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Abstract: This paper describes an experience by the authors as u programmer and 
client respectively. The programmer applied the concepts of abstrnct data typing, 
and strong typing to arrive at complete, consistent specifications of the client's 
progrnm. Amazingly, these specific.itions did not undergo the usual modifications 
as the program itself was designed, implemented, tested, debugged, and <-iccepted. 
The experience suggests a possible methodology for arriving at specific<itions 
b;ised on the two above·mentioned concepts and suggests some properties of 
specification languages and their processors. 

L Introduction 

275 

Most software is produced by professional programmers to meet the requirements of a client who is 
generally not a programming or computing professional. All too often the resultant sortware is not what the 
client wants. The programmer may have misunderstood whut the client w:inted and produced something en­
tirely different. The client may not huve known whats/he wanted, and the software, though done correctly 
with respect to the specifications, does too linle, too much, or the wrong thing. 

Assuming for the moment that the programmer is perfect and programs correctly from the 
specifications, still it is extremely difficult to arrive at specifications that specify exuctly what the client wants. 
Thus, the major problem in the production of software meeting the client's requirements is in obt<iining mutu­
ally satisfying specifications -- specifications which specify exactly what the client wants, which perhaps even 
anticipate future desires, and from which lhe programmer may write the required software. 

The difficulties preventing sufficient mutual understanding to urrivc at the specifications are that the 
programmer, on one hand, generally knows little or nothing about the client's discipline and the client, on 
the other hand, knows little or nothing• about what is possible with a computer. 

These authors firmly believe that the responsibility for insuring mutual understanding and getting the 
specifications right lies squarely with the programmer. Therefore, what are needed are means for the pro­
grammer to learn exactly what the client means, for the programmer to assist the client in defining his/her 
problem, and for the programmer to assist the client in learning what is possible with a computer and what 
s/he should be expecting from the software, etc. 

Recently, the first author, a computer scientist, and the second author, at the time a statistician, en­
tered into a programmer-client relationship in order to produce specifications for a statistical experiment 
simulation program. The computer scientist in this case knows very little about probability and statistics, and 
worse than that, has an aversion to the subject. The statistician in this case knew very little about computing 
beyond the use of packages such as BMDP [0877] and beyond the barest rudiments of FORTRAN coding (as 
opposed to programming). Finally, the two authors are married to each other. 

I. This work was supported in part by the Lady Davis Foundation, The Hebrew University, and the 
Weizmann Institute of Science in Israel and the U.S. Dept. of Energy contract No. EY-76-5-034, PA 214. 

2. This work was supported in part by Tel Aviv University in Israel. 

*Even worse, the client may know only a little bit from his home computer, but thinks/he knows more. 
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In spite of this clear potential ror a lack or mutual understanding, the specifications produced bcl'ore 
programming began ended up being an accurate description of the finnl program as written. The 
specifications, to the first author's utter amazement, withstood 1111 of the u.su<tl recdback that takes place dur­
ing program development. Thal is, Lhc specifications remained a useful guide throughout the programming: 
no new desired functions were discovered: and no specified functions were changed or eliminated. 

This history is quite different rrom lhc usual history in which the specifications change significantly as 
the software is developed in order that the specifications agree with the final sof\ware. Inconsistencies in the 
specifications are found, functions are found to be not implementable, new or modified functions arc round, 
etc., all of which l'orce changes to the developing software and the specification-;. These changes arc not desir­
able because they delay the completion of the sortwarc •ind they decrease the reliability of the resulting 
software. The major structure of the sol'tware is designed using the original specifications: for economic rea­
sons, the changes are generally accommodated by patches to this structure rather than by :t redesign of this 
structure. 

It is believed that what made the difference in this case was the combined use or abstract data typing 
[LZ74, Flo75, Par72, Myc78], strong typing [vWn75, 00078] and a strong dosage of persistence by the pro­
grammer. 

Abstract data lV{JinK is normally used to hide the details of implementing a particular dala object :ind 
iL-; operntions, i.e., for i11for111atio11 hiding In this case, abstract data typing provided a framework in which to 
take the vurious statistical buzzwords (l'rom the programmer's point of view Lhey arc buzzwords), e.g., stan­
danl c>rrar, and treat them as operations of a particuhu abstract type, the obsi?nY1tio11 vector. In this way, 
without knowing what the vurious buzzwords mc:m, the programmer was able to write high level statements 
using the buzzwords as operations on observation vectors. In other words, <1bs:Lmct d:1t<1 typing w:1s used in 
this case to hide the programmer's utter i1:11ora11cc> about how to implement the dula object and its operntions. 
Or course, the programmer pressed the client l'or assurance that each such buzzword is a well-known opera­
tion of statistics and that each is defined completely by some formuli1. Thus, the programmer was confident 
that the abstract type und thus the progri1m would be implementable. Further, the abstract Lypc provided a 
vehicle for the (experienced) programmer lo press the client for addition:tl functions that she did not think of 
at first, but that later turned out to be necessary. 

By taking advantage of the notion of stro11g typing, and the compile-time type checking it permits, in­
consistencies in the specifications were caught and eliminated at the source bcf"ore they could do difficult-to­
repair damage to the program. 

Persistence* was necessary in order for the programmer to keep pressing the client for more details 
and to spot inconsistencies in the stated specifications. 

This report first proposes a general methodology !Or arriving at specifications which arc mutually 
satisfying to the client :ind the programmer and which has a resistance to changes induced by feedback ob­
tainable during the programming process. It then details the above described programmer-client interaction. 
It nttempts to aru1lyze why the interaction was so successful in obtaining good specifications. Finally, it makes 
some recommendations concerning specification h1nguages, observing that Adu™ [ADASll comes close to 
meeting these recommendations and that the program design language SOP {Lin80, LYB81] comes even 
closer. 

*In an earlier version of the paper and in the oral presentation, the term "Jewish Motherhood" was used 
instead of "persistence". Previous referees indicnted that this original term may not be universally 
understood. However, we believe that "Jewish motherhood" connotes much more than "persistence", and 
some of Lhese additional connotations are intended. Wh:1t we require rrom Jewish motherhood are the 
instincts for the programmer to keep 1111dKi11g the client for more details and to sense inconsistencies in the 
stutcd specific.itions. The nuances in the previous sentence arc not quite captured by "persistence". Lest the 
reader worry that he or she cannot qualify as a Jewish mother, as it is stutcd in !Grc64], "You don't have to 
be either Jewish or a mother to be a Jewish mother. An Irish waitress or an Italian barber could also be a 
Jewish mother." To this list we add: "Also· a (your ethnicity) programmer can be a Jewish mother." 

™ Ada is a trademark of the U. S. Department of Defense (AJPO). 
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2. Proposed Methodology for Arriving at Specifications 

The experience described in the next section suggests a methodology for arriving at specifications, 
which are mutually satisfying to the client and the programmer and which does not require the programmer 
to be an expert in the client's field. The methodology requires that.the programmer be experienced in the 
use of abstract dat.i typing and strong typing in his or her own progrnmming. 

In essence, as the client is talking, the programmer should listen for the abstract data types relevant 
to the problem and try to identify their operations. The types and their operations should be clear in the 
client's own mind and be intelligible to anyone in his or her field. After some persistent questioning by the 
programmer in order to verify that the operations are in facl implementable (not necessarily in a small rou­
tine), the specifications should be written jointly by the progrnmmer and the client. These specifications 
should consist of modules describing the abstr:ict types and the modules for the main programs. The module 
for an· abstract type should give only the name of the abstract type and the names, par:imeter types, and re· 
turn values types for the operations of the abstract type. The main program modules should be written with 
the operations of the 'abstract types assumed ns primitive. 

The programmer should then use type checking and whatever other tools he or she can muster to 
detect inconsistencies and to press the client for answers which clear them up. 

The specifications including those of the .ibstract data types should be circul<1ted among the colleagues 
of both the client and programmer for additional feedback and checks that the specifications arc meaningful 
to people in the client's field and that the specifications are in fact implementable. If this circulation results 
in any changes, the cycle of checking and circulating should be repeated. When finally ull arc satisfied, lhe 
programmer may begin the next step in the program's life cycle. 

The methodology stresses getting the progrnmmer and client to transfer some or their individual 
knowledge to each other rather than making the progrnmmer 11n independent spcci;1list in the client's area 
who is able to solve any programming problem in the area or making the client a competent programmer. The 
knowledge that the client gives is about the problem area, and the knowledge that the programmer gives is 
about what computers are ab!E: to do. The extent or this information transfor is sufficient only to permit map­
ping the client's needs into some representation from which the programmer may then produce a program 
meeting the client's needs. The trnnsfer involves the client telling the programmer things, the programmer 
finding inconsistencies, and the programmer questioning the client in order to resolve these inconsistencies. 
In doing this, the programmer makes use of syntactic and scm.intic rules of natural language, instinct, and 
syntactic rules of the specification language. IL is a contention of this paper thal this use of syntactic rules or 
the specification language goes a long way to making up for the programmer's lack of knowledge in the 
client's area. 

The above description of the methodology may seem vague .ind ill-defined, but in fact, it is as com­
plete as possible. The actual application of the methodology is quite problem-dependent, so at best only the 
outlines of methodology can be given. In case the reader cannot see how to apply the methodology to real 
problems, the next section describes the authors' actual experience. It is somcwh.it anccdotnl, but il does 
show what is involved in the use of the methodology. The experience also gives the basis for the claims 
made in this paper on the efficacy of the methodology and for the recommendations given later on the miture 
of specification languages. 

3. The Experience 

3.1 Background 

The reader is already aware of the differing professional b.ickgrounds of the programmer <ind the 
client and the clear potential for communication problemsi". Some additional elements of background must 
be explained 

* Add to this the fact that their native languages are different. 
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At the timEi of the experience, during the spring of 1979, the second author was an M.A. candidate in 
the Department of Statistics at Tel Aviv University. Her thesis [Bry79] research considered the validity of 
conclusions drawn from experiments involving a sequence of observations in which the data becomes further 
umivailable (i.e., truncated) at some point or in which some but not al! of th_e data are missing (i.e., cen­
sored). It was desired Lo write a program which permitted numerous simulations of experiments with large 
observation vectors. An experiment was to generate a pair of vectors of observations, to truncate these and 
then to censor these later. Conclusion drawn from the truncated and censored vectors were Lo be compared 
to those drnwn from the full vectors. Drawing the conclusions and comparing them requires the calculation 
of a variety of well-known statistical measures at all levels of the experiment. 

The program had to meet the approval of the second author's three-person thesis committee which 
could, in principle, think of new calculations Lo perform al any time, even at the del'ense. The entire thesis. 
including the program, several production runs of it, documentation for it, the writing of the thesis and the 
oral defense had to be finished within Len weeks*•, extended in the end by one week, from the date it was 
determined to begin writing the program. Thus, it was critical that the specifications be correct and complete 
the first time around and that they anticipate, from the outset, all possible calculations that could ever be rea­
sonably (or even unreasonably) desired by a statistician-thesis committee member. There was simply no time 
to write the program more than once. 

The first uuthor wus personally familiar with patchwork programs resulting from thinking of new cal­
culations on the data during or after completion of the programming. He was also personally familiar with 
the agonizing discovery of a newly required calculation requiring a major rewrite of a nearly completed or 
completed program. The first author was painfully familiar with the discovery of interfoce problems among 
procedures l.ite in the programming whose correction required a major rewrite or extensive patching. These 
situations had to be avoided at .ill costs. 

3.2 Form of the Specifications 

It was decided by the programmer with the client's concurrence that the specifications would consist 
or two main parts: 

I. in the form of typed v<iri<1ble declarations together with assertions as comments, a specification of all 
inputs to the program and the v.ilidity constraints they have 10 meet. 

2. given input meeting the input specifications of part I. a specification of what the output should look 
like, i.e., whut values, tables, etc. should be printed. 

No details other than those needed to describe these parts would be given. In particular no data which need­
ed to be calculated intern.illy but which would not get printed out would be specified. 

3.3 Initial Specifications 

The programmer asked the client to write a first pass at each part of the specifications. For the input 
part, the following list of "declarations" was produced: 

input: 

N (Sample size) INT 

c-1 (parameter of exponential distribution) REAL 

p (the percentage of the data to be lost) REAL 

(the truncation of the survey) REAL 

For the output part, the following list of what was to be printed was produced: 

output: 

*• Her advisor was leaving the country for the summer. 
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1. observalions; 2 vectors or size N, each obs is a REAL no. 

2. new observation vectors without the lost data (no in(o as to which positions lost 
data). 

3. the 2 vectors or truncated obs. 

ror each or 1,2,3 

4. P.25 P.50 P. 75 

5. P(1~112), P(1~J), P(1~2) I of combined data and of 

each vector separately 

6. table or nonparametric test 

7. 

each one of elements of (4} and (5) in the output paragraph 

below the stats above the stats tot ·v-,-,,-1-+-·n1b _______ 11/a 111 

vect2 112b n2a 112 
tot 11Jb+112b=11b 11Ja+112a=11a " 
and the hypergeomctric prob. P[11lal 

a. limits of the confidence intervals for the difference between the statistics in 4 
and 5 in the output paragraph [f/.12] in 95% confidence level 

b. for each appropriate pair of the ilbove stat., if it fell into its c.i.* or not 

The programmer winced at these specifications and knew that he had his work cut out ror him .. 

3.4 Refinement of Specifications using Abstract Data Types 

In an attempt to refine the specifications, the programmer asked the client to explain what was going 
on. As the client was talking the programmer was hearing all sorts of statistical buzzwords. These buzzwords 
he had heard before; they sounded technically relevant, but their meaning was altogether not clear. 

During this explanation, the client was completely confident that the programmer knew exactly what 
these terms mean and completely understood the specifications. When the programmer began to badger her 
with questions on the initial specifications, she was certain that the programmer was just acting as if he did 
not uilderstand the specifications in order to get her to do his work. The client assumed that an experienced 
programmer would ·naturally understand statistics and could easily deduce what runction was needed in the 
program 'much faster than she could ever understand the formalism for arriving at and writing the 
specifications. Thus, this client, as many others, impeded the process of arriving at the specifications by not 
cooperating as rully as possible in supplying information needed to produce the specifications. It took all the 
persistence at the programmer's disposal to wheedle the specifications out of the client.** 

In any case, as the client talked, the programmer was hearing: 

" ... take an observation vector ... " 

*confidence interval 

**Since completing this project, the statistician/client has become a computer scientist. In revising the final 
draft of this paper, the client looked at her own initial specifications for the first time in over two years and 
through the eyes of her new profe.ssion. She was astounded at these specifications - she could could not 
understand them any more and now sees that in fact the programmer did not understand them either. 
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" ... truncate it..." 

" .. .censor it. .. " 

" ... concatenate two observation vectors .. 

" ... T( time) of a vecwr at probability p .. " 

" ... P(probability) or a vec-tor at time t.. 

" ... lhc standard error of the vector at time 1 or probability p .. 

etc., 

over and over again. The programmer began to see the abstract data type 

observa1io11 vector 

or simply, 1•e£·tor, where each observation is a real number and whose operations include 

create 

tr1111ca1e 

Ce/ISO/' 

concatenare 

time 

probabi/i(V 

delta sum 

standard error 

By nudging the client with "Are there any other operations on vectoi's that you're going to need for your pro­
gram?", the programmer produced with the client's help a preliminary list of operntions. The progrnmmer 
and client then identified for each the list of parameter types and the return value type, if any. 

Finally the programmer pressed the client for assurance that each of the operations is well understood 
by statisticians and either is trivially implemented (e.g., create, truncate, censor, etc.) or is defined by a well­
known formula (e.g., time, probability, standard error, et<;.). With this assurance finally extracted from the 
client, the programmer felt confident that the abstract d;ita type and its operations were indeed implement­
able. 

It was now time to begin refining the specifications into a useable document. The goal was to produce 
a description of the main program which used the abstract data type and its operations as if they were primi­
tive. It was recognized that as the specifications were being refined, 

I. additional required operations may be discovered, and 

2. the parameter and return value types of existing operations may be changed. 

When the specifications were complete any unneeded operations of the dahi type could be eliminated from 
the specification 
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Appendix 1 contains the final specifications including the l'r'Ctor abstract type. They arc in the !Orm 
that they were in at the completion of the project blemishes and all. 

3.5 Final Input Specifications 

To <irrive at the final input specifications the programmer complained to the client that 

I. spelled out identifiers would be clearer. 

2. the program facked generality, i.e .• it could do only one run or the experiment and il docs these ex­
periments with both observation vectors Lhe same size .. with the same theta ror censoring each vector, 
with the same loss rate in each case, and with the same truncation threshold in each cusc, 

3. there w<is a magic constant. i.e., why was a 95% confidence level used <ls oppo~'Cd tO ;my other? 

In addition the programmer demanded to know what were the bounds for each of the input values. The 
client's answers to these complaints and question led to the final input specifications that appear in Appendix 
I. 

3.6 Final Output Specifications 

3.6.l Strong Typing 

As the output specifications were being refined, it became clear that it is basically a nc-.L or loop-. 
whose purpose is to get cert<iin functions printed out for each combination or vulues in their domains. Each 
loop is to step through the values of one parameter's domain. It seemed reasonable to nest Lhe loops to per­
mit as many possibly dis.ioint inner loops as possible to shnre outer !oops consistent with the desired order of 
output. 

Once the loop skeleton was set up, each operation application was put in its proper place in the skele­
ton. It was then checked that for each application of an operation, each of its parameters was either n global 
variable or the index for a loop nested about the application. ·in a number of cases, it was necessary to add a 
loop to provide in index which was used as the value of a parameter. Such additions. in turn, led Lo changing 
the nesting structure of the loops in order to better utilize sharing of outer loops. 

It was also necessarY to check for each use or an operation that the types of its <u.:tu:il pitrnmetcrs nnd 
the type value it was presumed to return agreed with those of other uses and with the parnmcter and rcwrn 
value types given with operation in the list of operations of the :ibstract type. In a number of cases, either 
within a version or across versions, there was not complete agreement. In other words, type checking foiled. 
For example: 

I. some of the applications of either of the empirical s1a11dard error opcratjons had a size parameter or 
type int, and others did not. In the latter cases, the size is assumed to be thut of the vector passed us 
another parameter and in the former cases. the size is independent of the vector. As assuming thnt 
size is independent of the vector is more general, the operations were finally specified to have <1 size 
parameter, and all applications or the size-less operation were modified by the addition of an appropri­
ate size parameter. 

2. some of the applications of either of the theoretical slandard error operation.<; had a thcla parameter or 
type real, and others did not. It w<is observed that in any case, the theta parameter is nol necessary, 
since one of the other parameters is calculated from theta, and Lhc only use for the theta is in the cal­
culation of this other parameter. Thus, the operation waS finally defined with no theta parameter, and 
all applications with <1 theta as a parameter were modified accordingly. 

One implication of some of these operation changes was to change the looping structure. For exam­
ple, the first change above necessitated the introduction of loops to step through the different kinds of size..; 
including that of the vector determined by an outer loop. 
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Finally some operations on the original list were never used so they were eliminated from lhe lisL 

Observe that the analyses described above arc completely syntax based and can be performed without 
having to know the semantic~ of the operations. These analyses include the following checks typically done 
by a compiler for a strongly typed programming language, namely that 

I. each operation is used with the correct number and types or parameters: 

2. each operation is used correctly as an expression of its return type: 

J. each identifier used is declared as a variable, constant, or a loop index in some surrounding context: 

4. each operation declared is used: and 

5. each variable, constant, or loop index declared is used. 

It is clear Lhal the first three arc more critical than the last two. 

Ap1,arently catching these syntactic inconsistencies was sufficient to find all inconsistencies, syntactic 
and semantic. In particular detecting missing variables, constants. loop indices and parameters by these syn­
tactic means was sufficient to find all those that were missing. 

3.6.2 Debugging Sense 

In a few places, the programmer's debugging sense alerted him of some additional necessary output. 
This debugging sense said that u function value used as an actual parameter to another function should be 
printed out itself. For example in line 51 rime (vec,prob) is used as the I parameter of the function wltetller t 
fies witlli11 time e11111irical co11/ide11ce limits. Thus, time free.prob) should be printed out also within the same 
loop, as requ~sted in line 19. even though it is :i!so printed out earlier at the request or line 26 Ot will nol do 
to eliminate the request of line 26 <is it is necessary Lo have a listing of all the limes in one place.L As :i 
result of the progrummer's nagging. the client agreed to insert this extra printing and others like it. 

The extra printing proved invaluable for the debugging as expected. A!so it turned out that the 
client's advisor on several occasions requested some additional output which the client had not anticipated but 
which was there as a result of planning for debugging. 

3.7 Programming, Testing, Debugging, Running, and Defense 

The specifications were completeJ and jointly approved by the programmer, the client, and the 
client's advisor after about four weeks of urguing. At this point the client took over as the programmer. The 
program w:is then designed and coded by the client in FORTRAN to meet the specifications. The o!d pro­
grammer taught the client about structured programming and how to implement an abstract data type as a 
collection of subroutines and functions sharing :1ccess to a named COMMON area to which the main routine 
did not have access. The program ran in very few debugging runs. The bugs were easy to locate because or 
the extra debugging output. For the production runs, the WRITE statements for all output not required by 
the committee were commented out. The client finished in time und successfully defended the thesis before 
the committee. 

3.8 Results 

The results were amazing. Once the specifications were obtained und finalized {by sending them to be 
typed) they were not changed at all except to correct minor ty.pographical errors. 

I. There was none of the usual feedback on the specifications during the designing, coding, testing, de­
bugging, and running of the program. In particular, no inconsistencies were uncovered, and no new 
functions were found necess:uy in any of the later stages of the progrnm's lifecycle. 

2. Even during the acceptance phase, i.e., the thesis defense, 110 new functions were discovered. 
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This is the first time that either author has observed this phenomenon, particularly the first. The first author 
is well <iware of how rare such an occurrence is. Whal made the occurrence even more amazing is the fact 
that the programmer and the client came from different disciplines and cle<irly had the potentfal for the usu<1l 
misunderstandings between programmer and client. Indeed to date, the first author cannot talk authoritutively 
about the program without double-checking with the second author. 

That no new functions were discovered during acceptance, i.e., during the thesis del"ense, was due 10 

a combination of sheer luck and the shortness of the acceptance ph<1se. That is the second author's advisor 
was leaving the country very shortly thereafter, and the entire commi1tee knew it. Still the functionality of 
the resulting program was quite complete. 

There are, however, good reasons to believe that the lack of feedback on to the specifications during 
design, implementation, and testing was no accident. There are resons to believe that the use of strong typ­
ing, abstract data typing, and programmer persistence is sufficient to yield consistent, ch,1nge-resistant 
specifications. There are studies, e.g., [Egg8ll, pointing to the value of the redundancy offered by strong typ­
ing in catching errors early. There are indications, e.g., in [HPU8!], of the value of abstract dnta typing and 
information hiding in producing designs that withstand modifications as implementation details are filled in. 
There are no modifications to the design because all of the changes that arc made arc 10 the information that 
is hidden anyway. Finally, the value of nudging in seeing a job through to its proper conclusion is clear. 

4. Specification Languages 

This experience also Suggests certain properties that a specification language should have. First, it 
should have the ability 10 exhibit the modules of the specified system, particularly the data abstraction 
modules. Secondly, it should be strongly typed, that is, it should be possible to specilY the types of al! data 
objects including parameters so that type and interface consistency can be checked at the· 1i111e 1he speci!ica1io11 
is being wri11e11 (and not later as the program is written). Thirdly, it should have a processor which does all 
the type and interface consistency checking possible. 

This last requirement is essential. Without machine enforcement of type and interface rli!strictions, 
they do nol get obeyed. Even if there is a desire to obey them fastidiously, mistakes can be made. Indeed, 
later, as an opportunity arose to express the specifications in a formal language and to have them checked by 
a processor, errors were found (See below.). None were serious. In all cuscs what was meant was clear, and 
thus these errors did not negate the value of the specifications. Had there been a processor for the 
specification language, these errors would have been caught, and the programmer could have been confident 
that there would be no type and interface errors. The point is, writing specification<; is error-prone a<; is. If 
any part of a specification can be automatically checked, it should be in order to eliminate at least all the 
avoidable, stupid errors.* 

Subsequent to writing the first draft of this paper, the programming !nnguuge Adu appeared on the 
scene. Ada allows construction of data abstractions with its package feature, and it is strongly typed. Its pro­
cessors are required to do type and interface checking at compile time. In addition, Ada has the nice property 
that a complete program docs not have to be presented to the compiler in order for it to do type and interface 
checking. A module can be completely type and interface checked in the presence of only the specifica1ion 
parts of the subprograms and packages it makes use of. The specification part of a subprogram is basically its 
header giving its name, parameter types, if any, and return value type, if any. The specification part of a 
package is basically the exported types, constants, etc. and the headers of the exported subpragrams of the 
packuge. As a consequence of this property of Ada, there have been proposals for using Ada as a program 
design language [Wau80l. A heavily commented program skeleton consisting mainly of specification parts 
only is submitted to an Ada compiler which then does as much type and interface checking as pos~iblc. 

The first author tried expressing the specification in a sort of an Ada prognim design language. The 
complete result is given in Appendix 2 of [BB82]. The vector abstract type is given as a syntactically improper 
Ada package specification part for the package observolion vector. 

with TEXT 10; use TEXT 10; 
package OBSERVATION VECTOR is 

* A slllpid error is any error that can a!gorithmic;illy avoided. 
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type VECTOR is private; 
function create observations(size:INTEGER:theta:FLOAT)return VECTOR: 
function create .kept observations(v:VECTOR:loss __ rate:FLOAT: 

mime:STRING)retum VECTOR: 
function create truncated observations( v:VECTOR:time:FLOAT: 

name:STRING)return VECTOR: 
functioii concat( vi, v2:VECTOR)ref:Urn VECTOR: 
function size( v:VECTOR)return INTEGER; 
function time( v:VECTOR:prob:FLOAT)return FLOAT: 
function probability(v:VECTOR:time:FLOAT)relurn FLOAT: 
function delta sum(v:VECTOR)return INTEGER: 
function time theoretical std error(size:INTEGER:prob:FLOAT) 

return FLOAT: 
function time empirical std error(size:INTEGER:v:VECTOR; 

prob:FLOAT)return FLOAT: 
function prob theoretical std error(sizc:INTEGER;time:FLOAT) 

return FLOAT: 
function prob empirict1I std error(size:INTEGER:v:VECTOR: 

time:FLOAT)return FLOAT: 
function above(v:VECTOR:time:FLOAT)return INTEGER; 
function below(v:VECTOR:time:FLOAT)return INTEGER: 
procedure print nt1me(v:VECTOR): 
function difference std error( val!, va12:FLOAT)rcturn FLOAT; 
function theta( v:VECTOR)return FLOAT: 

end OBSERVATION VECTOR; 

The package specification purl is improper because it has no privute part, but it wus nevertheless accepted by 
the compiler. The main program is given in u bastardized Ada written in a manner to fool the processor into 
doing the required checking. That is. natural language material is buried inside comments. and any text con­
taining a use of a subprogrnm of the package is exhibited in proper Ada syntax. Where possible, Ada nota­
tion corresponding to the original notation is used. For example. Ada declarations, for loops, gel, and pur are 
used. In some cases, preserving correspondence leads to improper Ada, e.g., 

for each time ( [i/i,1.2: do 

od; 

is expressed as 

fort in :112.1,2: loop 

end loop; 

which would be Adt1 except for the set notation and the fact that 1/2,/,2 do not form a proper enumeration. 
This Ada fragment is mude a comment and in its plt1ce is put block containing a loop: 

declare t:FLOAT: 

begin 

time set:constant array(l..3)of FLOAT:= 
(I .Q/2.0,1.0.2.0)' 

for i in time set'RANGE loop 
t:=timc set(il: 
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end loop; 
end;. 

This substitute gets the compiler to do all the checking it would have to do with the improper statement. i.e .• 
that 1/2, I, and 2 are proper to assign to I and that in the scope of the loop, I is used properly for its type. 
The generation of the substitute statements is fairly straightforward and can be automated. 

Valid Ada value-returning expressions sitting in the middle of a natural language sentence have to be 
brought out of the comment containing the sentence so that they could be type and· interface checked. How­
ever. the Ada compiler that was used [NYU81] complains fond for that maller any should) when such ex­
pressions are left sitting in the position of statements, and refuses to do any checking whatsoever. Thus 
internal procedures with the natural language sentences as their names were invented. These procedures 
have formal parameters for each of the expressions embedded in their sentences. An application of these 
procedures to these expressions is acceptable to the compiler and gets lhoroughly checked. Occasionally it was 
convenient to introduce a local variable to explicitly hold the value designated by a pronoun or a pronoun-like 
phrase. As an example. the body of the loop in lines 48-54 is translated as 

declare p:FLOAT; 

begin 

end;. 

prob set:constant array(I..J)of FLOAT:= 
(0.25,0.5,0. 75): 

for i in prob set'RANGE loop 
p:=prob set(i); 

put(time( vec,p)); 
conf limits:= time empirical confidence limits( 

theta(vec),p, 
time empirical std error( 

n,vec,p). 
z value(k)); 
put(conf limits); 

put(whether(time(vec,p) ,lies within=> conf limits)); 
conf limits:= time theoretical confidence limits( 

theta(vec),p, 
time theoretical std error( 

n,p), 
z value(k)); 
put(conf limits); 

put( whether( time( vec,p),lies within= >conf limits)); 
end loop; 

Note that the sentence "whether ... lies within ... " was converted into a function whelher specified with 

function whether( v:FLOAT,lies_ within:LIMITS)return BOOLEAN; . 

Thus. the Ada specification has more details than the original specification and perhaps more than is desirable 
in a specification. 

The specification was thus type and interface checked. Some errors in the original specifications were 
found. Many are minor punctuation and spelling errors. Some of these are typographical and transcription er­
rors. 

There were four interface errors discovered, all of exactly the same kind. The definition of the vector 
abstract type shows that creole kepi observations and creaie 1runca1ed observalions each require a third parame­
ter, a string giving the name of the vector to be created. The four calls to these two routines, which are in 
lines 14, 15, 16. and 17 of Appendix I, each has only two actual parameters. In particular, the name string is 
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missing. This error was found when the Ada compiler complained about the missing parameters in the Ada 
versions of these calls: Interestingly, the FORTRAN code for these calls passes all three parameters correctly 
in each case. Thus, only the specifications have the interface error. This error completely slipped by the two 
authors, the adviser, and the committee despite c<ireful scrutiny. It even slipped by in proof readings of cur­
lier versions of this paper. 

The net effect of this error is not severe, as the code does not mt1ke this error. However, the nature 
of this error, an interface error, is quite serious. Therefore, the importance of having a processor to find er­
rors is borne out. Had there been a processor for the original specification language, none of the errors, 
minor or not, would have remained in the specifications. 

The form of the Ada version of the specifications leaves a bit to be desired. Too many tricks had to 
be played to gel the compiler to do all the desired checking. These tricks included having to invent procdures 
for sentences in order 10 force type checking of embedded significant phrases. A proper program design 
language might be better suited. Such a program design language would have to accept a mixture of natural 
language sentences and programming language statements. Its processor would have to be able to distinguish 
between the two so that it could do the checking that it is supposed to even if the call to a package subpro­
gram is buried in the middle of an natural language sentence. It would also have to not complain when an ex­
pression buried in a natural language sentence seems not to be used properly for its type because the sentence 
of course does not define what type value it requires from the contained expression. 

A better candidate for expressing the specifications and getting the desired type and interface check­
ing done is the program design language SOP {Lin80, L YB8 ll. It permits natural language sentences to be 
designated as the header of a subprogram and as the name of a data abstraction. In the defining occurrences 
of these sentences, any of its words may be designated as formal parameter type names. A sentence which 
agrees word-for-word with such a defining sentence in all but the formal parameter words is considered an ap­
plication (call) of the sentence. A word of the application sentence which is in the position of a formal param­
eter is checked to be declared with the formal parameter word as its type, if it is declared to be of any type at 
all. 

The specification was expressed in approximately the language of SOP. Keywords show up in bold 
face, and formal and actual parameters_get underlined or left-sidelined. Only the formal parameters arc 
marked specially on input. The actuals get marked as a result of the processor's recognizing the containing 
sentence as an application of a defining sentence. The complete specification is found in Appendix 3 of 
[8882]. Here is shown the SOP version of only the package specification and the loop discussed above: 

cluster observation_ vector 

op create observation vector of length size with distribution theta 
op create kept observation vector from observation vector according to 

loss rate !! named name 
op create truncated observation vector from observation vector 

truncated at time! named nam~ 
op concatenate observation vector and observation vector 
op size(observation vector) 
op time of observation vector at probability Q 

op probability of observation vector at lime! 
op delta sum(observation vector) 
op time theoretic<il std error of any vector of length size at 

probability Q 

op time empirical std error of observation vector of length 
size at probability Q 

op prob theoretical std error of any vector of length size at 
timet 

op prob empirict1I std ~rror of observation vector of length 
size at time t 

op number of entries in obsirvation vector above time! 
op number of entries in observation vector below time! 
op print name of observation vector 
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op difference std error of value! and value2 
op theta of observation vector 

declare p as real 
do for pin (0.25,0.5,0.751 

od 

time of vec at probability I! 
time empirical confidence limits 

theta of vec 
p 
time empirical std error of vec 

of length !! at probability I! 
z_ value(k) 

whether 
time of vec at probability Q 

lies within time empirical 
confidence lirTiits 

time theoretical confidence limits 
theta of~ 

whether 

p 
time theoretical std error of any vector 

of length !! at probability I! 
z_ value(k) 

time of vec at probability I! 
lies within time theoretical 
confidence limits 

287 

The resulting specification is closer to the original specification than the Ada version. It is also uses a 
language a bit more general than the current version of SDP; it uses full sentences as actual parameters in 
other sentences. These can be spotted as sentences (which themselves may have underlined actual parame­
ters) which are left-sidelined and are embedded inside other sentences. No processor exists yet for this ex­
tended SDP, but it is clear that the requisite pattern recognition and type and interface checking can be done 
by an augmented SDP processor. 

5. Conclusions and Future Research 

This report has described an experience of the authors in arriving at specifications that withstood the 
usual modification-causing feedback from the program's later life cycles despite the clear potential for 
misunderstanding. On the basis of this experience, a methodology for arriving at good, complete, consistent, 
and change-resistant specifications is proposed. This methodology, which is useable even when the program­
mer and the client speak different jargons, makes use of the ideas of abstract data typing, strong typing, and 
programmer persistence. In addition, recommendations were given concerning"specification languages and 
their processors. 

It is necessary to examine the general applicability of the proposed methodology. Did the methodolo­
gy succeed because of itself, because of the personalities of the programmer and the client, because of the 
particular nature of the problem, etc.? If the methodology works only for certain kinds of problems, what are 
they? It may also be useful to conduct controlled experiments over a wide variety of problems with large 
numbers of programmer-client pairs. 
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" 68 
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11 

!!!. 
2$ 

£2.; 

titre theoretical confidence 1 lml ts (theta (vec), prob, 

time theoretical std error (N, prob), 

Z-value [kl}; 

whether time (vee, prob) lies within time theoretical 

confidence limits 

.flu. us.h. time E {l, 1,2} ~ 

prob (vec, time); 

prob empirical confidence limits (theta (vec), time, 

" 

13 

" 15 
prob empirical std error(N,vec,time), Z-value {k]); 76 

!!!. 
!!!. 

whether prob (vee, time) Hes wi;hin prob empirical 

confidence limits 

prob theoretical confidence limits (theta (vec), time, 

prob theoretical std error ( ti, time), 

Z-value [kJli 

whether prob (vec, time) 1 ies within prob theoretical 

confidence 1 imi ts 

71 

" 
" 

IE..r each (vec 1, vec 2) E{(kept observs 1, kept observs 2), ao 
(trunc observs 1, trune observs 2)} ~ 

~~ (N
1

,N
2

) E {(size (vec 1), size (vee 2)).(delta sum(vee 1), 8t 
delta sum(vee 2)), ([size (vee 1) +~elta sum (vee 1)] 

" ,, [size (vee 2) +~elta sum (vee 2)1 )} 

for k from 1 ~ 5 e "' no of confidence levels e !!£ " 
for !.!!.0. prob E {.25,.50,.75) ~ 

86 
tlme difference" time (vee 1, prob)-time (vee 2, prob); 

85 

time difference empirical confidence limits (theta (vee \) 
8

7 

theta (vec 2), prob, difference standard error (time 
88 

empirical std error {N 1 , vee 1, prob), time empirical 

std error (N
2

, vec 2, prob)), Z-value [kl); 

whether time difference lies within Its empirical 

confidence llmlts; 

,, 

" •1 

!!!. 
!!!. 

!!!. 
!!!. 

£&: 

£&: 

time difference theoretical confidence limits (theta( 

vee l) , theta ( vee 2) , prob, d l fferenee standard 

error (time theoretical std error (N
1

, 

prob), time theoretical std error (N
2

, 

prob)), Z-value [kl); 

whether time difference Iles within its theoretical 

confidence limits 

.f2!.~ time E H,t,21 !!£ 

!!!. 

prob difference., prob (vec 1, time) -prob (vec 2, time) 

prob difference empirical confidence limits {theta (vec 1), 

theta (vec 2), time, difference standard error (prob 

empirical std errorCN
1

, vec 1, time), prob empirical 

std error (N2 , vec 2, time)), Z-value[k]); 

whether pr Ob difference 1 les within its emp ! ri ca 1 

confidence 1 imi ts; 

prob difference theoretical confidence limits {theta 

(vec 1), theta {vec 2), time, difference standard 

error (prob theoretical std error ( 

N
1

, time), prob theoretical std error ( 

N
2

, time)), 2-value [kl); 

whether prob difference 1 ! es within its theoret i ca 1 

confidence 1 iml ts 

!2.£.~dlst E {"empirical dist", "theoretical dist")!!£ 

i2.£. each case E {"kept observs", "trunc observs"} 

for each kind of N E {"obtained from size (vec)''. "obtained from delta 
-;::-(vec)", "obtained from size (vec) +d~lta sum {vec)"l do 

for ~theta E {theta 1, theta 2) 

~~prob E {.25,.5,.751 ~ 
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109 ~: 

[I] 

110 w~erei 

prob difference sunmary table (time, ttleta 1, ttleta Z, 

dist, kind of N, no of repetitions, case)• 

"PROB (OBS 1, "tfme'')·PROB (OBS 2, ''time")'' 

ttleta I , ttleta 2 

dist~ empirical, ttleoretical ¢ 

kind of N 

no of repetitions 

ease ¢ kept observs, trunc observs ¢ 

[j] 

percentage of no of repetitions in whietl 

"PROB (OBS 1, 11 tlme")·PROB (OBS 2, "time")" lies within Its 

confidence Interval limits obtained from loss rate Ii] and 

confidence level [j] using Its std error computed according 

to the dist (empirical and theoretical) 

table and hypergeometric probabi 1 ity {l!!l above 1, below 1, above z, 
below 2, ~ label, ~val)• 

kei>t observs 1 

kept observs 

Total 

label val: 

Below 

below 1 

I bol= 2 

below 1 +below Z 

hypergeometric probab! 11 ty " 

Above 

above 1 

above 2 

above 1 +above 

(total l}(total 2) 
above 1 above 2 

(ov~~t=: 1 a~~~= L) 

Total 

above 1 +below 

above 2+below 2 

(above 1 + above 2 

+below 1 +below 2) 

Vector Abstr<1et Oata Type 

~~ 

create observations (.!!U. size, ~theta) vector 

create kept observ<1tions (~ v, ~ loss rate, string name) ~ 

create truncated observations (~ v, ~time, string name) ~ 

eoncat (~ vl, V2, string name)~ 

size (~ v) l!!l 

time (~ v, !!!!.!. prob) !!!J. 

probabi 1 ity (~ v, ~time) ~ 

delta sum (vector v) inteser 

\0 time theoretical std error (l!!l size, !2!.1 prob) !!!J. 

II time empirical std error (.!..!:!.!.size,~ v, ~prob)~ 

12 prob theoretical std ·error (int size,~ time)~ 

13 prob empirical std error (!.!!.!.·size,~ v, ~time) ~ 

14 below (~ v, ~time) .!.!:.!. 

15 above (~ v, ~time) .!.!:.!. 

16 print name (~ v) 

17 difference std error .C~ val I, val 2) ~ 

18 theta (~ v) real 

19 !!!S~ 

"' "' "' 

!'J 
l= 
il' 
' " ~ 
p 

il' 
' " 


