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In a2 multilevel hierarchically designed and implemented operating
system, there are several methods for supporting the abstract
machine at any level: interpretation, enmasterization,
virtualization, compilation, and software extension. This paper
presents examples of each method and describes a framework for
characterizing any method as a pair of information structure
models and mappings between them. The framework is used to de-
scribe three of the methods and their examples (descriptions of
the other methods may be found in [BEJS77]). The paper concludes
with a view of an entire system as a possible multipeaked tower

of such models.

i [ Introduction

There is much talk about building a system hierarchically, bottom-up from a raw

machine [Dij68, Bri70, ZR68,

Bau73, Den73, Goo73]. Each level implements a

higher level machine in terms of the primitives offered at that level, A typical
system is shown in Figure 1.1.
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Figure 1.1

The machines from the lowest level on up are:

1. The raw IBM 2067 microprogrammable host machine

2, A system 360 model 67 microprogrammed on the 2067

3. A virtual machine monitor CP 67 which is the 360/67 extended with a number
of routines for managing virtual machine

4, A virtual 360, supported by CP 67 which looks like a traditional 360

5. NUCLEUS/360 providing the basic supervisor routines which use the pri
privileged instructions

6. Operating System/360 (0S/360) which is NUCLEUS/360 extended by a number of
useful packages, compilers, utility routines and access methods

7. A PL/1 machine supported by compilation of PL/1 programs into 360 machine
code combined with 0S supervisor calls (i.e.,'0S machine" instructions)

8., A LISP interpreter written in PL/1

9. A user's programs written in LISP

Even cursory examination of the multilayered system shows that the progression
from layer to layer is not done in a uniform manner. Five different methods can
be identified.
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1) Interpretation - The simulation of a computation at one level by direct
manipulation of the data structures for that level by a program written
in the language of the next lower level. If the lower lsvel is a micro-
programmable machine, interpretation is often called emulation. The steps
from levels 1 to 2 and 7 to 8 are the examples of interpretation and the
former is the one example of emulation,

2) Enmasterization - Extension of a machine not capable of performing certain
privileged instructions by use of a non-privileged supervisor call in-
struction to cause trapping to supervisor state in which the privileged
instructions may be performed. The jumps from levels 2 to 3 and from 4 to
5 are the cases of enmasterization in out example.

3) Virtualization - Support of a machine nearly identical to the supporting
machine with nearly the same execution speed as the supporting machine,
It requires that all sensitive instructions directly dealing with a re-
source be privileged and it usually uses enmasterization to have the sup-
porting machine do the privileged instructions on behalf of the supported
machine. The step from levels 3 to 4 is the example of virtualization.

4) Compilation - Translation of a source program in the language of the im-
plemented machine to an object program in the language of the implementing
machine whose effect as seen by the user is the same as the source pro-
gram, The progression from levels 6 to 7 is the example of compilation in
our hierarchy.

5) Software extension - The "extension'" of a language capable of calling pro-
cedures in the language by a set of procedures written in the language.
The language is made to appear more powerful in that at least the user of
the procedures does not have to write them. This method of support is
used in moving from levels 5 to 6.

If the input of the user program is considered a language then the step from
levels 8 to S may be considered an example of interpretation.

This paper is a shortened version of a much larger work, [BEJS??], which attempts
to clarify the differences between these methods of machine support. 1In [BEJS77],
each method as described in terms of mappings between two Information Structure
Models (ISMs) [Weg71], and each ISM is a variant of the Contour Model [Joh71].

In this paper we first define ISMs and ISMs for programming languages and then
describe a portion of the CM sufficient for our purposes. The concepts of the
Implemented and the Implementing Machines are offered, and we give a framework
for our method descriptions by characterizing what a support method really is in
terms of machines and mappings between machines. Then two of the methods are
described in terms of these characterizing mappings. For descriptions of the
other methods see [BEJS77].

The impetus for writing this work came from our attempt to understand "Nested
Interpreters and System Structure" by Michael J. Manthey [Man75]. This report
describes a contour model of multilevel interpretation. We have taken a different
approach to modeling this particular phenomenon and have extended the approach to
other and mixed methods of support.

2. Nondeterministic Information Structure Models

We will define a machine, real or abstract, by giving a nondeterministic informa-
tion structure model (NDISM) that behaves like the machine. A computaticn of a
program in the language of the machine will be described as a sequence of snap-
shots (instantaneous descriptions, core dumps) taken between successive instruc-
tion executions. Each computation starts off with an initial snapshot SO and

proceeds through successive snapshots 81,82,.... Each snapshot is obtained from

the previous by execution of some instruction, that is, by the application of
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some transformation. Since some of the machines in [BEJS77] have multiple proces-
sors, it may be nondeterministic as to which instruction is executed next. Conse-
gquently the transformation is nondeterministic; that is, it maps a snapshot to a
set of snapshots.

Therefore, we define a NDISM as a three tuple, (I,I,,F), where I is a countable set

of all possible snapshots, I. is the subset of I which is the set of all possible

0
initial snapshots, and F is & transformation which maps a snapshot to a set of
snapshots.,

Definition 1. M = (I,I_,F) is a nondeterministic information structure model

(NDISM) if and only if
1) I is a countable set of objects called snapshots.
2) Lo

3) F is a transformation of the form F: I -+ P(I), where P(I) denotes the set
all subsets of Iy

cI is the set of objects called initial snapshots.

The transformation is applicable to a given snapshot if the transformation maps
the snapshot to a non-null set of snapshots. A snapshot is transformable if the
transformation is applicable to it; otherwise it is intransformable.

Definition 2. Let M = (I,IO,F) be an NDISM; let S € I be a snapshot. Then,
1) F is applicable to S if and only if F(S) # 8.
2) S is transformable if and only if F is applicable to S.
3) s is intransformable if and only if S is not transformableg

A computation is a sequence of snapshots satisfying certain initial and inductive
conditions; i.e., if the sequence is non-empty, then the first snapshot in the

sequence, S, is an element of I3 and, for all s; in the sequence, S; «€ F(Si_l).

However, this is not enough. Suppose 0,S 52,5 > 1s a computation. Then
clearly the sequences <SO>, <S0,S > and <SO,Si,S > all satisfy the initial and
inductive conditions and thus appear to be computations even though they are all

"incomplete" subsequences of a computation. To fix this hcle in the definition
we add the stipulation that a computation is a sequence that is also not a proper
initial subsequence of any other sequence satisfying the initial and Inductive
conditions,

Definition 3. Let M = (I,IO,F) be an NDISM., Then the sequence C =

<SO,Sl,..,,$i,...> is a computation in M if and only if

1) For: all Si in C, Si e I,
2) if ¢ # <> (the empty sequence), then S_ € IO,

0
3) for all Si in ¢ mith i >0, Si € F(Si—l)’

4) for all sequences D satisfying 1), 2) and 3) above, C is not a proper
initial subsequence of Dg

and

We say that C is a computation of S, in M if the first snapshot of C is SO'

0
Also, for an NDISM M, we defirie the function M to give all computations in M of
a given SO'

Definition 4. Let M = (I,IO,P) be an NDISM; let SO e Io. Then
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1) C is a computation of SO in M if and only if

a) C # <> is a computation in M,
b) The first snapshot in C is Sy
2) M(SO) = {C]C is a computation of S0 in Ml g
Since every snapshot of a computation C except the first is obtained by trans-
forming the previous, it is clear that there is at most one intransformable snap-
shot in C (there may be none, if C does not halt) and if there is an intransform-
able snapshot in C, it must be the last one,

THEOREM 1. Let M = (I,IO,F) be an NDISM; let C be a computation in M, Then

1) There exists at most one snapshot S € I in C such that S is intransform-
able,

2) If S € I is a snapshot in C such that S is intransformable, then is the
last snapshot in C.

3) If S € I is the last snapshot in ¢, then S is intransformableg

We now have the right to speak of the unigue intransformable snapshot S of a
computation if such a snapshot exists., We call a computation that has one a
halting computation and we call the intransformable snapshot the final snapshot
of the computation.

Definition 5. Let M = (I,IO,F) be an NDISM; let C be a computation in M. Then

1) C halts if and only if for some S € I, S is in C and S is intransformable,
2) final(C) is defined if and only if C halts,
3) final(C) = S if and only if S is in C and S is intransformabley

So far, NDISMs and computations have been defined independently of machines and
their languages. Since the NDISMs given in the sequel are for modeling machines
and the execution of programs in their languages, we must add assumptions under
which an NDISM will be considered a model of a machine MACH with machine language
L. In most machines and languages, we have input and output capabilities. There-
fore, we assume that for each NDISM, M, modeling a machine MACH with language L,

there are snapshot component selection functions called :anutH and outEux“ which

select the input and output lists of a snapshot. We also assume that there is a
set of input lists, INPUT, and a set of output lists, OUTPUT, in which all possi-
ble input lists and output lists of integers, reals, bocleans and character
strings may be found.

Furthermore, we assume that there exists an initiation function init”, which pro-

duces an initial snapshot of M from a given program p in L and a given ¢ in INPUT.

The input” and init“ functions are assumed to be related in the following manner:

the input, of an initial snapshot SO is § if and only if for some program p in L,

S, is the result of initiation with p and &.

. Assumption 1. Let M = (I,ID,F) be an NDISM for a machine MACH with language L.

Then
1) there exist countable sets INPUT, and OUTPUT of lists of integers, reals,
booleans and character strings. The empty list, <>, is in both INPUT and
OUTPUT.

2) there exist functions, inputM: I » INPUT and output,: I =+ OUTPUT.

e
3) there exists a function, initM: (LXINPUT) -+ IO'
4) for all Sy € Ips inputM(So) = 8 if and only if for some p € L, initM(p,é)
=S‘
0
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Therefore, the set of computations in M of the program p in L with input & is
denoted by M(initM(p,é)).

Since we are concerned only with NDISMs for machines, we shall refer to them
simply as NDISMs in the discussions that follow.

In this paper, all of our examples involve machines with one processor; thus,
there will be at most one successor to a given snapshot. An NDISM for which this
is true is called a deterministic ISM (DISM).

Definition 6. Let M = (I,IO,F) be an NDISM. Then

M is a deterministic information structure model (DISM) if and only if
for all S e I,
cardinality (F(S)) s 1p

If we restrict our attention to DISMs, then a number of notational simplifications
are possible.

Notation 1., Let M = (I,I_.,F) be a DISM. Then the notation in the left column shall
be used in place of the corresponding notation in the right column:

LR Y= By Bigq & TR
F(Si) is undefined F(Si) = ¢
M(So) the one element of M(SO) ]

3. Contour Model

The contour model, introduced by Johnston {Johsga, b, 71] is an NDISM which, be-
cause of the pictorial nature of its snapshots, has proved to be particularly
suited for describing a variety of computational phenomena. These include nested
declaration programming languages [Bry?#a, OPP?B], machines [Org73], and Multics-
like systems [Joh75]. For a more complete description of its pedagogic use see
[Bry7ub].

The model we use here is the basic model enhanced by modification suggested in
[cpMPs73, JBM74]. Because most operating systems are written in languages with
compile or link edit time binding of ncnlocal identifiers, i.e., those of the
Algol family, we will restrict ourselves to considering the static-binding ver-
sion of the contour model suitable for modeling the Algol family. In the termi-
nology of [Joh?S], we will use the STATIC complete identifier binding strategy.
This version has been defined in VDL [Bry75].

3.1 Snapshots :
In the contour model (CM), a snapshot consists of a time-invariant algorithm and
a time-varying record of execution.

The algorithm consists of a sequence of instructions embedded in a nest of algor-
ithm contours. See figure 3.2 for an algorithm corresponding to the source pro-
gram of figure 3.1. Each algorithm contour corresponds to a block or procedure.
The instructions or contours nested inside contour a A correspond to statements or
blocks or procedures nested inside the block or procedure corresponding to
contour A.

An algorithm contour has in its upper left hand corner a declaration array with
one subcell for each identifier declared in the corresponding block or procedure;
in the subcell lies the identifier paired with its type. If an algorithm contour
is that of a procedure its declaration array will have as its first subcell, an
entry explicitly declaring a variable to hold the return label of a call.
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T~ begin int a;
2 proc p = (int i)void:
3 a:=1;
4 begin int a;
5 a:=2;
6 n(a)
l 7 end
. el
Figure 3.1
1 ENTERBLOCK
| al INT
p| PROC ENTERPROC 2.4
; 4 ADR, p L§ret;RET LABEL! g
; 2.2 MAKEPROC, ] INT ;
| STOD ' ADR,a i 3.1
VAL,i i 3.2
4 ENTERBLOCK | ST | | 3.3
a| INT || RETURN || 3.4
i 5.1 ADR,a
| 5.2 £,
5.3 STOD
| 6.1 VAL,p
i 6.2 VAL ,a
; 6.3] | CALL,1,0
| 7 EXITBLOCK
| 8 EXITBLOCK
Figure 3.2
ENTERBLOCK
a INT
, p| PROC _— ENTERPROC
! p:=makeproc(+); | Rret |RET LABEL
» ENTERBLOCK i INT
al| INT | a:=i
a:=2; RETURN
i p(a)
i EXITBLOCK
EXITBLOCK

Figure 3.3
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The instructions in most of our examples will be intermediate level polish style
instructions. In this case each instruction corresponds to a basic semantic
primitive, e.g., evaluation of a variable on the left hand side of an assignment,
evaluation of the value of a variable or of a constant, performance of some
operation such as the arithmetics, logicals, comparisons, assignment, etc., block
entry or exit, procedure call or return, goto, etc.

In other cases, for the sake of compression, high level source language statements
may be used as instructions. See figure 3.3 for a higher level rendition of the
algorithm of figure 3,2.

The record of execution consists of a nest of record contours with a set of proces-
sors and processes. See the right half of figure 3.4 for the record of a snap-
shot in the computation of the algorithm of figure 3.2,

Each record contour is an activation of an algorithm contour, i.e., that of a
block or a procedure. The algorithm contour is said to be the antecedent of the
record contour, but since there may be more than one activation of a given algor-
ithm contour (due to perhaps recursion or multiprocessing), the record contour is
2 descendent of the algorithm contour.

Each record contour, C, contains

1) a static link pointing to the record contour D nested about C; D is a
descendent of the algorithm contour nested about C's antecedent. We
typically do not show this link, as it is represented quite adequately by
the graphical nesting of the contours

2) a value array consisting of subcells pairing the identifiers declared in
C's antecedent with their values.

We depart from the usual CM and distinguish between processors and processes.

The designations are level-relative; at a given level a processor is a self run=-
ning processing unit capable of executing instructions and effecting the required
changes to the memory; a process is a data cell not capable of executing but
serves instead as a receptacle capable of remembering the state of a processor
at some instant in time. It must be emphasized that this distinction is only
level-relative, for a process at one level may be considered a processor at the
next higher level.

If a model represents a "real! machine, then the processors will be the processing
units of the machine, and their number will be fixed through all computations. In
any case, the number of processes at any level can and does vary through a compu-
tation as they are allocated and deallocated. In all of cur examples there will
be precisely one processor, modeling the one CPU of the machine.

A processor consists of at least a site of activity and a stack. Other components
may be introduced later. The site of activity is composed of

1) an instruction pointer, ip, pointing to the next instruction, i, to be
executed by the processor, and

2) an environment pointer, ep, pointing to a record contour which is a
descendant of the algorithm contour nested about the instruction i.

The stack is used to store the temporaries resulting from a polish evaluation of
expressions and is composed of

1) a stack pointer, sp, pointing to a sufficiently large vector of subcells
for storing the temporary values

2) a top-of_stack pointer, ts, pointing to the first free subcell on top of
the stack.

We shall generally ignore the exact details of the implementation of the stack
and instead shall consider only its abstract behavior as exhibited by the usual
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ENTERBLOCK
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PROC

ADR,p
MAKEPROC,
STOD

ENTERBLOCK

ENTERPROC —=—
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&ret [RET LABEL
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a| INT
ADR,a
c,2

STOD
VAL,p
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CALL,1,0

RETURN

EXITBLOCK =]

EXITBLOCK

algorithm

Figure 3.4

record of execution

ENTERBLOCK

INT

PROC

ADR,p
MAKEPROC,
STOD

ENTERBLOCK
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Rret RET LABEL]
i INT

al INT
ADR,a

C,2

STOD
VAL,p
VAL ,a
CALL,T1,0
EXITBLOCK

ADR,a
VAL,
STOD
RETURN

EXITBLOCK

output input

Figure 3.5
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stack operations, push, pop, top, and is_empty (Lz74].

A process is a data cell consisting generally of the same components as a
processor,

We shall typically denote a processor by a solid 7 and a process by a hollow

In the interest of reducing pointer clutter (otherwise known as spaghetti), the

ep of a processor or process will rarely be shown; instead the processor or pro-
cess will be placed directly inside the contour to which its ep points. Also we
shall eschew the sp of a processor or process by drawing the stack vector to which
it points as a cup directly below the processor or process; additionally the ts
shall be only implied by showing the vector up to and including the top subcell.

A processor or process T has an accessing environment. If m's ep is NIL the ac-
cessing environment is said to be empty. Otherwise, T's accessing environment is
the list, Cl""’ Cn, with n21 of record contours such that m's ep points to C,;

13

for 2<is<n, Ci— s static link points to Ci; and Cn's static link is NIL. In other

1
words, T's enviromment is the list of contours from inside-out that surround it.
Anytime, in the course of instruction execution, a processor accesses an identi-
fier, it uses the first occurrence of a subcell for the identifier in its
accessing environment.

A cell (i.e., @ record contour or a process) in the record of execution is said
to be accessible to a processor if it is pointed to by a value in a processor or
in a cell which is accessible to a processor. An allocated record cell remains
allocated until it is no longer accessible to a processor, whereupon it may be
deallocated.

The various I/0 files used by the program in the algorithm are considered part of
the record because they are time varying. We will assume all two of our files to
be stream files [JW 74], A file consists of a stream of characters including
blanks of some finite length plus a cursor pointing to the next position from
which to read or into which to write. The two files are the input and the output
files, If a program is not doing input or output or both, we may not show the
input or output or both files in the snapshot.

3.2 Values
Beside the usual set of boolean, integer, real, character, and pointer values,
there are the procedure and label values.,

A procedure value consists of all information, save for actual parameters, needed
to do a call: the value has two components

1) an ip pointing to the entry point of the procedure body,

2) an ep pointing to a descendant of the algorithm contour of the block or
procedure nested about the procedure body. This ep identifies the acces-
sing enviromment containing the subcells for all nonlocal identifiers of
the procedure body.

A label value consists of all information needed to move the processor to a new
site of activity and to continue evaluation of whatever expressions the new site
is in the midst of. Thus a label value is composed of

1) an ip pointing to the labeled instruction,

2) an ep pointing to a descendant of the algorithm contour of the block pro-
cedure nested about the labeled instruction,

3) a stack containing the temporaries needed to continue execution at the
labeled instruction,

The ep of a procedure value and the ep and the stack of a label value are copies
of those of the processor just after entry to the block containing the procedure
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or the labeled statement.

3.3 Initial Snapshots and init

CM
Given a program p in the contour model algorithm language and an input list 6,
initCM constructs the following initial snapshot

1) The algorithm is p.
2) The record contains only
a) a single processor whose
1) ip points to the first instruction of p
2) ep is NIL
3) stack is empty
b) an input file whose stream is set to § and whose cursor is set to point
to the first position

c) «an output file whose stream is blank and whose cursor is set to point
to the first position.

Figure 3.5 shows the initial snapshot formed from the program of figure 3.2 and
the input stream " 5 N

3.4 Transformation

The transformation for the single processor contour model is the following four-
step procedure:

Let m be the processor.

1) If ©'s ip does not point to an instruction, i.e., it is NIL, then halt the
computation.

2) Fetch the instruction inst pointed to by m's ip.

3) Sequence T's ip to point to the next instruction if there is one; if not
set m's ip to NIL.

4) Execute inst.

The execute portion of the transformation is what causes the changes toc the snap-
show resulting from the performance of an instruction. We shall describe the
exXecution of most instructions as they are introduced, but a few key instructions
merit a brief description now.

ENTERBLOCK: Allocate a record contour for the algorithm contour being
entered by the instruction, set the new contour's static link to a copy
of m's ep, and reset T's ep to point to the new contour.

EXITBLOCK: Reset m's ep to a copy of the static link of the record contour
that T's ep points to (this may leave a record contour inaccessible).

CALL, n, m: Assumes that the top values on the stack are actual parameters
ordered from last to first, the n+lth value on the stack is a procedure
value, and the procedure requires m local variables., Allocate a record
contour with space for one return label, n parameters,and m local varia-
bles. Pop and pass each parameter value into the appropriate subcell of
the new contour. Set the new contour's static link to a copy of the
procedure's ep. Save T's current site of activity into the return label
cell of the new contour (the ip already points to the instruction after
the CALL). Reset m's ip and ep to that of the procedure value while
replacing the procedure value in the stack by a reference to the new
contour.

ENTERPROC: Reset m's ep to a copy of the reference to a record contour on
top of the stack. Pop the reference.

RETURN: Reset m's ip and ep to those of the return label in the first sub-
cell of the record contour pointed to by T's ep.

See [Joh71, Oxrg73, CDMPS73, and OFP78] for examples of computations in the model.
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L, The Implemented and Implementing Machine

In all the methods of supporting a machine, there is an implemented machine which
is supported in some manner by an implementing machine. In this section we estab-
lish some notation that will be used to discuss all the methods. Recall that we
are restricting ourselves in this paper to deterministic models,

4.1 Definitions
A. Implemented Machine

1) Md = (Id,Id

O,Pd) is the implemented machine whose machine language is Ld.

2) The program executed by a computation in Md will usually be called Pd.
3) The Computation Md(inith(Pd,é)), for some input 6, consists of the snap-

shots Sd Sdi,..., Sdi,...o

O’
Sometimes the usage is sloppy and it names the implemented machine simply by its
language. However there are, in general, many machine architectures capable of
executing a given language, and while it is somewhat irrelevant to the user of
the language what the architecture is, it makes all the difference in the world
to the implementor of the language what architecture is to be implemented.

To allow easier comparison of the methods of support, in all of our examples, Md
will be the CM with a postfix polish machine language Ld. The meaning of each
instruction of Ld either will be obvious or will be explained as it is introduced.
B. Implementing Machine

1) Mg = (Ig,IgO,Fg) is the implementing machine whose machine language is Lg.

2) The program executed by a computation in Mg will usually be called Pg.
3) The computation Mg(initwg(Pg,é)) for some input § consists of the snap-
1

shots Sgo, Sgi,..., Sgi,..an
The implementing machine in all our examples will be the CM executing either

1) a high level Algol 68-like languags
or 2) a post-fix polish language.

The preference will be to use the former unless the discussion of the method re-
quires the post-fix polish language. Any construct used in either kind of
language either will be self-explanatory or will be explained as it is used.

4,2 Formal Requirements for Methods of Supporting Machines
All methods of supporting Md by Mg may be described by a single commuting diagram

inith(Pd,s) = SdO Md(SdO) Md(SdO) —
outputh Sl
d=outputhon
A I -
Mg=outputMgoMg
outputMg
S9, Mg(Sgq) Mg(Sgy)

Figure 4.1

We are given the implemented machine Md. A method of supporting Md may be charac-
terized by a loading mapping A, the implementing machine Mg, and an equivalence
criterion.
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The loading mapping

A: IdO % Igo i
maps the implemented initial snapshots to the implementing initial snapshots and
embodies

1) compilation, if any, of the source program Pd and
2) setting up some representation of the implemented initial snapshot in the
various parts of the implementing initial snapshot.

We shall take as the equivalence criterion the identity mapping I on the output of
the implementing computation to the output of the implemented computation.

Thus a method of support for Md is simply a pair (XA, Mg).

It is required for any method (A, Mg) for supporting Md that

for all Pd in Ld and
for all & in INPUT,

ﬁEtinith(Pd,é)) = ﬁélk(inith(Pc,é)))
i.e. that
Md = Mg o A

Stated simply, it is required that the implementing computation produce the same
result as the implemented computation, i.e. either both do not halt or both halt
and produce the same output.

However, in practice, it turns out that this simple requirement is too weak.

1) Proving that the equation holds is difficult because it requires that a
whole computation be dealt with as if it were one step.

2) It is only by locking at the outputs of intermediate steps of the compu-
tations that two nonterminating computations can ever be judged as
different

3) More insight into the difference between the methods can be gained by
comparing corresponding snapshots in the implemented and implementing
computation.,

Therefore we prefer to use a stronger inductive statement of the requirements
which implies the holding of the weaker requirements given above.

inith(Pd,6)=Sd0 | . Sd,i | Md(SdO) ﬁE(SdO)

Fd

Fg
S99 S9; ' Mg(Sgy) Mg(Sgy)

Figure 4.2
We require for each method (A,Mg) of supporting Md that there exists a mapping
¢: Ig -+ Id such that for all Pd in Ld and all § in INPUT, if Sdo = inith(Pd,a),
1) ¢(A(Sd0)) sd

0
2) Eﬁ_@(Sgi) de and de is not a final snapshot

"
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then I finite m=2l such that
al ¢(Sgi+m) : de+1

and b) output(Sgi+m) = de+1
3) If ¢(Sgi) = de and de is a final snapshot

then 3 finite m20 such that
a) Sgi+m is a final snapshot

b) ¢(sg,, ) = 8d,
and c) output(Sg.. ) = output(sd.).
1+m ]

That is, we require that there is a mapping ¢ which allows the implemented snap-
shots to be extracted from the implementing snapshots in such a way that

1) The initial implemented snapshot may be obtained from the initial imple-
menting snapshot, and the outputs of the two snapshots are the same.
2) If at some point an implementing snapshot Sgi maps to a nonfinal imple-

mented snapshot de, then at most some finite number of implementing
computation steps will yield a snapshot Sgi+m which maps to the next im-
plemented snapshot de+1 and which has the same output as de+1.
3) If at some point an implementing snapshot Sgi maps to a final implemented
snapshot de (which, of course, is the final snapshot of its computation),

then at most some finite number of implementing computation steps, includ-
ing none, will yield the final snapshot Sgi+m of the implementing computa-

tion which maps to Sd., the final implemented snapshot, and which has the
same output as de.

This formulation of the requirements is clearly stronger than is required just to
be able to say that the implementing computation produces the same result as the

implemented computation., It says that the implementing computation simulates the
implemented computation step-by-step. The latter implies the former but not vice
versa.

Note that this formulation of simulation assumes that the implementing computation
requires at least one step to simulate one step of the implemented computation.
This assumption causes no difficulty, for, as we shall see, all of our implement-
ing models do reqguire at least one step and possibly more to do one step in the
implemented model.

If all we are interested in is that the implementing model produce the same result
as the implemented model then the pair (A,Mg) suffices to characterize a method
of support, If we insist that the implementing model in some sense simulates the
implemented model then A, Mg, and ¢ are needed to characterize a method. Because
examination of ¢ does shed some light on the nature of the methods of support and
they are all in some sense simulations, we use the latter means of characterizing
a method of support. i

Accordingly, in the remaining sections, as a method is described we shall describe
informally Mg, the implementing model, A, the loading map, and ¢, the implemented
snapshot extraction map.

5. Interpretation

In interpretation, the snapshot of the implemented machine is contained entirely
as a data structure within the record of execution of the snapshots of the imple-
menting machine. In particular, the processors of the implemented machine become
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processes in the snapshot data structure., The processor of the implementing
machine, under direction of a program called an interpreter, manipulates its
representation of the snapshot of the implemented machine to reflect the
computation in the implemented machine,

5.1 Single Process Interpretation

In the case that the implemented machine has a single processor, the interpreter
program in the algorithm of the implementing machine is of the following form (In

the following
p&

means "X dereferenced" and
X.C

means the "C component of X"):

begin
ref process current;
instruction inst;

ref snapshot snap;

while current®.ip#nil do
fetch

inst + current#®.ip%;

increment: current®.ip « current#®.ip+length(inst);

execute

'ADR! 3
TREADINT':
tSTOD?! )
'VAL!
"HALT' H
1
L
esac

case inst.opcode in

¢ pushes address of variable whose identifier
is argl of inst ¢

push (current¥.stack, reference to cell for

(inst.argl)),

¢ assumes reference to stream input file is on
top of stack, replaces reference by next integer
in stream ¢

infile +« top(current®.stack);

replace top(current®,stack, the next integer from
(infile)),

¢ assumes value on top of stack and reference
below that, assigns value to referred to cell,
pops value and reference ¢

2nd (current®,stack)® « top(current®.stack);

pop twice (current®.stack),

¢ pushes value of variable whose identifier is
argl of inst ¢

push (current#®.stack, value of cell for

(inst.argl));
¢ set ip to nil ¢
current®.ip + nil

Figure 5.1

——— T —— L A sl 1
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The interpreter declares at least the following variables (which in the case of
an emulation would be assigned to registers of the host machine):

1) gurrent to contain a reference to the process representing the
implemented processor

2) inst to contain the currently executed instruction
3) snap to contain a reference to the area containing the entire snapshot

of the implemented machine. This area contains the process
referred to by current

The main part of the interpreter is a loop which repeatedly has the processor take
the process through a fetch, increment and execute cycle. Once the next instruc-
tion has been fetched and the process's ip advanced, a case determines which in-
struction to perform and directs the processor in modifying the snapshot referred
to by spap in accordance with the semantics of the selected instruction.

Figures 5.3 through 5.5 show a nonconsecutive sequence of skeletal snapshots from
the implementing computation supporting the implemented computation of the
program fragment shown in figure 5.2.

ENTERBLOCK
DECLARE ,n,INT ¢ assembly pseudo instruction ¢
DECLARE,sysin, REF FILE
ADR, n ¢ get address of n ¢
gggggégﬂgl VAL, sysin ¢ get reference to file sysin ¢
READINT ¢ replace ref with next integer in sysin
stream ¢
STOD ¢ assign integer to n ¢
EXITBLOCK
Figure 5.2

In this case, A\ simulates starting up the interpreter, loading the program to be
interpreted, setting the (interpreted) process's ip to peint to the first in-
struction of the program, and leaving the (interpreting) processor ready to begin
a fetch, increment, and execute cycle.

1) In the algorithm is the interpreter.
2) In the record are
a) the processor sitting inside a record contour for the outer block of
the interpreter ready to execute the statement labeled fetch
b) a representation of the initial implemented snapshot with
1) the processor of the implemented snapshot turned into a process
with identical content, and
2) the files of the implemented snapshots represented by like initial-
ized files of the implementing snapshot,
¢) In the record contour for the outer block of the interpreter,
1) gurrent is initialized with a pointer to the process in the repre-
sentation of the implemented snapshot
2) snap is initialized to point to the representation of the imple-
mented snapshot,.

See figure 5.6 for a schematic diagram of this loading map.
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—_beqi
medn ENTERBLOCK
while n INT
sysin{REF FILE
fetch: -
case ADR,n
- VAL ,sysin
READINT
) STOD
' EXITBLOCK
'READINT':
current —_
inst VALsysin
snap ~——
esac \\\
QQ'“——— \\\\55_#1‘
L
—end
Figure 5.3
e [y 5
2eqin ENTERBLOCK
while n INT
sysin|REF FILE
fetch: :
ADR,n
— VAL ,sysin
STOD
EXITBLOCK
'READINT':F ////7
. .\\

\ current el ]
inst READINT
snap ~

esac \\\
od .
L 1
—end

Figure 5.4
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—begin ENTERBLOCK
while n INT n
- sysin|REF FILE sysin
etc :<\ "
S % ADR,n ; H I:
2= VAL ,sysin T 7
STOD
EXITBLOCK ///
'"READINT': //////
current Iy
inst READINT
snap ~—
esac
od i I
L
—end
Figure 5.5
ENTERBLOCK
n INT n 3
sysin| REF FILE sysin ]
ADR,n ozt { | 5
VAL,sysin 1 | T
READINT ——]
STOD N
EXITBLOCK
Figure 5.7
ENTERBLOCK
n INT n R—\
sysin|REF FILE sysin .
ADR,n L —T]
VAL,sysin -
READINT 5
STOD ]
EXITBLOCK

Figure 5.8




AL

s

HIERARCHICAL MACHINE SUPPORT

575

<
] I\g
output input
—begin
: <~
while
fetch: ﬁ
case N
'READINT' ... /
current A
inst — -
snap ===
esac
od et | output input
_ end

Figure 5.6




/6 BERRY, ERLINGER, JOHNSTON, VON STAA

The ¢ mapping may be viewed® as follows: Consider the implementing computation

Cg B <Sgo, Sgl,..., Sgi,... >,

Take in order of appearance in Cg those snapshots in which the processor's ip
points to the statement labeled fetch to obtain the sequence

1 T 1
Cg = <Sg0, Sgl..., ng,...>

Then form the implemented computation

Cd = <Sd0, Sdl,.--, de,o-.>

of the same length as Cé such that for all j, 0s<j<length (Cé),T Sd. is that part
of ng pointed to by the value of the snap variable with the procesg turned into
a processor of identical content.

Consequently, applying this ¢ to the sequence of snapshots embodied by figures
5.3 to 5.5, all snapshots but those of figures 5.3 and 5.5 would be dropped to
form Cé, and these would be converted by ¢ to the implemented skeletal snapshots

shown in figures 5.7 and 5.8.

6. Enmasterization

In enmasterization, the implemented language is called the user language,and the
implementing language is called the master or supervisor language. In the typical
computing system, it is not desirable to give to the user and his or her language
direct control over some or all the resources of the system, e.g., the processor,
the various input/output devices, etc. Consequently, on machines supporting such
systems, instructions giving the user direct access to these resources e.g., load
processor, start read, start write, etc., are made privileged. A user program is
not allowed to execute privileged instructions, but a master or supervisor program
is allowed to execute privileged instructions. In order for the user program to
access one of these resources, it must somehow request the supervisor to access
the resource on its behalf, performing the resource related operation, and
reporting back to the user program when the operation is completed.

One method of requesting supervisor help requires one processor and no processes.

6.1 No-process enmasterization

In no-process enmasterization, the user program executes a special supervisor call
instruction whose argument tells which operation the supervisor is to perform on
its behalf. As a result of the supervisor call, a trap occurs bringing control

to the supervisor. A trap is roughly a procedure call combined with a processor
mode change - from user to master mode. Control returns to the user program at
the instruction after the supervisor call by means of a special return which also
changes the processor's mode - from master to user mode.

Also causing traps are such events as time slice end, illegal op code, attempted
use of privileged instruction by user, etc.

To model this phenomenon, in the algorithm of the implementing machine must be a

%Stprictly speaking ¢ should not be defined on a computation to a computation, but
rather on a snapshot to a snapshot. However, it is easy to construct the correct
¢ from the one described., If T.ip in the implementing snapshot does not point to
the statement labeled fetch, the true ¢ includes the finite process of executing
in Mg until 7.ip does point to the statement labeled fefch. We will use this
sllghtly 1ncorrect but convenient v1ew of ¢ from now on.

+If Cg is not finite then length (Cg) is taken as °,
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special supervisor routine, This routine examines the argument of the supervisor
call and branches to the supervisor subroutine which performs the requested oper-
ation using whatever instructions, privileged or otherwise, are necessary to do
the job. (For simplicity, we assume that the argument of the supervisor call is
the ip of the selected subroutine; if desired, a simple branch table can easily
be added to make the argument values independent of where the subroutines happen
to be.) At the end of each of these subroutines is a return to the supervisor
caller,

There is exactly one processor, and beside the basic site of activity and stack
components, the processor has a U/M bit indicating whether the processor is in
user or master mode. The processor may execute a privileged instruction only in
master mode.

A place is needed to store a procedure value denoting the supervisor routine. The
processor must know where this place is so it can do the supervisor call, but it
is desirable, for reasons of security, that this place be invisible tc the user.,
We store this procedure in a special register of the processor, the supervisor
procedure value register (our diagrams show this at the bottom of the stack).

Both the user routine and the supervisor routine may need to call some system
utility routines which do not use privileged instructions. These must be declared
in a place visible to both the user and the supervisor routines. We therefore
assume that there is a system block declaring and initializing these routines.

The user program's outer block and the supervisor routine are nested inside this
block. Over in the record, all user program record contours and supervisor rou-
tine record contours are nested inside a record contour for the system block. In
the subcells of this contour are the (ip,ep) pairs for the various system utility
routines,

If we assume that an ordinary procedure call and return do not change the mode of
a processor, then we have the possibility of keeping the supervisor routine which
contains all the instances of privileged instructions as small as possible, A
section of code which forms a widely useable module and which does not use any
privileged instruction may be made an ordinary procedure separate from the super-
visor routine but callable from it and the user routines.

In figure 6.1, we show fragments of a user program and of the supervisor routine
for a possible system.

user code

_ENTERBLOCK

DECLARE, n, INT

EQU, readint, some integer

ADR, n
SVC, readint ¢ supervisor call ¢
STOD

| EXITBLOCK
supervisor routine:

entrypoint: ENTERPROC
i DECLARE, mode, BIT
DECLARE, code, IP
VAL, code ¢ get SVC code ¢
BRANCH ¢ use code as address to branch to ¢
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readint: ALLOC,80 ¢ allocate buffer, leave pointer to buffer in stack ¢
STARTREAD ¢ when it's done, the input is in buffer pointed to
by reference on top of stack ¢
WAITREAD ¢ loop on this instruction until read is done ¢

VAL, extract int ¢ push procedure value for system procedure
extract int ¢
ALLOC CALL CONTOUR ¢ and call this procedure ¢

CALL ~— ¢ which replaces reference to string on top of stack
by integer it finds in string ¢
SRETURN ¢ return from supervisor call ¢
Figure 6.1

In these fragments

1) SVC,x is the supervisor call; its execution proceeds as follows: A contour
with subcells for a return label, a mode, and a code is allocated and
linked to the system environment which declares the various system
procedures, e.g., extractint. The processor's current site of activity
(its ip already points to the next instruction) and its current mode
are saved in the return label and mode subcells of the contour. The
instruction argument x is stored in the gode subcell. The processor
then sets its mode to M and does a goto to the entry point of the
supervisor routine using the (ip,ep) pair in the supervisor procedure
value register.

2) SRETURN, a privileged instruction, returns from a supervisor call: The
processor simply resets its site of activity and mode from the return
label and mode subcells of the contour pointed to by its current ep.
As a result of this instruction, this contour may become inaccessible
and thereby be deallocated.

3) STARTREAD and WAITREAD are privileged instructions which initiate a read
and wait until the read is done. When the read is done, the record
read is stored in the buffer referred to by the pointer on top of the
stack.

Observe that because a fresh contour is allocated for each supervisor call, the
processor's current mode is saved in this contour, and SRETURN restores the pro-
cessor's mode from the saved mode, supervisor calls may occur even in the super-
visor routine or in routines called from it; even recursive supervisor subroutines
are possible.

As a consequence of the development above, it may be seen that the implemented
machine, whose language Ld comprises only the nonprivileged instructions, including
the supervisor call, is really a submachine of the implementing machine, whose
language Lg comprises all the instructions, including the privileged ones. Thus

Ld © Lg

i.e. the user language is a proper subset of the master language. The set Lg-Ld
includes all the possible supervisor routines.

From the point of view of the implemented machine, each supervisor call with a dif-
ferent argument must be considered a separate instruction whose effect in one com-
putation step is the same as that of the selected supervisor subroutine in the im-
plementing machine. Thus for example in the implementing machine implied by the
user program of figure 6.1, SVC, readint is a single instruction which gets one
integer from the next input record and pushes that integer into the processor's
stack.

Figures 6.2 through 6.5 show a sequence of some skeletal snapshots from the
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computation of the program fragments of figure 6.1.

It is useful to observe that the implementing machine is itself supported by a
lower level meta-machine; it is in this meta-machine that the procedure call-like
response to the supervisor call is programmed.

Tor the construction we have given for no-process enmasterization, the loading

map A is quite straightforward. However, we must first modify the init function
for the implemented machine. Since the various nonprivileged system routines are
written in the implemented language Ld and are callable from programs in Ld, the
implemented machine must also have the system outer block. Examining the top half
of figure 6.6, we see

1) in the algorithm, the system outer block declaring and initializing the
system routines and containing the user program

2) in the record, the processor sitting inside a record contour for the sys-
tem outer block ready to execute the first instruction of the user program.
The subcells of the record contour are initialized with (ip,ep) pairs for
the system routines, Also in the record are the usual input and output
files.

This is the initial implemented snapshot.

The loading merely

1) Inserts the supervisor routine algorithm contour and code into the system
outer block algorithm contour.

2) Adds a supervisor procedure value register to the processor and initial-
lizes it with an ip pointing to the supervisor routine entry point and an
ep pointing to the system outer block record contour.

3) Sets the processor to the user mode.

See figure 6.6 for an illustration of this A mapping.

The ¢ mapping for the two models is equally as straightforward. Consider the
computation
Cg = Sgo, Sgl,..., Sgi,...

in the implementing machine. Remove from this sequence all snapshots in which the
processor is in master mode to obtain the sequence

t ' 1 U
Cg = Sgo, Sgl,..., ng,...

Then form the implemented computation

cd = &d Sdl,..., de,...

05
1 t
from Cg by taking each ng and

1) removing the supervisor procedure value register from the processor,

2) removing from the system outer block code the code for the supervisor
routine,

3) removing the mode indication (which is necessarily y) from the processor.

to obtain de.

Applying the first part of this constructicn to the sequence of implementing snap-
shots embodied by figures 6.2 through 6.5 eliminates all -but the snapshots in
figures 6.2 and 6.5. Applying the rest of the construction to these yields the
skeletal implemented snapshots of figures 6.7 and 6.8.

Note, finally that for enmasterization, ¢ is almost one-to-one reflecting the fact
that most of the implemented machine's instructions are executed directly in the
implementing machine. Contrast this with interpretation where ¢ is many-to-one
reflecting the fact that many interpreter steps are needed to advance one step in
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the implemented machine.

8. The Tower of //SYSBABEL [Bib??, Sam 69, MLB76]

In this final chapter, we reconsider the entire multilevel system given in figure
1.1 and give a new view of it.

First consider any two consecutive levels of the system. There is a ¢ map from
the snapshots of the lower (implementing) level to the corresponding snapshots of
the upper (implemented) level.

IMPLEMENTED
SNAPSHOT

7T

IMPLEMENTING
SNAPSHOT

Figure 8.1

Now topologically contort the lower level snapshot so that the upper level snap-
shot may be physically superimposed on the contorted snapshot so that each imple-
mented component lies on top of its implementing components. That is, in the
superimposition:

1) given a component x in the lower level snapshot, X is at least partially
covered by each component y of the upper level snapshot in whose construc-
tion under ¢ X participates.

2) given a component y in the upper level snapshot, y at least partially
covers each component x of the lower level snapshot which participates in
y's construction under ¢.

This contortion may be a bit contrived and tortuous especially for support methods
involving compilation and, in any case, if the lower level snapshot represents an
intermediate state in the transition from an upper level snapshot to the next.
However, in principle this contortion should always be possible.

For example, the application of the ¢ map for single process interpretation con-
verts the snapshot of figure 5.3 to that of figure 5.7. This conversion results
in the superimposition shown in figure 8.2,

In this kind of a superimposition any vertical line that cuts both snapshots pas-
ses through an implemented cell and its representation in the implementing
snapshot.

In general, the lower level snapshot will be physically larger than the upper, as
the lower level snapshot usually has extra code and data, e.g., an interpreter
and its own variables, which help the implementation but which do not directly
represent anything in the upper level. In no case, will the lower level snapshot
be smaller than the upper.

Carrying this superimposition to the entire multilevel system of figure 1.1, we
get something similar to our Tower of //SYSBABEL shown in figure 8.3. In it any
vertical line cutting through all of the snapshots cuts through a cell in the LISF
interpreter snapshot at the top level and such succeeding lower level's represen-
tation of it. The lowest level computation is moving the fastest; each lower
level must do, perhaps, many steps to push the next higher level through one step;
and the highest level is moving the slowest. The picture is that of a multi-
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LATE LIS it

EYITBLeCk

VAL, gpirn
AZM/I o

TOWER OF //SYSBABEL
Figure 8.3
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geared (old-fashioned) adding machine (the authors are old enough to remember
them) where the lowest level is the unit's gear, the highest level is the billions

9 5
gear, and the lowest level gear must move 10 teeth to move the highest level gear
one tooth.

g. Conclusion

We have attempted to characterize the multilevel system phenomenon from an
Information Structure Model point of view. We first identified several methods of
supporting one machine by another. We then gave an Information Structure Model
framework for considering a method of support as a pair of models, cne implement-
ing and one implemented, together with two mappings, a loading and a simulation
map, between them. Then three of the identified methods of support were described
in terms of the two models and the two mappings. We concluded with an overall
view of a multilevel system as a tower of models.
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Andrei Ershov: Is your model observational or implementational?

Berry:

Observational.

Jack Dennis: You have given us some tools and some descriptive models. What
should we learn from your work?



Jo0o DISCUSSION

Berry: What we have gained is a clearer understanding of what actually happens
in a system. For instance, we have clarified the difference between a process
and a processor at a given level.

Dennis: I did some thinking some years ago about hierarchical models, and was
led to the conclusion that the fewer level, the better, because the user program
which is executing at the outermost level depends on the correctness of all of
the levels below it. If you are interested in simplicity, and confidence that
systems work correctly, it seems that you should reduce the number of levels.

Berry: I agree we should try to keep the number of levels down. The purpose of
what I present is to show what exists. Perhaps by understanding what exists, we
can see what should exist.

Lawrence Flon: I don't understand why many levels cause difficulty, because the
program is correct if it can be shown to operate correctly given that the topmost
level satisfies its specifications.

Dennis: You are correct. But the more complex and elaborate the implementation
is, the more likely it is that the implementation does not reflect its specifi-
cations. So one worries about the confidence the user of an outer level machine
has that the machine meets its specifications. My plea is that the underlying
hardware be much more accommodating to the program structure and methodology
desireable at the user level. Then the overall structure of the system will be
simpler, increasing user confidence in its correct operation.

Malcolm Newey: Jack seems to be arguing against modularity. He proposes pushing
all the levels into one level.

Dennis: That hurts me very much, of course. The whole machine should support
modularity of programming at the outermost level. To me, modularity is the
ability to take programs that have been written and use them as building blocks
to build other programs which in turn become new building blocks, etc. There is
no such relationship in the levels of an onion.

Berry: In a sense, a module may be thought of as presenting a machine, and the
act of composing a higher level module as construction of a higher level machine
(as described in the models in the paper). This seems to be what he (Newey) is
implying by his comment.

Dennis: If you regard the onion as representing a modular scheme for building
larger elements out of simpler ones, then I challenge you to take two levels of
the onion and define some sensible way of combining them to form a new level.

Berry: VYes, they're not composable. Maybe that's why nobody likes these systems.
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