Working Conference on

Formal Description of Programming Concepts

St. And rews, N. 8. , Canada, August 1-5, 1977

Organized by

IFIP T echn ical Committee 2

Programming

Internationa l Federation for I nformatio n Processing J

Program Committee

H, Bek ic, J . deBakker, A . Ershov, M . Hammer, T. H oare

S. lgarashi, R. M ilner, M. Paul, C. Pai r

NORTH-HOLLAND PUBLISHI NG COMPANY
AMSTERD AM • NEW Y ORK • O X FORD

,(
' ·

I.

