
RE 2015

On the automatic classification of app reviews

Walid Maalej1 • Zijad Kurtanović1 • Hadeer Nabil2 • Christoph Stanik1

Received: 14 November 2015 / Accepted: 26 April 2016 / Published online: 14 May 2016

� Springer-Verlag London 2016

Abstract App stores like Google Play and Apple AppS-

tore have over 3 million apps covering nearly every kind of

software and service. Billions of users regularly download,

use, and review these apps. Recent studies have shown that

reviews written by the users represent a rich source of

information for the app vendors and the developers, as they

include information about bugs, ideas for new features, or

documentation of released features. The majority of the

reviews, however, is rather non-informative just praising

the app and repeating to the star ratings in words. This

paper introduces several probabilistic techniques to classify

app reviews into four types: bug reports, feature requests,

user experiences, and text ratings. For this, we use review

metadata such as the star rating and the tense, as well as,

text classification, natural language processing, and senti-

ment analysis techniques. We conducted a series of

experiments to compare the accuracy of the techniques and

compared them with simple string matching. We found that

metadata alone results in a poor classification accuracy.

When combined with simple text classification and natural

language preprocessing of the text—particularly with

bigrams and lemmatization—the classification precision

for all review types got up to 88–92 % and the recall up to

90–99 %. Multiple binary classifiers outperformed single

multiclass classifiers. Our results inspired the design of a

review analytics tool, which should help app vendors and

developers deal with the large amount of reviews, filter

critical reviews, and assign them to the appropriate

stakeholders. We describe the tool main features and

summarize nine interviews with practitioners on how

review analytics tools including ours could be used in

practice.

Keywords User feedback � Review analytics � Software
analytics � Machine learning � Natural language
processing � Data-driven requirements engineering

1 Introduction

Nowadays it is hard to imagine a business or a service that

does not have any app support. In July 2014, leading app

stores such as Google Play, Apple AppStore, and Windows

Phone Store had over 3 million apps.1 The app download

numbers are astronomic with hundreds of billions of

downloads over the last 5 years [9]. Smartphone, tablet,

and more recently also desktop users can search the store

for the apps, download, and install them with a few clicks.

Users can also review the app by giving a star rating and a

text feedback.

Studies highlighted the importance of the reviews for the

app success [22]. Apps with better reviews get a better

ranking in the store and with it a better visibility and higher

sales and download numbers [6]. The reviews seem to help

users navigate the jungle of apps and decide which one to

use. Using free text and star rating, the users are able to

express their satisfaction, dissatisfaction or ask for missing

features. Moreover, recent research has pointed the

potential importance of the reviews for the app developers

and vendors as well. A significant amount of the reviews

& Walid Maalej

maalej@informatik.uni-hamburg.de

1 Department of Informatics, University of Hamburg,

Hamburg, Germany

2 German University of Cairo, Cairo, Egypt

1 http://www.statista.com/statistics/276623/number-of-apps-avail

able-in-leading-app-stores/.

123

Requirements Eng (2016) 21:311–331

DOI 10.1007/s00766-016-0251-9

Walid: please look at my highlightings and added stickies. Look in particular at the sticky I attached to
highlighted text on page 321 (11 or 21).
 Dan

http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0251-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0251-9&domain=pdf

From the collected data, we randomly sampled a subset

for the manual labeling as shown in Table 2. We selected

1000 random reviews from the Apple store data and 1000

from the Google store data. To ensure that enough reviews

with 1, 2, 3, 4, and 5 stars are sampled, we split the two

1000-review samples into 5 corresponding subsamples

each of size 200. Moreover, we selected 3 random Android

apps and 3 iOS apps from the top 100 and fetched their

reviews between 2012 and 2014. From all reviews of each

app, we randomly sampled 400. This led to additional 1200

iOS and 1200 Android app-specific reviews. In total, we

had 4400 reviews in our sample.

For the truth set creation, we conducted a peer, manual

content analysis for all the 4400 reviews. Every review in

the sample was assigned randomly to 2 coders from a total

of 10 people. The coders were computer science master

students, who were paid for this task. Every coder read

each review carefully and indicated its types: bug report,

feature request, user experience, or rating. We briefed the

coders in a meeting, introduced the task, the review types,

and discussed several examples. We also developed a

coding guide, which describes the coding task, defines

precisely what each type is, and lists examples to reduce

disagreements and increase the quality of the manual

labeling. Finally, the coders were able to use a coding tool

(shown on Fig. 1) that helps to concentrate on one review

at once and to reduce coding errors. If both coders agreed

on a review type, we used that label in our golden standard.

A third coder checked each label and solved the dis-

agreements for a review type by either accepting the pro-

posed label for this type or rejecting it. This ensured that

the golden set contained only peer-agreed labels.

In the third phase, we used the manually labeled reviews

to train and to test the classifiers. A summary of the

experiment data is shown in Table 3. We only used

reviews, for which both coders agreed that they are of a

certain type or not. This helped that a review in the cor-

responding evaluation sample (e.g., bug reports) is labeled

correctly. Otherwise training and testing the classifiers on

unclear data will lead to unreliable results. We evaluated

the different techniques introduced in Sect. 2, while vary-

ing the classification features and the machine learning

algorithms.

We evaluated the classification accuracy using the

standard metrics precision and recall. Precisioni is the

fraction of reviews that are classified correctly to belong to

type i. Recalli is the fraction of reviews of type i which are

classified correctly. They were calculated as follows:

Precisioni ¼
TPi

TPi þ FPi

Recalli ¼
TPi

TPi þ FNi

ð1Þ

TPi is the number of reviews that are classified as type i

and actually are of type i. FPi is the number of reviews

that are classified as type i but actually belong to another

type j where j 6¼ i. FNi is the number of reviews that are

classified to other type j where j 6¼ i but actually belong to

type i. We also calculated the F-measure (F1), which is

the harmonic mean of precision and recall providing a

single accuracy measure. We randomly split the truth set

at a ratio of 70:30. That is, we randomly used 70 % of the

data for the training set and 30 % for the test set. Based on

the size of our truth set, we felt this ratio is a good trade-

off for having large-enough training and test sets. More-

over, we experimented with other ratios and with the

cross-validation method. We also calculated how infor-

mative the classification features are and ran paired t tests

to check whether the differences of F1-scores are statis-

tically significant.

The results reported in Sect. 4 are obtained using the

Monte Carlo cross-validation [38] method with 10 runs and

random 70:30 split ratio. That is, for each run, 70 % of the

truth set (e.g., for true positive bug reports) is randomly

selected and used as a training set and the remaining 30 %

is used as a test set. Additional experiments data, scripts,

and results are available on the project Web site: http://

mast.informatik.uni-hamburg.de/app-review-analysis/.

4 Research results

We report on the results of our experiments and compare

the accuracy (i.e., precision, recall, and F-measures) as

well as the performance of the various techniques.

4.1 Classification techniques

Table 4 summarizes the results of the classification tech-

niques using Naive Bayes classifier on the whole data of

the truth set (from the Apple AppStore and the Google Play

Store). The results in Table 4 indicate the mean values

obtained by the cross-validation for each single combina-

tion of classification techniques and a review type. The

Table 2 Overview of the evaluation data

App(s) Category Platform #Reviews Sample

1100 apps All iOS Apple 1,126,453 1000

Dropbox Productivity Apple 2009 400

Evernote Productivity Apple 8878 400

TripAdvisor Travel Apple 3165 400

80 apps Top four Google 146,057 1000

PicsArt Photography Google 4438 400

Pinterest Social Google 4486 400

Whatsapp Communication Google 7696 400

Total 1,303,182 4400

316 Requirements Eng (2016) 21:311–331

123

http://mast.informatik.uni-hamburg.de/app-review-analysis/
http://mast.informatik.uni-hamburg.de/app-review-analysis/
dberry
Highlight

dberry
Sticky Note
I believe that it costs a human about 10 times the effort to find a TP than it does for the same human to reject a FP. Do you have any data about these times for your 4 tasks?

If I am right about this time estimate, then you should use F_10 that weights recall 10 times what it weights precision.

numbers in bold represent the highest scores for each

column, which means the highest accuracy metric (preci-

sion, recall, and F-measure) for each classifier.

Table 5 shows the p values of paired t tests on whether

the differences between the mean F1-scores of the baseline

classifier and the various classification techniques are sta-

tistically significant. For Example: If one classifier result is

80 % for a specific combination of techniques and another

result is 81 % for another combination, those two results

could be statistically different or it could be by chance. If

the p value calculated by the paired t test is very small, this

means that the difference between the two values is sta-

tistically significant. We used Holm’s step-down method

[16] to control the family-wise error rate.

Overall, the precisions and recalls of all probabilistic

techniques were clearly higher than 50 % except for three

cases: the precision and recall of feature request classifiers

based on rating only as well as the recall of the same

technique (rating only) to predict ratings. Almost all

probabilistic approaches outperformed the basic classifiers

that use string matching with at least 10 % higher preci-

sions and recalls.

The combination of text classifiers, metadata, NLP, and

the sentiments extraction generally resulted in high preci-

sion and recall values (in most cases above 70 %). How-

ever, the combination of the techniques did not always rank

best. Classifiers only using metadata generally had a rather

low precision but a surprisingly high recall except for

predicting ratings where we observed the opposite.

Concerning NLP techniques, there was no clear trend like

‘‘more language processing leads to better results.’’ Overall,

removing stopwords significantly increased the precision to

predict bug reports, feature request, and user experience,

while it decreased the precision for ratings. We observed the

same when adding lemmatization. On the other hand, com-

bining stop word removal and lemmatization did not had any

significant effect on precision and recall.

We did not observe any significant difference between

using one or two sentiment scores.

4.2 Review types

We achieved the highest precision for predicting user

experience and ratings (92 %), the highest recall, and F-

measure for user experience (respectively, 99 and 92 %).

For bug reports we found that the highest precision

(89 %) was achieved with the bag of words, rating, and one

sentiment, while the highest recall (98 %) with using

bigrams, rating, and one score sentiment. For predicting

bug reports the recall might be more important than pre-

cision. Bug reports are critical reviews, and app vendors

would probably need to make sure that a review analytics

Fig. 1 Tool for manual labeling of the reviews

Table 3 Number of manually

analyzed and labeled reviews
Sample Manually analyzed Bug reports Feature requests User experiences Ratings

Random apps Apple 1000 109 83 370 856

Selected apps Apple 1200 192 63 274 373

Random apps Google 1000 27 135 16 569

Selected apps Google 1200 50 18 77 923

Total 4400 378 299 737 2721

Requirements Eng (2016) 21:311–331 317

123

dberry
Highlight

dberry
Sticky Note
Precisely.. we need to get some data about the comparative times to find TPs and to reject FPs.

Table 4 Accuracy of the classification techniques using Naive Bayes on app reviews from Apple and Google stores (mean values of the 10 runs, random 70:30 splits for training:evaluation

sets)

Classification techniques Bug reports Feature requests User experiences Ratings

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Basic (string matching) 0.58 0.24 0.33 0.39 0.55 0.46 0.27 0.12 0.17 0.74 0.56 0.64

Document classification (&NLP)

Bag of words (BOW) 0.79 0.65 0.71 0.76 0.54 0.63 0.82 0.59 0.68 0.67 0.85 0.75

Bigram 0.68 0.98 0.80 0.68 0.97 0.80 0.70 0.99 0.82 0.91 0.62 0.73

BOW ? bigram 0.85 0.90 0.87 0.86 0.85 0.85 0.87 0.91 0.89 0.85 0.89 0.87

BOW ? lemmatization 0.88 0.74 0.80 0.86 0.65 0.74 0.90 0.67 0.77 0.73 0.91 0.81

BOW - stopwords 0.86 0.69 0.76 0.86 0.65 0.74 0.91 0.67 0.77 0.74 0.91 0.81

BOW ? lemmatization - stopwords 0.85 0.71 0.77 0.87 0.67 0.76 0.91 0.67 0.77 0.75 0.90 0.82

BOW ? bigrams - stopwords ? lemmatization 0.85 0.91 0.88 0.86 0.83 0.85 0.89 0.94 0.91 0.85 0.90 0.87

Metadata

Rating 0.64 0.82 0.72 0.31 0.35 0.31 0.74 0.89 0.81 0.72 0.34 0.46

Rating ? length 0.76 0.75 0.75 0.68 0.67 0.67 0.72 0.82 0.77 0.70 0.68 0.69

Rating ? length ? tense 0.74 0.73 0.74 0.64 0.71 0.67 0.74 0.80 0.77 0.70 0.68 0.69

Rating ? length ? tense ? 19 sentiment 0.69 0.76 0.72 0.66 0.66 0.66 0.71 0.85 0.77 0.71 0.66 0.68

Rating ? length ? tense ? 29 sentiments 0.66 0.78 0.71 0.65 0.72 0.68 0.67 0.88 0.76 0.69 0.67 0.68

Combined (text and metadata)

BOW ? rating ? lemmatize 0.85 0.73 0.78 0.89 0.64 0.74 0.90 0.67 0.77 0.73 0.89 0.80

BOW ? rating ? 19 sentiment 0.89 0.72 0.79 0.89 0.60 0.71 0.92 0.73 0.81 0.75 0.93 0.83

BOW ? rating ? tense ? 1 sentiment 0.87 0.71 0.78 0.87 0.60 0.70 0.92 0.69 0.79 0.74 0.90 0.81

Bigram ? rating ? 19 sentiment 0.73 0.98 0.83 0.71 0.96 0.81 0.75 0.99 0.85 0.92 0.69 0.79

Bigram - stopwords ? lemmatization ? rating ? tense ? 29 sentiment 0.72 0.97 0.82 0.70 0.94 0.80 0.75 0.98 0.85 0.92 0.72 0.81

BOW ? bigram ? tense ? 19 sentiment 0.87 0.88 0.87 0.85 0.83 0.83 0.88 0.94 0.91 0.83 0.87 0.85

BOW ? lemmatize ? bigram ? rating ? tense 0.88 0.88 0.88 0.87 0.84 0.85 0.89 0.94 0.92 0.84 0.90 0.87

BOW - stopwords ? bigram ? rating ? tense ? 19 sentiment 0.88 0.89 0.88 0.86 0.84 0.85 0.87 0.93 0.90 0.83 0.89 0.86

BOW - stopwords ? lemmatization ? rating ? 19 sentiment ? tense 0.88 0.71 0.79 0.87 0.64 0.74 0.91 0.72 0.80 0.73 0.90 0.80

BOW - stopwords ? lemmatization ? rating ? 29 sentiments ? tense 0.87 0.71 0.78 0.86 0.68 0.76 0.91 0.73 0.81 0.75 0.90 0.82

Bold values represent the highest score for the corresponding accuracy metric per review type

3
1
8

R
eq
u
irem

en
ts

E
n
g
(2
0
1
6
)
2
1
:3
1
1
–
3
3
1

1
23

BR

Rat

FR

UE

Based on frequency data gathered during gold-standard construction, obtained in a conversation with Maalej the estimates for \beta for each task is
given at the top of its column in red.

10.00 9.09 2.71 1.07Hairy Hairy So-So Not Hairy

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Sticky Note
For BRs, F_5=.96, F_10=.98For FRs, F_5=.95, F_10=.97For UEs, F_5=.97, F_10=.99

dberry
Sticky Note
For Rts, F_5=.92, F_10=.93

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Sticky Note
For UEs, F_5=.98, F_10=.99For BRs, F_5=.97, F_10=.98

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

tool does not miss any of them, with the compromise that a

few of the reviews predicted as bug reports are actually not

(false positives). For a balance between precision and recall

combining bag of words, lemmatization, bigram, rating,

and tense seems to work best.

Concerning feature requests, using the bag of words,

rating, and one sentiment resulted in the highest precision

with 89 %. The bestF-measurewas 85 %with bag of words,

lemmatization, bigram, rating, and tense as the classification

features.

The results for predicting user experiences were sur-

prisingly high. We expect those to be hard to predict as the

basic technique for user experiences shows. The best

option that balances precision and recall was to combine

bag of words with bigrams, lemmatization, the rating, and

the tense. This option achieved a balanced precision and

recall with a F-measure of 92 %.

Predicting ratings with the bigram, rating, and one

sentiment score leads to the top precision of 92 %. This

result means that stakeholders can precisely select rating

among many reviews. Even if not all ratings are selected

(false negatives) due to average recall, those that are

selected will be very likely ratings. A common use case

would be to filter out reviews that only include ratings or to

select another type of reviews with or without ratings.

Table 6 shows the ten most informative features of a

combined classification technique for each review type.

4.3 Classification algorithms

Table 7 shows the results of comparing the different

machine learning algorithms Naive Bayes, Decision Trees,

andMaxEnt.We report on two classification techniques (bag

of words and bag of words ? metadata) since the other

results are consistent and can be downloaded from the pro-

ject Web site.2 In all experiments, we found that binary

Table 5 Results of the paired t test between the different techniques (one in each row) and the baseline BoW (using Naive Bayes on app reviews

from Apple and Google stores)

Classification techniques Bug reports Feature requests User experiences Ratings

F1-score p value F1-score p value F1-score p value F1-score p value

Document classification (&NLP)

Bag of words (BOW) 0.71 Baseline 0.63 Baseline 0.68 Baseline 0.75 Baseline

Bigram 0.80 0.043 0.80 2.5e-06 0.82 0.00026 0.73 0.55

BOW ? bigram 0.87 6.9e-05 0.85 2.6e-07 0.89 4.7e-06 0.87 2.9e-05

BOW ? lemmatization 0.80 0.031 0.74 0.0022 0.77 0.0028 0.81 0.029

BOW - stopwords 0.76 0.09 0.74 0.0023 0.77 0.0017 0.81 0.0019

BOW - stopwords ? lemmatization 0.77 0.051 0.76 0.0008 0.77 0.0021 0.82 0.0005

BOW - stopwords ? lemmatization ? bigram 0.88 6.6e-05 0.85 2.9e-07 0.91 4.3e-08 0.87 0.0009

Metadata

Rating 0.72 1.0 0.31 0.04 0.81 7.1e-05 0.46 6.9e-06

Rating ? length 0.75 0.09 0.67 0.04 0.77 0.0005 0.69 0.0098

Rating ? length ? tense 0.74 0.63 0.67 0.083 0.77 0.0029 0.69 0.029

Rating ? length ? tense ? 19 sentiment 0.73 1.0 0.66 0.16 0.77 0.004 0.68 8.9e-05

Rating ? length ? tense ? 29 sentiments 0.71 1.0 0.68 0.0002 0.76 0.028 0.68 0.029

Combined (text and metadata)

BOW ? rating ? lemmatize 0.78 0.064 0.74 0.0005 0.77 0.0023 0.80 0.0044

BOW ? rating ? 19 sentiment 0.79 0.0027 0.71 0.039 0.81 0.0002 0.83 0.001

BOW ? rating ? 1 sentiment ? tense 0.78 0.0097 0.70 0.039 0.79 0.0002 0.81 0.0012

Bigram ? rating ? 1 sentiment 0.83 0.0039 0.81 9.5e-06 0.85 2e-05 0.79 0.042

Bigram - stopwords ? lemmatization
? rating ? tense ? 29 sentiment

0.82 0.0019 0.80 1.7e-06 0.85 2.5e-05 0.81 0.029

BOW ? bigram ? tense ? 19 sentiment 0.87 0.0001 0.83 1.2e-05 0.91 1.9e-07 0.85 0.0002

BOW ? lemmatize ? bigram ? rating
? tense

0.88 7.6e-06 0.85 7.6e-07 0.92 1.2e-07 0.87 1.6e-05

BOW - stopwords ? bigram ? rating
? tense ? 19 sentiment

0.88 1.6e-06 0.85 7.6e-07 0.90 4.8e-06 0.86 0.0002

BOW - stopwords ? lemmatization
? rating ? tense ? 19 sentiment

0.79 0.064 0.74 0.0008 0.80 0.0014 0.80 0.029

BOW - stopwords ? lemmatization
? rating ? tense ? 29 sentiments

0.78 0.051 0.76 0.0012 0.81 0.0003 0.82 0.0002

2 http://mast.informatik.uni-hamburg.de/app-review-analysis/.

Requirements Eng (2016) 21:311–331 319

123

http://mast.informatik.uni-hamburg.de/app-review-analysis/
dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Inserted Text
X (times)

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Sticky Note
Why balanced? especially after what you have just said?

dberry
Highlight

dberry
Highlight

classifiers are more accurate for predicting the review types

than multiclass classifiers. One possible reason is that each

binary classifier uses two training sets: one set where the

corresponding type is observed (e.g., bug report) and one set

where it is not (e.g., not bug report). Concerning the binary

classifiers Naive Bayes outperformed the other algo-

rithms. In Table 7, the numbers in bold represent the highest

average scores for the binary (B) and multiclass (MC) case.

4.4 Performance and data

The more data are used to train a classifier the more time the

classifier would need to create its prediction model. This is

depicted in Fig. 2 where we normalized themean time needed

for the four classifiers depending on the size of the training set.

In this case, we used a consistent size for the test set of 50

randomly selected reviews to allow a comparison of the results.

We found that when using more than 200 reviews to train

the classifiers the time curve gets much more steep with a

rather exponential than a linear shape. For instance, the time

needed for training almost doubles when the training size

grows from 200 to 300 reviews. We also found that MaxEnt

needed much more time to build its model compared to all

other algorithms for binary classification. Using the classi-

fication technique BoW and Metadata, MaxEnt took on

average � 40 times more than Naive Bayes and � 1:36

times more than Decision Tree learning.

These numbers exclude the overhead introduced by the

sentiment analysis, the lemmatization, and the tense

detection (part-of-speech tagging). The performance of

these techniques is studied well in the literature [4], and

their overhead is rather exponential to the text length.

However, the preprocessing can be conducted once on each

review and stored separately for later usages by the clas-

sifiers. Finally, stopword removal introduces a minimal

overhead that is linear to the text length.

Figure 3 shows how the accuracy changes when the

classifiers use larger training sets. The precision curves are

Table 6 Most informative features for the classification technique bigram - stop words ? lemmatization ? rating ? 29 sentiment

scores ? tense

Bug report Feature request User experience Rating

Rating (1) Bigram (way to) Rating (3) Bigram (will not)

Rating (2) Bigram (try to) Rating (1) Bigram (to download)

Bigram (every time) Bigram (would like) Bigram (use to) Bigram (use to)

Bigram (last update) Bigram (5 star) Bigram (to find) Bigram (new update)

Bigram (please fix) Rating (1) Bigram (easy to) Bigram (fix this)

Sentiment (-4) Bigram (new update) Bigram (go to) Bigram (can get)

Bigram (new update) Bigram (back) Bigram (great to) Bigram (to go)

Bigram (to load) Rating (2) Bigram (app to) Rating (1)

Bigram (it can) Present cont. (1) Bigram (this great) Bigram (great app)

Bigram (can and) Bigram (please fix) Sentiment (-3) Present simple (1)

Table 7 F-measures of the

evaluated machine learning

algorithms (B = binary

classifier, MC = multiclass

classifiers) on app reviews from

Apple and Google stores

Type Technique Bug R. F req. U exp. Rat. Avg.

Naive Bayes

B Bag of words (BOW) 0.71 0.63 0.68 0.75 0.70

MC Bag of words 0.66 0.31 0.43 0.59 0.50

B BOW ? metadata 0.79 0.71 0.81 0.83 0.79

MC BOW ? metadata 0.62 0.42 0.50 0.58 0.53

Decision Tree

B Bag of words 0.81 0.77 0.82 0.79 0.79

MC Bag of words 0.49 0.32 0.44 0.52 0.44

B BOW ? metadata 0.73 0.68 0.78 0.78 0.72

MC BOW ? metadata 0.62 0.47 0.53 0.54 0.54

MaxEnt

B Bag of words 0.66 0.65 0.58 0.67 0.65

MC Bag of words 0.26 0.00 0.12 0.22 0.15

B BOW ? metadata 0.66 0.65 0.60 0.69 0.65

MC BOW ? metadata 0.14 0.00 0.29 0.04 0.12

320 Requirements Eng (2016) 21:311–331

123

dberry
Highlight

dberry
Sticky Note
So what? Amortize.. learning time is amortized.. the only time that really matters is that of production runs that apply the learning..

We accept that it takes a human 25 years to learn to be productive in his or her profession :-)

represented with continuous lines, while the recall curves

are dotted. From Figs. 2 and 3 it seems that 100–150

reviews are a good size of the training sets for each review

type, allowing for a high accuracy while saving resources.

With an equal ratio of candidate and non-candidate reviews

the expected size of the training set doubles leading to

200–300 reviews per classifier recommended for training.

Finally, we also compared the accuracy of predicting the

Apple AppStore reviews with the Google Play Store

reviews. We found that there are differences in predicting

the review types between both app stores as shown in

Tables 8 and 9. The highest values of a metric are

emphasized as bold for each review type. The biggest

difference in both stores is in predicting bug reports. While

the top value for F-measure for predicting bugs in the

Apple AppStore is 90 %, the F-measure for the Google

Play Store is 80 %. A reason for this difference might be

that we had less labeled reviews for bug reports in the

Google Play Store. On the other hand, feature requests in

the Google Play Store have a promising precision of 96 %

with a recall of 88 %, while the precision in the Apple

AppStore is 88 % with a respective recall of 84 %, by

50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size of training set

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

Bug Rep.
Feature Req.
User Exp.
Rating

Fig. 2 How the size of the training set influences the time to build the classification model (Naive Bayes using BoW ? rating ? lemmatization

(see Table 4))

50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size of training set

A
cc

ur
ac

y
(P

re
ci

si
on

/R
ec

al
l)

Precision Bug Rep.
Precision Feature Req.
Precision User Exp.
Precision Rating

Recall Bug Rep.
Recall Feature Req.
Recall User Exp.
Recall Rating

Fig. 3 How the size of the training set influences the classifier accuracy (Naive Bayes using BoW ? rating ? lemmatization (see Table 4))

Requirements Eng (2016) 21:311–331 321

123

dberry
Highlight

dberry
Sticky Note
If you accept that recall is more critical than precision, then the real question is "Does recall improve with larger training sets?" Or maybe two different trainings, one for recall.. and one for precision.. to turn the preciser tool loose on the output of the recaller tool?

Actually, that's not a BAD idea.. note that the classification techniques that deliver high recall are different from those that deliver high precision!!! COOL!

	On the automatic classification of app reviews
	Abstract
	Introduction
	Review classification techniques
	Basic classifier: string matching
	Document classification: bag of words
	Natural language processing: text preprocessing
	Review metadata: rating, length, tense, and sentiments
	Supervised learning: binary versus multiclass classifiers

	Research design
	Research questions
	Research method and data

	Research results
	Classification techniques
	Review types
	Classification algorithms
	Performance and data

	Discussion
	What is the best classifier?
	Between-apps versus within-app analysis
	Limitations and threats to validity

	A review analytics tool
	Data collection and processing
	User interface
	Evaluation

	Related work
	User feedback and crowdsourcing requirements
	App store analysis
	Issue classification and prediction

	Conclusion
	Acknowledgments
	References

