Do Information Retrieval Algorithms
for Automated Traceability Perform Effectively
on Issue Tracking System Data?

Thorsten Merten'®™) | Daniel Kréimer!, Bastian Mager!, Paul Schell’,
Simone Biirsner!, and Barbara Paech?

! Department of Computer Science, Bonn-Rhein-Sieg University of Applied Sciences,
Sankt Augustin, Germany
{thorsten.merten,simone.buersner}@h-brs.de,

{daniel .kraemer.2009w,bastian.mager.2010w,
paul.schell.2009w}@informatik.h-brs.de
2 Institute of Computer Science, University of Heidelberg, Heidelberg, Germany
paech@informatik.uni-heidelberg.de

Abstract. [Context and motivation] Traces between issues in issue
tracking systems connect bug reports to software features, they connect
competing implementation ideas for a software feature or they iden-
tify duplicate issues. However, the trace quality is usually very low.
To improve the trace quality between requirements, features, and bugs,
information retrieval algorithms for automated trace retrieval can be
employed. Prevailing research focusses on structured and well-formed
documents, such as natural language requirement descriptions. In con-
trast, the information in issue tracking systems is often poorly struc-
tured and contains digressing discussions or noise, such as code snippets,
stack traces, and links. Since noise has a negative impact on algorithms
for automated trace retrieval, this paper asks: [Question/Problem)]
Do information retrieval algorithms for automated traceability perform
effectively on issue tracking system data? [Results] This paper presents
an extensive evaluation of the performance of five information retrieval
algorithms. Furthermore, it investigates different preprocessing stages
(e.g. stemming or differentiating code snippets from natural language)
and evaluates how to take advantage of an issue’s structure (e.g. title,
description, and comments) to improve the results. The results show
that algorithms perform poorly without considering the nature of issue
tracking data, but can be improved by project-specific preprocessing and
term weighting. [Contribution] Our results show how automated trace
retrieval on issue tracking system data can be improved. Our manually
created gold standard and an open-source implementation based on the
OpenTrace platform can be used by other researchers to further pursue
this topic.

Keywords: Issue tracking systems - Empirical study - Traceability -
Open-source

© Springer International Publishing Switzerland 2016
M. Daneva and O. Pastor (Eds.): REFSQ 2016, LNCS 9619, pp. 45-62, 2016.
DOI: 10.1007/978-3-319-30282-9_4

dberry
Highlight

dberry
Highlight

dberry
Highlight

48 T. Merten et al.

which algorithm performs best with a certain data set without experimenting,
although BM25 is often used as a baseline to evaluate the performance of new
algorithms for classic IR applications such as search engines [2, p. 107].

2.2 Measuring IR Algorithm Performance for Trace Retrieval

IR algorithms for trace retrieval are typically evaluated using the recall (R) and
precision (P) metrics with respect to a reference trace matrix. R measures the
retrieved relevant links and P the correctly retrieved links:

CorrectLinks N RetrievedLinks CorrectLinks N RetrievedLinks
R = , P= - -
RetrievedLinks
(2)

CorrectLinks

Since P and R are contradicting metrics (R can be maximized by retrieving
all links, which results in low precision; P can be maximised by retrieving only
one correct link, which results in low recall) the Fjg-Measure as their harmonic
mean is often employed in the area of traceability. In our experiments, we com-
puted results for tha—k| measure, which balances P and R, as well as F5, which
emphasizes recall:

(1 + 3%) x Precision x Recall

Fs =
d (62 x Precision) + Recall

3)

Huffman Hayes et al. [13] define acceptable, good and excellent P and R ranges.
Table 3 extends their definition with according F; and F, ranges. The results
section refers to these ranges.

2.3 Issue Tracking System Data Background

At some point in the software engineering (SE) life cycle, requirements are com-
municated to multiple roles, like project managers, software developers and,
testers. Many software projects utilize an ITS to support this communication
and to keep track of the corresponding tasks and changes [28]. Hence, require-
ment descriptions, development tasks, bug fixing, or refactoring tasks are col-
lected in ITSs. This implies that the data in such systems is often uncategorized
and comprises manifold topics [19].

The NL data in a single issue is usually divided in at least two fields: A
title (or summary) and a description. Additionally, almost every ITS supports
commenting on an issue. Title, description, and comments will be referred to
as ITS data fields in the remainder of this paper. Issues usually describe new
software requirements, bugs, or other development or test related tasks. Figure 1
shows an excerpt of the title and description data fields of two issues, that both
request a new software feature for the Redmine project. It can be inferred from
the text, that both issues refer to the same feature and give different solution
proposals.

3 Figurel intentionally omits other meta-data such as authoring information, date-
and time-stamps, or the issue status, since it is not relevant for the remainder of this

paper.

dberry
Highlight

dberry
Sticky Note
but not strongly enough!

50 T. Merten et al.

or comments represent only hasty notes meant for a developer — often without
forming a whole sentence. In contrast, RAs typically do not contain noise and
NL is expected to be correct, consistent, and precise. Furthermore, structured
RAs are subject to a specific quality assurance® and thus their structure and NL
is much better than ITS data.

Since IR algorithms compute the text similarity between two documents,
spelling errors and hastily written notes that leave out information, have a neg-
ative impact on the performance. In addition, the performance is influenced
by source code which often contains the same terms repeatedly. Finally, stack
traces often contain a considerable amount of the same terms (e.g. Java package
names). Therefore, an algorithm might compute a high similarity between two
issues that refer to different topics if they both contain a stack trace.

3 Related Work

Borg et al. conducted a systematic mapping of trace retrieval approaches [3].
Their paper shows that much work has been done in trace retrieval between
RA, but only few studies use ITS data. Only one of the reviewed approaches
in [3] uses the BM25 algorithm, but VSM and LSA are used extensively. This
paper fills both gaps by comparing VSM, LSA, and three variants of BM25
on unstructured ITS data. [3] also reports on preprocessing methods saying that
stop word removal and stemming are most often used. Our study focusses on the
influence of I'TS-specific preprocessing and ITS data field-specific term weighting
beyond removing stop words and stemming. Gotel et al. [10] summarize the
results of many approaches for automated trace retrieval in their roadmap paper.
They recognize that results vary largely: “[some] methods retrieved almost all
of the true links (in the 90 % range for recall) and yet also retrieved many false
positives (with precision in the low 10-20 % range, with occasional exceptions).”
We expect that the results in this paper will be worse, as we investigate in issues
and not in structured RAs.

Due to space limitations, we cannot report on related work extensively and
refer the reader to [3,10] for details. The experiments presented in this paper
are restricted to standard IR text similarity methods. In the following, extended
approaches are summarized that could also be applied to ITS data and/or com-
bined with the contribution in this paper: Nguyen et al. [21] combine multiple
properties, like the connection to a version control system to relate issues. Gervasi
and Zowghi [8] use additional methods beyond text similarity with requirements
and identify another affinity measure. Guo et al. [11] use an expert system to
calculate traces automatically. The approach is very promising, but is not fully
automated. Sultanov and Hayes [29] use reinforcement learning and improve the
results compared to VSM. Niu and Mahmoud [22] use clustering to group links
in high-quality and low-quality clusters respectively to improve accuracy. The
low-quality clusters are filtered out. Comparing multiple techniques for trace
retrieval, Oliveto et al. [23] found that no technique outperformed the others.

5 Dag and Gervasi [20] surveyed automated approaches to improve the NL quality.

o)

dberry
Highlight

dberry
Sticky Note
Related work's best is

R = .9, P = .1
to
R = .9, P = .2

dberry
Sticky Note
P	R	F_1	F_2	F_5	F_10

.1	.9	0.18	0.35	0.69	0.83
.2	.9	0.33	0.53	0.79	0.87

52 T. Merten et al.

Table 1. Project characteristics

c:geo Lighttpd Radiant Redmine
Software Type Android app HTTP server content mgmt. system ITS
Audience consumer technician consumer / developer hoster / developer
Main programming lang. Java C Ruby Ruby
ITS GitHub Redmine GitHub Redmine
ITS Usage ad-hoc structured ad-hoc very structured
ITS size (in # of issues) ~ 3850 ~ 2900 ~ 320 ~ 19.000
Open issues ~ 450 ~ 500 ~ 50 ~ 4500
Closed issues ~ 3400 ~ 2400 ~ 270 ~ 14.500
Sample size 100 ~ 3% 100~ 3% 100 ~ 30% 100 < 1%
Sampled issues with link ~ 50% ~ 20% ~ 12% ~ 70%
Issues labeled explicitly as 25F/26B 30F/70B 0F/0B 31F/61B
Feature or Bug in sample
Project size (in LOC) ~ 130,000 ~ 41,000 ~ 33,000 ~ 150,000

Researched Projects and Project Selection. The data used for the experiments
in this paper was taken from the following four projects:

— c:geo, an Android application to play a real world treasure hunting game.
— Lighttpd, a lightweight web server application.

— Radiant, a modular content management system.

— Redmine, an ITS.

The projects show different characteristics with respect to the software type,
intended audience, programming languages, and ITS. Details of these character-
istics are shown in Table 1. c:geo and Radiant use the GitHub ITS and Redmine
and Lighttpd the Redmine ITS. Therefore, the issues of the first two projects are
categorized by tagging, whereas every issue of the other projects is marked as a
feature or a bug (see Table1). c:geo was chosen because it is an Android appli-
cation and the ITS contains more consumer requests than the other projects.
Lighttpd was chosen because it is a lightweight web server and the ITS con-
tains more code snippets and noise than the other projects. Radiant was chosen
because its issues are not categorized as feature or bug at all and it contains
fewer issues than the other projects. Finally, Redmine was chosen because it is
a very mature project and ITS usage is very structured compared to the other
projects. Some of the researchers were already familiar with these projects, since
we reported on ITS NL contents earlier [19].

Gold Standard Trace Matrices. The first, third, and fourth author created the
gold standard trace matrices (GSTM). For this task, the title, description, and
comments of each issue was manually compared to every other issue. Since 100
issues per project were extracted, this implies w — 50 = 4950 manual
comparisons. To have semantically similar gold standards for each project, a
code of conduct was developed that prescribed e.g. when a generic trace should
be created (as defined in Sect. 2.3) or when an issue should be treated as duplicate
(the description of both issues describes exactly the same bug or requirement).

and
on to
next

page

dberry
Highlight

Do Information Retrieval Algorithms for Automated Traceability 53

Table 2. Extracted traces vs. gold standard Table 3. Evaluation measures adapted

from [13]
Projects
of relations c:geo|Lighttpd |Radiant | Redmine Acceptable Good Excellent
DTM generic 59 |11 8 60 0.6 <r<0.7 0.7<r<0.8 r>0.8
GSTM generic 102 |18 55 94 0.2<p<0.3 0.3<p<04 p > 0.4
GSTM duplicates| 2 | 3 - 5 0.2 < Fy <0.42 (042 < Fy < 0.53|F; > 0.53
Overlapping 30 | 9 5 45 0.43 < Fy < 0.55|0.55 < Fy < 0.66| Fp > 0.66

Since concentration quickly declines in such monotonous tasks, the comparisons @
were aided by a tool especially created for this purpose. It supports defining
related and unrelated issues by simple keyboard shortcuts as well as saving and
resuming the work. At large, a GSTM for one project was created in two and a
half business days.

In general the GSTMs contain more traces than the DTMs (see Table 2). A
manual analysis revealed that developers often missed (or simply did not want
to create) traces or created relations between issues that are actually not related.
The following examples indicate why GSTMs and DTMs differ: (1) Eight out
of the 100 issues in the c:geo dataset were created automatically by a bot that
manages translations for internationalization. Although these issues are related,
they were not automatically marked as related. There is also a comment on how
internationalization should be handled in issue (#4950). (2) Some traces in the
Redmine based projects do not follow the correct syntax and are therefore missed
by a parser. (3) Links are often vague and unconfirmed in developer traces. E.g.
c:geo #5063 says that the issue “could be related to #4978 [...] but I couldn’t
find a clear scenario to reproduce this”. We also could not find evidence to mark
these issues as related in the gold standard but a link was already placed by the
developers. (4) Issue #5035 in c:geo contains a reference to #3550 to say that a
bug occurred before the other bug was reported (the trace semantics in this case
is: “occurred likely before”). There is, however, no semantics relation between
the bugs, therefore we did not mark these issues as related in the gold standard.
(5) The Radiant project simply did not employ many manual traces.

5.2 Tools

The experiments are implemented using the OpenTrace (OT) [1] framework. OT
retrieves traces between NL RAs and includes means to evaluate results with
respect to a reference matrix.

OT utilizes IR implementations from Apache Lucene” and it is implemented
as an extension to the General Architecture for Text Engineering (GATE) frame-
work [6]. GATE’s features are used for basic text processing and pre-processing
functionality in OT, e.g. to split text into tokens or for stemming. To make both
frameworks deal with ITS data, some changes and enhancements were made to

" https://lucene.apache.org.

https://lucene.apache.org
dberry
Highlight

dberry
Sticky Note
On the basis of this highlighted information about the construction of the GSTM, I can estimate the time to find an average link and the time for each comparison and determine that \beta = 49.5! so round down and use F_49, NOT F_2, to accurately weight recall over precision

54 T. Merten et al.

Table 4. Data fields weights (1), algorithms and preprocessing settings (r)

Weight Rationale / Hypothesis Algorithm Settings
Title Description Comments Code BM25 Pure, +, L
1 1 1 1 Unaltered algorithm VSM TF-IDF
1 1 1 0 — without considering code LSI cos measure
1 1 0 0 — also without comments))
2 1 1 1 Title more important Preprocessing Settings
2 1 1 0 — without considering code Standard
1 2 1 1 Description more important Stemming on/off
1 1 1 2 Code more important Stop Word Removal on/off
8 4 2 1 Most important information first ITS-specific
4 2 1 0 — without considering code Noise Removal on/off
2 1 0 0 — also without comments Code Extraction on/off

OT: (1) refactoring to make it compatible with the current GATE version (8.1),
(2) enhancement to make it process ITS data fields with different term weights,
and (3) development of a framework to configure OT automatically and to run
experiments for multiple configurations. The changed source code is publicly
available for download®.

5.3 Algorithms and Settings

For the experiment, multiple term weighting schemes for the ITS data fields and
different preprocessing methods are combined with the IR algorithms VSM, LSI,
BM25, BM254, BM25L. Beside stop word removal and stemming, which we will
refer to as standard preprocessing, we employ ITS-specific preprocessing. For the
ITS-specific preprocessing, noise (as defined in Sect.2) was removed and the
regions marked as code were extracted and separated from the NL. Therefore,
term weights can be applied to each ITS data field and the code. Table4 gives
an overview of all preprocessing methods (right) and term weights as well as
rationales for the chosen weighting schemes (left).

6 Results

We compute trace; with different thresholds ¢ in order to maximize precision,
recall, Iy and F, measure. Results are presented as F5 and F; measure in general.
However, maximising recall is often desirable in practice, because it is simpler
to remove wrong links manually than to find correct links manually. Therefore,
R with corresponding precision is also discussed in many cases.

As stated in Sect. 5.1, a comparison with the GSTM results in more authen-
tic and accurate measurements than a comparison with the DTM. It also yields
better results: F} and Fy both increase about 9% in average computed on the

8 http://www2.inf.h-brs.de/~tmerte2m — In addition to the source code, gold stan-
dards, extracted issues, and experiment results are also available for download.

http://www2.inf.h-brs.de/~tmerte2m
dberry
Highlight

dberry
Sticky Note
You said it, not I! but you did not follow your own advice strongly enough with F_2!!

Do Information Retrieval Algorithms for Automated Traceability 55

unprocessed data sets. A manual inspection revealed that this increase material-
izes due to the flaws in the DTM, especially because of missing traces. Therefore,
the results in this paper are reported in comparison with the GSTM.

6.1 IR Algorithm Performance on ITS Data

Figure2 shows an evaluation of all algorithms with respect to the GSTMs for
all projects with and without standard preprocessing. The differences per project
are significant with 30 % for Fy and 27% for F5. It can be seen that standard
preprocessing does not have a clear positive impact on the results. Although, if
only slightly, a negative impact on some of the project/algorithm combinations
is noticeable. On a side note, our experiment supports the claim of [12], that
removing stop-words is not always beneficial on ITS data: We experimented
with different stop word lists and found that a small list that essentially removes
only pronouns works best.
n terms of algorithms, to our surpris¢, no variant of BM25 competed for the
The best F5 measures of all BM25 variants varied from 0.09 to 0.19
over all projects, independently of standard preprocessing. When maximizing R
to 1, P does not cross a 2% barrier for any algorithm. Even for R > 0.9, P is @
still < 0.05. All in all, the results are not good according to Table 3, indepen-
dently of standard preprocessing, and they cannot compete with related work
on structured RAs.

0.5

0.4

0.3

0.2

0.1

c:geo U Owith preprocessing L' 1 without preprocessing
Lighttpd B B with preprocessing B B without preprocessing
Radiant 0 O with preprocessing ¢ 2 without preprocessing
Redmine B B with preprocessing B ¥ without preprocessing

Fig. 2. Best F1 (left) and I (right) scores for every algorithm

Although results decrease slightly in a few cases, the negative impact is negli-
gible. Therefore, the remaining measurements are reported with the standard
preprocessing techniques enabled®.

9 In addition, removing stop words and stemming is considered IR best practices,
e.g. [2,17].

dberry
Rectangle

dberry
Rectangle

dberry
Highlight

dberry
Highlight

dberry
Sticky Note
you are more pessimistic than you need to be!

dberry
Sticky Note
My god.. you're kidding me! with R = 1, this is GREAT!!! fantastic!!! and you're not happy?

you need to use F_49

dberry
Highlight

dberry
Sticky Note
Yes, they can compete. If you use F_49, not only do they compete, but they win hands down!

P	R	F_1 	F_2 	F_49

.1	.9	0.18 	0.350	0.90 (0.897)
.2	.9	0.33 	0.530	0.90 (0.899)

.02	1	0.039	0.093	0.98

	Do Information Retrieval Algorithms for Automated Traceability Perform Effectively on Issue Tracking System Data?
	1 Introduction
	2 Background
	2.1 Information Retrieval Background
	2.2 Measuring IR Algorithm Performance for Trace Retrieval
	2.3 Issue Tracking System Data Background
	2.4 Impact of ITS Data on IR Algorithms

	3 Related Work
	4 Research Questions
	5 Experiment Setup
	5.1 Data Preparation
	5.2 Tools
	5.3 Algorithms and Settings

	6 Results
	6.1 IR Algorithm Performance on ITS Data
	6.2 Influence of ITS-specific Preprocessing and Weighting
	6.3 Influence of Trace Types and Issue Types
	6.4 Results per Project and Overall Discussion

	7 Threats to Validity
	8 Conclusion and Future Work
	References

