
viewpoints

18	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

C o n t a c t E d i t o r : D a l e S t r o k n d s t r o k @ c o m p u t e r . o r g

The Software Engineering
Silver Bullet Conundrum

Daniel M. Berry, University of Waterloo

I
n 1986, in his famous “No Silver Bullet” pa-
per,1 Fred Brooks predicted, on the basis of his
experience, that

There is no single development, in either
technology or in management technique,
that by itself promises even one order-of-

magnitude improvement in productivity, in
reliability, in simplicity.

That is, he predicted that in the
next 10 years no software devel-
opment silver bullet would be
found. (A silver bullet is the only
kind of bullet that will kill a were-
wolf and thus solve the problem of
its terrorizing the countryside.) In
arguing for his claim, he added,

I believe the hard part of build-
ing software to be the specification, design,
and testing of this conceptual construct, not
the labor of representing it and testing the
fidelity of the representation. We still make
syntax errors, to be sure; but they are fuzz
compared with the conceptual errors in most
systems.

If this is true, building software will always be
hard. There is inherently no silver bullet.

The conceptual errors he was talking about involved
failing to capture the essence of the system being
built—that is, the system’s conceptual construct, the
system’s requirements.

Brooks divides software system concerns into
the essence and the accidents. A system’s essence

is, as I just mentioned, its requirements and what it
does; its accidents are the technology used to con-
struct it. The technology is termed “accidental” be-
cause the choice of, say, programming language has
a much smaller effect on the difficulty of building a
system than the system requirements do.

Although we have yet to find a surefire way to
understand a system’s requirements, we have over
the years made significant technological improve-
ments that have combined to increase software pro-
ductivity by more than an order of magnitude. These
improvements include high-level language compil-
ers, configuration managers, testing tools and har-
nesses, debugging tools, and GUI builders. In other
words, we’ve found or devised many technological
aluminum bullets that have combined to be almost
a silver bullet, while no bullet itself is silver.

The pain of development
In 2002, I went further and claimed that there

would never be a silver bullet unless a technology
could deal with not only the essence of software sys-
tems and their requirements but also the relentless
changes to these requirements. In “The Inevitable
Pain of Software Development,” I argued that the
typical software development method is effective in
its first application to any system development prob-
lem.2 However, once developers have built and de-
ployed a version with the method, the requirements
begin to change, whether from E-type system pres-
sures3 or client and user demand. When an inevi-
table change comes along, modifying the method’s
documenting artifacts is so painful that developers
avoid doing it the right way, by carefully tracking a
change’s effects. Instead, they create a quick patch
that increases the system’s brittleness.4

Authorized licensed use limited to: University of Waterloo. Downloaded on March 12,2010 at 10:38:43 EST from IEEE Xplore. Restrictions apply.

	 March/April 2008 I E E E S o f t w a r e � 19

Viewpoints

Since writing that paper, I’ve realized that there
are two more fundamental reasons why we’ll never
have a silver bullet.

First, a silver bullet kills itself and ceases to be
a silver bullet simply because once we have it, we’ll
quickly solve all the formerly too-tough problems
that the silver bullet lets us solve. Doing this brings
us to a new frontier of not-easily-solved problems.
Then, owing to our very human ambition to ad-
vance, we try to solve problems that are just be-
yond the frontier; the silver bullet has become an
ordinary lead bullet with respect to these problems.
In other words, as Krzysztof Czarnecki noted in
a private communication, it’s as though after we
use one silver bullet to kill one werewolf, all were-
wolves adapt and become immune to silver bullets.

Second, the cause of the inevitable pain is the
very act of writing something formal so that it will
be implemented. Once we’ve written that formal
specification, executable or not, we’re stuck. Even
if we don’t write anything traditionally called a for-
mal specification, we do eventually write executable
code, which is a formal specification. Any subse-
quent change in requirements requires changing the
specification in a way that preserves correctness.
So, we have pain. Repeatedly changing a specifica-
tion is painful, redoing a specification from scratch
is painful, and deciding which of the two pains to
endure is painful. This pain happens even if we use
a silver bullet, which is about to convert itself into
a lead bullet. The only way to avoid the pain is to
not write any specification. However, then we get
no implementation, unless we build a machine that
reads our minds, intelligently fills in all the details,
and does what I mean (DWIM), an impossibility.

Always a new target
In a private communication, Diomidis Spinellis

offered another way to view the first reason:

As soon as a particular application domain
becomes easy (in effect, solved through a
silver bullet) we move on (partly thanks to the
relentless hardware advances) to more dif-
ficult problems, for which, by definition, there
are no silver bullets.

A concrete example of this is GUI builders. Be-
fore such things existed, few people built systems
that required high-resolution, interactive graphics
because they were just too hard to program. We
simply didn’t try to build such systems, and we
didn’t require such systems to be built. Instead, sys-
tem requirements spoke of minimally interactive,
command-line interfaces.

One fine day, X Windows5 appeared with its
platform-independent library of easily invoked
and used widgets. (Actually, the Macintosh user

interface predated X Windows. The Macintosh
user-interface library was available to Macintosh
software implementers, but X Windows was the
first widely available platform-independent GUI-
building library.) Overnight, it became easy to
build applications with interactive, high-resolution
GUIs with standard looks and feels. Then, people
began to conceive and build all those previously in-
conceivable systems that demanded such interfaces
and had therefore been completely ignored.

There are many other examples of such tech-
nologies—for example, relational database man-
agement systems, Web servers, Wikis, lexical ana-
lyzers, parsers, string manipulators, cryptographic
systems, and digital typesetters. Each of these sys-
tems solves what once was a hard problem but has
become, as Spinellis observed, “a tool or an API
away from us.”

Nowadays, such applications are as routine as
compilers and other largely manufactured applica-
tions. Today’s impossible interfaces involve sounds
and odors; we simply ignore systems requiring these
interfaces, considering them impossible to build.

N o bullet can be silver for more than an instant.
That each silver bullet quickly becomes an or-
dinary lead bullet is the basic conundrum of

software engineering silver bullets. Does this con-
clusion mean that we should stop trying to improve
software engineering? No! However, we need to
stop the search for silver bullets and to focus on
finding aluminum bullets. That an aluminum bullet
is lighter weight than a silver bullet of the same cali-
ber is a deliberate part of my point—software en-
gineering methods must be lightweight. Moreover,
we need to stop pouncing on each good bullet that
we do find and hyping it as a silver bullet that can
solve more problems than it actually can.

References
	 1.	 F.P. Brooks Jr., “No Silver Bullet: Essence and Acci-

dents of Software Engineering,” Computer, vol. 20, no.
4, 1987, pp. 10–19; originally published in Proc. IFIP
10th World Computer Congress, North-Holland, 1986.

	 2.	 D.M. Berry, “The Inevitable Pain of Software Develop-
ment: Why There Is No Silver Bullet,” Radical Innova-
tion of Software and Systems Eng. in the Future, Proc.
2002 Monterey Conf., LNCS 2941, Springer, 2004, pp.
50–74, http://se.uwaterloo.ca/~dberry/inevitable.pain.
html.

	 3.	 M.M. Lehman, “Programs, Life Cycles, and Laws of
Software Evolution,” Proc. IEEE, vol. 68, no. 9, 1980,
pp. 1060–1076.

	 4.	 L.A. Belady and M.M. Lehman, “A Model of Large
Program Development,” IBM Systems J., vol. 15, no. 3,
1976, pp. 225–252.

	 5.	 R.W. Scheifler and J. Gettys, “The X Window System,”
ACM Trans. Computer Graphics, vol. 5, no. 2, 1986,
pp. 110–141.

Daniel M. Berry is a professor in the Cheriton School of Computer
Science at the University of Waterloo. Contact him at dberry@uwaterloo.ca.

No bullet can
be silver
for more

than an instant.

Authorized licensed use limited to: University of Waterloo. Downloaded on March 12,2010 at 10:38:43 EST from IEEE Xplore. Restrictions apply.

