
SYSTEM DESCRIPTION METHODOLOGIES
D. Teichroew and G. David (Editors)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1985

THE PROGRAMMER-CLIENT INTERACTION
IN ARRIVING AT PROGRAM SPECIFICATIONS:

GUIDELINES AND LINGUISTIC REQUIREMENTS

~ Daniel M. Berry[!]
Computer Science Dept.

UCLA
Los Angeles, CA 90024

Ormi Berry[2J >
Computer Science Dept.
USC
Los Angeles. CA 90089

Abstract: This paper describes an experience by the authors as u programmer and
client respectively. The programmer applied the concepts of abstrnct data typing,
and strong typing to arrive at complete, consistent specifications of the client's
progrnm. Amazingly, these specific.itions did not undergo the usual modifications
as the program itself was designed, implemented, tested, debugged, and <-iccepted.
The experience suggests a possible methodology for arriving at specific<itions
b;ised on the two above·mentioned concepts and suggests some properties of
specification languages and their processors.

L Introduction

275

Most software is produced by professional programmers to meet the requirements of a client who is
generally not a programming or computing professional. All too often the resultant sortware is not what the
client wants. The programmer may have misunderstood whut the client w:inted and produced something en­
tirely different. The client may not huve known whats/he wanted, and the software, though done correctly
with respect to the specifications, does too linle, too much, or the wrong thing.

Assuming for the moment that the programmer is perfect and programs correctly from the
specifications, still it is extremely difficult to arrive at specifications that specify exuctly what the client wants.
Thus, the major problem in the production of software meeting the client's requirements is in obt<iining mutu­
ally satisfying specifications -- specifications which specify exactly what the client wants, which perhaps even
anticipate future desires, and from which lhe programmer may write the required software.

The difficulties preventing sufficient mutual understanding to urrivc at the specifications are that the
programmer, on one hand, generally knows little or nothing about the client's discipline and the client, on
the other hand, knows little or nothing• about what is possible with a computer.

These authors firmly believe that the responsibility for insuring mutual understanding and getting the
specifications right lies squarely with the programmer. Therefore, what are needed are means for the pro­
grammer to learn exactly what the client means, for the programmer to assist the client in defining his/her
problem, and for the programmer to assist the client in learning what is possible with a computer and what
s/he should be expecting from the software, etc.

Recently, the first author, a computer scientist, and the second author, at the time a statistician, en­
tered into a programmer-client relationship in order to produce specifications for a statistical experiment
simulation program. The computer scientist in this case knows very little about probability and statistics, and
worse than that, has an aversion to the subject. The statistician in this case knew very little about computing
beyond the use of packages such as BMDP [0877] and beyond the barest rudiments of FORTRAN coding (as
opposed to programming). Finally, the two authors are married to each other.

I. This work was supported in part by the Lady Davis Foundation, The Hebrew University, and the
Weizmann Institute of Science in Israel and the U.S. Dept. of Energy contract No. EY-76-5-034, PA 214.

2. This work was supported in part by Tel Aviv University in Israel.

*Even worse, the client may know only a little bit from his home computer, but thinks/he knows more.

276 D.M. Berry and 0. Berry

In spite of this clear potential ror a lack or mutual understanding, the specifications produced bcl'ore
programming began ended up being an accurate description of the finnl program as written. The
specifications, to the first author's utter amazement, withstood 1111 of the u.su<tl recdback that takes place dur­
ing program development. Thal is, Lhc specifications remained a useful guide throughout the programming:
no new desired functions were discovered: and no specified functions were changed or eliminated.

This history is quite different rrom lhc usual history in which the specifications change significantly as
the software is developed in order that the specifications agree with the final sof\ware. Inconsistencies in the
specifications are found, functions are found to be not implementable, new or modified functions arc round,
etc., all of which l'orce changes to the developing software and the specification-;. These changes arc not desir­
able because they delay the completion of the sortwarc •ind they decrease the reliability of the resulting
software. The major structure of the sol'tware is designed using the original specifications: for economic rea­
sons, the changes are generally accommodated by patches to this structure rather than by :t redesign of this
structure.

It is believed that what made the difference in this case was the combined use or abstract data typing
[LZ74, Flo75, Par72, Myc78], strong typing [vWn75, 00078] and a strong dosage of persistence by the pro­
grammer.

Abstract data lV{JinK is normally used to hide the details of implementing a particular dala object :ind
iL-; operntions, i.e., for i11for111atio11 hiding In this case, abstract data typing provided a framework in which to
take the vurious statistical buzzwords (l'rom the programmer's point of view Lhey arc buzzwords), e.g., stan­
danl c>rrar, and treat them as operations of a particuhu abstract type, the obsi?nY1tio11 vector. In this way,
without knowing what the vurious buzzwords mc:m, the programmer was able to write high level statements
using the buzzwords as operations on observation vectors. In other words, <1bs:Lmct d:1t<1 typing w:1s used in
this case to hide the programmer's utter i1:11ora11cc> about how to implement the dula object and its operntions.
Or course, the programmer pressed the client l'or assurance that each such buzzword is a well-known opera­
tion of statistics and that each is defined completely by some formuli1. Thus, the programmer was confident
that the abstract type und thus the progri1m would be implementable. Further, the abstract Lypc provided a
vehicle for the (experienced) programmer lo press the client for addition:tl functions that she did not think of
at first, but that later turned out to be necessary.

By taking advantage of the notion of stro11g typing, and the compile-time type checking it permits, in­
consistencies in the specifications were caught and eliminated at the source bcf"ore they could do difficult-to­
repair damage to the program.

Persistence* was necessary in order for the programmer to keep pressing the client for more details
and to spot inconsistencies in the stated specifications.

This report first proposes a general methodology !Or arriving at specifications which arc mutually
satisfying to the client :ind the programmer and which has a resistance to changes induced by feedback ob­
tainable during the programming process. It then details the above described programmer-client interaction.
It nttempts to aru1lyze why the interaction was so successful in obtaining good specifications. Finally, it makes
some recommendations concerning specification h1nguages, observing that Adu™ [ADASll comes close to
meeting these recommendations and that the program design language SOP {Lin80, LYB81] comes even
closer.

*In an earlier version of the paper and in the oral presentation, the term "Jewish Motherhood" was used
instead of "persistence". Previous referees indicnted that this original term may not be universally
understood. However, we believe that "Jewish motherhood" connotes much more than "persistence", and
some of Lhese additional connotations are intended. Wh:1t we require rrom Jewish motherhood are the
instincts for the programmer to keep 1111dKi11g the client for more details and to sense inconsistencies in the
stutcd specific.itions. The nuances in the previous sentence arc not quite captured by "persistence". Lest the
reader worry that he or she cannot qualify as a Jewish mother, as it is stutcd in !Grc64], "You don't have to
be either Jewish or a mother to be a Jewish mother. An Irish waitress or an Italian barber could also be a
Jewish mother." To this list we add: "Also· a (your ethnicity) programmer can be a Jewish mother."

™ Ada is a trademark of the U. S. Department of Defense (AJPO).

Programmer·_Client Interaction 277

2. Proposed Methodology for Arriving at Specifications

The experience described in the next section suggests a methodology for arriving at specifications,
which are mutually satisfying to the client and the programmer and which does not require the programmer
to be an expert in the client's field. The methodology requires that.the programmer be experienced in the
use of abstract dat.i typing and strong typing in his or her own progrnmming.

In essence, as the client is talking, the programmer should listen for the abstract data types relevant
to the problem and try to identify their operations. The types and their operations should be clear in the
client's own mind and be intelligible to anyone in his or her field. After some persistent questioning by the
programmer in order to verify that the operations are in facl implementable (not necessarily in a small rou­
tine), the specifications should be written jointly by the progrnmmer and the client. These specifications
should consist of modules describing the abstr:ict types and the modules for the main programs. The module
for an· abstract type should give only the name of the abstract type and the names, par:imeter types, and re·
turn values types for the operations of the abstract type. The main program modules should be written with
the operations of the 'abstract types assumed ns primitive.

The programmer should then use type checking and whatever other tools he or she can muster to
detect inconsistencies and to press the client for answers which clear them up.

The specifications including those of the .ibstract data types should be circul<1ted among the colleagues
of both the client and programmer for additional feedback and checks that the specifications arc meaningful
to people in the client's field and that the specifications are in fact implementable. If this circulation results
in any changes, the cycle of checking and circulating should be repeated. When finally ull arc satisfied, lhe
programmer may begin the next step in the program's life cycle.

The methodology stresses getting the progrnmmer and client to transfer some or their individual
knowledge to each other rather than making the progrnmmer 11n independent spcci;1list in the client's area
who is able to solve any programming problem in the area or making the client a competent programmer. The
knowledge that the client gives is about the problem area, and the knowledge that the programmer gives is
about what computers are ab!E: to do. The extent or this information transfor is sufficient only to permit map­
ping the client's needs into some representation from which the programmer may then produce a program
meeting the client's needs. The trnnsfer involves the client telling the programmer things, the programmer
finding inconsistencies, and the programmer questioning the client in order to resolve these inconsistencies.
In doing this, the programmer makes use of syntactic and scm.intic rules of natural language, instinct, and
syntactic rules of the specification language. IL is a contention of this paper thal this use of syntactic rules or
the specification language goes a long way to making up for the programmer's lack of knowledge in the
client's area.

The above description of the methodology may seem vague .ind ill-defined, but in fact, it is as com­
plete as possible. The actual application of the methodology is quite problem-dependent, so at best only the
outlines of methodology can be given. In case the reader cannot see how to apply the methodology to real
problems, the next section describes the authors' actual experience. It is somcwh.it anccdotnl, but il does
show what is involved in the use of the methodology. The experience also gives the basis for the claims
made in this paper on the efficacy of the methodology and for the recommendations given later on the miture
of specification languages.

3. The Experience

3.1 Background

The reader is already aware of the differing professional b.ickgrounds of the programmer <ind the
client and the clear potential for communication problemsi". Some additional elements of background must
be explained

* Add to this the fact that their native languages are different.

278 D.M. Berry and O. Berry

At the timEi of the experience, during the spring of 1979, the second author was an M.A. candidate in
the Department of Statistics at Tel Aviv University. Her thesis [Bry79] research considered the validity of
conclusions drawn from experiments involving a sequence of observations in which the data becomes further
umivailable (i.e., truncated) at some point or in which some but not al! of th_e data are missing (i.e., cen­
sored). It was desired Lo write a program which permitted numerous simulations of experiments with large
observation vectors. An experiment was to generate a pair of vectors of observations, to truncate these and
then to censor these later. Conclusion drawn from the truncated and censored vectors were Lo be compared
to those drnwn from the full vectors. Drawing the conclusions and comparing them requires the calculation
of a variety of well-known statistical measures at all levels of the experiment.

The program had to meet the approval of the second author's three-person thesis committee which
could, in principle, think of new calculations Lo perform al any time, even at the del'ense. The entire thesis.
including the program, several production runs of it, documentation for it, the writing of the thesis and the
oral defense had to be finished within Len weeks*•, extended in the end by one week, from the date it was
determined to begin writing the program. Thus, it was critical that the specifications be correct and complete
the first time around and that they anticipate, from the outset, all possible calculations that could ever be rea­
sonably (or even unreasonably) desired by a statistician-thesis committee member. There was simply no time
to write the program more than once.

The first uuthor wus personally familiar with patchwork programs resulting from thinking of new cal­
culations on the data during or after completion of the programming. He was also personally familiar with
the agonizing discovery of a newly required calculation requiring a major rewrite of a nearly completed or
completed program. The first author was painfully familiar with the discovery of interfoce problems among
procedures l.ite in the programming whose correction required a major rewrite or extensive patching. These
situations had to be avoided at .ill costs.

3.2 Form of the Specifications

It was decided by the programmer with the client's concurrence that the specifications would consist
or two main parts:

I. in the form of typed v<iri<1ble declarations together with assertions as comments, a specification of all
inputs to the program and the v.ilidity constraints they have 10 meet.

2. given input meeting the input specifications of part I. a specification of what the output should look
like, i.e., whut values, tables, etc. should be printed.

No details other than those needed to describe these parts would be given. In particular no data which need­
ed to be calculated intern.illy but which would not get printed out would be specified.

3.3 Initial Specifications

The programmer asked the client to write a first pass at each part of the specifications. For the input
part, the following list of "declarations" was produced:

input:

N (Sample size) INT

c-1 (parameter of exponential distribution) REAL

p (the percentage of the data to be lost) REAL

(the truncation of the survey) REAL

For the output part, the following list of what was to be printed was produced:

output:

*• Her advisor was leaving the country for the summer.

Programmer-Client Interaction 279

1. observalions; 2 vectors or size N, each obs is a REAL no.

2. new observation vectors without the lost data (no in(o as to which positions lost
data).

3. the 2 vectors or truncated obs.

ror each or 1,2,3

4. P.25 P.50 P. 75

5. P(1~112), P(1~J), P(1~2) I of combined data and of

each vector separately

6. table or nonparametric test

7.

each one of elements of (4} and (5) in the output paragraph

below the stats above the stats tot ·v-,-,,-1-+-·n1b _______ 11/a 111

vect2 112b n2a 112
tot 11Jb+112b=11b 11Ja+112a=11a "
and the hypergeomctric prob. P[11lal

a. limits of the confidence intervals for the difference between the statistics in 4
and 5 in the output paragraph [f/.12] in 95% confidence level

b. for each appropriate pair of the ilbove stat., if it fell into its c.i.* or not

The programmer winced at these specifications and knew that he had his work cut out ror him ..

3.4 Refinement of Specifications using Abstract Data Types

In an attempt to refine the specifications, the programmer asked the client to explain what was going
on. As the client was talking the programmer was hearing all sorts of statistical buzzwords. These buzzwords
he had heard before; they sounded technically relevant, but their meaning was altogether not clear.

During this explanation, the client was completely confident that the programmer knew exactly what
these terms mean and completely understood the specifications. When the programmer began to badger her
with questions on the initial specifications, she was certain that the programmer was just acting as if he did
not uilderstand the specifications in order to get her to do his work. The client assumed that an experienced
programmer would ·naturally understand statistics and could easily deduce what runction was needed in the
program 'much faster than she could ever understand the formalism for arriving at and writing the
specifications. Thus, this client, as many others, impeded the process of arriving at the specifications by not
cooperating as rully as possible in supplying information needed to produce the specifications. It took all the
persistence at the programmer's disposal to wheedle the specifications out of the client.**

In any case, as the client talked, the programmer was hearing:

" ... take an observation vector ... "

*confidence interval

**Since completing this project, the statistician/client has become a computer scientist. In revising the final
draft of this paper, the client looked at her own initial specifications for the first time in over two years and
through the eyes of her new profe.ssion. She was astounded at these specifications - she could could not
understand them any more and now sees that in fact the programmer did not understand them either.

280 D.M. Berry and O. Berry

" ... truncate it..."

" .. .censor it. .. "

" ... concatenate two observation vectors ..

" ... T(time) of a vecwr at probability p .. "

" ... P(probability) or a vec-tor at time t..

" ... lhc standard error of the vector at time 1 or probability p ..

etc.,

over and over again. The programmer began to see the abstract data type

observa1io11 vector

or simply, 1•e£·tor, where each observation is a real number and whose operations include

create

tr1111ca1e

Ce/ISO/'

concatenare

time

probabi/i(V

delta sum

standard error

By nudging the client with "Are there any other operations on vectoi's that you're going to need for your pro­
gram?", the programmer produced with the client's help a preliminary list of operntions. The progrnmmer
and client then identified for each the list of parameter types and the return value type, if any.

Finally the programmer pressed the client for assurance that each of the operations is well understood
by statisticians and either is trivially implemented (e.g., create, truncate, censor, etc.) or is defined by a well­
known formula (e.g., time, probability, standard error, et<;.). With this assurance finally extracted from the
client, the programmer felt confident that the abstract d;ita type and its operations were indeed implement­
able.

It was now time to begin refining the specifications into a useable document. The goal was to produce
a description of the main program which used the abstract data type and its operations as if they were primi­
tive. It was recognized that as the specifications were being refined,

I. additional required operations may be discovered, and

2. the parameter and return value types of existing operations may be changed.

When the specifications were complete any unneeded operations of the dahi type could be eliminated from
the specification

Programmer-Client Interaction 281

Appendix 1 contains the final specifications including the l'r'Ctor abstract type. They arc in the !Orm
that they were in at the completion of the project blemishes and all.

3.5 Final Input Specifications

To <irrive at the final input specifications the programmer complained to the client that

I. spelled out identifiers would be clearer.

2. the program facked generality, i.e .• it could do only one run or the experiment and il docs these ex­
periments with both observation vectors Lhe same size .. with the same theta ror censoring each vector,
with the same loss rate in each case, and with the same truncation threshold in each cusc,

3. there w<is a magic constant. i.e., why was a 95% confidence level used <ls oppo~'Cd tO ;my other?

In addition the programmer demanded to know what were the bounds for each of the input values. The
client's answers to these complaints and question led to the final input specifications that appear in Appendix
I.

3.6 Final Output Specifications

3.6.l Strong Typing

As the output specifications were being refined, it became clear that it is basically a nc-.L or loop-.
whose purpose is to get cert<iin functions printed out for each combination or vulues in their domains. Each
loop is to step through the values of one parameter's domain. It seemed reasonable to nest Lhe loops to per­
mit as many possibly dis.ioint inner loops as possible to shnre outer !oops consistent with the desired order of
output.

Once the loop skeleton was set up, each operation application was put in its proper place in the skele­
ton. It was then checked that for each application of an operation, each of its parameters was either n global
variable or the index for a loop nested about the application. ·in a number of cases, it was necessary to add a
loop to provide in index which was used as the value of a parameter. Such additions. in turn, led Lo changing
the nesting structure of the loops in order to better utilize sharing of outer loops.

It was also necessarY to check for each use or an operation that the types of its <u.:tu:il pitrnmetcrs nnd
the type value it was presumed to return agreed with those of other uses and with the parnmcter and rcwrn
value types given with operation in the list of operations of the :ibstract type. In a number of cases, either
within a version or across versions, there was not complete agreement. In other words, type checking foiled.
For example:

I. some of the applications of either of the empirical s1a11dard error opcratjons had a size parameter or
type int, and others did not. In the latter cases, the size is assumed to be thut of the vector passed us
another parameter and in the former cases. the size is independent of the vector. As assuming thnt
size is independent of the vector is more general, the operations were finally specified to have <1 size
parameter, and all applications or the size-less operation were modified by the addition of an appropri­
ate size parameter.

2. some of the applications of either of the theoretical slandard error operation.<; had a thcla parameter or
type real, and others did not. It w<is observed that in any case, the theta parameter is nol necessary,
since one of the other parameters is calculated from theta, and Lhc only use for the theta is in the cal­
culation of this other parameter. Thus, the operation waS finally defined with no theta parameter, and
all applications with <1 theta as a parameter were modified accordingly.

One implication of some of these operation changes was to change the looping structure. For exam­
ple, the first change above necessitated the introduction of loops to step through the different kinds of size..;
including that of the vector determined by an outer loop.

282 D.M. Berry and 0. Berry

Finally some operations on the original list were never used so they were eliminated from lhe lisL

Observe that the analyses described above arc completely syntax based and can be performed without
having to know the semantic~ of the operations. These analyses include the following checks typically done
by a compiler for a strongly typed programming language, namely that

I. each operation is used with the correct number and types or parameters:

2. each operation is used correctly as an expression of its return type:

J. each identifier used is declared as a variable, constant, or a loop index in some surrounding context:

4. each operation declared is used: and

5. each variable, constant, or loop index declared is used.

It is clear Lhal the first three arc more critical than the last two.

Ap1,arently catching these syntactic inconsistencies was sufficient to find all inconsistencies, syntactic
and semantic. In particular detecting missing variables, constants. loop indices and parameters by these syn­
tactic means was sufficient to find all those that were missing.

3.6.2 Debugging Sense

In a few places, the programmer's debugging sense alerted him of some additional necessary output.
This debugging sense said that u function value used as an actual parameter to another function should be
printed out itself. For example in line 51 rime (vec,prob) is used as the I parameter of the function wltetller t
fies witlli11 time e11111irical co11/ide11ce limits. Thus, time free.prob) should be printed out also within the same
loop, as requ~sted in line 19. even though it is :i!so printed out earlier at the request or line 26 Ot will nol do
to eliminate the request of line 26 <is it is necessary Lo have a listing of all the limes in one place.L As :i
result of the progrummer's nagging. the client agreed to insert this extra printing and others like it.

The extra printing proved invaluable for the debugging as expected. A!so it turned out that the
client's advisor on several occasions requested some additional output which the client had not anticipated but
which was there as a result of planning for debugging.

3.7 Programming, Testing, Debugging, Running, and Defense

The specifications were completeJ and jointly approved by the programmer, the client, and the
client's advisor after about four weeks of urguing. At this point the client took over as the programmer. The
program w:is then designed and coded by the client in FORTRAN to meet the specifications. The o!d pro­
grammer taught the client about structured programming and how to implement an abstract data type as a
collection of subroutines and functions sharing :1ccess to a named COMMON area to which the main routine
did not have access. The program ran in very few debugging runs. The bugs were easy to locate because or
the extra debugging output. For the production runs, the WRITE statements for all output not required by
the committee were commented out. The client finished in time und successfully defended the thesis before
the committee.

3.8 Results

The results were amazing. Once the specifications were obtained und finalized {by sending them to be
typed) they were not changed at all except to correct minor ty.pographical errors.

I. There was none of the usual feedback on the specifications during the designing, coding, testing, de­
bugging, and running of the program. In particular, no inconsistencies were uncovered, and no new
functions were found necess:uy in any of the later stages of the progrnm's lifecycle.

2. Even during the acceptance phase, i.e., the thesis defense, 110 new functions were discovered.

Programmer-Client Interaction 283

This is the first time that either author has observed this phenomenon, particularly the first. The first author
is well <iware of how rare such an occurrence is. Whal made the occurrence even more amazing is the fact
that the programmer and the client came from different disciplines and cle<irly had the potentfal for the usu<1l
misunderstandings between programmer and client. Indeed to date, the first author cannot talk authoritutively
about the program without double-checking with the second author.

That no new functions were discovered during acceptance, i.e., during the thesis del"ense, was due 10

a combination of sheer luck and the shortness of the acceptance ph<1se. That is the second author's advisor
was leaving the country very shortly thereafter, and the entire commi1tee knew it. Still the functionality of
the resulting program was quite complete.

There are, however, good reasons to believe that the lack of feedback on to the specifications during
design, implementation, and testing was no accident. There are resons to believe that the use of strong typ­
ing, abstract data typing, and programmer persistence is sufficient to yield consistent, ch,1nge-resistant
specifications. There are studies, e.g., [Egg8ll, pointing to the value of the redundancy offered by strong typ­
ing in catching errors early. There are indications, e.g., in [HPU8!], of the value of abstract dnta typing and
information hiding in producing designs that withstand modifications as implementation details are filled in.
There are no modifications to the design because all of the changes that arc made arc 10 the information that
is hidden anyway. Finally, the value of nudging in seeing a job through to its proper conclusion is clear.

4. Specification Languages

This experience also Suggests certain properties that a specification language should have. First, it
should have the ability 10 exhibit the modules of the specified system, particularly the data abstraction
modules. Secondly, it should be strongly typed, that is, it should be possible to specilY the types of al! data
objects including parameters so that type and interface consistency can be checked at the· 1i111e 1he speci!ica1io11
is being wri11e11 (and not later as the program is written). Thirdly, it should have a processor which does all
the type and interface consistency checking possible.

This last requirement is essential. Without machine enforcement of type and interface rli!strictions,
they do nol get obeyed. Even if there is a desire to obey them fastidiously, mistakes can be made. Indeed,
later, as an opportunity arose to express the specifications in a formal language and to have them checked by
a processor, errors were found (See below.). None were serious. In all cuscs what was meant was clear, and
thus these errors did not negate the value of the specifications. Had there been a processor for the
specification language, these errors would have been caught, and the programmer could have been confident
that there would be no type and interface errors. The point is, writing specification<; is error-prone a<; is. If
any part of a specification can be automatically checked, it should be in order to eliminate at least all the
avoidable, stupid errors.*

Subsequent to writing the first draft of this paper, the programming !nnguuge Adu appeared on the
scene. Ada allows construction of data abstractions with its package feature, and it is strongly typed. Its pro­
cessors are required to do type and interface checking at compile time. In addition, Ada has the nice property
that a complete program docs not have to be presented to the compiler in order for it to do type and interface
checking. A module can be completely type and interface checked in the presence of only the specifica1ion
parts of the subprograms and packages it makes use of. The specification part of a subprogram is basically its
header giving its name, parameter types, if any, and return value type, if any. The specification part of a
package is basically the exported types, constants, etc. and the headers of the exported subpragrams of the
packuge. As a consequence of this property of Ada, there have been proposals for using Ada as a program
design language [Wau80l. A heavily commented program skeleton consisting mainly of specification parts
only is submitted to an Ada compiler which then does as much type and interface checking as pos~iblc.

The first author tried expressing the specification in a sort of an Ada prognim design language. The
complete result is given in Appendix 2 of [BB82]. The vector abstract type is given as a syntactically improper
Ada package specification part for the package observolion vector.

with TEXT 10; use TEXT 10;
package OBSERVATION VECTOR is

* A slllpid error is any error that can a!gorithmic;illy avoided.

284 D. M. Berry and 0. Berry

type VECTOR is private;
function create observations(size:INTEGER:theta:FLOAT)return VECTOR:
function create .kept observations(v:VECTOR:loss __ rate:FLOAT:

mime:STRING)retum VECTOR:
function create truncated observations(v:VECTOR:time:FLOAT:

name:STRING)return VECTOR:
functioii concat(vi, v2:VECTOR)ref:Urn VECTOR:
function size(v:VECTOR)return INTEGER;
function time(v:VECTOR:prob:FLOAT)return FLOAT:
function probability(v:VECTOR:time:FLOAT)relurn FLOAT:
function delta sum(v:VECTOR)return INTEGER:
function time theoretical std error(size:INTEGER:prob:FLOAT)

return FLOAT:
function time empirical std error(size:INTEGER:v:VECTOR;

prob:FLOAT)return FLOAT:
function prob theoretical std error(sizc:INTEGER;time:FLOAT)

return FLOAT:
function prob empirict1I std error(size:INTEGER:v:VECTOR:

time:FLOAT)return FLOAT:
function above(v:VECTOR:time:FLOAT)return INTEGER;
function below(v:VECTOR:time:FLOAT)return INTEGER:
procedure print nt1me(v:VECTOR):
function difference std error(val!, va12:FLOAT)rcturn FLOAT;
function theta(v:VECTOR)return FLOAT:

end OBSERVATION VECTOR;

The package specification purl is improper because it has no privute part, but it wus nevertheless accepted by
the compiler. The main program is given in u bastardized Ada written in a manner to fool the processor into
doing the required checking. That is. natural language material is buried inside comments. and any text con­
taining a use of a subprogrnm of the package is exhibited in proper Ada syntax. Where possible, Ada nota­
tion corresponding to the original notation is used. For example. Ada declarations, for loops, gel, and pur are
used. In some cases, preserving correspondence leads to improper Ada, e.g.,

for each time ([i/i,1.2: do

od;

is expressed as

fort in :112.1,2: loop

end loop;

which would be Adt1 except for the set notation and the fact that 1/2,/,2 do not form a proper enumeration.
This Ada fragment is mude a comment and in its plt1ce is put block containing a loop:

declare t:FLOAT:

begin

time set:constant array(l..3)of FLOAT:=
(I .Q/2.0,1.0.2.0)'

for i in time set'RANGE loop
t:=timc set(il:

Programmer-Client Interaction 285

end loop;
end;.

This substitute gets the compiler to do all the checking it would have to do with the improper statement. i.e .•
that 1/2, I, and 2 are proper to assign to I and that in the scope of the loop, I is used properly for its type.
The generation of the substitute statements is fairly straightforward and can be automated.

Valid Ada value-returning expressions sitting in the middle of a natural language sentence have to be
brought out of the comment containing the sentence so that they could be type and· interface checked. How­
ever. the Ada compiler that was used [NYU81] complains fond for that maller any should) when such ex­
pressions are left sitting in the position of statements, and refuses to do any checking whatsoever. Thus
internal procedures with the natural language sentences as their names were invented. These procedures
have formal parameters for each of the expressions embedded in their sentences. An application of these
procedures to these expressions is acceptable to the compiler and gets lhoroughly checked. Occasionally it was
convenient to introduce a local variable to explicitly hold the value designated by a pronoun or a pronoun-like
phrase. As an example. the body of the loop in lines 48-54 is translated as

declare p:FLOAT;

begin

end;.

prob set:constant array(I..J)of FLOAT:=
(0.25,0.5,0. 75):

for i in prob set'RANGE loop
p:=prob set(i);

put(time(vec,p));
conf limits:= time empirical confidence limits(

theta(vec),p,
time empirical std error(

n,vec,p).
z value(k));
put(conf limits);

put(whether(time(vec,p) ,lies within=> conf limits));
conf limits:= time theoretical confidence limits(

theta(vec),p,
time theoretical std error(

n,p),
z value(k));
put(conf limits);

put(whether(time(vec,p),lies within= >conf limits));
end loop;

Note that the sentence "whether ... lies within ... " was converted into a function whelher specified with

function whether(v:FLOAT,lies_ within:LIMITS)return BOOLEAN; .

Thus. the Ada specification has more details than the original specification and perhaps more than is desirable
in a specification.

The specification was thus type and interface checked. Some errors in the original specifications were
found. Many are minor punctuation and spelling errors. Some of these are typographical and transcription er­
rors.

There were four interface errors discovered, all of exactly the same kind. The definition of the vector
abstract type shows that creole kepi observations and creaie 1runca1ed observalions each require a third parame­
ter, a string giving the name of the vector to be created. The four calls to these two routines, which are in
lines 14, 15, 16. and 17 of Appendix I, each has only two actual parameters. In particular, the name string is

286 D.M. Berry and 0. Berry

missing. This error was found when the Ada compiler complained about the missing parameters in the Ada
versions of these calls: Interestingly, the FORTRAN code for these calls passes all three parameters correctly
in each case. Thus, only the specifications have the interface error. This error completely slipped by the two
authors, the adviser, and the committee despite c<ireful scrutiny. It even slipped by in proof readings of cur­
lier versions of this paper.

The net effect of this error is not severe, as the code does not mt1ke this error. However, the nature
of this error, an interface error, is quite serious. Therefore, the importance of having a processor to find er­
rors is borne out. Had there been a processor for the original specification language, none of the errors,
minor or not, would have remained in the specifications.

The form of the Ada version of the specifications leaves a bit to be desired. Too many tricks had to
be played to gel the compiler to do all the desired checking. These tricks included having to invent procdures
for sentences in order 10 force type checking of embedded significant phrases. A proper program design
language might be better suited. Such a program design language would have to accept a mixture of natural
language sentences and programming language statements. Its processor would have to be able to distinguish
between the two so that it could do the checking that it is supposed to even if the call to a package subpro­
gram is buried in the middle of an natural language sentence. It would also have to not complain when an ex­
pression buried in a natural language sentence seems not to be used properly for its type because the sentence
of course does not define what type value it requires from the contained expression.

A better candidate for expressing the specifications and getting the desired type and interface check­
ing done is the program design language SOP {Lin80, L YB8 ll. It permits natural language sentences to be
designated as the header of a subprogram and as the name of a data abstraction. In the defining occurrences
of these sentences, any of its words may be designated as formal parameter type names. A sentence which
agrees word-for-word with such a defining sentence in all but the formal parameter words is considered an ap­
plication (call) of the sentence. A word of the application sentence which is in the position of a formal param­
eter is checked to be declared with the formal parameter word as its type, if it is declared to be of any type at
all.

The specification was expressed in approximately the language of SOP. Keywords show up in bold
face, and formal and actual parameters_get underlined or left-sidelined. Only the formal parameters arc
marked specially on input. The actuals get marked as a result of the processor's recognizing the containing
sentence as an application of a defining sentence. The complete specification is found in Appendix 3 of
[8882]. Here is shown the SOP version of only the package specification and the loop discussed above:

cluster observation_ vector

op create observation vector of length size with distribution theta
op create kept observation vector from observation vector according to

loss rate !! named name
op create truncated observation vector from observation vector

truncated at time! named nam~
op concatenate observation vector and observation vector
op size(observation vector)
op time of observation vector at probability Q

op probability of observation vector at lime!
op delta sum(observation vector)
op time theoretic<il std error of any vector of length size at

probability Q

op time empirical std error of observation vector of length
size at probability Q

op prob theoretical std error of any vector of length size at
timet

op prob empirict1I std ~rror of observation vector of length
size at time t

op number of entries in obsirvation vector above time!
op number of entries in observation vector below time!
op print name of observation vector

and

Programmer-Client Interaction

op difference std error of value! and value2
op theta of observation vector

declare p as real
do for pin (0.25,0.5,0.751

od

time of vec at probability I!
time empirical confidence limits

theta of vec
p
time empirical std error of vec

of length !! at probability I!
z_ value(k)

whether
time of vec at probability Q

lies within time empirical
confidence lirTiits

time theoretical confidence limits
theta of~

whether

p
time theoretical std error of any vector

of length !! at probability I!
z_ value(k)

time of vec at probability I!
lies within time theoretical
confidence limits

287

The resulting specification is closer to the original specification than the Ada version. It is also uses a
language a bit more general than the current version of SDP; it uses full sentences as actual parameters in
other sentences. These can be spotted as sentences (which themselves may have underlined actual parame­
ters) which are left-sidelined and are embedded inside other sentences. No processor exists yet for this ex­
tended SDP, but it is clear that the requisite pattern recognition and type and interface checking can be done
by an augmented SDP processor.

5. Conclusions and Future Research

This report has described an experience of the authors in arriving at specifications that withstood the
usual modification-causing feedback from the program's later life cycles despite the clear potential for
misunderstanding. On the basis of this experience, a methodology for arriving at good, complete, consistent,
and change-resistant specifications is proposed. This methodology, which is useable even when the program­
mer and the client speak different jargons, makes use of the ideas of abstract data typing, strong typing, and
programmer persistence. In addition, recommendations were given concerning"specification languages and
their processors.

It is necessary to examine the general applicability of the proposed methodology. Did the methodolo­
gy succeed because of itself, because of the personalities of the programmer and the client, because of the
particular nature of the problem, etc.? If the methodology works only for certain kinds of problems, what are
they? It may also be useful to conduct controlled experiments over a wide variety of problems with large
numbers of programmer-client pairs.

288 D.M. Berry and 0. Berry

6. Acknowledgements The authors thank an anonymous referee for helpful comments.

7. Bibliography

[ADAS!]

[BB81[

[Bry79]

[DB77]

[00078]

[Egg81]

[Flo75]

[Gre64]

[HPU81)

{Lin80]

[LYB81]

[LZ74]

[Mye78]

[NYU81]

(Pur72]

(vWn75]

(Wau80l

"Reference Manual for the Ada Progrnmming Language", U. S. Department of Defense,
MIL-STD-1815 (December 1~81).

Berry, D.M. "The Programmer-Client lnternction in Arriving at Program Specifications:
Guidelines and Linguistic Requirements", Computer Science Department, UCLA (1982).

Berry, 0. "Comparison Between Two Life Span Distributions Based on Small Samples with
Censored Data", M.A. Thesis, Dept. of Statistics, Tel Aviv University (1979).

Dixon, W.J. and M.B. Brown (Eds.), BMDP-77 Biomedical Computer Proxrams ?-series,
Berkeley, University ofC01lifornia Press (1979).

"Requirements for High Order Computer Programming Languages, STEELMAN", Depart­
ment of Defense (1978).

Eggert, P.R. "Detecting Software Errors before Execution", Ph.D. Thesis, Computer Sci­
ence Dept., UCLA 0981).

Flon, L., "Program Design with Abstract Data Types", Dept. of Computer Science,
Carnegie- Mellon University (1975)_.

Greenberg, D., How to be a Jewish Mother, Los Angeles, Price/Stern/Slo01n (1964).

Hester, D.L., D. Parnas, and D.F. Utter, "Using Documentation as a Software Design
Medium", Bell Systems Teclmical Jo11r11al, 60:8, 1941-1977 (October 1981).

Linden, N.M., "Software Development Processor User Reference Manual", Mayda
Software Engineering, P.O.B. 1389, Rehovot, Israel 0980).

Linden, N.M., M. Yavne, and D.M. Berry, "Parameterization and Abstract Data Types in a
Program Design Language: The Design of Software Development Processor", Primera Co11-
ferencia ln1er11acio11a/ en Ciencias de la Computacion, Santiago, Chile (August 1981).

Liskov, B.H., and S.N. Zilles, "Programming with Abstract Data Types", SIGPLAN Notices
9:5 11974)

Myers, G.H., Composite/Structured Design, New York, van Nostrand Reinhold (1978).

"The NYU Ada/Ed System, An Overview", Courant Institute, New York University Ouly
1981).

Parnas, D.L., "On the Criteria to be Used in Decomposing Systems into Modules", CACM
15:12 (1972)

van Wijngaarden, A. et al (Eds.), "Revised Report on the Algorithmic Language ALGOL
68", Acta lnformatk:a 5 (1975).

Waugh, D.W., ·"Ada as a Design Language", IBM Software Engineering Exchange 3:1 (Oc­
tober 1980).

~I

w

~
"~o

•
>

:1~
u

"
.21

0

" • ~ ~

~

!'.!

l ~
.,

':; • : ~ u •

~I .. <

0 • i '

P
rogram

m
er·C

lient Interaction

0

" ~ _, £
~

;
.g

u
. >

""I
~I

0]1 .2]

289

~I

~I

;;;

~I

:;

52

53

" " " 57

58

"

"

" " " "
"
"

" 68

" 70

11

!!!.
2$

£2.;

titre theoretical confidence 1 lml ts (theta (vec), prob,

time theoretical std error (N, prob),

Z-value [kl};

whether time (vee, prob) lies within time theoretical

confidence limits

.flu. us.h. time E {l, 1,2} ~

prob (vec, time);

prob empirical confidence limits (theta (vec), time,

"

13

" 15
prob empirical std error(N,vec,time), Z-value {k]); 76

!!!.
!!!.

whether prob (vee, time) Hes wi;hin prob empirical

confidence limits

prob theoretical confidence limits (theta (vec), time,

prob theoretical std error (ti, time),

Z-value [kJli

whether prob (vec, time) 1 ies within prob theoretical

confidence 1 imi ts

71

"
"

IE..r each (vec 1, vec 2) E{(kept observs 1, kept observs 2), ao
(trunc observs 1, trune observs 2)} ~

~~ (N
1

,N
2

) E {(size (vec 1), size (vee 2)).(delta sum(vee 1), 8t
delta sum(vee 2)), ([size (vee 1) +~elta sum (vee 1)]

" ,, [size (vee 2) +~elta sum (vee 2)1)}

for k from 1 ~ 5 e "' no of confidence levels e !!£ "
for !.!!.0. prob E {.25,.50,.75) ~

86
tlme difference" time (vee 1, prob)-time (vee 2, prob);

85

time difference empirical confidence limits (theta (vee \)
8

7

theta (vec 2), prob, difference standard error (time
88

empirical std error {N 1 , vee 1, prob), time empirical

std error (N
2

, vec 2, prob)), Z-value [kl);

whether time difference lies within Its empirical

confidence llmlts;

,,

" •1

!!!.
!!!.

!!!.
!!!.

£&:

£&:

time difference theoretical confidence limits (theta(

vee l) , theta (vee 2) , prob, d l fferenee standard

error (time theoretical std error (N
1

,

prob), time theoretical std error (N
2

,

prob)), Z-value [kl);

whether time difference Iles within its theoretical

confidence limits

.f2!.~ time E H,t,21 !!£

!!!.

prob difference., prob (vec 1, time) -prob (vec 2, time)

prob difference empirical confidence limits {theta (vec 1),

theta (vec 2), time, difference standard error (prob

empirical std errorCN
1

, vec 1, time), prob empirical

std error (N2 , vec 2, time)), Z-value[k]);

whether pr Ob difference 1 les within its emp ! ri ca 1

confidence 1 imi ts;

prob difference theoretical confidence limits {theta

(vec 1), theta {vec 2), time, difference standard

error (prob theoretical std error (

N
1

, time), prob theoretical std error (

N
2

, time)), 2-value [kl);

whether prob difference 1 ! es within its theoret i ca 1

confidence 1 iml ts

!2.£.~dlst E {"empirical dist", "theoretical dist")!!£

i2.£. each case E {"kept observs", "trunc observs"}

for each kind of N E {"obtained from size (vec)''. "obtained from delta
-;::-(vec)", "obtained from size (vec) +d~lta sum {vec)"l do

for ~theta E {theta 1, theta 2)

~~prob E {.25,.5,.751 ~

~

" :;:

~
~
p

ii'
~

"

]j ·' . . <

-~ g 'O
•

g

~I-~
-zl .El ""

P
rogram

m
er-C

lient Interaction

-
.e.

. . <

"I "
. -. "

-zl .El "" . . <

~

z
• •

0

-g
0

"'
"

:;;
g

~

. . <

" 0

' 0

~

t
:g_

...
0

>

.

• :?
~

lef;:o-g1;

N

_,,.
"
'
"
'

0
0

0
0

0

291

"
"-~

_o
: !

109 ~:

[I]

110 w~erei

prob difference sunmary table (time, ttleta 1, ttleta Z,

dist, kind of N, no of repetitions, case)•

"PROB (OBS 1, "tfme'')·PROB (OBS 2, ''time")''

ttleta I , ttleta 2

dist~ empirical, ttleoretical ¢

kind of N

no of repetitions

ease ¢ kept observs, trunc observs ¢

[j]

percentage of no of repetitions in whietl

"PROB (OBS 1, 11 tlme")·PROB (OBS 2, "time")" lies within Its

confidence Interval limits obtained from loss rate Ii] and

confidence level [j] using Its std error computed according

to the dist (empirical and theoretical)

table and hypergeometric probabi 1 ity {l!!l above 1, below 1, above z,
below 2, ~ label, ~val)•

kei>t observs 1

kept observs

Total

label val:

Below

below 1

I bol= 2

below 1 +below Z

hypergeometric probab! 11 ty "

Above

above 1

above 2

above 1 +above

(total l}(total 2)
above 1 above 2

(ov~~t=: 1 a~~~= L)

Total

above 1 +below

above 2+below 2

(above 1 + above 2

+below 1 +below 2)

Vector Abstr<1et Oata Type

~~

create observations (.!!U. size, ~theta) vector

create kept observ<1tions (~ v, ~ loss rate, string name) ~

create truncated observations (~ v, ~time, string name) ~

eoncat (~ vl, V2, string name)~

size (~ v) l!!l

time (~ v, !!!!.!. prob) !!!J.

probabi 1 ity (~ v, ~time) ~

delta sum (vector v) inteser

\0 time theoretical std error (l!!l size, !2!.1 prob) !!!J.

II time empirical std error (.!..!:!.!.size,~ v, ~prob)~

12 prob theoretical std ·error (int size,~ time)~

13 prob empirical std error (!.!!.!.·size,~ v, ~time) ~

14 below (~ v, ~time) .!.!:.!.

15 above (~ v, ~time) .!.!:.!.

16 print name (~ v)

17 difference std error .C~ val I, val 2) ~

18 theta (~ v) real

19 !!!S~

"' "' "'

!'J
l=
il'
' " ~
p

il'
' "

