Software Reuse

Software Engineering Course
Given by: Arnon Netzer

What is reuse?
To use parts of one product in another product with a different function.

What can be reused?
code, documentation, design, testing,
anything

Is porting an example of reuse?
NO!!
How Reuse Happens?

- *accidental reuse*: when a part turns out to be reusable by accident.
- *deliberate reuse*: when a part is purposely built for possible reuse.

Obvious Reuse Examples:

- Cut & Paste (*accidental reuse*).
- *Visual Basic* - a system that generates code automatically using built-in reusable modules.
- *stdio.h* - subroutine libraries are bunches of reusable modules.
Advanced Reuse Examples:

- Hopefully - An organization saves and reuses code modules it has developed itself.
- Utopically - Organizations sell each other modules for reuse.

Purpose of Reuse

- Cheaper products
- Better quality products
Cheaper products ?!!

- Shorter development time.
- Increase productivity.
- Decrease testing domain.
- Easier maintenance.

Better quality products !!?

Code that was written for reuse:
- Has better specifications.
- Is more thoroughly tested.

Software utilizing reused code has to be:
- Better specified.
- Well standardized.
- Organized.
Drawbacks of Reuse

- Code designed for reuse is more expensive to create.
- Integrating reusable code introduces an overhead in the development process.
- Maintaining the reusable resources requires added mechanisms.

How to Create Reusable Code
Problem Domain Vs. Solution Domain

- Designs which attempt to adhere as closely as possible to the structure of the problem (application) domain are said to be application-driven.
- Designs which attempt to simplify the solution are said to be solution-driven.

Problem Domain Design

- Design that well describes one application space, should be able to fit a similar application space with minimal design adjustment.
- Small and localized change in the original problem specification should result in a small and localized change in the object-oriented design.
Spanning the Problem Domain

- Design software that spans as wide a region of the problem space as possible.
- Regard the properties and behavior of the object rather than the functionalities you currently need.

How to Use Reusable Code
Inheritance

class GeometricObject {
 Point position; // center of object
 Point bbox; // bounding box
 angle orientation; // orientation
public:
 void move(Point r); // abs. translate
 void rotate(double angle); // abs. angle
 virtual void draw(); // display on screen
 // etc...
};

class Rectangle : public GeometricObject {
 // etc...
};

Composition

Composition is the process of composing a class object out of several object of other related classes.

class Stack {
 List list;
public:
 int push(char *s) {
 return list.add(s);
 }
 char *pop() {
 return list.removeAt(List::First);
 }
 int size() {
 return list.size();
 }
};
Effects of Reuse on Quality Productivity and Economics

Metrics collected on two case studies at Hewlett-Packard.

1st case study-Overview

● The study was done in the Manufacturing Productivity section of HP’s Software Technology Division.
● The MP section produces large-application software for manufacturing resource planning.
● The study was started in 1983.
1st case study - Technical Data

- Reuse was done on application source code etc.
- Total reusable code size was 55,000 lines of noncomment source statements.
- The code was written in Pascal and SPL.

2nd case study - Overview

- The study was done in the San Diego Technical Graphics Division of HP.
- The STG develops applications for plotters and printers.
- The study was started in 1987.
2nd case study - Technical Data

- Reuse was done on application source code etc.
- Total reusable code size was 20,000 lines of noncomment source statements.
- The code was written in C.

Code Quality
Coding Productivity

![Bar chart showing Thousand of non-comment-source statements / month for MP and STG]

Additional Effort in Creating Reusable Code in STG

![Bar chart showing Percent increase across different activities: analysis, design, coding, testing, main-tenance, total]

- New code only
- Reused & new code
Reuse Case Study - Economics

<table>
<thead>
<tr>
<th></th>
<th>MP</th>
<th>STG</th>
</tr>
</thead>
<tbody>
<tr>
<td>start-up resources</td>
<td>26 engineering</td>
<td>107 engineering</td>
</tr>
<tr>
<td>required</td>
<td>months $0.3 million</td>
<td>months $1.4 million</td>
</tr>
<tr>
<td>Ongoing resources</td>
<td>54 engineering</td>
<td>99 engineering</td>
</tr>
<tr>
<td>required</td>
<td>months $0.7 million</td>
<td>months $1.2 million</td>
</tr>
<tr>
<td>Gross cost</td>
<td>80 engineering</td>
<td>206 engineering</td>
</tr>
<tr>
<td></td>
<td>months $1.0 million</td>
<td>months $2.6 million</td>
</tr>
<tr>
<td>Gross savings</td>
<td>328 engineering</td>
<td>446 engineering</td>
</tr>
<tr>
<td></td>
<td>months $4.1 million</td>
<td>months $5.6 million</td>
</tr>
<tr>
<td>Return on investment</td>
<td>410%</td>
<td>216%</td>
</tr>
<tr>
<td>Break even year</td>
<td>2(^{nd}) year</td>
<td>6(^{th}) year</td>
</tr>
</tbody>
</table>