SYSTEM DPESCRIPTION METHODOLOGIES

D. Teichroew and G. David (Editors)

Elsevier Science Publishers B.V. {North-Holland) 275
@ IFIP, 1985

THE PROGRAMMER-CLIENT INTERACTION
IN ARRIVING AT PROGRAM SPECIFICATIONS:
GUIDELINES AND LINGUISTIC REQUIREMENTS

< Daniet M. Berry[1] |, Orna Berry[2] =~
Computer Science Dept. Compuler Science Dept.
UCLA USC
Los Angeles, CA 90024 Los Angeles, CA 90089

Abstract: This paper deseribes an experience by the authors as @ programmer and
client respectively. The programmer applied the concepts of abstract duta typing,
and strong lyping to arrive al complete, consisient specifications of the client’s
program. Amazingly, these specifications did not undergo the usual modifications
as the program itseff was designed, implemented, tested, debugged, and accepted.
The experience suggests a possible methodology for arriving at specifications
bused on the two above-mentioned concepts and suggests some properties of
specification languages and their processors.

1. Intreduction

Most softwure is produced by professional programmers 10 meet the requirements of a client who is
generally not a programming or computing professionzl. All too often the resultant software is not what the
clienl wanls, The programmer may have misunderstood what the client wanted and produced something en-
ticely different. The client may not have known what s/he wanted, and the software, though done correcily
with respect 1o the specifications, does o titlle, too much, or the wrong thing.

Assuming for the moment that the programmer is perfect and programs correctly from the
specifications, still it is extremely difficult to arrive at specifications that specify exactly what the client wants.
Thus, the major problen: in the production of software meeting the client’s requirements is in obtaining mutu-
ally satisfying specifications -- specifications which specify exactly what the client wants, which perhaps even
anticipate luture desires, and from which the programmer may write the required software.

The difficulties preventing sufficient mutual understanding to arrive at the specifications are that the
programmer, on one hand, generally knows little or nothing about the client’s discipline and the client, on
the other hand, knows little or nothing* about what is possible with a compulter.

These authors firmly believe that the responsibility for insuring mutual understanding and geiting the
specifications right lies squarely with the programmer. Therefore, what are needed are means for the pro-
grammer to learn exactly what the client means, for the programmer to assist the client in defining his/her
problem, and for the programmer to assist the client in learning what is possible with a compuler and what
s/he should be expecting from the software, etc.

Recently, the first author, a computer scientist, and the second author, al the lime a statistician, en-
tered into a programmer-client relationship in order o produce specifications for a statistical experiment
simulation program. The computer scientist in this case knows very little about probability and statistics, and
worse than that, has an aversion to the subject. The statistician in this case knew very little about computing
beyond the use of packages such as BMDP [DB77] and beyond the barest rudiments of FORTRAN coding (as
opposed to programming). Finally, the two authors are maeried to each other.

1. This work was supported in part by the Lady Davis Foundation, The Hebrew University, and the
Weizmann Institute of Science in Israel and the U.S. Dept. of Energy contract No. EY-76-5-034, PA 214.

2. This work was supported in part by Tel Aviv University in Israel.

*Even worse, the client may know only a little bit frem his home computer, but think s/he knows more.

276 D.M. Berry and Q. Berry

In spite of this clear potential lor & lack of mutual understanding, the specifications produced belore
programming began ended up being an accurate description of the final program as written. The
specifications, Lo the first author’s utler amazement, withstood all of the usual feedback that takes place dur-
ing program development. Thal is, the specifications remained a vselul guide throughout the programming:
no new desired functions were discovered: and no specified functions were changed or eliminated.

This history is quite different lrom the usual history in which the specifications change signilicantly as
the software is developed in order that the specifigations agree with the final software, Inconsisiencies in the
specifications are found, funclions are found to be not implementable, new or modified functions are lound,
ete., all of which lorce changes to the developing softwire and the specifications. These changes iare not desir-
able because they delay the completion of the soltware and they decrease the reliability of the resulling
software. The major structure of the soltware is designed using the original specifications:, for economic rea-
sons, the changes are generally accommodated by patches to this structure rather than by a redesign of this
structure.

[1is believed that what made the difference in this case was the combined use ol abstract data typing
[LZ74, Flo75, Par72, Myel8], sirong typing [vWn75, DOD78] and a strong dosage of persistence by the pro-
grammer.

Abstract dara ryping is normally used to hide the details of implementing a particular dala object and
ils operations, i.c., lor information hiding. In this case, abstract data typing provided a framework in which to
tike the various statistical buzzwords (lrom the programmer's point of view lhey are buzzwords), e.g., stan-
dard error, and treal them us operations of a particular abstract type, the observation vector. In this way,
without knowing what the various buzzwords mean, the programmer was able to write high level statements
using the buzzwords as operations on observation vectors, In olher words, abstract data typing was used in
thig case to hide the programmer’s utter ignorance aboul how te implement the dala object and its operations.
Of course, the programmer pressed the client lor assurance that each such buzzword is a well-known opera-
tion of slatistics and 1hat each is defined completely by some formula. Thus, the programmer was confident
that the abstract type and thus the program would be implementable, Further, the abstract lype provided a
vehicle Tor the {experienced) programmer (o press the client for additional functions that she did not think of
at first, but that later turned oul to be necessary,

By taking advantage of the nolion of strong typing, and the compile-lime type checking it permits, in-
consistencies in the specifications were caught and eliminated at the source before they could do difficult-10-
repair damage 1o the program.

Persistence™ was necessary in order for the programmer to keep pressing the client for more details
and to spol inconsistencies in the stated specifications.

This report first proposes a general methodology For arriving al specifications which are mutoally
satisfying to the client and the programmer and which has a resislince o changes induced by feedback ob-
tainable during the programming process. 1t then details the above described programmer-client interaction.
Lt attempts 1o analyze why the intetaction was so successful in obtaining good specilications. Finally, it makes
some recommendations concerning specification languages, observing that Ada™ [ADASI] comes close to
meeting these recommendations and that the program design language SDP {Lin80, LYB81] comes even
closer.

*In an earlier version of the paper and in the oral presentation, the term “‘fewish Motherhood™ was used
instead of ‘“‘persisience’™. Previous referees indicated that this original term may not be universally
understood. However, we believe that “Jewish motherhood™ connoles much more than **persistence™, and
some of (hese additional connotations are intended. What we require rom Jewish motherhood are the
instinets for the programmer 1o keep atdging the clienl for more details and to sense inconsisiencies in the
stated specifications. The nuances in the previeus sentence are nol quile captured by “persistence™. Lest the
reader worry that he or she cannot qualify as a Jewish mother, as it is stated in [Gre64], " You don't have to
be cither Jewish or a mother to be a Jewish mother. An Irish waitress or an Itatian barber could also be a
Jewish mother.” To this list we add: **Also-a {your ethnicity) programmer can be a Jewish mother.”

T™ Ada is a trademark of the U. S. Department of Defcnse (AJPO).

Programmer-Client Interaction 277

2. Proposed Methodology for Arriving at Specifications

The experience described in the next scction suggests a4 methodology for arriving at specifications,
which are mutually satisfying to the client and the programmer and which does not require the programmetr
10 be an expert in the client’s Redd. The methodology requires thal the programmer be experienced in Lhe
use of abstract dala typing and strong typing in his or her own programming.

[n cssence, as the client is talking, the programmer should (isten for the abstract data types relevant
to the problem and try 1o identily their operations. The types and their operations should be clear in the
client’s own mind znd be intelligible 1o anyone in his or her field. Afler some persislent questioning by the
programmer in order o verily thal the operations are in facl implemantable (not necessarily in a small rou-
tine), the specifications should be written jointly by the programmer and the client. These specifications
should consist o modules describing the abstract types and the modules for the main programs, The module
for am abstract type should give only the name of the abstract type and the names, parameter lypes, and re-
wrn valupes types for the operations of the absiract type, The main program modules should be writlen with
the operations of the abstract types assumed as primitive.

The programmer should Lthen use lype checking and whatever other tools he or she can musler to
detect inconsistencies and o press the client for answers which clear them up.

The specifications including those of 1he abstract data types should be circulaled among the collengues
of both the client and programmer for additional feedback and checks that the specifications ire meaningfut
to people in the client’s Aeld and that the specifications are in fact implementsble. IF this circulation resulls
in any changes, the cycle of checking and circulating should be repented. When finally all are satisfied, Lhe
programmer may begin the next step in the program’s lile cycle.

The methodology stresses gelting the programmer and clicnt o transfer some ol Lheir individual
knowledge 10 each other rather than making the programmer an independent specialist in the client’s area
who is able 10 solve any programming problem in the area or making the client a compelent programmer. The
knowledge that the client gives is about the problem aren, and the knowledge thal the programmer gives is
about what compulers arc ablé 1o do. The extent of this information transfer is sufficient only to permit map-
ping the client’s needs inlo some representation from which the programmer may then produce a program
meeling Lhe client’s needs. The transfer invoives 1he <licnl telling the programmer things, the programmer
finding inconsistencies, and the programmer questioning the client in order to resolve these inconsislencies.
In doing this, the programmer makes use of syntaclic and scmantic rules of natural language, instinet, and
syntactic rules of the specification language. 1L is a contention of this paper thal this use of syntuctic rules off
the specification language goes a long way to making up for the programmer’s lack of knowledge in the
client’s arca.

The above description of the methodology may seem vague and ill-defined, but in fact, it is as com-
plete as possible. The actual application of the methodology is quile preblem-dependent, so at best only the
outlines of methodelogy can be given. In case the reader cannot see how 10 apply the methodology 1o real
problems, the next section describes the aulhors’ actual experience. It is somewhat anecdotal, bul il does
show what is involved in the use of the methodology. The experience also gives the basis for the claims
made in this paper on the efficacy of the methodology and lor the recommengations given laler on the nature
of specification languages.

3. The Experience
kD Background
The reader is already aware of the differing professional backgrounds of the programmer and the

client and the clear potential for communication problems*. Scme additional elements of background must
ke explained

* Add lo this the lact that their native languages are different.

278 D.M. Berry and Q. Berry

At the timé of the experience, during the spring ol 1979, the second author was an M.A. candidate in
the Department of Stalistics at Tel Aviv University. Her thesis [Bry79] research considered the validity of
conclusions drawn from experiments involving a sequence of observalions in which the dat becomes further
unavailable (i.e., truncated) at some point or in which some but not all of the data are missing (i.e., cen-
sored). Tt was desired o write a program which permitied numerous simulations of experiments with large
observation vectors, An experimenl was 10 generitte a pair of vectors of observations, to lruncate these and
then 1o censor these later. Conclusion drawn from the truncated and censored vectors were 1o be compared
10 those drawn [rom the full vectors. Drawing the conclusions and comparing them requires the caleulation
of a variety of well-known statistical measures at all levels of the experiment.

The program had to meet the approval of the second author’s three-person thesis commitiee which
could, in principle, think of new calculations 1o perform at any time, even al the defense. The entire thesis,
including the program, several production runs of it, decumentation for it, the writing of the thesis and the
oral defense had to be finished within len weeks™, extended in the end by one week, from the date il was
determined o begin wriling the program. Thus, it was critical that the specifications be correct and complete
the first time around and that they anticipate, from the outset, all possible calculalions that could ever be rea-
sonably (or even unreasonably) desired by a statistician-lhesis commiltee member. There was simply no time
10 write the program more than once.

The first suthor was personally familiar witk patchwork programs resulting from thinking of new cal-
culations on the data during or afler completion of the programming. He was also personally familiar with
the agonizing discovery of a newly required calculation requiring a major rewrite of a nearly completed or
completed program. The first author was painfully familiar with the discovery of interface problems among
procedures late in the programming whose correction required a major rewrile or extensive palching. These
situntions had to be avoided at all costs.

3.2 Form of the Specifications

It was decided by the programmer with the client’s concurrence that the specifications would consist
ol two main parts:

1. in the form of typed variable declarations together with assertions as comments, a specification of all
inputs 1o the program and the validity constraints they have 10 meet,

2. given input meeting the input specifications of part 1, a specification of what the output should look
tike, i. €., what values, tables, etc. should be printed.

No details other than those needed to describe these parts would be given. In particular no data which need-

ed 1o be calculated internally but which would not get printed out would be specified.

33 Initial Specifications

The programmer asked the client to write a first pass at each part of the specifications. For the input
part, the foliowing list of *“*declarations™ was produced:

input:

N (Sample size} INT

8] (parameter of exponential distribution) REAL
7 (the percentage of the data to be lost) REAL
t (the truncation of the survey} REAL

For the output part, the following list of whatl was to be printed was produced:

output:

** Her advisor was leaving the country for the summer.

Programmer-Clfent Interaction 279

1. observations; 2 vectors of size N, each obs is a REAL no.

2 new observation vectors without the lost data (no info as to which positions lost
data).

3. the 2 vectors of truncated obs.

for each of 1,23

4, P2SP5SOPTS of combined data and of
5. Pl=112), P(1=1), P(t=2) each vector separately
6. table of nonparametric test

each one of elements of (4) and (5) in the output paragraph

| below the slats above the stats _ tol

vect! nib nla i
vecl2 2h n2a "2
tot nlb+n2b=nb nla+n2a=na "

and the hypergecometric prob. Plnlal

a, limits of the confidence intervals for the difference between the statistics in 4
and § in the output paragraph [/1,12] in 95% confidence level

b. for each appropriate pair of the zbove stat., il it fell inlo its c.i.* or not
The programmer winced at these specifications and knew that he had his work cut out for him..
34 Refinement of Specifications using Abstract Data Types

In an atternpt to refine the specifications, the programmer asked the client to explain what was going
on. As the client was talking the programmer was hearing all sorts of stalistical buzzwords. These buzzwords
he had heard before; they sounded technically relevant, but their meaning was altogether not clear.

During this explanation, the client was completely confident that the programmer knew exactly what
these terms mean and completely understood the specifications. When the programmer began to badger her
with questions on the initial specifications, she was certain that the programmer was just acting as if he did
not understand the specifications in order to get her to do his work. The client assumed that an experienced
programmer would naturally understand statistics and could easily deduce what function was needed in the
program much faster than she could ever understand the formalism for arriving at and writing the
specifications, Thus, this client, as many others, impeded the process of arriving at the specifications by not
cooperating as fully as possible in supplying information needed to produce the specifications. It took all the
persistence at the programmer’s disposal to wheedle the specifications out of the client.**

In any case, as the client talked, the programmer was hearing:

¢..take an observalion vector...”

*confidence interval

**Since completing this project, the statistician/client has become a computer scientist. In revising the final
draft of this paper, the client looked at her own initial specifications for the first time in over two years and
through the eyes of her new profession. She was astounded at these specifications — she could could not
understand them any more and now sees that in fact the programmer did not understand them either.

280 D.M. Berry and Q. Berry

..lruncate it.."
eensor it,,”
...concalenate lwe observation vectors,,,”

*.T(time) of a veclor at probability p...”

*...P{probability) of a vecior a1 time ©..."

**...the standard error of the vector al lime f or probability p...”

elc.,
over and over again. The programmer began to see the abstract data type

observaiion veetor
or simply, vecter, where 2ich observalion is a real number and whose operations include

create

tritneate

censor

concatenale

time

probability

dlefia sunt

Standard error
By nudging the client with ““Are there any other operations on vectors that you're going 1o need for your pro-
gram? ", the programmer produced with the clienl’s help a preliminary list of operations. The programmer
and clien then identified for each the list of parameter types and the return value type, if any.

Finally the programmer pressed the client for assurance that each of the operations is well understood
by statisticians and either is trivially implemented (e.g., create, truncate, censor, elc.} or is defined by a well-
known formula {e.g., time, probability, standard error, etc.). With this assurance finally extracted from the
client, the programmer fell confident that the abstract data type and its operations were indeed implement-
able.

It was now time to begin refining the specifications into a useable document. The goal was 1o produce
a description of the main program which used the abstract data type and its operations as if they were primi-
tive. "1t wus recognized that as the specifications were being refined,

1. additional required operations may be discovered, and

2. the parameter and return value types of existing operations may be changed.

When the specifications were complele any unneeded operations of the data type could be eliminated from
the specification :

Programmer-Client Interaction 281

Appendix 1 conlains the final specifications including the vector abstract type. They are in the form
that they were in at the completion of the project blemishes and all.

3.5 Final Input Specifications
To arrive at the final input specifications the programmer comgluined to the client that
1. spetled out identifiers would be clearer,

2. the program lacked generalily, i.c., it could do only one run ol the experiment and it does these cx-
perimenis with both observation veclors Lhe same size, wilh the same thela lor censoring cach vector,
wilh the same loss rate in each case, and with the same truncation threshold in each case,

3. there was a magic constant, i.e., why was a 95% confidence level used as opposed to sny other?

In addition the programmer demanded 1o know what were the bounds for cach of the inpul values. The
client’s answers (o these complaints and question led to the final input specifications thal appear in Appendix
1.

3.6 Final Output Specifications
3.6.1 Strong Typing

As the outpul specifications were being refined, it became clear that it is basically a nest of loops
whose purpose is to get certain functions printed out for cach combination ol vitlues in their domains. Each
loop is 0 step through the values of one parameter’s domain. 1t seemed reasonable to nest the loops o per-
mit as many possibly disjoint inner loops as possible te share puter loops consistent with the desired order of
output.

Once the loop skeleton was set up, each operation applicstion was put in its proper place in the skele-
ton. It was then checked that for each application of an operation, cach of its parameters was cither a globul
variable or the index for a loop nested about the application. In a number ol cases, it was necessary 10 add a
loop to provide in index which was used as the value of a purameter. Such additions, in mrn led Lo changing
the nesting structure of the loops in order Lo betler utilize sharing ol outer loops.

It was also necessary (o check lor each use ol an operation thal the types of its actual paramelers and
the type value it was presumed o return agreed with those of other uses and with the parameler and reluen
value types given with operation in the list of operations of the ubstract type. In a number of cascs, cither
within a version or across versions, there was not complete agreement. In other words, type checking Tailed,
For example:

1. some of the upplications of either of the empirical standard error operutions had a size parumeter of
wype int, and others did not. [n the latier cases, the size is assumed to be that of 1the vector passed as
another parameter and in the former cases, the size is independent of the vector. As ussuming that
size is independent of the vector is more general, the operations were finally specified 1o have a size
parameter, and all applications of the size-less operation were modified by the addition of an appropri.
ate size parameter.

2, some of the applications of either of sbe theoretical standard error operations had a thela parameler ol
type real, and others did nol. 11 was observed thal in any case. the thela parameler is nol necessary,
since one of the other parameters is calculated from theta, und the oaly use for the theti is in the cal-
culation of this other parameler. Thus, the operation was finally defined with no theta parameter, and
all applications with a theta as a parameter were modified accordingly,

One implication of some of these operation changes was 10 change the looping structure, For exam-
ple, the first change above necessitaled the intreduction of loops 1o step through the different kinds of sizes
including that of the vector determined by an outer loop,

282 OD.M. Berry and Q. Berry

Finully some operations on the original list were never used so they were eliminated from Lhe lisl.

QObserve that the unalyses described above are completely syntax based and can be performed without
having 10 know the semanlics of the operations, These analyses include the Tollowing checks typicaily done
by & compiler Tor a strengly (yped programming language, mamely that

1. euch operation is used with the correct number and types of parameters;

2. ' cach operation is used correctly as an expression of ils return ypce;

3. cach identifier used is declared as a variable, constant, or a loop index in some surrounding context:
4, cach operation declared is used: and

5. each variable, constant, or loop index declared is used.

[tis clear that the first three are more critical than the last 1wo.

Apparently catching these syntactic inconsisiencies was sufficient to find all inconsisiencies, syntactic
and semantic. [n particular detecting missing variables, conslants, loop indices and parameters by these syn-
tactic means was sufficient w find all those thal were missing.

3.6.2 Debugging Sense

In u lfew places, the programmer’s debugging sense alerted him of some additional necessary output.
This debugging sense siaid that a function value used as an actual parameter to another funclion should be
printed out itsell. For example in line 51 time (vec,prob) is used as the 1 parameter of the function whether
lies within time empirical confidence limiits. Thus, time {vee,prob) should be printed oul also within the same
loap, s requested in line 19, ¢ven though it is ajso printed out earlier at the request of ling 26 (1 will nol do
1o eliminate the request of line 26 as it is necessary (0 have a listing of all the fimes in one place.). Asa
result af the programmer’s nagging, the client agreed Lo insert this extra printing and others like it.

The extra printing proved invaluable lor the debugging us expected. Also it turned out that the
client’s advisor on several occasions requested some additional output which the client had not anticipated but
which wis there as 4 result of planaing for debugging.

3.7 Programining, Testing, Debugging, Running, and Defense

The specificutions were completed and jointly approved by the programmer, the client, and the
client’s advisor after about four weeks of arguing, At this point the client took over as the programmer. The
program was then designed and coded by the client in FORTRAN to meet the specifications. The eld pro-
grammer taught the client about structured programming and how to implement an abstract data ype as a
collection of subroutines and functions sharing access 10 & named COMMON area to which the main routine
did not have access. The program ran in very few debugging runs. The bugs were easy Lo locale because ol
the extra debugging outpul. For the production runs, the WRITE statements for all ovtput not required by
the committee were commented out. The client finished in time and successfully defended the thesis before
the committee. '

3.8 Results -

The resultls were amazing. Once the specifications were obtained and finalized (by sending them to be
typed) they were not changed at all excepl 10 correct minor typographical errors.

1. There was none of the usual feedback on the specifications during the designing, coding, testing, de-
bugging, and running of the program. In particular, re inconsistencies were uncovered, and #e new
functions were Tound necessary in any of the later stages of the program’s lifecycle,

2. Even during the acceptance phase, i.e., the thesis defense, #o new functions were discovered,

Programmer-Client [nteraction 283

This is the first time that either author has observed this phenomenon; particularly the first. The first author
is well aware of how rare such an occurrence is. Whal made the occurrence even more amazing is the fuct
that the programmer and the client came from different disciplines and clearly had the potential for the usual
misunderstandings between programmer and client. Indeed to date, the first author cannot talk authoritalively
about the program without double-checking with the second author,

That no new funclions were discovered during acceplance, i.e., during the thesis delense, was due to
a combination of sheer luck and the shortness of the acceplance phase. That is the second author's advisor
was leaving the country very shortly thereafter, and the entire commitlee knew it. Still the Tunctionality of
the resulting program was quite complete.

There are, however, good reasons to believe that the lwck of feedback on o the specifications during
design, implementation, and testing was no accident. There are tesons 1o believe that the use of strong typ-
ing, abstract data typing, and programmer persistence is sufficient o yield consistenl, change-resistant
specifications. There are studies, e.g., [Egg81], pointing 1o the value of the redundancy offered by strang typ-
ing in catching errors early. There are indications, e.g., in [HPUSI1], of the value of abstract duta typing and
information hiding in producing designs that withstand modificalions as implementation details are filled in.
There are no modifications (o the design because all of the changes that are made are to the information that
iz hidden anyway. Finally, the value of nudging in seeing a job through to its proper conclusion is clear.

4. Specification Languages

This experience also Suggests certain properties that a specification language should have. First, it
should have the ability 10 exhibit the modules of the specified system, particularly the dan abstraciion
modules, Secondly, it should be strongly typed, that is, it should be possible to spccily the types of all data
objects including parameters so that type and interface consistency can be checked at the time the specification
is being written (znd not laler as the progeam is written). Thirdly, it should have a processor which does all
the wype and interface consistency checking possible.

This last requirement is essential. Without machine enforcement of type and interface restrictions,
they do nol get obeyed. Even if there is a desire to obey them [lustidiously, mistukes can be made. Endeed,
later, as an opportunily arose 10 express the specifications in a formal language and to have them checked by
a processor, errors ware found (See below.). None were serious. In all cases what wus meant was clear, and
thus these errors did not negate the value of the specifications. Had there been a processor for the
specification language, these errors would have been caught, and the programmer could have bgen confident
that there would be no lype and interfuce errors. The point is, wriling specifications is error-prone as is. If
any part of a specification can be automatically checked, it should be in order to climinate at least all the
avoidable, stupid errors.”

Subsequent to writing the first draft of this paper, the programming language Ada appeared on the
scene. Ada allows construction of data abstractions with ils package feature, and it is strongly typed. 1ts pro-
cessors are required 1o do type and interface checking at compile time. In addition, Ada has the nice property
that a complete program does nol have to be presealed to the compiler in order for it to do type and interfuce
checking, A module can be complelely type and interface checked in the presence of only the specification
parts of the subprograms and packages it makes use of. The specification part of a subprogram is basically i1s
header giving its name, parameter types, if any, and return value type, il any. The specification parl of a
package is basically the exported types, constants, etc. and the headers of the exporied subprograms of the
package. As a consequence of this property of Ada, there have been proposals for using Ada as a program
design language [Wau80l. A heavily commented program skeleton consisting mainiy of specification paris
only is submitted to an Ada compiler which then does as much 1ype and interface checking as possible.

The first author tried expressing the specification in a sort of an Ada program design language, The
complete result is given in Appendix 2 of [BB82]. The vecror abstract type is given as a syntaclically improper
Ada package specification part for the package observalion vecior,

with TEXT 10; use TEXT IO,
package OBSERVATION VECTOR is

* A stupid error is any error that can algorithmically avoided.

284) D.M. Berry and O. Berry

type VECTOR is private;

function create observations{sizesINTEGER:theta:FLOAT) return VECTOR:

function creale kept observations(v:VECTOR:loss rate:FLOAT.
name:STRING)return VECTOR

function create truncated observations{v:VECTOR;lime:FLOAT:
name:STRING) return VECTOR:

function concat{vl,v2:VECTOR)return VECTOR:

function size(v:VECTOR)return INTEGER;

function time(v:VECTOR :prob:FLOAT)return FLOAT:

function probability{v:VECTOR :time:FLOAT) return FLOAT:

function delta sum{v:VECTOR)return INTEGER;

function time theoretical std error(size:INTEGER :prob: FLOAT)
return FLOAT;

function time empirical std error(size:INTEGER:v:VECTOR;
prob:FLOAT) return FLOAT:

function prob theoretical std error{size:INTEGER ;time:FLOAT)
return FLOAT;,

function prob empirical std error(size:INTEGER:v:VECTOR:
time:FLOAT) return FLOAT:

function above(viVECTOR time:FLOAT) return INTEGER

function below(v:VECTOR:lime:FLOAT) return INTEGER:

procedure prinl name{v:VECTOR):

function difference std error({vall,val2: FLOAT) return FLOAT

function theta{v:VECTOR}return FLOAT:

end OBSERVATION VECTOR:

The puckage specification part is improper because it has no private part, but it was nevertheless accepted by
the compiler. The main program is given in 2 bastardized Ada written in a manner o ool the processor into
doing the required checking, That is, natural fanguage material is buried inside comments, and any fext con-
taining a use of a subgrogram of the package is exhibited in proper Ada syntax. Where possible, Ada nota-
tion corresponding 10 the eriginal notation is used, For example, Ada declarations, for loops, get, and pur are
used. [n some cases, preserving correspondence leads to improper Ada, e.g.,

for each time ¢ ['4,1.2} do
od:

is expressed as

for 1in 11/2,1,2} loop
end loop.:

which would be Ada except lor the set notation and the fact that //2,/,2 do not lorm a proper enumeration.
This Adu fragment is made a comment and in its place is put block containing a loop:

declare :FLOAT:
lime set:constant array(1..3)of FLOAT:=
(1.0/2.0,1.0.2.0);
begin
for i in time set’'RANGE loop
r=time se1i):

Programmer-Client Interaction 285

end loop,
end; .

This substitule gets the compiler to do all the checking it would have to do with the improper statement, i.e.,
that 1/2, 1, and 2 are proper to assign lo ¢ and that in the scape of the loep, fis used properly for its type.
The generation of the substilute statemenls is fairly straightforward and czn be automated.

Valid Ada value-returning expressions sitting in the middle of a natural language senlence have 10 be
brought out of the comment containing the sentence so that they could be type and: interface checked. How-
ever, the Ada compiler that was used [NYUB1] complains {and for that matter any should) when such ex-
pressions are left sitting in the position of statements, and refuses to do any checking whatsoever. Thus
internal procedures with the natural language sentences as their names were invented. These procedures
have Formal parameters for each of the expressions embedded in their sentences. An application of these
procedures 1o these expressions ig acceplable to the compiler and gets thoroughly checked. Qccasionally it was
cornvenient 1o introduce a local variable to explicitly hold the value designated by a pronoun or u pronoun-like
phrase. As an example, the body of the loop in lines 48-54 is translated as

declare p:FLOAT;
prob set:constant array(1..3)of FLOAT:=

{0.25,0.5,0.75);
begin
for i in prob set’RANGE loop
p:=prob set(i};
put{time{vec,p));
conf limils:=time empirical confidence limits(
theta(vec) ,p,
tfime empirical std error(
m,vee,p),
z value(k}};
put{conf limits);
put(whether(ume(vec p).lies within=">conf hmns))
conf limits:=time theoretical confidence fimits(
theta(vec),p,
time theoretical sid error(
npl,
z value(k)):
put{conf limits);
put{whether{time{vec,p),lies within=">conl limits}):
end loop;,
end; .

Note that the sentence "whether ... lies within ..." was converted into a function whether specificd with

function whether(v:FLOAT, lies_within: LIMITS) return BOOLEAN; .

Thus, the Ada specification has more details than the original specification and perhaps more than is desirable
in a specification.

The specification was thus type and interface checked. Some errors in the original specifications were
found. Many are minor punctuation and spelling errors. Some of these are typographical and transcription er-
rors.

There were four interface errors discovered, all of exactly the same kind. The definition of the veeror
abstract type shows that create kept observations and create truncated observations each require 2 third parame-
ler, a string giving the name of the vector to be created. The four calls to these two routines, which are in
lines 14, 15, 16, and 17 of Appendix 1, each has only two actual parameters. [n particular, the name string is

286 DM, Berry and O, Berry

missing. This error was found when the Ada compiler complained about the missing parameters in the Ada
versions of these calls. Interestingly, the FORTRAN code for these calls pusses all three parameters correctly
in each case. Thus, enly the specifications have the interface ercor. This error completely slipped by the two
authors, the adviser, and the commitiee desplle careful serutiny. [t even slipped by in proof readings ol ear-
lier versions of this paper.

The net effect of this error is not severe, as the code does not make this error. However, the nature
of this error, an interface error, is quite serious. Therefore, the importance of having a processor 1o find er-
rors is borne out. Had there been a processor for the original specification language, none of the errors,
minor or not, would have remained in the specifications.

The form of the Ada version of the specifications leaves a bit to be desired. Too many tricks had to
be played to get the compifer 1o do all the desired checking. These tricks included having to invent procdures
for sentences in order 1o florce type checking of embedded significant phrases. A proper program design
language might be better suited. Such a program design language would have 10 accept a mixture of natural
language sentences and programming language stalements. Its processor would have 1o be able Lo distinguish
between the two se that it could do the checking that it is supposed to even if the call 1o a package subpro-
gram is buried in the middle of an natural language sentence. It would also have 10 not complain when an ex-
pression buried in a natural language senience seems not to be used properly for its type because the sentence
of course does not define what type value it requires from the contained expression.

A better candidate for expressing the specilications and getting the desired type and interface check-
ing done is the program design language SDP {Lin80, LYB81). It permils nalural language seniences to be
designated as the header of a subprogram and as the name of a data abstraction. In the defining vccurrences
of these sentences, any of ils words may be designaied as formal parameter type names. A sentence which
agrees word-for-word with such a defining sentence in all but the formal parameter words is considered an ap-
plication {cal) of the sentence, A word of the application sentence which is in the position of a formal param-
eter is checked to be declared with the formal parameter word as its type, if it is declared to be of any typc at
all.

The specification was expressed in approximately the language of SDP. Keywords show up in bold
face, and formal and actual parameters get underlined or left-sidelingd. Only the formal parameters are
marked specially on input. The actuals get marked as a resull of the processor’s recognizing the containing
sentence as an application of a defining sentence. The complete specification is found in Appendix 3 of
[BB82]. Here is shown the SDP version of only the package specification and the loop discussed above:

cluster observation_vector

op create observation vector of length size with distribution theta

op create kept observation vector from gbservation_vector according to
loss rate It named name

op create truncated observation vector from observation vector
truncated at time 1 named name

op concatenate observatlion vector and observation vector

op size{observalion vector)

op time of gbservation_vector at probability p

op probability of observalion vector at time 1

op delta sum(pbservation_vector }

op time theoretical std error of any vector of length size at
probability p

op time empirical std error of observation vector of length
size al probability p

op prob theoretical std error of any vector of length size at
time t

op prob empirical std error of observation_vector of length
size at time t

op number of entries in observation_veclor above time {

op number of entries in ghservation vector below time

op print name of gbservation_veclor

Programmer-Client Interaction 287

op difference std error of valuel and value?
op theta of observalion vector

and

declare p as real
do for p in 10.25,0.5.0.75!

time of vec at probability p
time empirical confidence limits
theta of vec
p
time empirical std error of vec
of length n at probability p
z_vulue(k)
whether
time of vec at probability p
lies within time empirical
confidence limits
time theoretical confidence limits
theta of vec
p
time theoretical std error of any vector
’ of length n at probability p
#_value(k}
whether
time of vec al probability p
ligs within time theoretical
confidence limits

od

The resulting specification is closer to Lhe original specification than the Ada version. It is also uses a
language a bil more general than the current version of SDP; it uses full sentences as actual parameters in
other sentences. These can be spotted as sentences (which themselves may have underlined actual parame-
ters) which are left-sidelined and are embedded inside other sentences. No processor exisls yel for this ex-
tended SDP, but it is clear that the requisite pattern recognition and type and interface checking can be done
by an augmented SDP processor.

5. Conclusions and Future Research

This report has described an experience of the authors in arriving al specifications that withstood the
usual modification-causing feedback from the program’s later life cycles despite the clear potential for
misunderstanding. On the basis of this experience, a methodology for arriving at good, complete, consistent,
and change-resistant specifications is proposed. This methodology, which is uscable even when the program-
mer and the client speak different jargons, makes use of the ideas of abstract dala typing, strong yping, and
programmer persistence. In addition, recommendations were given concerning “specification languages and
their processors.

It is necessary to examine the general applicability of the proposed methodology. Did the methodolo-
gy succeed because of itself, because of the personalities of the programmer and the client, because of the
particular nature of the preblem, ete.? 1f the methodology works only for certain kinds of problems, what are
they? It may also be useful to conduct controlled experiments over a wide variety of problems with large
numbers of programmer-client pairs.

288

D.M. Berry and O. Berry

6. Acknowledgements The authors thank an anonymous referee for helpful comments.

1. Bibliography

[ADASIL]

[BBS11

[Bry791

[DB77]

[DOD78]

[Egg8l]

[Flo75]

[Gre64d]

[HPUS1]

{Lin80]

[LYB81]

[LZ74)

[Mye?8]

[NYUSI1]

[ParTH

fvwn75]

(Wausol

“Reference Manual for 1he Ada Programming Language™, U. 5. Department of Defense,

MIL-STD-1815 (December 1981).

Berry, D.M, “The Programmer-Clienl Interaction in Arriving at Program Specifications:
Guidelines and Linguistic Requirements™, Computer Science Department, UCLA (1982).

Berry, O. **Comparison Between Two Life Span Distributions Based on Small Samples with
Censored Data™, M.A. Thesis, Dept. of Statistics, Tel Aviv University {1979},

Dixon, W.J. and M.B. Brown (Eds.), BMDP-77 Biomedical Computer Programs P-series,
Berkeley, University of California Press (1979).

“Requirements for High Order Compuier Programming Languages, STEELMAN'', Depart-
ment of Defense {1978).

Eggert, P.R. **Detecting Sofiware Errors before Execution™, Ph.D. Thesis, Computer Sci-
ence Dept,, UCLA (1981). .

Flon, L., “‘Program Design with Abstract Data Types”, Dept. of Computer Science,
Carnegie- Mellon Usniversity (1975).

Greenberg, D., How 1o be a Jewish Mother, Los Angeles, Price/Stern/Sloan (1964).

Hester, D.L., D. Parnas, and D.F, Uuer, “Using Documentation as & Software Design
Medium®', Beil Systems Technical Journal, 60:8, 1941-1977 {October 1981).

Linden, N.M., “‘Software Developmem Processor User Reference Manual’, Mayda
Soliware Engineering, P.O.B. 1389, Rehovot, [srac! (1980).

* Linden, N.M., M. Yavne, and D.M, Berry, '‘Parameterization and Abstract Data Types in 4

Program Design Language: The Design of Software Development Processor™, Primera Con-

ferencia Internacional en Ciencias de la Computacion, Santiago, Chile (August 1981).

Liskov, B.H., and S_N. Zilles, “*Programming with Abstract Data Types”, SIGPLAN Notices
9:5 (1974)

Myers, G.H., CompositelStructured Design, New York, van Nostrand Reinhold (1978).

“The NYU Ada/Ed System, An Qverview™, Courant Institute, New York University (July
1981).

Parnas, D.L.. “On the Criteria to be Used in Decomposing Systems into Modules™, CACAM
15:12 {1972}

van Wijngaarden, A. er af (Eds.), “‘Revised Report on the Algorithmic Language ALGOL
68", dcra Informatica 5 (1975},

Waugh, D.W., “*Ada as a Design Language™, /BM Software Engineering Exchange 3:1 (Qc-
lober 1980). ’

22 far each prob € {.25,.5,.75} de

Appendix 1 23 time (vector, prob)
24 o_d';
Specification of what Is Input and output 2 for each time € {},1,2} do
INFUT 26 prob (vector, time)
1 Int slze 1, slze 25 ¢ sample sizes 5§ 50 ¢ z od
2 real theta 1, theta 2; ¢ parameter of exponential dist>0 ¢ 8 odf
3 Int a6 of loss rates £ 1g €5 ¢ 29 far each (vec 1, vec 2) € {(kept observs 1, kept abservs 2),
i -[.(-:l.:no of loss rates] loss rate; ¢ D¢LREi]gl A LR[C] =0 A all others are ({trune observs 1, trunc observs 2}} do
read In ¢ 30 for each prob € {.25,.5,.75} do
5 real threshold; ¢ truncatfon thrashold>0 ¢ 3 table and hypergeometric probabliity (
6 '[T;;] reat conéldence tovel; ¢ 05CLI € ¢ iz above {vec 1, time (concat {vec 1, vec 2}, prob}),
7 Int repetitionss ¢ no of times da the experiment ¢ 3 belaw {vec 1, time (cancat {ves 1. vec 2), prob)), 'é:i
8 FS] real z-vaius ¢ Gz, vii]gb ¢ 34 above (vec 2, time {concat {vec 1, vec 2), prob}), §
- 35 below (vec 2, time (contat {vee 1, veec 2), probl}, B
"far probabllity=",prob) g
36 odi g
oUTPUT 17 for each tima € {},1,2} do %
(using vector type as defined on a separate page) 38 table and hypergeometric probabilicy (2
39 above {vec 1, time), below (vec 1, time), 5
9 for i from 1 to repetitions fo ko sbove {vee 2, tima), below (vec 2, time), 3
10 observs | = create observations (slze 1, thata 1);¢ sorted ¢ 1 "for times",time) g
1 observs 2 = ereate observatlons {size 2, thata 2);¢ sorted ¢ 42 od 'g
12 loss rate (0] = 0; 43 od 3
13 for J from D ta ro of loss rates do 4 for each vec & {kept observs 1, kept observs &, trunc observs 1,
1 kept observs 1 = create kept observations {observs 1, loss rate [n; trunc observs 2}
15 kept chservs 2 = create kapt observations (observs 2, lass rate [11); is do
16 trune observs 1 ™ create truncated observations {kept observs 1, 06 For gach € (sl2e (vec), delta sum (vec)
thrashold); slze (vec) + delta sum (ver.)} do
17 trunc observs 2 = c¢reate truncated observations (kept observs 2, 47 for k fron | to 5 ¢ = nozof confldence Ie.zls ¢ do
threshold); 48 for each prob € {,25,.50,.75) do -
18 concat kept obs = concat (kept cbservs 1, kept observs 2} 59 time (vec, prob};
19 concat trune obs = cancat {trune ebservs 1, trunc observs 2) 50 time empirical canfldence limits (theta {vec), prob,
20 for #ach vector € {kept observs 1, %ept observs %, concat kept obs, time emplrical std error (N, vec, prob) Z-value [k]);
trunc cbservs 1, trunc cbservs 2, cancat trunc o‘ns} 51 whether time (vec, prob) lles wichln time empirical
21 do

2o confidence limitss

682

52

53

Sh
55
56
57

58

59

61
62
63
113
65

66

67
68
69
70

n

time theoretical confidence 1imlts (theta {vec), prob,
time thecretical std error {N, preb),
2-value (kl};

whether time (vee, prob) ties within time thearetical
confidence 1imits

od;
for gach time € {},1,2} do

prob {vec, time):

prob empirical confidence 1imits (theta (vec}, time,
prob empirical std error(N,vec,time), Z-value {k]};

whether prob (vee, time) !ies within prob empirical
confidence limits

prob theoretical confidence limits (theta (vec), time,
prob theoretical std error { N, time),
2-value [k});

whether prob (vee, time) lies within prob theoretical
confidence limits

od
o
for sach (vec 1, vec 2) €{(kept observs 1, kept observs 2},
(trunc obserys 1, trune ohservs 2]} do
for eash {N M) € {(size (vec 1), size (vec 2)),(delta sum{vec 1},
delta sum{vec 2, ([size {vee 1) +delta sum (vec I)]’

F3
[size fvec 2) +delta sum (vec 2) "
7

for k fram 1 ta 5 ¢ = no of confidence levels ¢ do
For each prob € [.25,.50,.75} do

time difference = time {vec 1, prob) - time {vec 2, probl;

time difference empirical confidence 1imits (theta (vec 1)
theta (vec 2), prob, difference standard error (time
empirical std error (NI' vec 1, prob), time empirical
std error (NZ' vee 2, preb)), Z-value [kI):

whether time difference lies within Jts empirical

confidance 1imlts;

73

FL
75
7%
n

78

73

82
83
84
85

TREIR

90
93

time difference theoretical confidence limits (thetal
vec 1), theta {vec 2), prab, difference standard
ertor (t]me thecretical std error [NI,
prob), time theoretical std error {Nz,
preb)), Z-value [k1);

whether time difference ljes within its theoretical
confidence 1imits

od;
for each time £ {},1,2} do

prab difference = prob (vec 1, time) - prob (vec 2, time)

prob difference empirical confidence limits {theta (vec 1),
theta (vec 2), time, difference standard error {prob
empirical std error(N!, vec 1, time}, prob empirical
std error (N, vec 2, time)), Z-valuelkl);

whether prob diffesrence 1ies within its empirical
confidence limits;

prob difference thearetical coenfidence limits {theta (
{vec 1), theta {vec 2), time, difference standard
error {prob thearetical std error (
Ni' time}, prob theoretical std error {
NZ' time)), Z-value [k1);

whether prob difference 1iles within its theoretical

confidence limits

od
od;
for each dist € {"empirica} dist”, "thaoretical dist"} do
for each case € {"'kept observs'*, "trunc chservs™}
For each kind of N € {"obtained From size (vec)™, “obtained from delta

. 1
sum {vec)', "obtained from size (vec) +d;lta sum _{vec) } do

for each theta € {theta 1, theta 2}
for each prab € {,25,.5,.75} do

062

Adiag O pue Au3g Wa

g2

93
ok
35

96
97
98
%9

100
191
102

102
103
104
105
106

od
o

where:

print time summary table {preb, theta, dist, kind of N,
no of repetitions, casa)
od
for each time € {§,1,2} do
print prob summary table {(time, theté, dist, kind of N,
no of repetitions, case}
ad
od
far each prob € {.25,.5,.75} do
print time difference summary table (prob, theta 1, theta 2,
dist, kind of N, no of repetitions, case)
ad
for each time € {%,1,2} do
print prob difference summary table (time, theta 1, theta 2,

dist, kind of N, no of repetitions, case)

time summary table {prob, theta, kind of N, no of
repetitions, case)=
YTIHE (085, "prob')"
theta
dist ¢ empirical , theoretical ¢
kind of N
no of repetitions

case ¢ kept observs , trunc observs ¢

(31

[ii

percentage of the nc of repetitions in which "TIHE(0BS, "prob')"

lias within its confidence interval limits obtained for loss
rate [i] and confidence level

according to the dist (empirical or theoretical)

[j] using its std error computed

107 ‘where:

gonfidence

preb summary table (times theta, dist, kind of N,
no of repetitions, case}=

PROB (0BS, "time")™

dist ¢ empirical, theoretical ¢
kind of N
no of repetitions

case ¢ kept observs, trunc cbservs ¢

3]

[il

108 where:

confidence
level
losg

rate

percentage of no of repetitions in which "PROB {0BS, "time"]"
lies within Its confidence Interval limits obtained For loss
rate [i] and confidence level [j] using ts std error

computed according to the dist (empirf:al or theoretical)

time difference summary table (prob, theta 1, theta 2,
dist, kind of N, no of repetitions, case)=
“TIME (085S 1, "prob')-TIME (08§ 2, "prob')"
theta 1 theta 2
dist ¢ empirical, theoretical ¢
kind of H
na of repetitions

case ¢ kept observs, trunc cbservs ¢

1l

(i1

percentage of no of repetitions in which

"TIME {[0BS 1, "mrob")-TIME {0BS 2, "prob™)'" iles within lts
confidence interval limits obtalned for loss rate [I] and
confidence level [J] using its std error computed according
to the dist lempirical or theoretical)

UOIIoBI3IU] HIBID-IaLuBIE0

L6Z

109 where: prob difference summary table {time, theta 1, theta 2, Vector Abstract Oata Type
dist, kind of N, no of repetitions, case)ls= '
“pROB (0BS 1, “time")PROB (0BS 2, “rime)" ! Iype veeter
theta 1, theta 2 2 create observations {int size, rea) theta) vector
dist ¢ empirical, theoretical ¢
kind of 3 create kept observations (vector v, real loss rate, string name) wactor
na of repetitions
case ¢ kept abservs, trenc observs ¢ 4 create truncated observations (vector v, real time, string name) vector
gonfidence 5 concat (vector v1, V2, string name) vectar
[i1 .
percentage of no of repetitions in which § size (vector v) Ll
"PROB (0BS 1, "'time")-PROB {0BS 2, “time")" lies within Its 7 time (vector v, real prob) real
1] confidence interval 1imits obtalned from loss rate [i] and -
confidence level [j] using Its std errar comouted according 8 probability (vector v, real time) real
to the dist (empirical and theoretical)
9 . delta sum (vector v} integer

110 where:

1% time theoretical std error {int size, real prob) real
table and hypergeometric probability {int above 1, below 1, sbove 2,
below 2, character label, real vall= 11 time empirical std error (int size, vector v, real prob) real
label 1:
J abel va 12 prab theoretical std-error {int size, real time} real
' Below Above Total
kept observs 1 below 1 above 1 above | +below 1 13 prab empirical std error (Int-size, vector v, real time) real
kept observs 2 below 2 . above 2 above 2 +below 2 § (
1 N i
Total below 1+below 2 above 1+above 2 (above 1+ above 2 below (yector v, real tine) int

+helaw 1+below 2} 45 above (vester v, real time) int

total %} tatal 2}
above 1’ ‘above 2 16
over all total)

total abave

hypergecmetric probability = print name (vector v)

17 difference std arror '(real val 1, val 2) real
18 theta (vector v) real

19 end vector

Z62

ALIRE 'O pue ALBg WG

