
Debugging and
Testing

Daniel M. Berry

 1998 Daniel M. Berry Software Enginering Testing Pg. 1



Debugging!

TD D

 1998 Daniel M. Berry Software Enginering Testing Pg. 2



 1998 Daniel M. Berry Software Enginering Testing Pg. 3



Hebrew Word for Bug

Everyone in Israel calls a bug .באג The verb
“to debug” is ,לדבג causing the gerund
“debugging” to be ;דיבוג it works out very
nicely!

The official word for bug is תקר which is also
the official word for a puncture in a tire. No
one uses תקר for either, using באג for “bug”
and פנv’ר for “puncture”. Officially then,
debugging is תקר oתיקוand so is reparing a
flat tire!

 1998 Daniel M. Berry Software Enginering Testing Pg. 4



Mark Weiser

Mark Weiser from Xerox Parc has a entry on
his web page:

"I am the drummer for Severe Tire Damage ,
first live band on the internet."

and that band’s own description is:

Severe Tire Damage is the first band on the
internet, the first band on the MBone, and
hosts the first live video worldwide interactive

 1998 Daniel M. Berry Software Enginering Testing Pg. 5



multimedia show on the information
superhighway. If you’ve never been here
before, feel free to have a tasty beverage while
you visit. There’s lots to see and do. Test out
Severe Tire Damage’s remote controlled
camera, listen to some tunes, and find out why
the Rolling Stones hate us.

Also recall (or learn for the first time) that
Mark’s Ph.D. work was in debugging using
program slices.

 1998 Daniel M. Berry Software Enginering Testing Pg. 6



Welcome to Severe Tire Damage
If you are looking for Software Tool and Die, you are in the wrong place.

Severe Tire Damage is the first band on the internet, the first band on the MBone, and
hosts the first live video worldwide interactive multimedia show on the information
superhighway. If you’ve never been here before, feel free to have a tasty beverage while
you visit. There’s lots to see and do. Test out Severe Tire Damage’s remote controlled
camera, listen to some tunes, and find out why the Rolling Stones hate us. Then order a
CD. 

Choose your View

Simple and Small All the Trimmings Our JavaScript Jukebox

Severe Tire Damage (band@std.org)

 1998 Daniel M. Berry Software Enginering Testing Pg. 7



So I sent the following message to him

Dear Mark..

The name of your rock group, Severe Tire
Damage, is very interesting from the computer
science/software engineering point of view.. I
am not sure that you are aware of it.

Perhaps you know that the Hebrew word for
bug that everyone uses is "boog" and the
gerund for debugging is "diboog" which
makes it sound like the verb is in binyan pi’el

 1998 Daniel M. Berry Software Enginering Testing Pg. 8



and thus the infinitive is l’dabeg. HOWEVER..
the OFFICIAL word promulgated by the official
Hebrew Language Institute.. is "teker" and
debugging is "tikun teker" (repairing the
teker).. Well.. so what does this have to do
with your rock band?????

Well the OTHER meaning of the word "teker"
is a hole in a tire (a puncture), and of course
repairing a puncture is "tikun teker" again..

 1998 Daniel M. Berry Software Enginering Testing Pg. 9



Of course NO one uses teker for that either,
the common word for a puncture being
"panchure" :-)..

But one day, I saw a bunch of fellas sitting at a
table in the same restaurant in which I was
eating, and they were all wearing T-shirts
saying "tikun teker". I decided that I just HAD
to have that T-shirt to wear when I was
lecturing about debugging here in the
Technion or anywhere else in Israel. So I went
an bought the shirt off the back of the biggest
one there.

 1998 Daniel M. Berry Software Enginering Testing Pg. 10



The morning I was giving my lecture on
testing and debugging, I woke up, put the T-
shirt on, and went down to drive to work and
lo and behold.. I had a flat tire!! :-).. a definite
case of severe tire damage. :-)

I reported to the class first that the official
word for bug was "teker" and explained that I
had a "boog" in my tire this morning and that I
diboogged it. Also, someone had thrown an
apple core away near my car, and there was a
swarm of bugs of another kind near by... I had
the class rolling on the floor.

 1998 Daniel M. Berry Software Enginering Testing Pg. 11



And now then, I see your band.. hm.. I am
going to the web page... maybe I will put a
copy of the page as the first slide after the
title.. to be shown while wearing that T-shirt.

Nu?

I will see you in Boston in two weeks..

Dan

 1998 Daniel M. Berry Software Enginering Testing Pg. 12



His reply, one day later..

Thanks! I enjoyed your message.

-mark

 1998 Daniel M. Berry Software Enginering Testing Pg. 13



Debugging

Two kinds of bugs:

g inappropriate specifications implemented
correctly

g failure to implement specifications
correctly

 1998 Daniel M. Berry Software Enginering Testing Pg. 14



The first kind comes into program from the
beginning.

The second kind is introduced to program
during development.

Neither suddenly appears in an otherwise
healthy program,

say as a result of contagion from other
buggy programs.

 1998 Daniel M. Berry Software Enginering Testing Pg. 15



Response

For first kind, redesign from new
requirements.

For second kind, redevelop from point at
which bug is introduced.

 1998 Daniel M. Berry Software Enginering Testing Pg. 16



An old proverb —

An ounce of prevention is worth a pound of
cure.

An newer proverb —

An decigram of prevention is worth a
kilogram of cure.

 1998 Daniel M. Berry Software Enginering Testing Pg. 17



Testing

More detail later...

But bottom line:

Testing is used for the purpose of exposing
the bugs to be corrected.

Then the source of the bugs must be found
and corrected.

 1998 Daniel M. Berry Software Enginering Testing Pg. 18



Debugging

The process of testing, exposing bugs,
locating their source and correcting them is
called “debugging”.

 1998 Daniel M. Berry Software Enginering Testing Pg. 19



Techniques -1

Adding additional output requests:

g at branch-in and -out points

g at specific assignments

 1998 Daniel M. Berry Software Enginering Testing Pg. 20



Techniques -2

One can even leave these requests in
permanently, but surround them by a
conditional that executes them only if flag is
true.

Flag can be run-time or compile-time.

 1998 Daniel M. Berry Software Enginering Testing Pg. 21



Tracers

g statement counts

g flow of control

g trace of assignments

g instrumented assertions

g snapshots

 1998 Daniel M. Berry Software Enginering Testing Pg. 22



Postmortems

g statement counts

g flow of control up to bombout

g trace of statements up to bombout

g snapshots

 1998 Daniel M. Berry Software Enginering Testing Pg. 23



Interactive Debuggers -1

g tracing particular statements

g tracing assignments to particular variables

g setting break points

g single stepping

g interrogating variables

g printing snapshots

 1998 Daniel M. Berry Software Enginering Testing Pg. 24



Interactive Debuggers -2

g setting variables and

g continuing

g attaching to specific processes

 1998 Daniel M. Berry Software Enginering Testing Pg. 25



Testing -1

According to Boehm (circa 1975),

Programmers in large software projects
typically spend their time as follows:

45-50% program checkout
33% program design
20% coding

 1998 Daniel M. Berry Software Enginering Testing Pg. 26



Testing -2

Yet, in spite of this checkout expense,
delivered “verified” and “validated” code is
still notoriously unreliable.

We have attempted to make the design and
coding processes more systematic.

Now it is time to look at testing process.

 1998 Daniel M. Berry Software Enginering Testing Pg. 27



Testing -3

We often hear that testing is confirming that
program works.

Or...

Testing is demonstrating that errors are not
present.

 1998 Daniel M. Berry Software Enginering Testing Pg. 28



Testing -4

Nonsense! wrong! bubbe meises!

Already know that:

Program testing can be used to show the
presence of errors but never their absence.

— E.W. Dijkstra

 1998 Daniel M. Berry Software Enginering Testing Pg. 29



Testing -5

Therefore, the proper definition of testing
testing is executing a program with the
intention of finding errors

— G. Myers

 1998 Daniel M. Berry Software Enginering Testing Pg. 30



Psychology of Testing -1

A program is its programmer’s baby!

Thus trying to find errors in one’s own
program is like trying to find defects in one’s
own baby.

Therefore, it is best to have someone other
than the programmer doing the testing.

 1998 Daniel M. Berry Software Enginering Testing Pg. 31



Psychology of Testing -2

Tester must be highly skilled, experienced
professional.

It helps if he or she possesses a diabolical
mind.

“heh ... heh ... heh!”

— Count Dracula

 1998 Daniel M. Berry Software Enginering Testing Pg. 32



Psychology of Testing -3

It is well known that what is achieved in any
endeavor depends a lot on what are the goals.

Myers says:

If your goal is to show absence of errors, you
will not discover many.

If your goal is to show presence of errors, you
will discover large percentage of them.

 1998 Daniel M. Berry Software Enginering Testing Pg. 33



Psychology of Testing -4

If you are trying to show the program correct,
your subconscious will manufacture safe test
cases.

Therefore, the tester should be someone other
than the programmer, who just loves bugs.

❤ ❥ ❦ ❧ ♥

 1998 Daniel M. Berry Software Enginering Testing Pg. 34



Definitions -1

Testing — ...

Proof — against assertions

Verification — testing against simulated
environment

Validation — testing against real environment

 1998 Daniel M. Berry Software Enginering Testing Pg. 35



Definitions -2

Certification — controlled testing against
predefined standard

Module testing — in isolation, from
specifications

Integration testing — verification of interfaces

System testing — verification against
specifications of whole system

 1998 Daniel M. Berry Software Enginering Testing Pg. 36



Definitions -3

Acceptance testing — validation against
specifications of user for whole system

Installation testing — validation of subsequent
installations

Debugging — what one has to do if testing is
successful, i.e., if errors are found, debugging
is correction of errors

 1998 Daniel M. Berry Software Enginering Testing Pg. 37



Module Testing -1

Continuum of methods to make test cases:

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
test against specs test against code

ignore code ignore specs

Neither extreme is completely satisfactory.

Combinatorics of either extreme is too large.

 1998 Daniel M. Berry Software Enginering Testing Pg. 38



Module Testing -2

We need the intelligence offered by points in
middle to help group cases into equivalence
classes.

Two test cases are in the same equivalence
class if they find the same error.

Try to find a set of test cases with exactly one
element of each equivalence class.

 1998 Daniel M. Berry Software Enginering Testing Pg. 39



Module Testing -3

As you’re building test suite, each new test
case added to suite should expose at least
one (and as many as possible) previously
undetectable error.

It is hoped to get enough test cases to find all
errors.

 1998 Daniel M. Berry Software Enginering Testing Pg. 40



Module Testing -4

A certain amount of skill and deviousness is
needed to generate test cases.

We show first how to find things to test.

In the following, remember that the tester is
not the programmer.

 1998 Daniel M. Berry Software Enginering Testing Pg. 41



Finding Things to Test -1

Each such thing must appear in at least, and
preferably at most one, test case.

A test case may and should test more than
one thing

Generate things from:

 1998 Daniel M. Berry Software Enginering Testing Pg. 42



Specifications

g each
f input condition & option
f file & std input
f command line

g boundaries of input

g boundaries of output

g each invalid input

 1998 Daniel M. Berry Software Enginering Testing Pg. 43



Code -1

g each conditional branch in each direction

g each path at least once if reasonable:

f for loops, do

- 0,
- 1,
- representative number, &
- max number (if exists)

of times

 1998 Daniel M. Berry Software Enginering Testing Pg. 44



Code -2

g sensitivities to particular values, e.g.,

f division by 0,

f overflow,

f underflow,

f subscript boundaries,

f nil pointers.

 1998 Daniel M. Berry Software Enginering Testing Pg. 45



Finding Things to Test -2

In any of the above, when you have a large
range, use boundary, typical, and sensitive
values.

Once you have found things to test, generate
test cases, each being the data for one run of
the program.

 1998 Daniel M. Berry Software Enginering Testing Pg. 46



Finding Things to Test -3

As you generate test cases, also generate
expected results for each one, from the
specifications.

Try to put as many things as possible in one
test case, but obviously do not put any cases
after a test of handling of erroneous input,
especially if the specified response is to halt
the program!

 1998 Daniel M. Berry Software Enginering Testing Pg. 47



Specifics (Hints for Goodies)

Should have:

g documentation

g input options

g command line options

g error testing

 1998 Daniel M. Berry Software Enginering Testing Pg. 48



Documentation

For each test case:

g describe what is tested

g give input

g give output (assumed to be expected)

 1998 Daniel M. Berry Software Enginering Testing Pg. 49



Input Options

Thoroughly test all input options described in
the specifications, in all combinations,

including that of same input as standard input
and as file input, if that is an option.

 1998 Daniel M. Berry Software Enginering Testing Pg. 50



Command Line Options -1

Test all command line options in all
combinations.

Test that saying nothing is equivalent to
explicit choice of default settings.

 1998 Daniel M. Berry Software Enginering Testing Pg. 51



Command Line Options -2

In the above, “in all combinations” must be
taken with a grain of salt, as it could lead to
combinatorial explosion.

If an analysis of the code shows that some
options are truly independent, then the
number of combinations can be reduced.

 1998 Daniel M. Berry Software Enginering Testing Pg. 52



Command Line Options -3

But that’s dangerous, as a mistake could be
made in determining independence.

Also the bug could be the non-independence!

So verify the independence assumption with
some test cases and then assume it.

 1998 Daniel M. Berry Software Enginering Testing Pg. 53



Error Testing

Test all specified error conditions.

Test all algorithm implied errors.

Try to crash the program.

 1998 Daniel M. Berry Software Enginering Testing Pg. 54



Regression Testing

When you are doing an enhancement,

you should run all old tests,

even ones that are invalid for original
purpose; just provide new expected results.

 1998 Daniel M. Berry Software Enginering Testing Pg. 55



Tools -1

There are tools that help,

especially generating test cases from code,

g each branch in each direction

g each path once

 1998 Daniel M. Berry Software Enginering Testing Pg. 56



Tools -2

Also the tools help in managing the test case,
i.e., running program against test case and
comparing output with expected output &
reporting only when there is not a match.

This can be done with shell scripts as well.

 1998 Daniel M. Berry Software Enginering Testing Pg. 57



Hopelessness of Thoroughness

How many of you have observed this
phenomemon?

You’ve designed good thorough test cases
and the reviewers agree with you.

You run the exhaustive tests and they fail (to
find bug).

You turn in the program.

 1998 Daniel M. Berry Software Enginering Testing Pg. 58



Hopelessness, cont’d

You’re relaxing over a cup of coffee and
bingo, you think of a bug in the program or
another test case.

You run to do the test case before the
deadline.

How many of you have observed this?

This is the feeling of hopelessness of getting
thorough test cases.

 1998 Daniel M. Berry Software Enginering Testing Pg. 59



Earthquake Testing

Remember the 1989 San Francisco earthquake
that was seen alive on TV at 5:01 pm by
everyone tuned in for the beginning of the first
game of the 1989 World Series baseball
championship?

The epicenter was under Scotts Valley, CA
just underneath Borland’s world headquarters.

One of the two buildings collapsed.

 1998 Daniel M. Berry Software Enginering Testing Pg. 60



No one was hurt because everyone had gone
home to watch the World Series.

In the collapsed building, most of the
computers were destroyed, but ...

the software in the building still worked, when
the diskettes were put into other computers!

Surprise!!!

 1998 Daniel M. Berry Software Enginering Testing Pg. 61



So Borland issued T-shirts that said in front,

“Borland, the epicenter of software
development!”

and in back,

“The only software that has been tested to be
earthquake proof up to 7.2 on the Richter
scale!”

 1998 Daniel M. Berry Software Enginering Testing Pg. 62



How many of you have tested that your
software is earthquake proof?

Nu?

 1998 Daniel M. Berry Software Enginering Testing Pg. 63



Integration Testing

Integration testing is testing how a system
consisting of more than one module works
together, i.e., testing the interfaces.

 1998 Daniel M. Berry Software Enginering Testing Pg. 64



Assumed System Structure

LEAVES

ROOT

 1998 Daniel M. Berry Software Enginering Testing Pg. 65



Two Major Kinds of Testing

g big-bang!!!!!!

g piece-meal

(several orders possible)

 1998 Daniel M. Berry Software Enginering Testing Pg. 66



Preliminary Definitions -1

Before can discuss any method, must define
two terms:

For a given module m,

A driver for m is a module that repeatedly calls
m with test data & maybe even checks results
for each test case.

 1998 Daniel M. Berry Software Enginering Testing Pg. 67



Preliminary Definitions -2

A stub for replacing m is a skeletal module
with interface identical to that of m; its body
either
g does nothing
g prints out name of m maybe with parameter

values.

A stub may return pre-cooked results for pre-
cooked inputs for planned test cases, maybe
even testing that actual input is same as
planned or some such.

 1998 Daniel M. Berry Software Enginering Testing Pg. 68



Big-Bang Testing

Each module is tested in isolation under a
driver and with a stub for each module it
invokes.

And then one day ... cross your fingers ... do
a big-bang test of the whole bloody system.

Probably over your bloody, dead body!

 1998 Daniel M. Berry Software Enginering Testing Pg. 69



Advantage

g Every module thoroughly tested in
isolation.

 1998 Daniel M. Berry Software Enginering Testing Pg. 70



Disadvantages

g Driver and stub must be written for each
module (except no driver for root and no
stubs for leaves).

g No error isolation — if error occurs, then in
which module or interface is it?

g Interface testing must wait until all
modules are programmed ∴ critical
interface & major design problems are
found very late into project, after all code
has been committed!

 1998 Daniel M. Berry Software Enginering Testing Pg. 71



Piece-Meal Testing

There are several specific orders of adding
modules one-by-one to an ever growing
system until the whole system is obtained.

A module is tested as it is added in the
context of whatever of its callers and callees
are already in the system and drivers and
stubs for callers and callees that are not yet in
the system.

 1998 Daniel M. Berry Software Enginering Testing Pg. 72



Orders

g bottom-up

g top-down

g sandwich

g modified sandwich

 1998 Daniel M. Berry Software Enginering Testing Pg. 73



General Advantages

g Error isolation — assuming that all
previously added modules were thoroughly
tested, any errors that crop up should be in
the module being added or in its interface.

g Avoid making both driver and stub for each
module; at most one is needed for each
module.

 1998 Daniel M. Berry Software Enginering Testing Pg. 74



General Disadvantage

g Some modules (which ones depends on
the order of adding modules) are not tested
thoroughly in isolation, because do not
have driver and stub for every module.

 1998 Daniel M. Berry Software Enginering Testing Pg. 75



Bottom-Up

Test leaf modules in isolation with drivers.

Test any non-leaf module m in the context of
all of its callees (previously tested!) with a
driver for m.

 1998 Daniel M. Berry Software Enginering Testing Pg. 76



Advantages

g Thorough testing of each leaf module.

g Abstract types tend to be tested early.

 1998 Daniel M. Berry Software Enginering Testing Pg. 77



Disadvantages

g Must make drivers for every module except
root.

g Major design flaws and serious interface
problems involving highest modules are
not caught until late; could cause a major
rewrite of everything that has been tested
before.

 1998 Daniel M. Berry Software Enginering Testing Pg. 78



Top-Down

Only the root is tested in isolation with stubs
for its callees.

Test any non-root module m by having it
replace its stub in its callers and with stubs
for its callees.

 1998 Daniel M. Berry Software Enginering Testing Pg. 79



Advantages

g Can test during top-down programming.

g Major flaws and major interface problems
are found early.

g No drivers needed, as modules are tested
in context of actual callers.

 1998 Daniel M. Berry Software Enginering Testing Pg. 80



Disadvantages

g Stubs can be difficult to write for planned
test cases.

g Lower modules are not tested thoroughly;
tested only in ways used by upper modules
and not as fully as possible against specs.

 1998 Daniel M. Berry Software Enginering Testing Pg. 81



Sandwich

Root and leaf modules are tested in isolation
as in T-D and B-U methods.

Work from root to middle T-D, and work from
leaves to middle B-U.

 1998 Daniel M. Berry Software Enginering Testing Pg. 82



Advantages

g Root and leaf modules tested thoroughly.

g Major design flaws and major interface
problems found early.

g Most abstract data types tested early.

g No stubs and no drivers needed for middle
modules.

 1998 Daniel M. Berry Software Enginering Testing Pg. 83



Disadvantages

g Stubs needed for upper modules and
drivers needed for lower modules.

g Upper-middle modules may not be
thoroughly tested.

 1998 Daniel M. Berry Software Enginering Testing Pg. 84



Modified Sandwich

Do sandwich.

Also test upper-middle modules in isolation
using drivers and actual callees.

 1998 Daniel M. Berry Software Enginering Testing Pg. 85



Advantages

Those of sandwich +

g Removal of its second disadvantage.

 1998 Daniel M. Berry Software Enginering Testing Pg. 86



Disadvantages

First of sandwich +

g Extra drivers to write.

 1998 Daniel M. Berry Software Enginering Testing Pg. 87



Concluding Remarks

When testing exhibits a bug:

Remember, the program did not suddenly
contract the bug.

The bug was required, designed, or
programmed in.

 1998 Daniel M. Berry Software Enginering Testing Pg. 88



Probability of More Errors -1

Myers observes that as the number of
detected errors increases in a piece of
software, so does the probability of the
existence of more, undetected errors.

Number of errors found to date

Pr
ob

ab
ili

ty
 o

f 
ex

is
te

nc
e

of
 a

dd
iti

on
al

 e
rr

or
s

 1998 Daniel M. Berry Software Enginering Testing Pg. 89



Probability of More Errors -2

Thus testing, and alas, debugging, is no
substitute for programming it right in the first
place.

 1998 Daniel M. Berry Software Enginering Testing Pg. 90



Decay of Corrected Programs -1

Also Belady and Lehman have shown that
assuming a non-zero probability that an
attempted correction introduces new bugs,
any system which is continually fixed
eventually decays beyond useability.

 1998 Daniel M. Berry Software Enginering Testing Pg. 91



Decay of Corrected Programs -2

Time

B
ug

s 
fo

un
d 

pe
r 

un
it 

tim
e


