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In a multilevel hierarchically designed and implemented operat ing 
system , there are several methods for supporting the abstract 
machine a t any level : interpretation , enmasterization , 
virtualization , compilation , and software extension. This paper 
presents examples of each method and describes a framework for 
characterizing any method as a pair of informati on structure 
models and mappings between them. The framework i s used to de­
scribe t hree of the methods and their examples (descriptions of 
the other methods may be found in [BEJS77]) . The paper concludes 
wit h a view of an entire system as a possible multipeaked tower 
of such models . 

1 . Introduction 

There is much talk about building a system hierarchically , bottom- up from a raw 
machine [ Dij68 , Bri70 , ZR68 , Bau73, Den73, Goo73 ] . Each level implements a 
higher level machine in terms of the primitives offered at that level . A typical 
system is shown in Figure 1 . 1 . 
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360/67 -------..... 
;/ 2067 \ 

( 1 l 2 3 4 5 6 9 7 8 

Figure 1.1 

The machines from the lowest l evel on up are : 

1. The raw IBM 2067 microprogrammable host machine 
2 . A system 360 model 67 microprogrammed on the 2067 
3 . A vi rtual machi ne monitor CP 67 which is the 360/67 extended with a number 

of rout i nes for managing vir tual machine 
4 . A virtual 360 , supported by CP 67 which looks like a traditional 360 
5 , NUCLEUS/360 provi ding the basic supervisor routines which use the pri 

pri vileged instruc~ions 

6. Operating System/360 (OS/360) which is NUCLEUS/360 extended by a number of 
useful packages , compile~s , utility routines and access methods 

7 . A PL/1 machine suppor ted by compilation of PL/ 1 programs into 360 machi ne 
code combined with OS super visor calls (i.e ., "OS machine" instructions) 

8 . A LISP interpreter written in PL/1 
9 . A user ' s programs written in LISP 

Even cursory examination of the multilayered system shows that the progress i on 
from layer to layer is not done i n a uniform manner . Five different methods can 
be identified . 
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l) Inter pret ation - The simulation of a computation at one level by di rect 
manipulation of the data structures for that level by a program written 
in the language of the next lower level . I f t he lower level is a micro­
programmable machine , interpretation is often called emulation . The steps 
from levels 1 to 2 and 7 to 8 are the examples of interpretation and the 
f ormer is the one example of emulation . 

2) Enmasterization - Extension of a machine not capable of performing certai n 
privileged instructions by use of a non- privileged supervisor call in­
struction to cause trapping to supervisor state in which the privileged 
instructions may be performed . The jumps f rom levels 2 to 3 and from 4 t o 
5 are the cases of enmasterization in out exampl e . 

3) Virtualization - Support of a machine nearly ident ical to the support i ng 
machine with nearly the same execution speed as the supporting machine . 
I t requires that all sensitive instructions directly dealing with a re­
source be privileged and it usually uses enmasterization to have the sup­
porting machine do the privileged instructions on behalf of the supported 
machine . The step from levels 3 to 4 is t he example of virtualization . 

4) Compi lation - Translation of a source program i n the language of the im­
plemented machine to an object program in the language of the implementing 
machine whose effect as seen by the user is the same as the s ource pro­
gram. The progression from levels 6 to 7 is the example of compilat ion i n 
our hierarchy . 

5) Software extension - The " extensi on" of a language capabl e of calling pro­
cedures in the language by a s et of procedures written in the l anguage . 
The language i s made to appear more powerful in that at least the user of 
t he procedures does not have to wri te them . This method of support i s 
used in moving from levels 5 to 6 . 

If t he input of the user program is considered a language t hen the step from 
levels 8 t o 9 may be considered an example·of interpretation. 

This paper is a shortened vers i on of a much larger work , [BEJS77 ] , which attempts 
to clarify the differences between these methods of machine support . In [ BEJS77 ], 
each method as described in terms of mappings between two Information Structure 
Models ( I SMs) [Weg71] , and each ISM is a variant of the Contour Model [ Joh71] . 

In t his paper we first define ISMs and ISMs for programming languages and then 
describe a portion of the CM sufficient for our purposes . The concepts of the 
Implemented and the Implementing Machines are offered, and we give a framework 
for our method descriptions by characterizing what a support method really is in 
terms of machines and mappings between machines . Then two of the methods are 
described in terms of t hese characterizing mappings . For descriptions of the 
other methods see [ BEJS77 ] . 

The impetus for writing this work came from our attempt to understand "Nested 
Interpreters and System Structure" by Michael J . Manthey [ Man75 ] . This report 
describes a contour model of multilevel i nterpretation . We have t aken a different 
approach to modeling t his part i cular phenomenon and have extended the approach to 
other and mixed methods of support . 

2. Nondeterministic Information Structure Models 

We will define a machine , real or abstr act , by giving a nondeterministic informa ­
tion structure model (NDISM) t hat behaves like the machine . A computation of a 
program in the language of the machine will be described as a sequence o f snap­
shots (instantaneous descriptions , core dumps) taken between successive instruc­
tion executions . Each computat ion starts off with an i nitial snapshot S0 and 

proceeds through success ive snapshots s1 ,s2 , •• •• Each snapshot i s obtained from 

"t<he previous by exe·cut i on of some instruction , that is , by the appli cation of 
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some transformation . Since some of the machines in [BEJS77 ] have multiple proces­
sors , it may be nondeterministic as to which instruction is executed next . Conse­
quently the transformation is nondeterministic ; that is, it maps a snapshot to a 
set of snapshots . 

Therefore , we define a NDISM as a three tuple, (I , I 0 ,F), where I is a countable set 

of all possible snapshots , r
0 

is Lhe subset of I which is the set of all possible 

i nitial s napshots , and F is a transformation which maps a snapshot to a set of 
snapshots . 

Definition 1 . M = (I,I
0

, F) is a nondeLerministic information structure model 
(NDISM) if and only i f 

1 ) I is a countable set of objects called snapshots . 

2) r
0
cr is the set of objects called initial snapshots . 

3) Fis a transformation of the form F : I~ P(I) , where P(I) denotes the set 
all subsets of I 1 

The transformation is applicable to a given snapshot i f the transformation maps 
the snapshot to a non- null set of snapshots . A snapshot is transformable i f the 
transformation is applicable to it ; otherwise it is intransformable . 

Definition 2. Let M = (I,I0 ,F) be an NDISM; let s e: I be a snapshot. Then , 

l) F is applicable to s if and only if F(S) ..). 
r 0. 

2) s is transformable if and only if F is applicable to S. 

3) s is intransformable i f and only if S is not transformable • 

A computation is a sequence of snapshots satisfying certain i nitial and inductive 
conditions ; i . e . , if the sequence is non- empty , then the first snapshot in the 
sequence , s

0
, is an element of 10 ; and, for all Si in the sequence, Si e: F(Si_1 ) . 

However , this is not enough . Suppose <s 0 , s
1

, s 2 ,s3> is a computation . Then 

clearly t he sequences <S
0

> , <s
0

, s
1

> and <S0 , s
1

, s 2> all sat i sfy the initial and 

inductive conditions and thus appear to be computations even though they are all 
"incomplete" subsequences of a computation . To fix this hcle in t he definition 
we add the stipulation that a computation is a sequence that is also not a proper 
initial subsequence of any other sequence satisfying the initial and inductive 
conditions . 

Definition 3 . Let M = ( I , I 0 , F) be an NDISM . Then the sequence C = 
<s0 , s

1
, • • • , ~i , •• • > is a computation in M if and only if 

1) for all S . 
1 

in c , s. 
1 

e: I , 

2) if c t- <> (the empty sequence ) , then s0 e: IO , 

3) for all s . in C with i > o, S. E F(S . 
1

) , and 
1 1 1 -

4) for all sequences D satisfying 1) , 2) and 3) above , c is not a proper 
initial subsequence of D1 

We say that C is a computation of s 0 in M if the first snapshot of C is s0 • 

Al so , for an NDISM M, we define the function M to give all computat ions in M of 
a given s 0• 

Definition 4 . Let M = (I , I 0 ,F) be an NDISM ; let s0 E I 0 . Then 
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1 ) C is a computation of s
0 

in M if and onl y if 

a ) c 1 <> is a computati on in M. 
b ) The first s napshot in C i s so . 

2) M(S
0

) = {cjc is a computation of s
0 

in M} f 

Since ever y snapshot of a computation C except the first is obtained by t r ans­
forming the previous , it i s clear that there is at most one intransformabl e snap­
shot in C (there may be none , if C does not hal t ) and i f there is an intransform­
able snapshot in C, it must be the last one . 

THEOREM l . Let M = (I , 10 ,F) be an NDI SM; let C be a computation in M. Then 

l ) There exists at most one snapshot s € I in C such that S is intransform­
able . 

2) If S € I is a snapshot in C such that S is intransformable , t hen is the 
last snapshot in C. 

3) If S E I is t he last snapshot in C, then S is intransformable1 

We now have the right t o speak of the un i que int ransformable snapshot S of a 
computation if such a snapshot exists . We call a computation that has one a 
halting computation and we call the intransformable snapshot the final snapshot 
of t he computation . 

Definiti on s. Let M = (I , I 0 ,F) be an NDI SM ; let C be a computation in M. Then 

l) C halts i f and onl y if for some s € I , s is in C and S is intransformable , 

2) final( C) is defined if and only if C halts , 

3 ) final ( C) = s if and only if S is in C and s is in transformable I 

So far , NDISMs and computations have been defined independently of machines and 
their languages . Since the NDI SMs given in t he sequel are for modeling machines 
and the execution of programs in their languages , we must add assumptions under 
which an NDISM will be considered a model of a machine MACH with machine language 
L. In most machines and languages, we have input and output capabilities . There­
fore , we assume that for each NDISM, M, modeling a machine MACH with language L, 
there are snapshot component selection functions called i nputM and out putM which 

select t he input and output lists of a snapshot . We also assume that there is a 
set of input lists , INPUT , and a set of output lists , OUTPUT , in which all possi­
ble input lists and output lists of integers , reals , booleans and character 
strings may be found . 

Furthermore , we as9ume t hat there exists an ini~iation function initM' which pro­

duces a n ini tial snapshot of M from a gi ven program p in L and a given o i n INPUT . 
The inputM and initM f unctions are assumed to be related in the f ollowi ng manner : 

the inputM of an initial snapshot s
0 

is o if and only if for some program p in L, 

s0 is the result of initiation with p and 6 . 

Assumption l . Let M = (I , 10 , F) be an NDISM for a machi ne MACH with language L. 
Then 

1 ) there exist countable sets INPUT, and OUTPUT of lists of i ntegers , reals , 
booleans and character strings . The empty list , <> , is in both INPUT and 
OUTPUT . 

2) there exist functions , inputM : I +INPUT and outputM : I + OUTPUT . 

3 ) ther e exists a function , i nitM: (LXINPUT) + I 0 • 

4) for all s0 € I 0 , inputM(S0) = o i f and only if for some p € L, ini tM(p ,o) 
= so • 
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Therefore , the set of computations in M of the program p in L with input o is 
denoted by M(initM(p ,o)) . 

Since we are concerned onl y with NDISMs for machines, we shall refer to them 
simply as NDISMs in the discussions that follow, 

In t his paper , all of our examples involve machines with one processor ; thus , 
t here will be at most one successor to a given snapshot . An NDISM for which this 
is true is called a deterministic ISM (DISM) . 

Definition 6, Let M = (I , I
0

,F) be an NDISM . Then 

M is a deterministic informat ion structure model (DISM) if and only if 
for all S € I , 

cardinality (F(S)) s 1 1 

If we restrict our atTention to DISMs , t hen a number of notational s i mpli fications 
are possible . 

Notation 1 . Let M = (I , 1
0

,r) be a. DISM. Then t:ie notation i n the left column shall 
be used in place of the corre sponding notation in the right column : 

F(Si) = si+1 si+1 € F(Si) 

F(S . ) is undef ined 
l. 

3. Contour Model 

F(S.) = ¢ 
l. 

t he one element of M(S
0

) I 

The conTour model, introduced by Johnst on [ Joh69a , b , 71 ] is an NDISM which , be­
cause of the pictorial nature of its snapshots , has proved to be particularly 
suited for describing a variety of computational phenomena . These include nested 
declaration programming languages [Bry74a , OFP78], machines [ Org73], and Multics­
like systems [ Joh75] , For a more complete description of its pedagogic use s ee 
[Bry74b]. 

The model we use here is the basic model enhanced by modification suggested in 
[CDMPS73 , JBM74 ] . Because most operating syst ems are written in languages with 
compile o~ link edit time binding of nonlocal identifiers , i . e ., those of the 
Algol family , we will restrict oursel ves to considering t he static- b inding ver­
s ion of the cont our model suitable for modeling The Algol family . In the termi­
nology of [ Joh73 ], we will use the STATIC compl ete identifier b inding strategy. 
This version has been defined in VDL [ Bry75]. 

3. 1 Snapshots 
I n the contour model (CM), a snapshot consists of a time- invariant algorithm and 
a time- varying record of execution . 

The algorithm consists of a sequence of instructions embedded in a nest of algor­
ithm contours . See figure 3 . 2 for an algorithm corresponding to the source pro­
gram of figure 3 . 1 . Each algorithm contour corresponds to a block or procedure . 
The instruct i ons or contours nested inside contour a A correspond to statements or 
blocks or procedures nested inside the block or procedure corresponding to 
contour A. 

An algorithm cont our has in its upper left hand corner a declaration array with 
one subcell for each identifier declared in the corresponding block or procedure ; 
in the subcell lies the identifier paired with its type . If an algorithm contour 
is that of a procedure its declaration array will have as its first subcell , an 
entry explicitly declaring a vari able to hold the return label of a call . 
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begin int a; 
2 proc p = (int i)void: 
3 a :=i; 
4 begin int a; 
5 a:=2; 
6 p(a) 
7 end 
8 end 

Figure3.l 
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The instructions i n most of our examples will be int ermediate level polish style 
instruct ions . In Lhis case each instruction corresponds to a basic semantic 
primitive , e . g ., evaluat i on of a variable on the l e ft hand side of an assignment , 
evaluation of the value of a variable or of a constant , performance of some 
operati on such as the arithmetics , logicals , comparisons , assignment , etc., block 
entr y or exit , procedure call or return , goto , etc . 

In other cases , for the sake 
may be used as instr uctions . 
algorithm of figure 3 . 2 . 

of compression , h i gh level source language statements 
See figure 3 . 3 f or a higher level rendit ion of the 

The record of execution consists of a nest of record contours with a set of proces­
sors a nd processes. See the right half of rigure 3 . 4 for the record of a snap­
shot i n the computation of the algori thm of figure 3 . 2 . 

Each record contour is an activation of an algori thm contour , i . e . , that of a 
block or a procedure . The algorithm contour is sai d to be the antecedent of the 
record contour , but s i nce There may be more than one acTivation of a given algor­
ithm contour (due to perhaps recursion or mulLiprocessi ng) , The record contour is 
~descendent of the algorithm contour . 

Ea ch record contour , c , contains 

1) a static link pointing to the record cont our D nested about C; D is a 
d~scendent of the a lgorithm contour nest ed about C' s antecedent . We 
typically do not show thi s link , as i t is represented quite a dequately by 
the graphi cal nesting of the contours 

2) a value array consisting of subcells pa iring the i dentifiers declared in 
C' s antecedent wi th their values . 

We depart from t he usual CM and distinguish bet ween processors and pr ocesses . 
The designations are level- relative ; at a given level a processor is a sel f run ­
ning processing unit capable of executing instructions and effecting the required 
changes TO the memory ; a process is a data cell not capable of executing but 
serves inst ead as a receptacle capable of remembering the state of a processor 
at some instant in time . It musT be emphasized that this distinction is only 
level- relative , for a process at one level may be considered a processor at the 
next higher level . 

I f a model r epresents a "real" machine , t hen the processors wi ll be the processing 
units of the machine , and their number will be f i xed t hrough all computations , In 
any case , the number of processes at any level can and does vary through a compu­
tation as they are allocated and deallocated . In all of our examples t here will 
be precisely one processor , model ing the one CPU of the machine . 

A processor consists of at least a site of activity and a stack . 0Ther components 
may be introduced later . The s i t e of activity is composed~ 

1) an instruct i on pointer , ip , pointing to the next instruction , i , to be 
executed by the processor; and 

2) an environment pointer , ~· pointing to a record contour which is a 
descendant of the algor i thm contour nested about the instruction i . 

The stack is used t o store the temporari es resulting from a polish evaluation of 
expressions and is composed of 

l ) a stack poi nter , sp , point i ng to a s ufficient l y large vector of subcells 
for stori ng t he t emporary val ue s 

2 ) a t op_of_s t a ck poi nter , ts , pointing to the first free subcell on top of 
the sta ck . 

We shall gener ally i gnore the exact details of the implementation of the stack 
and instead shall consider only its abstract beha vi or as exhi bited by the usual 
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stack operati ons , push , pop , top , and is_empty [LZ74 ] . 

A process is a data cell consisting generally of the same components as a 
processor . 

We shall typically denote a processor by a solid TI and a process by a hollow 
In the interest of reducing pointer clutter (otherwise known as spaghetti) , the 
ep of a processor or process will rarely be shown ; instead the processor or pro­
cess will be placed directly inside the contour to which its ep points . Also we 
shall eschew the sp of a processor or process by drawing the stack vector to which 
it points as a cup directly below the processor or process; additionally the ts 
shall be only implied by showing the vector up to and including the top subcell . 

A processor or process TI has an accessing environment . If n ' s ep is NIL the ac­
cessing env]ronment is said to be empty . Otherwise , n ' s accessing envi ronment is 
the list , c1 , . • • , en• with n~l of record contours such that n ' s ep points to c

1
; 

for 2Sisn , C. 1
1 s static link points to C.; and C ' s static link is NIL. In other 

i - · i n 
words, n ' s environment is t he list of contours from inside- out that surround it . 
Anytime, in the course of instruction execution , a processor accesses an i denti­
fier , it uses the first occurrence of a subcell for the identifier in its 
accessing environment . 

A cell (i . e ., a record contour or a process) in t he record of execution is said 
to be accessible to a processor if it is pointed to by a value in a processor or 
in a cell which is accessible to a processor . An allocated record cell remains 
allocated until it is no longer accessible to a processor , whereupon it may be 
deallocated . 

The various I/0 files used by the program in the algorithm are considered part of 
the record because t hey are time varying . We will assume all two of our files to 
be stream files [ JW 74] . A file consists of a stream of characters including 
blanks of some f inite length plus a cursor pointing to the next position from 
which to read or into which to write . The two files are the input and the output 
f iles . If a program is not doing input or output or both , we may not show the 
input or output or both files in the snapshot . 

3 . 2 Values 
Beside the usual s e t of boolean , i nteger, real , character, and pointer values , 
there are the procedure and label values . 

A procedure value consists of all information , save for actual parameters, needed 
to do a call : the value has two components 

1 ) an ip pointing to the entry point of the procedure body , 
2) an ep pointing to a descenda nt of the algorithm contour of the block or 

procedure nested about the proceuure body . This ep identifies the acces ­
sing environment containing the subcells for all nonlocal identifiers of 
the procedure body . 

A label value consists of all inf ormati on needed to move the processor to a new 
site of activity and to continue evaluation of whatever expressions the new site 
is i n the midst of . Thus a label value is composed of 

1) an ip pointing to the labeled instruction , 
2) an ep pointing to a descendant of the algorithm contour of the block pro­

cedure nest ed about the labeled instruction , 
3) a stack containing the temporaries needed to continue executi on at the 

label ed instruction . 

The ep of a procedure value and the ep and the stack of a label ~alue are copies 
of those of the processor just after entry to the block containing the procedure 
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or the labeled stat ement. 

3 . 3 Initial Snapshots and in itCM 

Given a program p in the contour model algorithm language and an input list o, 
initCM constructs t he following initial snapshot 

1) The algorithm is p . 
2) The record contains only 

a) a single processor whose 

567 

1) ip points to the first instruction of p 
2) ep is NIL 
3) stack is empty 

b) an input file whose stream is set to 6 and whose cursor is set to point 
to the first posit ion 

c) .an output file whose stream is blank and whose cursor i s set to point 
to the first position . 

Fi gure 3 . 5 shows the initial snapshot formed from the program of figure 3 . 2 and 
the input stream 11 5 " 

3 . 4 Transformation 
The transformation for the single processor contour model i s the fol lowing four­
step procedure : 

Let TI be the processor . 

1 ) If n ' s ip does not point to an instruction , i . e ., it is NIL , then halt the 
computation . 

2) Fetch the instruction inst pointed to by n ' s ip . 
3) Sequence n ' s ip to poi nt to the next instruction if there is one ; if not 

set n ' s ip to NIL . 
4) Execute inst . 

The execute fOrtion of the transformation is what causes the changes to the snap­
show resulting from the performance of an instruction . We shall describe the 
execution of most instructions as they are introduced, but a few key instructions 
merit a brief description now . 

ENTERBLOCK : Allocate a record contour for the algorithm contour being 
entered by t he instruction , set the new contour ' s static link t o a copy 
of n ' s ep , and reset n ' s ep to point to the new contour . 

EXITBLOCK : Reset n ' s ep to a copy of the static link of the record contour 
that n ' s ep points to (this may leave a record contour inaccessible) . 

CALL , n , m: Assumes that the top values on the stack are actual parameters 
ordered from last to first , the n+lth value on the stack i s a procedure 
value , and the procedure requires m-:local variables . Allocate a record 
contour with space for one return label , n parameters, and m local varia­
bles . Pop and pass each parameter value into the appropriate subcell of 
the new contour . Set the new contour ' s static link to a copy of the 
procedure ' s ep . Save n ' s current site of activity into the ret urn label 
cell of the new contour (the i p already points to the instruct ion after 
the CALL) . Reset n ' s ip and ep to that of the procedure value while 
replacing the procedure value in t he stack by a reference to the new 
contour . 

ENTERPROC : Reset n ' s ep t o a copy of the reference to a record contour on 
top of the stack . Pop the reference . 

RETURN : Reset n ' s ip and ep to those of the return label i n the first sub­
cell of the record contour pointed to by n ' s ep . 

See [Joh71, Or g73 , CDMPS7 3 , and OFP78] f or examples of computations i n the model . 
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4 . The Implemented and Implementing Machine 

In all the methods of supporting a machine , there is an implemented machine which 
is supported in some manner by an implementing machine . In this section we estab­
lish some notation that will be used to discuss all the methods . Recall that we 
are restri cting ourselves in this paper to deterministic models , 

4 . 1 Definitions 
A. Implementeg Machine 

1) Md = (Id , Id
0

,Fd) is the implemented machine whose machine language is Ld . 

2) The program executed by a computation in Md will usually be called Pd . 
3) The Computation Md( initMd(Pd , o)) , for some input o , consists of the snap-

shots Sd0 , Sd1 , • • • , Sdi , • •• o 

Sometimes the usage is sloppy and it names the implemented machine s i mply by its 
language . However there are, in general, many machine architectures capable of 
executing a given language, and while it is somewhat irrel evant to the user of 
the l anguage what the architecture is , it makes all the difference in t he world 
to the implementor of the language what architecture is to be implemented . 

To allow easier comparison of the methods of support , i n all of our examples , Md 
will be the CM with a postfix polish machine language Ld . The meaning of each 
instruct i on of Ld either will be obvious or will be explained as ic is introduced. 

B. Implementi ng Machine 

1) Mg = (Ig, Ig
0

, Fg) is the implementing machine whose machine language is Lg . 

2) The pr ogram executed by a computation i n Mg will usually be called Pg. 
3) The computation Mg(initMg(Pg , o)) for some i nput 6 consists of the snap-

shots Sg0 , Sg1 , .•• , Sgi • ·· oo 

The implementi ng machine in all our examples will be the CM executing either 

1) a high level Algol 58- l i ke language 
or 2) a post- fix polish language . 

The preference will be to use the former unless the discussion of the method re­
quires t he post- fix polish language . Any construct used in either kind of 
language either will be self- explanatory or will be explained as i t is used . 

4 . 2 Formal Requirements for Methods of Supporting Machines 
All methods of supporting Md by Mg may be described by a single commuting d i agram 

Md(Sdo) Md( Sdo) 

outputMd 
NOTE : 

Md=outputMdoMd 
Md 

Mg=outputM9oMg 
Mg outputMg 

Figure 4.1 

We are given the implemented machine Md . A method of supporting Md may be charac­
terized by a loading mapping A, the implementi ng machi ne Mg , and an equivalence 
criterion . ' 
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The loading mapping 
A! Ido + Igo 

maps the implemented initial snapshots to the implementing initial snapshots and 
embodies 

1) compilation, if any , of the source program Pd and 
2) setting up some representation of the implemented initial snapsho~ in the 

various parts of the implementing initial snapshot . 

We shall take as the equivalence criterion the identity mapping I on the output of 
the implementing computation to the output of the implemented computation . 

Thus a method of support for Md is simply a pai r (A, Mg) . 

It is required for any method (A , Mg) for supporting Md that 

for all . Pd in Ld and 
for all o in INPUT , 

Md(initMd(Pd , o)) = Mg(A(initMd(Pd , o))) 

i . e . that 

~=~oA 

Stated simply, it is required that the implementing computation produce the same 
result as the implemented computation , i . e . either both do not halt or both halt 
and produce the same output. 

However , in practi ce , it turns out that this simple requirement is too weak . 

1) Proving that the equation holds is difficult because it requires that a 
whole computation be dealt with as if it were one step . 

2) It is only by looking at the outputs of intermediate steps of the compu­
tations that two nonterminating computations can ever be judged as 
different 

3) More insight into the difference between the methods can be gained by 
comparing corresponding snapshots in the implemented and implementing 
computation . 

Therefore we prefer t o use a stronger inductive statement of the requirements 
which implies the holdi ng of the weaker requirements given above . 

outputMd 

outputMg 

Sg . 
J 

Fi gure 4. 2 

We require for each method (A , Mg) of supporting Md that there exists a mapping 
~ : Ig +Id such that for all Pd in Ld and all o in INPUT , if Sd

0 
= initMd(Pd ,o) , 

1) ~(A(Sd0 )) = Sd
0 

2) If ~(Sg.) = 
~ 1 

Sd . and Sd . is not a final snapshot 
J J 

I 
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then J f i nite m~l such that 
a) <f>(Sgi+m ) = Sdj+l 

and b) output(Sg . ) = Sd . 
1 i+m J+ 

3) If </>(Sg . ) = Sd . and Sd . is a final snapshot 
- l. J -- J 
then :l finite m~O such that 
a) Sg. is a final snapshot i+m 
b ) <I> ( Sg . ) = Sd . 

i +m J 
and c) output(Sg. ) = output(Sd . ) . 

i+m J 

That i s ) we require that there is a mapping~ which allows the implemented snap­
shots to be extracted from the implementing snapshots in such a way that 

1) The initial implemented snapshot may be obtained from The initial imple­
menting snapshot, and the outputs of the two snapshots are The same . 

2) If a t some point an implementing snapshot Sgi maps to a nonfinal imple-

mented snapshot Sd., then at most some fin i t e number of implementing 
J 

computation s t eps wi ll yield a snapshot Sg. which maps to the next im-. i+m 
olemented snapshot Sd . 1 and which has the same output as Sd . 1 • 
• ]+ ] + 

3) If at some point an implementing snapshot Sg . maps t o a final implemented 
l. 

snapshot Sd . (which , of course , is t he final snapshot of its computation) , 
J -

then at most some finite number of implementi ng computation steps ) includ­
ing none , will yield the f i nal snapshot Sg . of the implementing computa­

i+m 
tion which maps to Sd ., the final implemented snapshot , and which has the 
same out put as Sd .• J 

J 

This formulation of the requi rements is clearly stronger than is required jusT to 
be able to say that the implementing computation produces the same result as the 
implemented computation . It says that the implementing computation simulates t he 
implemented computation step- by- step . The latter implies t he former but not vice 
versa . 

Note that this formulation of simulation assumes that the implementing computation 
requires at least one step to simulate one s t ep of the implemented computation . 
This assumpti on causes no difficulty , for , as we shall see , all of our implement­
ing models do require at least one step and possibly more To do one step in the 
i mplemented model . 

I f all we are interested in is that the implementing model produce the same result 
as the implemented model then the pair (A , Mg) suffices to characterize a method 
of support . If we insist that the implementing model in some sense simulates the 
i mplemented model then A, Mg ) and <P are needed to characterize a method . Because 
examination of <P does shed some light on the nature of the methods of support and 
t hey are all in some sense s imulations , we use the latter means of characterizing 
a method of support . 

Accordingly , in the remaining sections , as a method is described we shall describe 
i nformally Mg , the implementing model , A, the loading map , and <P ) the implemented 
snapshot extraction map . 

5 . Interpretation 

In interpr etation , the snapshot of the implemented machine is contained entirely 
as a data structure wi thin the record of execution of the snapshots of the imple­
menting ma chine . In part i cular , the processors of the implemented machi ne become 
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processes in the sna pshot data struct ure . The processor of the implement i ng 
machine , under di rection of a program call ed an interpreter , manipulates its 
representation of the snapshot of the implemented machine to reflect the 
computation in the implemented mach ine . 

5 . 1 Single Process Interpretation 
In the case that the implemented mach i ne has a single processor , the interpreter 
program in the algorit hm of t he implementing machine is of t he following form (In 
the following 

x:·: 
means "X dereferenced" and 

x. <; 

means the "C component of X" ) : 

begin 

end 

ref process current ; 
instruction inst ; 
ref snapshot snap ; 

while current:': . ip;inil do 
---fetch inst +-current '°' . ip'°'; 

od 

increment : current '°' . i p +- current'°' . ip+length( inst) ; 
execute case inst . opcode in 

' ADR ' ¢ pushes address of variable whose identifier 
is arg1 of i nst ¢ 

push (current:': . 5tack , reference to cell for 
(inst . arg1)) , 

' READINT ': ¢ assumes reference to stream input file is on 
top of stack , replace s reference by next integer 
in stream ¢ 

infil e +- top(current*. stack) ; 
replace top( current'''. stack , the next integer from 

( infile)) , 
' STOD ' ¢ assumes value on t op of stack and reference 

below that , ass i gns value to referred t o cell , 
pops value and reference ¢ 

2nd (current*. stack)* +- top(current* . scack) ; 
pop t wice (current"' . stack) , 

' VAL' ¢ pushes value of vari able whose identifier is 
arg1 of inst ¢ 

push (current:': . stack , value of cell for 
(inst . arg1)) ; 

' HALT ' ¢ set i p to nil ¢ 
current'°' . ip + nil 

esac 

Figure 5 . 1 
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The interpreter declares at least the following variables (which in the case of 
an emulation would be assigned to registers of the host machine) : 

l)~ to contain a reference to the process representing the 
implemented processor 
to contain the currently executed instruction 2)~ 

3)~ to contain a reference to the area contai~ing the entir e snapshot 
of t he implemented machine . Th is area contains the process 
referred to by current 

The main part of the interpreter is a loop which repeatedly has the processor take 
the process through a fetch , increment and execute cycle . Once the next instruc­
tion has been fetched and the process ' s ip advanced , a case determines which in ­
struction to perf orm and directs the processor in modifying the snapshot referred 
to by ~~aE in accordance with the semantics of the selected instruction . 

Figures 5. 3 through 5. 5 show a nonconsecutive sequence of skeletal snapshots from 
the implementing computation supporting the implemented comput at i on of the 
program fragment shown in figure 5. 2. 

ENTERBLOCK 
DECLARE ,n , INT ¢ assembiy pseudo instruction ¢ 
DECLARE , sysin , REF FILE 

ALGORITHM 
ADR , n ¢ get address of n ¢ 

CONTOUR Cl 
VAL , sys in ¢ get reference to file sys i n ¢ 

READ INT ¢ replace ref with next integer in sys in 
stream ¢ 

STOD ¢ assign integer to n ¢ 

EXITBLOCK 

Figure 5. 2 

In this case , A simulates starting up the i nterpreter , l oading the program to be 
interpreted , setting the ( interpreted) process ' s i p to point to the first in­
struction of the program , and leaving the (interpreting) processor ready to begin 
a fetch , increment , and execute cycle . 

1) In the algorithm is the i nterpret er . 
2) In the record are 

a) the processor sitting inside a record cont our for the outer block of 
t he interpreter ready to execute the statement labeled ~ 

b) a representation of the ini tial implement ed snapshot with 
1) the processor of the implemented snapshot turned into a process 

with identical content , and 
2) the files of the implemented snapshots represented by like initial­

i zed files of the implementing snapshot. 
c) In the record contour for the outer block of the interpret er , 

1) current is initialized with a pointer to the process in t he repre­
~on of the implemented snapshot 

2) ~ is init ialized to point to t he representation of the imple­
mented snapshot . 

See figure 5. 6 for a schematic diagram of this loading map . 



whi le 

fetch: 

case 

I READINT': 

esac 
od 

while 

fetch : 

case 

I READ INT I : 

'll: 

esac 
od 

end 

HIERARCHICAL MACHINE SUPPORT 573 

ENTERBLOCK 

n INT n 

sysin REF FI LE sys in ~ 

ADR, n _!--t---~r-u-1 

VAL ,sysin ____-1-
READINT~ v 
STOD 1-------i~ 

. __v t\ 
EXITBLOCK v .__ __ __. 

'------ ____.,._.._L----. 

\ 

current ~ J 
inst VA~~ysin ~ ! 

Nsnap 

~Tl 
I 

Figure 5.3 
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Fi gure 5. 4 
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ENTERBLOCK 

while n INT n 

od 

fetch: 
sysin REF FILE sys in 

case ADR,n ~I 
VAL,:~ysin ~ J' 
READ INT v1-----1 
STOD 5~ 

EX IT BLOCK V'---------' 
I READINT': 

\ 

current --i-__./[// 
inst READ INT 
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-
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ENTERBLOCK 
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n 
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current 
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Fi gure 5.6 
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The <P mapping may be viewed >': as f ollows : Consider t he implementing computa tion 

cg = <Sgo , Sg1 · ·· ·' Sgi '""" > . 

Ta ke in order of appearance in Cg those snapshots in which the processor ' s ip 
points to t he statement labeled fetch to obtain the sequence 

I I I I 

Cg = <Sg0 , Sg1 ... , Sgj , . . . > 

Then form the implemented computation 

Cd = <Sd
0

, Sd1 , .• • , Sdj , • •. > 
1 

of the same length as Cg such chat for all j , 
1 t 

O~j~length (Cg) , Sd . 
J 

variable with the process of Sg . pointed to by the value of the~ 
J 

a processor of identical content . 

is t hat part 

turned into 

Consequencly , applyi ng t his ~ to t he sequence of snapshots embodied by figures 
5.3 to 5. 5 , all snapshots but those of figures 5 . 3 and 5 . 5 would be dropped co 

I 

form Cg, and these would be converted by ~ to the i mplemenced skeletal snapshots 
shown in figures 5 . 7 and 5. 8 . 

6 . Enmasterization 

In enmasterization , the implemented language is called the user language,and the 
implementing language is called the master or supervisor language . In the typical 
computing system , it is not desirable to g i ve t o the user and his or her language 
direct control over some or all the resources of t he system , e . g ., the processor , 
t he various i nput/output devices , etc . Consequently , on machines supporting such 
systems , instructions giving the user direct access to these resources e . g . , l oad 
processor , start read , start write , etc . , are made privileged . A user program is 
not allowed t o execute privileged instructions , but a master or supervisor program 
is allowed to execute privileged instruct ions . In order for the user program to 
access one of these resour ces , it must somehow request t he supervisor to access 
the resource on its behalf , performing the resource related operat i on , and 
reporting back to the user program when t he operation is completed . 

One method of requesting supervisor help requires one processor and no processes . 

6 . 1 No- process enmasterization 
In no- process enmasterization , the user pr ogram executes a special supervisor call 
instruction whose argument tells which operation the supervisor is t o perform on 
its behalf . As a result of the supervisor call , a trap occurs bringing control 
to the supervisor . A trap is roughly a procedure call combined with a processor 
mode change - from user to master mode . Control returns to t he user program at 
t he instruction after the s upervisor call by means of a special return which also 
changes the processor ' s mode - from master to user mode . 

Al so caus ing traps are s uch events as time slice end , illegal op code, a ttempted 
use of privileged instruction by user , etc . 

To model this phenomenon , in the algorithm of the implementing machi ne must be a 

»strictly speaking~ should not be defined on a computation to a computation , but 
rather on a snapshot t o a snapshot . However, it is easy to construct the correct 
~ from the one descri bed . If TI. ip in the implementing snapshot does not point to 
the statement labeled fe tch , the true ~ includes the finite process of executing 
in Mg unt il TI . ip does p;:;1!it to the statement labeled ~. We will use t his 
slightly incorrect but convenient view of ~ from now on • 
.I. I ' I 
1If Cg is not finite then length (Cg) is taken a s 00 • 
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special supervisor routine . This routine examines the argument of the supervisor 
cal l and branches to the supervisor subroutine which performs the requested oper­
ation us i ng whatever instructions , privileged or otherwise , are necessary to do 
the job . (For simplicity , we a ssume that t he argument of the supervisor call i s 
the ip of the selected subroutine ; if desired , a simple branch table can easily 
be added to make the argument values independent of where the subroutines happen 
to be , ) At the end of each of these subroutines i s a r e turn to the supervisor 
caller . 

There i s exactly one processor , and beside the basic site of activity and stack 
components, the processor has a U/M bit ind i cat i ng whether the processor is i n 
user or master mode , The processor may execute a privileged instruction only i n 
master mode . 

A place is needed to store a procedure value denoting t he supervi sor routine . The 
processor must know where this place is so it can do the supervisor call , but it 
is des irable , for reasons of security , that t hi s place be invisible to the user . 
We store t his procedure in a special register of the processor , the supervisor 
procedure value register (our di agrams show this at the bottom of the s tack) . 

Both the user routine and the supervisor routine may need to call some system 
ut ility routines which do not use privileged instructions . These must be declared 
in a place visible to both the user and the supervi sor routines . We t herefore 
assume that there is a syst em block declaring and initializing these r outines . 
The user program ' s outer block and the supervisor routine are nested inside this 
block . Over in the r ecord , all user program record contour s and supervisor rou­
tine record contours are nested inside a record contour for t he system block . In 
the subcells of this contour are the (ip ,ep) pair s for the various system utility 
routines . 

If we assume that an ord i nary procedure call and return do not change the mode of 
a processor , t hen we have the possibili ty of keeping the supervisor routine which 
contains all the instances of privileged instructions as small as possible . A 
s ection of code whi ch forms a widely useable module and which does not use any 
privileged instruction may be made an ordinary procedure separate from the super­
visor routine but c allabl e from it and the user routines . 

In f i gure 6 . 1 , we s how fragments of a user program and of the supervi sor rout ine 
for a possible system . 

user. code 
ENTERBLOCK 
DECLARE , n , INT 
EQU , readint , some integer 

ADR , n 
SVC , readint 
STOD 

: 
__J;_XITBLOCK 
supervisor routine: 

entrypoint : ENTERPROC 

¢ supervisor call ¢ 

DECLARE , mode , BIT 
DECLARE , code , I P 
VAL , code ¢ get SVC code ¢ 
BRANCH ¢ use code as address to branch to ¢ 

1 
I 
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readint: ALLOC ,80 
STARTREAD 

¢ allocate buffer, leave pointer to buffer in stack ¢ 
¢ when it ' s done , t he input is in buffer pointed to 

by reference on top of stack ¢ 
WAI TREAD ¢ loop on t his instruction until read i s done ¢ 
VAL , extr act i nt ¢ push procedure va lue for system procedure 

extract int ¢ 
ALLOC CALL CONTOUR ¢ and call this procedure ¢ 
CALL ¢ which replaces reference to string on top of s t ack 

by integer it finds in string ¢ 
SRETURN ¢ return from supervisor call ¢ 

Figure 6. 1 

In these fragments 

1) SVC , x is the supervisor call; its execution proceeds as follows : A contour 
~-----;:;ith subcells for a return label, a moj~, and a £8Qg is allocated and 

linked to the system environment which declares t he var ious system 
procedures, e . g .,~. The processor ' s current site of activity 
(its ip already points to t he next instruct ion) and its current mode 
are saved i n t he return l abel and ~ subcells of the contour . The 
instruction argument x is s t ored in the £8Qg subcell . The processor 
t hen sets its mode to M and does a goto to the entry point of t he 
supervisor routine using the (ip ,ep ) pa ir in the s uper visor procedure 
value register . 

2) ~.E£Il.!.E.l':! , a pri vileged instruction , returns from a supervisor ca ll : The 
processor simply resets i ts site of activity and mode from t he r e turn 
label and mode subcells of the contour point ed to by its current ep . 
As a result of th is instruction, this contour may become inaccessible 
and thereby be deallocated. 

3) STARTREAD and WAITREAD are privileged instructions which initiate a read 
~ait u~ read is done . When t he read is done , t he record 

r ead is stored in the buffer referred to by t he pointer on t op of the 
stack . 

Observe that because a fresh contour is allocated for each superv isor call , t he 
processor ' s current mode i s saved in this contour , and SRETURN restores the pr o ­
cessor ' s mode from the s aved mode, supervisor calls may occur even in t he super­
visor routine or in rout ines called from it; even r ecursive supervisor subroutines 
are poss ible . 

As a c onsequence of t he development above, it may be seen that the implemented 
machine , whose language Ld comprises only the nonprivileged ins t ructions, including 
the supervisor call , is really a submachine of t he implement i ng machine, whose 
language Lg comprises all the instructions, i ncluding the privi leged ones . Thus 

Ld c Lg 

i. e . the user l a nguage is a proper subset of the master language. The set Lg- Ld 
includes all t he possible supervisor routines . 

From the point of view of t he implemented machine, each supervisor call with a dif­
ferent argument must be considered a separate instruction whose effect in one com­
putation step is the same as t hat of the sel ected supervisor subroutine in t he im­
plementing machine . Thus for example in the implementing machine implied by t he 
user program of figure 6 . 1 , ~ is a single instruction which gets one 
integer from the next input record and pushes that integer into the processor's 
stack . 

Figures 6 . 2 through 6 . 5 show a ~equence of some skeletal snapshots from the 

I' ' 
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computation of the program fragments of figure 6.1. 

It is useful to observe tha t the implementing machine is itself support'ed by a 
lower level meta-machine; it is in this meta- machine that the procedure ca l l - like 
response to the supervisor call is programmed. 

For the construction we have given for no-process enmasterization, the loading 
map A is quite straightforward . However , we must first modify the init function 
for the implemented machine . Since the various nonprivileged system routines are 
written in the implemented language Ld and are callable from programs in Ld , the 
implemented machine must also have the system outer block . Examining the top half 
of figure 6 . 6 , we see 

1 ) in the algorithm, the system outer block declaring and initializing the 
system routines and containing the user program 

2) in the record, the processor sitting inside a record contour for the sys­
tem outer block ready to execute the first instruction of the user program . 
The subcells of the record contour are init i alized with (ip , ep) pairs for 
the system routines . Also in the record are the usual input and output 
files . 

This is the initial implemented snapshot . 

The loading merely 

1) Inserts the supervisor routine algorithm contour and code into the system 
outer block algorithm contour. 

2) Adds a supervisor procedure value register to the processor and initial­
lizes it with an ip pointing to the supervisor r outine entry point and an 
ep pointing to the system outer block record contour. 

3) Sets the processor to the user mode . 

See figure 6 . 6 for an illustration of this A mapping . 

The ~ mapping for the two models is equally as straightforward . Consider the 
computation 

Cg = Sg0 , Sg1 , .. . , Sgi ,. · . 

in the implementing machine . Remove f rom this sequence all snapshots in which the 
processor is in master mode to obtain the sequence 

I ) I 

Cg = Sg0 , Sg1 , . .. , Sgj , ... 

Then f orm the implemented computat i on 

from Cg 

1) 
2) 

Cd = SdO , Sd1 , ... , Sdj, ... 

by taking each Sg . and 
J 

removing the supervisor procedure value register from the processor , 
removing from the system outer block code the code for the supervi sor 
routine , 

3) removing the mode indication (which is necessarily u) from the processor . 

to obtain Sd . . 
J 

Applying the first part of this construction to the s equence of i mplementi ng snap­
shots embodied by figures 6 . 2 through 6 . 5 eliminates all ·but the snapshots in 
figures 6 . 2 and 6 . 5 . Applying the rest of the construction to these yields the 
skeletal implemented snapshots of figures 6 . 7 and 6 . 8. 

Note , fina lly t hat for enmasterization, ~ is almost one- to- one reflecting the fact 
that most of the implemented machine ' s instruct ions are executed directly in the 
implementing machine . Contra st t hi s with interpretation where ¢ i s many- to - one 
reflecting the fact that many interpreter steps are needed to advance one step in 
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t he implemented ma chine . 

8 . The Tower of //SYSBABEL [ Bib?? , Sam 69 , MLB76 ] 

In this final chapcer , we recons ider t he entire mult i level system given in ~igure 
1 .1 and give a new view of it . 

First consider any two consecucive levels of t he system . There is a ~ map from 
the snapshots of the lower (implementing) level to the corresponding snapshots of 
the upper (implemented) level . 

IMPLEMENTED 
SNAPSHOT 

IMPLEMENTING 
SNAPSHOT 

Figure 8.1 

Now topologically contort the l ower level snapshot so that t he upper l evel snap­
shot may be phys i cally superimposed on the contorted snapshot so t hat each imple­
mented component l ies on top of its implementing component s . That is , in the 
superimposition : 

1) given a component x in the lower level snapshot , x is at least partially 
covered by each component y of the upper l evel snapshot in whose construc­
tion under $ x participates . 

2 ) g i ven a component y in the upper level snapshot , y a t l east partially 
covers each component x of the lower level snapshot whi ch participates in 
y ' s construction under$ . 

This contorti on may be a bi t contrived and t ortuous especially for support methods 
involving compilat ion and , in any case, if t he l ower level snapshot represents an 
intermediate state in the transition from an upper level snapshot to the next . 
However , in principle this contort i on should a l ways be possibl e. 

For example , the applicat i on of the $ map for single process interpretation con­
vert s the snapshot of figure 5 . 3 to t hat of figure 5 . 7 . This conversion results 
in the superimposition shown in f igure 8 . 2 . 

In this kind of a superimposition any vert ical line t hat cuts both snapshots pas­
ses through an implemented cell and its representation i n the implementing 
snapshot . 

In general , t he lower level snapshot will be physically larger than the upper , as 
the l ower level snapshot usually has extra code and data , e . g. , an interpreter 
and its own variables, which help the implementation but wh ich do not direct ly 
represent anything in t he upper level . In no case , will the lower level snapshot 
be smaller than the upper. 

Carrying this superimposition to the enti re multilevel system of figure 1 .1, we 
get something similar to our Tower of //SYSBABEL shown in figure 8 . 3. In i t any 
vertical line cutting through all of the snapshots cut s through a cell in t he LISP 
i nterpreter snapshot at t he top level and suc h succeeding lower level ' s represen­
tation of it~ The l owest level computation i s moving the· fastest ; each lower 
level must do; perhaps , many steps to push the next higher level through one step ; 
and the highes t l evel is moving the slowest . The picture is that of a mult i-
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Fi gure 8.2 

TOWER OF / / SYSBABEL 
Figure 8.3 
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geared (old-fashi oned) adding machine (the authors are old enough to remember 
them) where the lowest level is the unit's gear, the highest level is the billions 

9 . 
gear , a nd the lowest level gear must move 10 teeth to move the highest level gear 
one tooth. 

9. Conclusion 

We have attempted to characterize the multilevel system phenomenon from an 
Information Structure Model point of view . We first identifi ed several methods of 
supporting one machine by another . We then gave an Information Structure Model 
framework for considering a method of support as a pair of models , one implement­
ing and one implemented , together with two mappings , a loading and a simulation 
map , between them . Then three of the ident ified methods of support were described 
in terms of t he two models and the two mappings . We concluded WiLh an overal l 
view of a multilevel system as a tower of models . 
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Andrei Ershov: I s your model observational or implementational? 

Berry: Observat i onal. 

Jack Dennis: You have given us some tools and some descriptive models . What 
should we l earn from your work? 



JOO DISCUSSION 

Berry: What we have gained is a clearer understanding of what actually happens 
in a system. For instance, we have clarified the difference between a process 
and a processor at a gi ven l evel . 

Dennis : I did some thinking some years ago about hierarchical models, and was 
led to the conclusion that the fewer level , the better, because the user program 
which is executing at the outermost level depends on the correctness of all of 
the levels below it . If you are interested in simplicity , and confidence that 
systems work correctly, it seems that you should reduce the number of l evels . 

Berry: I agree we should try to keep the number of levels down . The purpose of 
what I p r esent is to show what exists . Perhaps by understanding what exists , we 
can see what should exist. 

Lawrence Flon: I don ' t understand why many levels cause difficulty , because the 
program is correct if it can be shown to operate correctly given that the topmost 
level satisfies its specifications . 

Dennis : You are correct . But the more compl ex and elaborate the implementation 
is , the more likely it is that the implementation does not reflect its specifi­
cations . So one worries about the confidence the user of an outer level machi ne 
has that the machine meets its specifications. My plea is that the underlying 
hardware be much more accommodating to the program structur e and methodology 
desireable at the user level. Then the overall structure of the system will be 
simpler , increasing user confidence in its correct operation . 

Malcolm Newey: Jack seems to be arguing against modularity. He proposes pushing 
all the levels into one level . 

Dennis : That hurts me very much , of course . The whole machine should support 
modulari ty of programming at the outermost l evel . To me, modularity is the 
ability to take programs that have been written and use them as building blocks 
to build other programs which in turn become new building bl ocks , etc . There is 
no such relationship in the l evel s of an onion . 

Berry: In a sense , a module may be thought of as presenting a machine, and the 
act of composing a higher level module as construction of a higher level machine 
(as described in the models in the paper) . This seems to be what he (Newey) is 
implying by his comment . 

Dennis : If you r egard the onion as representing a modular scheme for building 
larger elements out of simpl e r ones , then I challenge you to take two l evels of 
the onion and define some sensible way of combining them to form a new level . 

Berry: Yes, they ' re not composable . Maybe that ' s why nobody likes these systems . 

1! 
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