
Software Project
Management

Daniel M. Berry
with material from James E. Tomayko

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 1

Nature of Software Production

SOFTWARE — program system product (PSP)

PROJECT — planned

MANAGEMENT — make sure that the PSP
comes out as planned

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 2

Software -1

We are not talking about programs, but about
program system products (PSP)

We all know all about programs, but what
about PSPs?

Fred Brooks explains the difference and
shows the effort involved (multipliers may be
bigger if the number of components is large):

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 3

Software -2

Program

Program

Product

System
System

Program

Product

x 3

x 3

x 3x 3 x 9

Program

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 4

Program:

• program is complete by itself
• program is ready to run by author for

planned inputs on system on which it was
developed, and probably under no other
circumstances

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 5

Program System:

• each program is a component in integrated
collection (system)

• precisely defined interface to which all
programs in system must comply

• each program must stick to reasonable
resources

• each program is tested with other
programs; number of combinations grows
quadratically with each additional program

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 6

Program Product:

• product can be run, tested, repaired,
extended by anyone, not just author

• product runs on multiple platforms
• product accommodates many sets of data
• range and form of input to product must be

generalized
• product must test for validity of input and

provide response to invalid inputs
• must be product documentation for

maintainers and users

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 7

Program System Product:

• all attributes of program system and
• all attributes of program product

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 8

Programs vs. PSPs -1

Perhaps the key problem in SPM is that when
we should be thinking about PSPs, we
continue to think about programs, and all
expectations,
• ease vs. difficulties,
• time,
• costs,
• you name it,
are off by an order of magnitude.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 9

Programs vs. PSPs -2

We see only the program in the heart of the
PSP and forget all the other junk that must be
added to make it a PSP!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 10

Project

The objective of the project to build a PSP is
to make sure that all the necessary junk gets
planned in.

Projects have plans:
• Specific work to do
• Deliverables
• Resources

- Multiple People
- Schedule
- Budget

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 11

Management -1

Any project with more than one person must
be managed by definition, just to keep the
communication going between the folk in the
project.

Note that the management does not need to be
applied externally, the manager can be one of
the managed folk!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 12

Management -2

The job of management is to make sure that
the planned junk does not get left behind in
the zeal to release the PSP when only the
program in its heart has been written!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 13

Management -3

• Control leads to quality.

• Deliver what you promise.

• Allocate resources properly.

• Communicate and facilitate
communication.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 14

Truths about Management

Boehm says:

“Poor management can increase software
costs more than any other factor”.

“Poor management can decrease software
productivity more rapidly than any other
factor”

“The single most important factor in the
success of a (multi-person) software project is
the talent of its project manager”

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 15

Production of Managers

Mark Kellner goes so far as to say:

“The software engineering profession has not
produced a cadre of capable/competent
managers.”

Promotion up the technical ladder requires
skills different from those needed by a
manager.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 16

Basic Equation

Profit = Revenues − Expenses

Usually revenues are fixed, either by contract
or by the market.

Therefore to maximize, or even to guarantee,
profit, it is essential to reduce expenses or
costs.

Cannot reduce anything unless you know
what it is.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 17

Required Knowledge

Therefore, we gotta know what the costs are.

More importantly, we gotta what they will be if
we’re using projected costs to determine what
the price (i.e., revenues) is.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 18

Multi-pronged attack

Actually, there is a mirror image to reducing
costs that has the same net effect, when it is
done right.

• Reducing costs
• Increasing productivity

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 19

Reducing Costs

To reduce cost, you have to know what you’re
spending and where you’re spending it.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 20

Increasing Productivity

To increase productivity, you have to
eliminate unnecessary work and make the
work that’s done more effective.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 21

Recurring Theme -1

Recall the diagram presented earlier of
Boehm’s cost drivers, showing how much
more important personnel and team capability
are than any technical factor.

Well, there is another line showing an even
more important cost driver for software,
namely the size of the code itself, and that’s
about 5 times more important than personnel
and team capability.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 22

Recurring Theme -2

1.20

1.23
1.32
1.34
1.49
1.49
1.51
1.56
1.57
1.66
1.87
2.36
4.18

1.23
Language Experience
Schedule Constraint
Database Size
Turnaround Time

Software Tools
Virtual Machine Volatility

Modern Programming Practices
Storage Constraint
Application Experience

Product Complexity
Personnel/Team Capability

Virtual Machine Experience

Timing Constraint
Required Reliability

S
o

ft
w

ar
e

C
o

st
 D

ri
ve

r
A

tt
ri

b
u

te

Code Size≈ 20
0 1 2 3 4 20

Relative Effect

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 23

Recurring Theme -3

So a simple way to reduce costs is to write
less code! Nu?!

• Beg it.
• Borrow it.
• Buy it.
• (No “steal it”!)

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 24

Outline

• Lifecycles
• Cost Estimation
• Risk Management
• Planning General Issues
• Process Management
• Planning Details
• Notations

Each major topic will be preceded with its own
outline!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 25

Lifecycles

Outline:

• Build-and-fix
• Waterfall
• Spiral
• One Sweep of Spiral
• Requirements Engineering

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 26

Reasons for Considering Topic

Lifecycle models are generally considered too
constraining and too ideal.

However, it is useful to understand what
lifecycles were envisioned when
documentation standards were developed.

Later we will learn how and why to fake the
lifecycles to make the documents.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 27

Build-and-Fix

version

Modify until
client is satisfied

Operations
mode

Build first

Retirement

All too common!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 28

Waterfall -1

Win Royce described what is now called the
traditional waterfall lifecycle.

Realization

Operation

Integration

Design

Specifications

Requirements

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 29

Waterfall -2

The waterfall model is descriptive, and not too
good at that.

It is by no means proscriptive; it simply does
not work!

Lowering fever is a good model of getting over
an illness, but refrigerating a sick person will
not make him or her better.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 30

Spiral Model

Barry Boehm introduced the more realistic
spiral model.

Determine objectives, alternatives,

next level product

Develop, verify

Benchmarks

Models,

Simulations,

Risk analysis

identify, resolve risks

Evaluate alternatives;

Plan next phase

constraints

The waterfall can be considered one 360°
sweep of the spiral.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 31

One Sweep of Spiral

But here is the real lifecycle for one sweep.

Client
Ideas

Reqs
Specs

Design Code

More haphazard More systematic

More difficult than thought to be

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 32

Requirements Engineering -1

It is important to try to straighten the tortuous
line from conception to requirements
specifications.

Recall that the cost to correct an error
skyrockets as a function of lifecycle stage.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 33

Requirements Engineering -2

Phase in which error is detected

Re
la

tiv
e c

os
t t

o
co

rre
ct

 er
ro

r

Preliminary Detailed Code and Integrate Validate Operation
design design debug

100

50

20

10

5

2

1

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 34

Requirements Engineering -3

Meir Lehman identified E-type software.

• A system that solves a problem or
implements an application in some real
world domain.

• Once installed, an E-type system becomes
inextricably part of the application domain,
so that it ends up altering its own
requirements.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 35

Requirements Engineering -4

Martin & Tsai did experiment to identify
lifecycle stages in which requirement errors
are found

• Used polished 10-page requirements for
centralized railroad traffic controller.

• Ten 4-person teams of software engineers
looked for errors.

• Requirements author believed that teams
would find only 1 or 2 errors.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 36

Requirements Engineering -5

• 92 errors, some very serious, were found!

• Average team found only 35.5 errors, i.e., it
missed 56.5 to be found downstream!

• Many errors found by only one team!

• Errors of greatest severity found by fewest
teams!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 37

Requirements Engineering -6

Most errors are introduced during
requirements specification.

Boehm: At TRW 54% of all errors were
detected after coding and unit test; 85% of
these errors were allocatable to the
requirements and design stages rather than
the coding stage, which accounted for only
17% of the errors.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 38

Requirements Engineering -7

The requirements iceberg and various
icepicks chipping at it:

Requirements

Client’s
View

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 39

Requirements Engineering -8

The problem is the conceptual distance from
the client’s ideas to the specifications.

Concept

Formal
Spec.

Informal
Spec.

Folded in middle to give feeling of true
conceptual distances involved

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 40

Requirements Engineering -9

Requirements engineering has its own
lifecycle:

Specification

Validation

Analysis

Elicitation

Conception

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 41

Requirements Engineering -10

The next slide shows the benefits of spending
a significant percentage of development costs
on studying the requirements.

It is a graph from “System Engineering
Overview” by Kevin Forsberg and Harold
Mooz, 1996.

It relates percentage cost overrun to study
phase cost as a percentage of development
cost in 25 NASA projects.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 42

Requirements Engineering -11
180

160

140

120

100

80

60

40

20

0

0 5 10 15 20 25

P
er

ce
n

ta
g

e
C

o
st

 O
ve

rr
u

n

Study Phase Cost as a Percent
of Development Cost

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 43

Requirements Engineering -12

The study, performed by W. Gruhl at NASA HQ
includes such projects as

g Hubble Space Telescope
g TDRSS
g Gamma Ray Obs 1978
g Gamma Ray Obs 1982
g SeaSat
g Pioneer Venus
g Voyager

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 44

Cost Estimation

Outline:

• What needs to be estimated

• Understanding software costs

• Estimation models

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 45

What Needs to be Estimated?

• Size
• Time
• Complexity
• Effort
• Resources

That is, all sorts of costs!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 46

Understanding Software Costs

What affects software costs?

• Why estimation so hard for SW?
• Personnel & team capabilities
• Individual differences
• Team size
• Product complexity
• Fun vs. duty
• Main reason for poor estimates
• Accuracy of cost estimation
• Two-step cost estimation
• Risk of software cost estimation

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 47

Why Estimation SO Hard for SW?

• Often entirely new

• Start with incomplete specifications

• Moving target

• People factors

• Difficult to relate size and complexity

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 48

Personnel & Team Capabilities -1

Effects of personnel and team capability on
productivity:

• factors that managers cannot affect
• factors that managers can affect

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 49

Personnel & Team Capabilities -2

There is nothing a manager can do to change
the talent of the individuals.

However, there are things that can be done to
bring the talent of the indviduals out.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 50

Personnel & Team Capabilities -2

Some things that management can do to help
improve personnel productivity:

• make a better programming environment
• provide education and training
• improve the software process

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 51

Individual Differences -1

• Individuals can be virtuosos, but there is a
limit to what a virtuoso can do.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 52

Individual Differences -2

• An experiment to show that programmers
using interactive system are more
productive than those using batch system
failed because the so-called independent
variable of programmer quality dominated;
they found a 26 to 1 productivity ratio
among experienced programmers.

• Other studies have shown 17 to 1
productivity ratio among individual
programmers.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 53

Individual Differences -3

Not many human endeavors have this wide of
a gap.

For example, in the best sprinters are not 17
times faster than the worst.

On the other hand, Michael Jordan is around
17 times better than the worst basket shooter
and Pat Riley is around 17 times better than
the worst coach.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 54

Individual Differences -4

I guess that the key here is that when skill
rather than capacity is involved, individual
differences are large.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 55

Team Size

Smaller teams are generally more effective
than larger teams.

• There is less communication between
members.

number of persons, lines of communication

5,104,63,32,11,0

• Stars of group can shine through easier.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 56

Product Complexity

The more complex the project, the lower the
productivity.

There are definite harbingers of complex
products:
• newness for the sake of newness
• embedded in a larger system
• filled with features

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 57

Fun vs. Duty

The fun of software development is
outweighed by the drudgery.

• need for perfection
• taking responsibility for quality of work

products
• debugging
• documentation

That everyone would prefer to forget the
drudgery leads to...

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 58

Main Reason for Poor Estimates

Estimating fails due to lack of attention to
distracting factors.

That is, everyone forgets the junk that makes
a program system product out of a program!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 59

Accuracy of Cost Estimation

Basic problem with all estimates!

X

4X

.25X

Start EndLifecycle Phase

Lousy foresight; perfect hindsight!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 60

Two-Step Cost Estimation

Must map from requirements to personnel.

1. Internal influences step, e.g., function-point
analysis that estimates program size from
details of required functions

2. External influences step, e.g., COCOMO
that maps from estimated size to people
needed

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 61

Code Size

Code size can
• be affected by the desired functionality.
• affect the desired functionality.
• be affected by the implementation.
• be affected by external factors, e.g.,

memory size limitations or coding
standards.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 62

Code Size Estimation Models

• Sizing by analogy
• Wideband Delphi technique
• Clark’s model
• Function points

Note how all of these depend on detailed
knowledge of expected internals of the
program or of its requirements.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 63

Sizing by Analogy

Find another program like the one you’re
going to build and base your estimate on its
size.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 64

Wideband Delphi Technique

1. Individuals examine the requirements.
2. Discuss the requirements in a group.
3. Individuals estimate anonymously.
4. Compare individual estimates to mean.
5. Discuss results in group.
6. Loop back to 3.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 65

Clark’s Model

E =
6

(L + 4M + H)hhhhhhhhhhhh for each module

M = what you think is about right size for
module

H = the biggest you think it can ever be

L = the smallest you think it can ever be

E = final estimate for the module

Captures standard bell-shaped distribution.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 66

Function Points -1

Function points were invented by Allan
Albrecht at IBM in 1979.

Function points were originally intended for
commercial applications, and as we look at
the factors involved, this will be clear.

However, the idea of finding key factors can
be applied to any application domain; you just
have to find a different set of functional
factors.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 67

Function Points -2

Objective: to be able to estimate code size
relatively easy early in the lifecycle from
knowledge of only the requirements.

This is all you know when the customer says,
“Here’s what I want. How much will it cost?”

If you over estimate, you lose the job. If you
underestimate, you lose the profit!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 68

Function Points -3

Function Points (FP) =

Sum of Functional Factors ×

[0.65 + 0.01 × Sum of Weighting Factors]

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 69

Functional Factors

Five Functional Factors (Simple, Average,
Complex)

Functional Weights for
Factor S A Ciii
Number of user inputs × 3 4 6
Number of user outputs × 4 5 7
Number of user inquiries × 3 4 6
Number of files × 7 10 15
Number of external interfaces × 5 7 10

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 70

Weights of Functional Factors

Weights can be adjusted, according to
experience.

Nowadays, because of libraries, the weights
tend to be the same.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 71

Weighting Factors -1

1 Does system require reliable backup and
recovery?

2 Are data communications required?
3 Are there distributed processing

functions?
4 Is performance critical?

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 72

Weighting Factors -2

5 Will system run in an existing, heavily used
operational environment?

6 Does system require on-line data entry?
7 Does the on-line data entry require the

input transaction to be built over multiple
screens or operations?

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 73

Weighting Factors -3

8 Are master files updated on-line?
9 Are input, output, files, or inquiries

complex?
10 Is the internal processing complex?
11 Is the code designed to be reusable?

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 74

Weighting Factors -4

12 Are conversion and installation included in
the design?

13 Is system designed for multiple
installations in different organizations?

14 Is the application designed to facilitate
change and ease of use by the users?

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 75

Alternate Weighting Factors -1

1 Data communications
2 Distributed data processing
3 Performance criteria
4 Heavily utilized hardware
5 High transaction rates

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 76

Alternate Weighting Factors -2

6 On-line data entry
7 End-user efficiency
8 On-line updating
9 Complex computations
10 Reusability

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 77

Alternate Weighting Factors -3

11 Ease of installation
12 Ease of operation
13 Portability
14 Maintainability

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 78

Modern Weighting Factors

Nowadays, the following are considered:

• interfaces with other applications
• special security features
• direct access by third party software
• documentation requirements
• training and help subsystems

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 79

Modern Formula -1

FP = 0.44 × No. of Input Element Types +
1.67 × No. of Entity Type References +
0.38 × No. of Output Element Types

That is count number of types used rather
than objects.

Presumably, all accesses to objects of the
same types will reuse the same operators.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 80

Modern Formula -2

The new formula reflects current modular
style of programming.

In this style, the intellectual effort is in
designing classes not variables.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 81

Key Observations about FPs

These measures are based on user’s external
view and are technology independent.

They can be developed early in the lifecycle,
enabling their use for early cost estimation in
planning stages.

They can be understood and evaluated by
nontechnical users!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 82

Additional FP Metrics

• Productivity = FP ⁄ PM
• Quality = Errors ⁄ FP
• Cost = Dollars ⁄ FP
• Documentation = Pages ⁄ FP

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 83

FP vs. DSI
Basic Assembler 360
Macro Assembler 213
C 128
COBOL 105
FORTRAN 105
Pascal 80
Ada 72
Basic 64
4GL 25

So now we have the data to plug into, e.g.,
COCOMO to estimate personnel!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 84

Advantages of Function Points

• Deeper understanding of complexity than
other methods

• More than one variable
• Can and must look at requirements
• Can and must involve user

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 85

Disadvantages of Function Points

• More complex
• Subjective
• DP-biased

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 86

COCOMO

• History
• Empiricism
• Three levels of detail
• Three development environments
• Assumptions of COCOMO model
• DSI
• Person-month formulae
• Time of development formulae
• Full-time software personnel
• COCOMO caveat

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 87

History

Developed by Barry Boehm in 1970s base on
his experience as head of software
development at TRW.

He was in position of having to make
estimates, and he got to be good at it.

COCOMO is a formalization of his experience
in 62+ projects at TRW.

Described in Boehm’s 1981 book Software
Engineering Economics

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 88

Empiricism

It is entirely empirical, based on 62+ projects
at TRW.

Although, the shape of the formulae makes
sense, that is, factors that are adversely
affected by growth in inter-module
communication contribute to quadratic growth
in needed personnel.

Each place will have to adjust the constants to
reflect what is true there.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 89

Three Levels of Detail -1

• Basic
• Intermediate
• Detailed

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 90

Three Levels of Detail -2

As the detail increases, the number of factors
considered increases.

“Detailed” considered most accurate, but may
not be.

In other words, by calibrating constants in
basic model, might get better results faster!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 91

Three Levels of Detail -3

We cover only basic here.

There are cost-estimation tools that implement
the model.

Use of such tools can help insure company-
wide input in calibration and company-wide
consistency in resulting estimates.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 92

Three Development Environments

1. Organic (Informal group structure)

2. Semi-detached

3. Embedded (Very formal group hierarchy
and process)

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 93

Organic Development Mode

• Thorough understanding of project
objectives

• Extensive experience with related systems
• Minimal need to meet predefined

requirements
• Minimal need to conform to external

interfaces
• Hardware already exists
• Minimal need for innovation
• Loose deadline

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 94

Semi-detached Development Mode

• Much understanding of project objectives
• Much experience with related systems
• Much need to meet predefined

requirements
• Much need to conform to external

interfaces
• Some concurrently developed new

hardware
• Some need for innovation
• Moderately tight deadline

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 95

Embedded Development Mode

• Only general understanding of project
objectives

• Moderate experience with related systems
• Must meet predefined requirements
• Must conform to external interfaces
• Much concurrently developed new

hardware
• Much need for innovation
• Very tight deadline

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 96

Assumptions of COCOMO Model

• Low volatility of requirements

• Good SE practice

• Good management

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 97

DSI -1

The Concept of DSI is an attempt to capture
intellectual effort.

Delivered (not thrown out code)
Source (that which humans operate on)
Instructions (and not comments)

However, if test suites are to be delivered,
they must be counted too

Also use KDSI, thousand DSI

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 98

DSI -2

Counting source instructions is hard

What do we count?
• line-feeds
• semicolons

What do we do about control constructs?
• if (...) - - - ;
• if (...) {

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 99

Person-Month Formulae -1

Organic: PM = 2.4×KDSI1.05

Semi-detached: PM = 3.0×KDSI1.12

Embedded: PM = 3.6×KDSI1.20

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 100

Person-Month Formulae -2

200

160

120

80

40

0

380

360

340

10K 20K 30K 40K 50K 60K

400

E
st

im
at

ed
 E

ff
o

rt
 (

P
M

)

Product Size (DSI)

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 101

Time of Development Formulae -1

Organic: TDEV = 2.5×PM0.38

Semi-detached: TDEV = 2.5×PM0.35

Embedded: TDEV = 2.5×PM0.32

This is consistent with people and time not
being exchangeable!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 102

Time of Development Formulae -2

18

12

6

0

10K 20K 30K 40K 50K 60K

Product Size (DSI)

E
st

im
at

ed
 S

ch
ed

u
le

 (
M

o
n

th
s)

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 103

Full-Time Software Personnel -1

FSP =
TDEV

PMhhhhhh

This assumes uniform personnel level over
whole project.

Usually want to start off light and hire more as
project evolves.

Use Rayleigh curve.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 104

Full-Time Software Personnel -2

0 10 20 30 40 50 60 70 80 90 100

Percentage of Development Completed

25

50

75

100

125

150 Programming

Testing

Integration

Requirements

Design

0

P
er

ce
n

t
o

f
A

ve
ra

g
e

P
er

so
n

n
el

 L
ev

el

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 105

Full-Time Software Personnel -3

FSP = PM×(
p2
thhhh) ×e

− (
2p2
t2

hhhhh)

Here p is percentage of development schedule
completed at peak.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 106

Ada Modifications to Basic Model -1

• Assume smaller teams initially, but allow
longer design period.

• DSI = carriage returns in specification parts
and bodies.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 107

Ada Modifications to Basic Model -2

PM = 2.4×KDSI1.05

TDEV = 3×PM0.32

PM for PD, DD, CUT, IT =
PM × (.23, .29, .22, .26)

TDEV for PD, DD, CUT, IT =
TDEV × (.39, .25, .15, .21)

PD = preliminary design, DD = detailed design,
CUT = code unit testing, IT = integration
testing

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 108

Intermediate Model -1

Sample multipliers for cost drivers:

Rating
Very Nom- Very Extra

Cost Drivers Low Low inal High High Highii
Product Attributes

Required Software Reliability 0.75 0.88 1.00 1.15 1.40
Database Size 0.94 1.00 1.08 1.16
Product Complexity 0.70 0.85 1.00 1.15 1.30 1.65

Personnel Attributes
Analyst Capability 1.46 1.19 1.00 0.86 0.71
Applications Experience 1.29 1.13 1.00 0.91 0.82
Programmer Capability 1.42 1.17 1.00 0.86 0.70
Virtual Machine Experience 1.21 1.10 1.00 0.90
Programming Language Experience 1.14 1.07 1.00 0.95

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 109

Intermediate Model -2

Sample rating determination:

Cost Drivers Situation Ratingiii
Required Software Reliability Serious financial conse- High

quences of software fault
Database Size 20,000 bytes Low
Product Complexity Communications processing Very High

Analyst Capability Good senior analyst High
Applications Experience Three years Nominal
Programmer Capability Good senior programmer High
Virtual Machine Experience Six months Low
Programming Language Experience Twelve months Nominal

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 110

COCOMO Caveat

All depends on estimate of code size (DSI),
which can be

• a result of solving a problem
• driven by external factors, e.g., memory

bound by system design or standards
• directly affected by desired functionality

and it

• directly affects desired functionality

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 111

Advantages of COCOMO

• Reasonable
• Simple
• Clear

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 112

Disadvantages of COCOMO

• Too believable
• Too dependent on one variable
• Subjective

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 113

Implications of Cost Drivers

The biggest cost driver is the number of
instructions to develop.

Therefore, it pays to try to eliminate the
necessity of developing new instructions.

• Off-The-Shelf Software (OTS)
• Reuse or adapt existing software
• Application generators

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 114

Risks of Software Cost Estimation

0
10
20
30
40
50
60
70
80
90

100

0 25 50 75 100

Percentage of Total Project Time

E
st

im
at

ed
 P

er
ce

n
t

C
o

m
p

le
te

10

30

50

75

95
98

95

98
99

100

9890

Why don’t I believe “It’s 90% done!”

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 115

Typical Estimation Results

Contractor LOC Dollarsiiiiiiiiiiiiiiiiiiiiiiiiiiii
A 153K 2.8M
B 282K 2.5M
C 400K 4.6M
D 735K 4.5M
E 766K 2.1M

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 116

And the Winna is

E!

Actual code size 900K Actual cost 5.8M

Nu?

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 117

Why Estimates Fail?

• Optimism
• Confusion between effort and progress
• Gutless estimating
• Poor progress monitoring
• Requirements Creep
• Adding peoplepower

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 118

Optimism -1

It comes primarily from forgetting that we are
dealing with a program system product rather
than a program.

It happens to the best of us!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 119

Optimism -2

Meir Burstin was a very successful software
manager.

He could estimate project durations just like
that, right off the seat of his pants.

His company’s success was testimony to his
estimation ability.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 120

Optimism -3

Soon after he sold the company, he went to
get a Ph.D. and had to develop a requirements
management system for his Ph.D. research.

His estimate was suddenly low, by an order of
magnitude.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 121

Optimism -4

When asked about this, he said that since he
was doing by himself, and he is a good
programmer, he forgot to apply all his normal
fudge factors.

That is, he thought he could do it as a program
and forgot that it was a PSP!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 122

Optimism -5

Donald Knuth is a good programmer, a
programmer’s programmer.

I remember hearing a talk he gave in 1980
when he was about .75 year into the TEX-and-
METAFONT project.

He expected to be finished soon, that it would
be a 1-year project.

He wanted to get back to writing his 7-volume
encyclopedia of programming!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 123

Optimism -6

It took 10 years to get to the stage that it was a
satisfactory PSP.

I’ll bet that he was thinking program, not PSP,
when he gave his 1-year estimate!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 124

Rules of Thumb -1

Here are some rules of thumb that you can
use.

If you think program when you’re supposed to
be thinking PSP.

Identify which rule of thumb below applies,
and take your “program” estimate and let it be
just the coding stage.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 125

Rules of Thumb -2

From that, you can get a rough estimate of the
full time needed.

Also when you do get a detailed estimate, if it
doesn’t jibe with one of these rules of thumb,
something is wrong.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 126

Brooks’s Rule of Thumb

For distribution of effort in functionally
decomposed programs:

1⁄3 planning
1⁄6 coding
1⁄4 unit test and early integration test
1⁄4 integration test

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 127

Tomayko’s Rule of Thumb:

For distribution of effort for developing
modular, data hiding software:

1⁄2 planning
1⁄12 coding
1⁄4 unit test and early integration test
1⁄6 integration test

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 128

Adding Peoplepower -1

Sometimes it seems unavoidable.

Sometimes it is done to protect against future
problems.

In either case it’s a disaster!

“Adding manpower to a late software project
makes it later” — F.P. Brooks, Jr.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 129

Adding Peoplepower -2

The problems are bring the new people up to
date and adding them to the communication
loop.

Both catch-up and additional necessary
communication cost more time than a new
person adds.

You can add more bricklayers to a wall
building project; no catch up and no additional
necessary communication!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 130

Adding Peoplepower -3

If it is necessary, i.e., it simply requires too
much work for the available people to deliver.

Then add the people!

But, then the whole project must be re-
planned with a later deadline!

No two ways about it!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 131

Cost Increases

Causes:

• Requirements changes: 85%
• Poor estimation: 15%

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 132

Danger Lurks -1

Quick, look at a typical project’s Pert Chart:

require-
ments

test
plan

test
data

test
drivers

product
test

ment

start

design
docu-

finishcode

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 133

Danger Lurks -2

The duration of which development phase is
the most dangerous to underestimate?

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 134

Danger Lurks -3

The answer:

Testing!

You are too close to delivery for recovery!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 135

Self-Fulfilling Prophecies

Different estimates make different projects!

Tarek Abdel-Hamid found that estimates tend
to influence people’s work habits.

Parkinson’s law: Work tends to expand to fill
the time available!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 136

Validity of Estimation Models

Chris Kemerer did an Empirical Evaluation of
Software Cost Estimation Models.

Used COCOMO, FPs, and other methods on
data of finished projects.

Data on 15 large COBOL projects were
collected to test accuracy of the models ex
post facto using actual DSI data and not
estimates.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 137

Kemerer’s COCOMO Data

A mean over 15 projects:

Actual/Estimate PM Erroriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Actual 219
Basic Estimate 1226 610%
Intermediate Estimate 1280 583%
Detailed 1291 607%

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 138

Kemerer’s FP Data

A mean over 14 projects:

Actual KLOC: 221
Estimate: 128
Error: 38% low

What can be inferred?

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 139

Validity of Models

Kemerer concludes that the models are
generally valid, that the shape of the formulae
are OK.

But all the models need calibration of their
multipliers, powers, and constants.

So this means that before you can start
believing your estimates you have to have
been applying them over a number of projects.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 140

What’s a Project Manager to Do?

• Reject the models.

• Use fudge factors in the models.

• Adapt and calibrate the models.

• Make new models.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 141

Configuration Management (CM)

• Role of CM
• Functions of CM
• Commitment is necessary
• Typical configured items
• CM library functions
• Variations vs. revision
• Types of changes
• Implementing CM

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 142

Role of CM

Management Disciplines

Controlling
Disciplines

Development
Disciplines

Product
Integrity

Software

Quality

Assurance

Software

Configuration

Management

Independent

Verification and

Validation

Specification

Design

Code

Test

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 143

Functions of CM

• Maintain integrity of configured items

• Evaluate and control changes

• Make the product visible

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 144

Commitment is Necessary

No matter how good are the CM tools, it is
always possible to by-pass them, rendering
them useless.

Therefore:

Commitment to configuration management by
the entire organization is the key to success of
configuration management.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 145

Typical Configured Items -1

• Requirements
• Specifications
• Design Documents
• Source Code
• Object Code
• Load Modules
• Tools

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 146

Typical Configured Items -2

• System Description
• Test Plans
• Test Suites
• User Manuals
• Maintenance Manuals
• Interface Control Documents
• Memory Maps

In other words, all deliverables!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 147

CM Library Functions

• Software Part Naming
• Configured Item Maintenance/Archiving
• Version Control
• Revision Control
• Preparation for Product Release

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 148

Variations vs. Revision

Variations can co-exist, e.g., different versions
of same program for two different CPUs or
OSs

A new revision replaces an older one.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 149

Types of Changes -1

• Disrepancies
- Requirements Errors
- Development Errors
- Violations of Standards

• Requested Changes
- Unimplementable Requirements
- Enhancements

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 150

Types of Changes -2

• Disrepancies — absolutely critical, cannot
go on without fixing

• Requested Changes — more voluntary, can
go on without fixing

Requested changes tend to be more
difficult than fixing disrepancies and tend
to have major impacts on other features if
carried out.

Disrepancies have major impacts if they
are not fixed.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 151

Implementing CM
• Fundamental principles
• CCB characteristics
• Hierarchies of CCBs
• Evaluating changes
• Disrepancy report (DR) evaluation
• Change request (CR) evaluation
• Simultaneous update problem
• Variations & revisions tree
• Tools for version control
• Tools for system building
• Trends of reporting
• Standards for CM plans

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 152

Fundamental Principles

Fundamental principles to guide configuration
control boards (CCBs):

• Principle of authority

• Principle of solitary responsibility

• Principle of specificity (assigning the DR or
CR to the right CCB)

As Jim Tomayko says, the CCB has to have
teeth (grrr!) or it will not work!

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 153

CCB Characteristics

Factors determining CCB characteristics:

• Hierarchies

• Scope

• Composition

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 154

Hierarchies of CCBs

Project CCB

Subsystem SubsystemSubsystem

A CCB B CCB C CCB

Subsystem C Subsystem C

Hardware CCB Software CCB

Inherited Original

Software CCBSoftware CCB

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 155

Evaluating Changes -1

Key factors in evaluating proposed changes:

• Size
• Complexity
• Date needed
• CPU and memory impact
• Cost
• Test requirements

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 156

Evaluating Changes -2

• Criticality of area involved
• Politics (customer/marketing desires)
• Approved changes already in progress
• Resources (skills/hardware/system)
• Impact and current and future work
• Is there an alternative?

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 157

Disrepancy Report (DR) Evaluation

DR submitted

DR logged

CCB waives DR?

Waiver document Development group makes change

Configured items updated

Y N

DR closure audited and logged

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 158

Change Request (CR) Evaluation

CR submitted

CR logged

CCB approves CR?

Development group makes change

Configured items updated

Y

CR closure audited and logged

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 159

Simultaneous Update Problem

16.7.94

Source

09:00
16.7.94

Source

10:00

Coder A
Coder B

09:15

09:35

09:20

09:27

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 160

Variations & Revisions Tree

1.0

1.1

1.2

2.0 2.0’

2.1"

Original Release

Upgrade

Upgrade

New Release

Upgrade &

still another
platform

another
platform

R
ev

is
io

n

Variation

variation for

Variation for

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 161

Tools for Version Control

Keeping track of versions and revisions tree

• SCCS

• RCS

• Domain

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 162

Tools for System Building

Describe the system and let the tool build it
according to description.

Description shows module dependencies: if A
includes B then recompilation of B forces
recompilation of A

• Shell scripts/batch files

• Make

• Domain

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 163

Trends of Reporting

CR

DR

Time into project

N
u

m
b

er
 o

f
re

p
o

rt
s

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 164

Standards for CM Plans

• IEEE (ANSI/IEEE 828-1983)

• MIL-STD-483A (Air Force)

• DoD-STD-2167

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 165

Legal Issues

• Intellectual Property Protection
• Liability and Warranty

Note that in all the following, laws exist,
agencies exist to administer various
protections, and courts have final say in
disputes over whether protections are
legitimate in any case.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 166

Intellectual Property

What is intellectual property?

Why is it important?

Pirating costs money and future advancement!

Three main ways to protect intellectual
property:
• Patent
• Copyright
• Trade Secret

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 167

Patent -1

Exclusive right to manufacture and sell
product meeting description of patent for fixed
number of years (about 50).

Get it by applying to national patent office and
showing that your invention meets
requirements and you were first to think of it.

Must disclose the full details of the invention,
but this is what you get the exclusive right to
produce and sell.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 168

Patent -2

Requirements for patentability:

• utility

• novelty

• non-obviousness

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 169

Patent -3

Excluded from patents:

• business systems

• printed matter

• mental steps

• algorithms

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 170

Patent -4

But Gottschalk vs. Benson 1972 granted
patent to an industrial process that included a
computer program to do process control that
is beyond human and mechanical capabilities.

So now there is a big flurry to patent
programs.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 171

Patent -5

Definition of algorithm:

• finite
• definite
• input
• output
• effective

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 172

Patent -6

Routines that are part of programmer’s normal
bag of tricks are being patented.

Patents can be challenged in courts and that
is the only defense against an improperly
granted patent.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 173

Copyright -1

Copyright is the exclusive right to publish
something written or performable for a fixed
number of years.

Protection is on expression and not idea, but
you cannot copyright something for which
there is only one expression, e.g., a formula.

Protection extends to derived works, e.g.,
obtained by translation.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 174

Copyright -3

Recently copyright has been extended to
software in any form, source or object.

The copy needed to run and a back up copy
are permitted when you license software;
copyright cannot prevent someone from using
object for its intended purpose or for personal
use.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 175

Copyright -3

Licensing vs. buying software.

Shrinkwrap licensing.

License usually prohibits reverse engineering
which is allowed by copyright law.

Big issue in courts now: is output generated
by programs copyrightable, e.g., look and
feel?

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 176

Trade Secret -1

Problem with both patent and copyright: you
have to disclose secrets.

Can go trade secret route.

Laws exist to protect secrets obtained unfairly
or fraudulently if you take active steps to
protect them.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 177

Trade Secret -2

Active steps:

• Security at plant
• Non-disclosure agreements for employees
• Non-disclosure agreements with potential

customers
• Licensing agreements that specify no

reverse engineering and non-disclosure of
secrets discovered while using

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 178

Trade Secret -3

Caveat: You lose the protection of the law if
the usurper of the secret can show that you
have not been diligent in protecting the secret
or have given it out without limits.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 179

Liability and Warranty -1

Liability: You are responsible for the effects of
your actions and products and can be made to
pay for damages that result, and sometimes
punitive damages if it can be shown that you
were willfully negligent

Warranty: Claim, backed by right to return a
product at no cost to consumer, of capability,
suitability, or fitness of the product for its
stated or intended purpose.

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 180

Liability and Warranty -2

Protection from liability:

• Limited warranty

• Disclaimers

• Limit of remedy

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 181

Liability and Warranty -3

Definition of fraud:

• Misrepresentation of a capability
• Using the user as a beta site
• Misrepresentation of suitability or fitness
• Misrepresentation of time or management

or money savings

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 182

Liability and Warranty -4

• Express warranty

• Implied warranty

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 183

Liability and Warranty -5

Concept of unconscionability

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 184

Liability and Warranty -6

Differentiate between

• goods

• services

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 185

Liability and Warranty -7

• Professional liability

• Product liability

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 186

Liability and Warranty -8

Warranty protection for computer systems:

• hardware

• off-the-shelf software

• custom software

 1994 Daniel M. Berry Software Enginering Software Project Management Pg. 187

