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Paper Overview

= Why we need Requirement Engineering for Machine Learning?

To have more efficient communication with the other team

Ensure the data meet desired property for ML systems

Specify clear and measurable objectives for LM.

Document and manage requirements throughout the system's lifecycle.
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Paper Overview

» Requirements is always there, why RE?
= Need to find a way to make sure requirements are met.

= This paper we aim to solve this problem by find a way that is

= Quantifiable
= Meaningful

= Cost-efficient
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Paper Overview

= Problem Statement

= Given a set of requirement, we want to create a quantitative framework to

evaluate the fulfillment of requirements.
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Assumption

= ML System

= Addressing models in the context of multi linear regression

= Requirements

= Only look at the Predetermined Requirements defined later
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Requirements

= Common Requirement in ML project

= Data Requirements
= Performance Requirements

= Maintainability Requirements.
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Data Requirements

Data Availability

= Sufficient data availability is a prerequisite for ML projects.

Data Quality

= Ensuring high-quality data is vital, as it directly influences the model's performance.

Data Balance

= Make sure the data does not contain class imbalance.

» ¢«

Problem is that defining the term “Sufficient”, “High-quality” and “Balance” can be subjective.
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Data Requirements

= Solution:
= Collaboration with Domain Experts: Ask domain experts to define those terms for us.
= Not Cost-efficient, does not scale

= Standardized Metrics: Establish standardized metrics and guidelines for data availability, data

quality, and data privacy.

= Objectivity, Scalability, and Consistency
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Metrics for Data Quality

= Data Availability

= To estimate the number of sample we need, we can calculate confidence interval limits
= Data Quality

= To ensuring the data’s quality, we can ensure the data meet some properties.

= For Multi-Linear Regression, the desire properties are: Normality of residuals, No multicollinearity

and no functional misspecification.

= Data Balance

= To ensure data balance, we can ensure data have the same number of samples for each class
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Metrics for Data Quality

« Data Availability Jniimited population:
Cl= ptzx [HAD

n

= Formula of CI:

Finite population:

cr=ptzx Jp(l P) o N—n
where
. Z is z score
= To calculate the sample si1ze, p is the population proportion
n and n' are sample size
N is the population size

o Y =
- . z“Xp(1-p)
Unlimited population: n = -
£
- . r_ n
Finite population: N = 1L22xﬁ(1—ﬁ)
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Metrics for Data Quality

= Data Quality - To Check:

= Normality of residuals - Shapiro-Wilk Test

= If p-value is greater than the significance level (0.05), the normality assumption is satisfied.
= No multicollinearity - Variance Inflation Factor (VIF)

= If VIF values is less than 5, no multicollinearity assumption is satisfied.
= No functional misspecification - RESET (Regression Specification Error Test)

= If p-value is greater than the significance level (0.05), no strong evidence of functional misspecification
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Metrics for Data Quality

= Data Balance:

= Use automation tool compute the sample counts for each class
= Reject the data if the counts are not equal for all classes.

= Otherwise, approve the data.
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Performance Requirements

Accuracy

= Achieve a good accuracy on the test set

Training time

= To be able to finish training in a short time

Testing time

= Model is able to give out a result in a short time

» <«

Problem: What is “good accuracy”, “short time”?
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Metrics for Performance Requirements

= Accuracy
= We define that in MLR, a good accuracy means the MSE value is smaller than 0.05.
= Training time

= We define that in MLR, a short training time means the time it takes to train a model is less

than 1 hour
= Testing time

= We define that in MLR, a short testing time means the time it takes to test one data point is

less than 10mins
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Metrics for Performance Requirements

= Accuracy - MSE value is smaller than 0.05

= The train-test split we will use is 0.8 to 0.2.

= MSE (Mean Squared Error) < 0.05

= means the squared difference between each predicted value and its actual value is less than 0.05.

= After testing, if the MSE value is strictly less than 0.05, we say our model has a good accuracy.
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*
Metrics for Performance Requirements

= Training time & Testing time
= We will use the time function to measure the time it takes.
= The machine we will use is the standard setup of the author’s machine.

= After training and testing, if the training time it takes is strictly less than 1h, we say our model
has a short training time; if the testing time it takes is strictly less than 10mins, we say our

model has a short testing time .
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Maintainability Requirements

= Documentation

= We want to have explanation on every function in the code

= Code Commenting

= A good maintainability measure is that we have lots of comment to

explain what each line is doing
= Code Quality

= The code is both easy to understand and straight forward
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Metrics for Maintainability Requirements

« Documentation

= We define a good documentation means

= V functions f, 3 a comment C such that C explains the behavior of {

» Code Commenting

= We define a project as 'well-commented' if and only if the number of lines containing comments is

greater than one third of the total number of lines in the project.

= Code Quality

= We define a project with high code quality means that each commit is reviewed by at least two people.
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Maintainability Requirements

= Documentation

= To check if the requirement is meet, we will use automation tool to detect if there is a

comment block before every function in the code.

» If we did not detect comment block before a function
» Return Bad Documentation

= Otherwise, return Good Documentation.
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Maintainability Requirements

= Code Commenting

= To check if the requirement is meet, we will use automation tool to count the number of

line that has comments ¢, and total number of lines n, in the project.

= Ifn/3 > c:
» Return Not well-commented

= Otherwise, return well-commented
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Maintainability Requirements

= Code Quality

= To check if the requirement is meet, we will set up the git tool, to ask for two person’s

approval before merge request into the main.

= With this setup, we can say that each commit is reviewed by at least two people
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Conclusion

= RE is an important part of ML

= We need this framework to evaluate the fulfillment of requirements objectively.

= With Stats method and modern tool, we can find a solution to measure/ensure the

fulfillment of the requirement.
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*
Future Work

= Expand the framework to apply it to more requirements.
= Eliminate the hard threshold we set up with some methods that can be justify.

= Do experiments to testing this system:

= Cost it takes to use this framework.
= Friendliness of using this framework

= Effectiveness to maintain the requirement of the project as it grows larger
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Thank You!
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0&A Session
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