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Vocabulary

CBS = Computer-Based System

SE = Software Engineering
RE = Requirements Engineering
RS = Requirements Specification

NL = Natural Language
NLP = Natural Language Processing
IR = Information Retrieval

HD = High Dependability

HT = Hairy Task
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NLP for RE?

After Kevin Ryan observed in 1993 that NLP
was not likely to ever be powerful enough to
do RE, …

RE researchers began to apply NLP to build
tools for a variety of specific RE tasks
involving NL RSs
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NLP for RE!
Since then, NLP has been applied to
g abstraction finding,
g requirements tracing,
g multiple RS consolidation,
g requirement classification,
g app review analysis,
g model synthesis,
g RS ambiguity finding, and its

generalization,
g RS defect finding

These and others are collectively NL RE tasks.
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Task Vocabulary

A task is an instance of one of these or other
NL RE tasks.

A task T is applied to a collection of
documents D relevant to one RE effort for the
development of a CBS.

A correct answer is an instance of what T is
looking for.
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Task Vocabulary, Cont’d

A correct answer is somehow derived from D.

A tool for T returns to its users answers that it
believes to be correct.

The job of a tool for T is to return correct
answers and to avoid returning incorrect
answers.

 2017 Daniel M. Berry RE 2017 R vs P Panel Pg. 6



Universe of an RE Tool

cor~cor

ret

~ret

TN

TP

FN

FP
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Adopting IR Methods

RE field has often adopted (and adapted) IR
algorithms to develop tools for NL RE tasks.

Quite naturally RE field has adopted also IR’s
measures:

g precision, P,

g recall, R, and

g the F-measure
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Precision

P is the percentage of the tool-returned
answers that are correct.

P =
| ret |

| ret ∩ cor |
hhhhhhhhhhh

=
| FP | +| TP |

| TP |hhhhhhhhhhhh
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Precision
cor

ret

~ret

~cor

FP

FNTN

TP
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Recall

R is the percentage of the correct answers
that the tool returns.

R =
| cor |

| ret ∩ cor |
hhhhhhhhhhh

=
| TP | +| FN |

| TP |hhhhhhhhhhhh
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Recall
cor

ret

~ret

~cor

TP

FN

FP

TN
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F-Measure

F-measure: harmonic mean of P and R
(harmonic mean is the reciprocal of the
arithmetic mean of the reciprocals)

Popularly used as a composite measure.

F =

2
P
1hh +

R
1hhh

hhhhhhhh

1hhhhhhhhh = 2.
P + R
P .Rhhhhhh
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Weighted F-Measure

For situations in which R and P are not equally
important, there is a weighted version of the
F-measure:

F β = (1 + β 2 ) .
β 2 .P + R

P .Rhhhhhhhhh

Here, β is the ratio by which it is desired to
weight R more than P.
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Note That

F = F 1

As β grows, F β approaches R
(and P becomes irrelevant).
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If Recall Very Very Important

Now, as w→∞,

F w ∼∼w 2 .
w 2 .P

P .Rhhhhhhh

=
w 2 .P

w 2 .P .Rhhhhhhhhhh = R

As the weight of R goes up, the F-measure
begins to approximate simply R !
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If Precision Very Very Important

Then, as w→0,

F w ∼∼1.
R

P .Rhhhhh

= P

which is what we expect.

 2017 Daniel M. Berry Requirements Engineering Tools for Hairy Tasks Pg. 53



High-Level Objective

High-level objective of this panel is to

explore the validity of the tacit
assumptions the RE field made …

in simply adopting IR’s tool evaluation
methods to …

evaluate tools for NL RE tasks.
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Detailed Objectives

The detailed objectives of this panel are:

g to discuss R, P, and other measures that
can be used to evaluate tools for NL RE
tasks,

g to show how to gather data to decide the
measures to evaluate a tool for an NL RE
task in a variety of contexts, and

g to show how these data can be used in a
variety of specific contexts.
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To the Practitioner Here
We believe that you are compelled to do many
of these kinds of tedious tasks in your work.

This panel will help you learn how to decide
for any such task …

if it’s worth using any offered tool for for the
task instead of buckling down and doing the
task manually.

It will tell you the data you need to know, and
to demand from the tool builder, in order to
make the decision rationally in your context!
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Plan for Panel

The present slides are an overview of the
panel’s subject.

After this overview, panelists will describe the
evaluation of specific tools for specific NL RE
tasks in specific contexts.
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Plan, Cont’d

We will invite the audience to join in after that.

In any case, if anything is not clear, please ask
for clafification immediately!

But, please no debating during anyone’s
presentation.

Let him or her finish the presentation, and
then you offer your viewpoint.
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R vs. P Tradeoff

P and R can usually be traded off in an IR
algorithm:

g increase R at the cost of decreasing P, or

g increase P at the cost of decreasing R
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Extremes of Tradeoff
Extremes of this tradeoff are:

1. tool returns all possible answers, correct
and incorrect: for

R = 100%, P = C,

where C =
# answers

# correctAnswershhhhhhhhhhhhhhhhhh

2. tool returns only one answer, a correct
one: for

P = 100%, R = ε,

where ε =
# correctAnswers

1hhhhhhhhhhhhhhhhhh
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Extremes are Useless

Extremes are useless, because in either case,
…

the entire task must be done manually on the
original document in order to find exactly the
correct answers.
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100% Recall Useless?

Returning everything to get 100% recall
doesn’t save any real work, because we still
have to manually search the entire document.

This is why we are wary of claims of 100%
recall … Maybe it’s a case of this
phenomenon!

What is missing?

Summarization
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Summarization

If we can return a subdocument significantly
smaller than the original …

that contains all relevant items, …

then we have saved some real work.
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Summarization Measure

Summarization = fraction of the original
document that is eliminated from the return

S =
| ~ret ∪ ret |

| ~ret |hhhhhhhhhhhh =
| ~rel ∪ rel |

| ~ret |hhhhhhhhhhhh

=
| TN | +| FN | +| TP | +| FP |

| TN | +| FN |hhhhhhhhhhhhhhhhhhhhhhhhh
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rel~rel

ret

~ret

TN

TP

FN

FP
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How to Use Summarization

We would love a tool with 100% recall and 90%
summarization.

Then we really do not care about precision.
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In Other Words

That is, if we can get rid of 90% of the
document with the assurance that …
what is gotten rid of contains only irrelevant
items and thus …

what is returned contains all the relevant
items, …

then we are very happy!
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For  T=tracing, summarization is not really applicable. 
However, there is another measure, Selectivity, that IS 
applicable. See Addendum (3)



Historically, IR Tasks

IR field, e.g., for search engine task, values P
higher than R:
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Valueing P more than R

Makes sense:

Search for a Portuguese restaurant.

All you need is 1 correct answer:

R =
# acorrectAnswers

1hhhhhhhhhhhhhhhhhhhh

But you are very annoyed at having to wade
through many FPs to get to the 1 correct
answer, i.e.,

with low P
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NL RE Task

Very different from IR task:

g task is hairy, and

g often critical to find all correct answers, for
R = 100%, e.g. for a safety- or security-
critical CBS.
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Hairy Task

On small scale, finding a correct answer in a
single document, a hairy NL RE task, …

e.g., deciding whether a particular sentence in
one RS has a defect, …

is easy.
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Hairy Task, Cont’d

However, in the context of typical large
collection of large NL documents
accompanying the development of a CBS, the
hairy NL RE task, …

e.g., finding in all NL RSs for the CBS, all
defects, …

some of which involve multiple sentences in
multiple RSs, …

becomes unmanageable.
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Hairy Task, Cont’d

It is the problem of finding all of the few
matching pairs of needles distributed
throughout multiple haystack.
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“Hairy Task”?

Theorems, i.e., verification conditions, for
proving a program consistent with its formal
spec, are not particularly deep, …

involve high school algebra, …

but are incredibly messy, even unmanageable,
requiring facts from all over the program and
the proofs so far …

and require the help of a theorem proving tool.

We used to call these “hairy theorems”.
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“Hairy Task”?, Cont’d

At one place I consulted, its interactive
theorem prover was nicknamed “Hairy
Reasoner” (with apologies to the late
Harry Reasoner of ABC and CBS News)

Other more conventional words such as
“complex” have their own baggage.
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Hairiness Needs Tools

The very hairiness of a HT is what motivates
us to develop tools to assist in performing the
HT, …

particularly when, e.g. for safety- or security-
critical CBS, …

all correct answers, …

e.g., ambiguities, defects, or traces …

must be found.
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Hairiness Needs Tools, Cont’d

For such a tool, …

R is going to be more important than P, and …

β in F β will be > 1
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What Affects R vs. P Tradeoff?

Three partially competing factors affecting
relative importance of R and P are:

g the value of β as a ratio of two time
durations,

g the real-life cost of a failure to find a TP,
and

g the real-life cost of FPs.
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Value of β
The value of β can be taken as ratio of

the time for a human to find a TP in a
document

over
the time for a human to reject a tool-
presented FP.

We will see how to get estimates during gold-
standard construction.
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Some Values of β
The panel paper gives some β values

ranging from 1.07 to 73.60 for the tasks:

predicting app ratings, estimating user
experiences, & finding feature requests from
app reviews;

finding ambiguities; and

finding trace links.
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Gold Standard for T

Need a representative same document D for
which a group G of humans have done T
manually to obtain a list L of correct answers
for T on D.

This list L is the gold standard.

L is used to measure R and P for any tool t, by
comparing t ’s output on D with L.
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Gather Data During L ’s
Construction

During L’s construction, gather following data

g average time for anyone to find any correct
answer = β ’s numerator,

g average time to decide the correctness of
any potential answer = lower upper bound
estimate for β ’s denominator, independent
of any tool’s actual value,
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During L ’s Construction, Con’t

g average R of any human in G, relative to
final L = estimate for humanly achievable
high recall (HAHR).
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Real-life cost of not finding a TP

For a safety-critical CBS, this cost can include
loss of life.

For a security-critical CBS, this cost can
include loss of data.
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Real-life cost of FPs

High annoyance with a tool’s many FPs can
deter the tool’s use.
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Tool vs. Manual

Should we use a tool for a particular HT T ?

Have to compare tool’s R with that of humans
manually performing the T on the same
documents.
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Goal of 100% R ?

For a use of the HT in the development of a
safety- or security-critical CBS, we need the
tool to achieve R close to 100%.
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Goal of 100% R, Cont’d

However,

g achieving R = 100% for T is probably
impossible, even for a human!

g there’s no way to be sure that a tool or
person has achieved R = 100% because the
only way to measure R is to compare the
tool or person’s output with the set of all
correct answers, which is impossible to
obtain!
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Reality

For any task T, we aim to build a tool whose R
beats that of a human manually performing T,
i.e., the HAHR determined during gold
standard construction.
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Summary

To evaluate a tool t for a task T, we need

g to have effective empirical ways to
measure tool’s and humans’ R and P, and
times to do T,

g to take into account the value of β and the
real-life costs, and

g to compare tool’s R and P and humans’ R
and P on the same set of documents.
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Now Panelists Take Over

The panelists consider the evaluation of tools
…

for a variety of HTs …

in a variety of contexts.
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RE’17 -- 1

EvaluatingNL RE tools (Mylopoulos)
• Context: We have developed a tool for extracting
requirements from regulations, e.g., extract requirements for
a meetingscheduler from a privacy law [Zeni-REJ-2015].
• (Dubious)Assumption:Legalese⊆ NL
• Key considerations in evaluatingthe tool:

ü Tool is useful if it reduces manual effort substantially
withoutdeterioration in the qualityof the answer;

ü (Hence) Tool must find all/most requirements, otherwise
a person has to make a full pass over the regulation to
find FNs;

ü There is no gold standard, even expertsmake mistakes.



RE’17 -- 2

Position statement (Mylopoulos)
• Tools automate NL RE tasks, or assist people in performing
NL RE tasks.
• For automation tools, precision is very important in
determining the quality of the tool; e.g., for a tool that takes
as input a RS and a regulation and tells you whether RS
complies with the regulation, a 50% correct response renders
the tool useless.
• For assistive tools, reduction of manual effort while
maintaining quality is the ultimate evaluation criterion, and
then recall is very important.



Example Tool Evaluation

Tracing tool developed and evaluated by
Merten et al [REFSQ16]

R = 1.0, P = .02, F 1 = .039, F 2 = .093
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Do Information Retrieval Algorithms
for Automated Traceability Perform Effectively

on Issue Tracking System Data?
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Abstract. [Context and motivation] Traces between issues in issue
tracking systems connect bug reports to software features, they connect
competing implementation ideas for a software feature or they iden-
tify duplicate issues. However, the trace quality is usually very low.
To improve the trace quality between requirements, features, and bugs,
information retrieval algorithms for automated trace retrieval can be
employed. Prevailing research focusses on structured and well-formed
documents, such as natural language requirement descriptions. In con-
trast, the information in issue tracking systems is often poorly struc-
tured and contains digressing discussions or noise, such as code snippets,
stack traces, and links. Since noise has a negative impact on algorithms
for automated trace retrieval, this paper asks: [Question/Problem]
Do information retrieval algorithms for automated traceability perform
effectively on issue tracking system data? [Results] This paper presents
an extensive evaluation of the performance of five information retrieval
algorithms. Furthermore, it investigates different preprocessing stages
(e.g. stemming or differentiating code snippets from natural language)
and evaluates how to take advantage of an issue’s structure (e.g. title,
description, and comments) to improve the results. The results show
that algorithms perform poorly without considering the nature of issue
tracking data, but can be improved by project-specific preprocessing and
term weighting. [Contribution] Our results show how automated trace
retrieval on issue tracking system data can be improved. Our manually
created gold standard and an open-source implementation based on the
OpenTrace platform can be used by other researchers to further pursue
this topic.

Keywords: Issue tracking systems · Empirical study · Traceability ·
Open-source

c© Springer International Publishing Switzerland 2016
M. Daneva and O. Pastor (Eds.): REFSQ 2016, LNCS 9619, pp. 45–62, 2016.
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48 T. Merten et al.

which algorithm performs best with a certain data set without experimenting,
although BM25 is often used as a baseline to evaluate the performance of new
algorithms for classic IR applications such as search engines [2, p. 107].

2.2 Measuring IR Algorithm Performance for Trace Retrieval

IR algorithms for trace retrieval are typically evaluated using the recall (R) and
precision (P ) metrics with respect to a reference trace matrix. R measures the
retrieved relevant links and P the correctly retrieved links:

R =
CorrectLinks ∩ RetrievedLinks

CorrectLinks
, P =

CorrectLinks ∩ RetrievedLinks

RetrievedLinks
(2)

Since P and R are contradicting metrics (R can be maximized by retrieving
all links, which results in low precision; P can be maximised by retrieving only
one correct link, which results in low recall) the Fβ-Measure as their harmonic
mean is often employed in the area of traceability. In our experiments, we com-
puted results for the F1 measure, which balances P and R, as well as F2, which
emphasizes recall:

Fβ =
(1 + β2) × Precision × Recall

(β2 × Precision) + Recall
(3)

Huffman Hayes et al. [13] define acceptable, good and excellent P and R ranges.
Table 3 extends their definition with according F1 and F2 ranges. The results
section refers to these ranges.

2.3 Issue Tracking System Data Background

At some point in the software engineering (SE) life cycle, requirements are com-
municated to multiple roles, like project managers, software developers and,
testers. Many software projects utilize an ITS to support this communication
and to keep track of the corresponding tasks and changes [28]. Hence, require-
ment descriptions, development tasks, bug fixing, or refactoring tasks are col-
lected in ITSs. This implies that the data in such systems is often uncategorized
and comprises manifold topics [19].

The NL data in a single issue is usually divided in at least two fields: A
title (or summary) and a description. Additionally, almost every ITS supports
commenting on an issue. Title, description, and comments will be referred to
as ITS data fields in the remainder of this paper. Issues usually describe new
software requirements, bugs, or other development or test related tasks. Figure 13

shows an excerpt of the title and description data fields of two issues, that both
request a new software feature for the Redmine project. It can be inferred from
the text, that both issues refer to the same feature and give different solution
proposals.
3 Figure 1 intentionally omits other meta-data such as authoring information, date-

and time-stamps, or the issue status, since it is not relevant for the remainder of this
paper.
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50 T. Merten et al.

or comments represent only hasty notes meant for a developer – often without
forming a whole sentence. In contrast, RAs typically do not contain noise and
NL is expected to be correct, consistent, and precise. Furthermore, structured
RAs are subject to a specific quality assurance5 and thus their structure and NL
is much better than ITS data.

Since IR algorithms compute the text similarity between two documents,
spelling errors and hastily written notes that leave out information, have a neg-
ative impact on the performance. In addition, the performance is influenced
by source code which often contains the same terms repeatedly. Finally, stack
traces often contain a considerable amount of the same terms (e.g. Java package
names). Therefore, an algorithm might compute a high similarity between two
issues that refer to different topics if they both contain a stack trace.

3 Related Work

Borg et al. conducted a systematic mapping of trace retrieval approaches [3].
Their paper shows that much work has been done in trace retrieval between
RA, but only few studies use ITS data. Only one of the reviewed approaches
in [3] uses the BM25 algorithm, but VSM and LSA are used extensively. This
paper fills both gaps by comparing VSM, LSA, and three variants of BM25
on unstructured ITS data. [3] also reports on preprocessing methods saying that
stop word removal and stemming are most often used. Our study focusses on the
influence of ITS-specific preprocessing and ITS data field-specific term weighting
beyond removing stop words and stemming. Gotel et al. [10] summarize the
results of many approaches for automated trace retrieval in their roadmap paper.
They recognize that results vary largely: “[some] methods retrieved almost all
of the true links (in the 90 % range for recall) and yet also retrieved many false
positives (with precision in the low 10–20 % range, with occasional exceptions).”
We expect that the results in this paper will be worse, as we investigate in issues
and not in structured RAs.

Due to space limitations, we cannot report on related work extensively and
refer the reader to [3,10] for details. The experiments presented in this paper
are restricted to standard IR text similarity methods. In the following, extended
approaches are summarized that could also be applied to ITS data and/or com-
bined with the contribution in this paper: Nguyen et al. [21] combine multiple
properties, like the connection to a version control system to relate issues. Gervasi
and Zowghi [8] use additional methods beyond text similarity with requirements
and identify another affinity measure. Guo et al. [11] use an expert system to
calculate traces automatically. The approach is very promising, but is not fully
automated. Sultanov and Hayes [29] use reinforcement learning and improve the
results compared to VSM. Niu and Mahmoud [22] use clustering to group links
in high-quality and low-quality clusters respectively to improve accuracy. The
low-quality clusters are filtered out. Comparing multiple techniques for trace
retrieval, Oliveto et al. [23] found that no technique outperformed the others.
5 Dag and Gervasi [20] surveyed automated approaches to improve the NL quality.
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Table 1. Project characteristics

Researched Projects and Project Selection. The data used for the experiments
in this paper was taken from the following four projects:

– c:geo, an Android application to play a real world treasure hunting game.
– Lighttpd, a lightweight web server application.
– Radiant, a modular content management system.
– Redmine, an ITS.

The projects show different characteristics with respect to the software type,
intended audience, programming languages, and ITS. Details of these character-
istics are shown in Table 1. c:geo and Radiant use the GitHub ITS and Redmine
and Lighttpd the Redmine ITS. Therefore, the issues of the first two projects are
categorized by tagging, whereas every issue of the other projects is marked as a
feature or a bug (see Table 1). c:geo was chosen because it is an Android appli-
cation and the ITS contains more consumer requests than the other projects.
Lighttpd was chosen because it is a lightweight web server and the ITS con-
tains more code snippets and noise than the other projects. Radiant was chosen
because its issues are not categorized as feature or bug at all and it contains
fewer issues than the other projects. Finally, Redmine was chosen because it is
a very mature project and ITS usage is very structured compared to the other
projects. Some of the researchers were already familiar with these projects, since
we reported on ITS NL contents earlier [19].

Gold Standard Trace Matrices. The first, third, and fourth author created the
gold standard trace matrices (GSTM). For this task, the title, description, and
comments of each issue was manually compared to every other issue. Since 100
issues per project were extracted, this implies 100 ∗ 100

2 − 50 = 4950 manual
comparisons. To have semantically similar gold standards for each project, a
code of conduct was developed that prescribed e.g. when a generic trace should
be created (as defined in Sect. 2.3) or when an issue should be treated as duplicate
(the description of both issues describes exactly the same bug or requirement).

and 
on to 
next 
page
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Table 2. Extracted traces vs. gold standard

Projects

# of relations c:geo Lighttpd Radiant Redmine

DTM generic 59 11 8 60

GSTM generic 102 18 55 94

GSTM duplicates 2 3 - 5

Overlapping 30 9 5 45

Table 3. Evaluation measures adapted
from [13]

Acceptable Good Excellent

0.6 ≤ r < 0.7 0.7 ≤ r < 0.8 r ≥ 0.8

0.2 ≤ p < 0.3 0.3 ≤ p < 0.4 p ≥ 0.4

0.2 ≤ F1 < 0.42 0.42 ≤ F1 < 0.53 F1 ≥ 0.53

0.43 ≤ F2 < 0.55 0.55 ≤ F2 < 0.66 F2 ≥ 0.66

Since concentration quickly declines in such monotonous tasks, the comparisons
were aided by a tool especially created for this purpose. It supports defining
related and unrelated issues by simple keyboard shortcuts as well as saving and
resuming the work. At large, a GSTM for one project was created in two and a
half business days.

In general the GSTMs contain more traces than the DTMs (see Table 2). A
manual analysis revealed that developers often missed (or simply did not want
to create) traces or created relations between issues that are actually not related.
The following examples indicate why GSTMs and DTMs differ: (1) Eight out
of the 100 issues in the c:geo dataset were created automatically by a bot that
manages translations for internationalization. Although these issues are related,
they were not automatically marked as related. There is also a comment on how
internationalization should be handled in issue (#4950). (2) Some traces in the
Redmine based projects do not follow the correct syntax and are therefore missed
by a parser. (3) Links are often vague and unconfirmed in developer traces. E.g.
c:geo #5063 says that the issue “could be related to #4978 [. . . ] but I couldn’t
find a clear scenario to reproduce this”. We also could not find evidence to mark
these issues as related in the gold standard but a link was already placed by the
developers. (4) Issue #5035 in c:geo contains a reference to #3550 to say that a
bug occurred before the other bug was reported (the trace semantics in this case
is: “occurred likely before”). There is, however, no semantics relation between
the bugs, therefore we did not mark these issues as related in the gold standard.
(5) The Radiant project simply did not employ many manual traces.

5.2 Tools

The experiments are implemented using the OpenTrace (OT) [1] framework. OT
retrieves traces between NL RAs and includes means to evaluate results with
respect to a reference matrix.

OT utilizes IR implementations from Apache Lucene7 and it is implemented
as an extension to the General Architecture for Text Engineering (GATE) frame-
work [6]. GATE’s features are used for basic text processing and pre-processing
functionality in OT, e.g. to split text into tokens or for stemming. To make both
frameworks deal with ITS data, some changes and enhancements were made to

7 https://lucene.apache.org.
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Table 4. Data fields weights (l), algorithms and preprocessing settings (r)

Weight Rationale / Hypothesis

Title Description Comments Code

1 1 1 1 Unaltered algorithm
1 1 1 0 – without considering code
1 1 0 0 – also without comments
2 1 1 1 Title more important
2 1 1 0 – without considering code
1 2 1 1 Description more important
1 1 1 2 Code more important
8 4 2 1 Most important information first
4 2 1 0 – without considering code
2 1 0 0 – also without comments

Algorithm Settings

BM25 Pure, +, L
VSM TF-IDF
LSI cos measure

Preprocessing Settings

Standard
Stemming on/off
Stop Word Removal on/off

ITS-specific
Noise Removal on/off
Code Extraction on/off

OT: (1) refactoring to make it compatible with the current GATE version (8.1),
(2) enhancement to make it process ITS data fields with different term weights,
and (3) development of a framework to configure OT automatically and to run
experiments for multiple configurations. The changed source code is publicly
available for download8.

5.3 Algorithms and Settings

For the experiment, multiple term weighting schemes for the ITS data fields and
different preprocessing methods are combined with the IR algorithms VSM, LSI,
BM25, BM25+, BM25L. Beside stop word removal and stemming, which we will
refer to as standard preprocessing, we employ ITS-specific preprocessing. For the
ITS-specific preprocessing, noise (as defined in Sect. 2) was removed and the
regions marked as code were extracted and separated from the NL. Therefore,
term weights can be applied to each ITS data field and the code. Table 4 gives
an overview of all preprocessing methods (right) and term weights as well as
rationales for the chosen weighting schemes (left).

6 Results

We compute tracet with different thresholds t in order to maximize precision,
recall, F1 and F2 measure. Results are presented as F2 and F1 measure in general.
However, maximising recall is often desirable in practice, because it is simpler
to remove wrong links manually than to find correct links manually. Therefore,
R with corresponding precision is also discussed in many cases.

As stated in Sect. 5.1, a comparison with the GSTM results in more authen-
tic and accurate measurements than a comparison with the DTM. It also yields
better results: F1 and F2 both increase about 9% in average computed on the
8 http://www2.inf.h-brs.de/∼tmerte2m – In addition to the source code, gold stan-

dards, extracted issues, and experiment results are also available for download.
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unprocessed data sets. A manual inspection revealed that this increase material-
izes due to the flaws in the DTM, especially because of missing traces. Therefore,
the results in this paper are reported in comparison with the GSTM.

6.1 IR Algorithm Performance on ITS Data

Figure 2 shows an evaluation of all algorithms with respect to the GSTMs for
all projects with and without standard preprocessing. The differences per project
are significant with 30% for F1 and 27% for F2. It can be seen that standard
preprocessing does not have a clear positive impact on the results. Although, if
only slightly, a negative impact on some of the project/algorithm combinations
is noticeable. On a side note, our experiment supports the claim of [12], that
removing stop-words is not always beneficial on ITS data: We experimented
with different stop word lists and found that a small list that essentially removes
only pronouns works best.

In terms of algorithms, to our surprise, no variant of BM25 competed for the
best results. The best F2 measures of all BM25 variants varied from 0.09 to 0.19
over all projects, independently of standard preprocessing. When maximizing R
to 1, P does not cross a 2% barrier for any algorithm. Even for R ≥ 0.9, P is
still < 0.05. All in all, the results are not good according to Table 3, indepen-
dently of standard preprocessing, and they cannot compete with related work
on structured RAs.

VSM LSA BM25

0.1

0.2

0.3

0.4

0.5

VSM LSA BM25

0.1

0.2

0.3

0.4

0.5

c:geo with preprocessing without preprocessing
Lighttpd with preprocessing without preprocessing
Radiant with preprocessing without preprocessing
Redmine with preprocessing without preprocessing

Fig. 2. Best F1 (left) and F2 (right) scores for every algorithm

Although results decrease slightly in a few cases, the negative impact is negli-
gible. Therefore, the remaining measurements are reported with the standard
preprocessing techniques enabled9.

9 In addition, removing stop words and stemming is considered IR best practices,
e.g. [2,17].
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Mining Some Estimates

In their description of their gold standard
construction process, I was able to mine some
estimates, which were validated by e-mail with
Merten:

g Time to find a correct link: 17.84 person-
minutes

g Time to consider a potential link: 14.54
person-seconds (independent of any tool)

∴ β = 73.6 and F β = .990

 2017 Daniel M. Berry RE 2017 R vs P Panel Pg. 49
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Mining More Estimates

Based on facts:

g There was an upfront discussion, leading
to consensus, on criteria for TP links.

g About 5% of the considered links needed a
discussion during the construction.

I estimate that HAHR is [95% – 90%]

 2017 Daniel M. Berry RE 2017 R vs P Panel Pg. 50



Verdict on the Tool

Is the tool worth using?

It depends!

Certainly, the tool’s R beats HAHR!

So, it gets down to whether the tool makes the
remaining manual job easier, i.e., smaller or
faster.

 2017 Daniel M. Berry RE 2017 R vs P Panel Pg. 51



Verdict, Cont’d

The problem with such R and P is that they are
close to those of the useless‘ tool that returns
every answer.

If the tool’s answers summarize the original
documents, i.e.,

the tool’s answers contain every correct link,
and are smaller than the original documents,
so that the human has less work to do …

 2017 Daniel M. Berry RE 2017 R vs P Panel Pg. 52



If …, Cont’d

Or the tool presents the information relevant
to vetting a link in a form that makes the
vetting time less than 14.54 seconds, …

then the tool is worth using

else the tool is not worth using

when you need 100% R.

 2017 Daniel M. Berry RE 2017 R vs P Panel Pg. 53
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Abstract App stores like Google Play and Apple AppS-

tore have over 3 million apps covering nearly every kind of

software and service. Billions of users regularly download,

use, and review these apps. Recent studies have shown that

reviews written by the users represent a rich source of

information for the app vendors and the developers, as they

include information about bugs, ideas for new features, or

documentation of released features. The majority of the

reviews, however, is rather non-informative just praising

the app and repeating to the star ratings in words. This

paper introduces several probabilistic techniques to classify

app reviews into four types: bug reports, feature requests,

user experiences, and text ratings. For this, we use review

metadata such as the star rating and the tense, as well as,

text classification, natural language processing, and senti-

ment analysis techniques. We conducted a series of

experiments to compare the accuracy of the techniques and

compared them with simple string matching. We found that

metadata alone results in a poor classification accuracy.

When combined with simple text classification and natural

language preprocessing of the text—particularly with

bigrams and lemmatization—the classification precision

for all review types got up to 88–92 % and the recall up to

90–99 %. Multiple binary classifiers outperformed single

multiclass classifiers. Our results inspired the design of a

review analytics tool, which should help app vendors and

developers deal with the large amount of reviews, filter

critical reviews, and assign them to the appropriate

stakeholders. We describe the tool main features and

summarize nine interviews with practitioners on how

review analytics tools including ours could be used in

practice.

Keywords User feedback � Review analytics � Software
analytics � Machine learning � Natural language
processing � Data-driven requirements engineering

1 Introduction

Nowadays it is hard to imagine a business or a service that

does not have any app support. In July 2014, leading app

stores such as Google Play, Apple AppStore, and Windows

Phone Store had over 3 million apps.1 The app download

numbers are astronomic with hundreds of billions of

downloads over the last 5 years [9]. Smartphone, tablet,

and more recently also desktop users can search the store

for the apps, download, and install them with a few clicks.

Users can also review the app by giving a star rating and a

text feedback.

Studies highlighted the importance of the reviews for the

app success [22]. Apps with better reviews get a better

ranking in the store and with it a better visibility and higher

sales and download numbers [6]. The reviews seem to help

users navigate the jungle of apps and decide which one to

use. Using free text and star rating, the users are able to

express their satisfaction, dissatisfaction or ask for missing

features. Moreover, recent research has pointed the

potential importance of the reviews for the app developers

and vendors as well. A significant amount of the reviews
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From the collected data, we randomly sampled a subset

for the manual labeling as shown in Table 2. We selected

1000 random reviews from the Apple store data and 1000

from the Google store data. To ensure that enough reviews

with 1, 2, 3, 4, and 5 stars are sampled, we split the two

1000-review samples into 5 corresponding subsamples

each of size 200. Moreover, we selected 3 random Android

apps and 3 iOS apps from the top 100 and fetched their

reviews between 2012 and 2014. From all reviews of each

app, we randomly sampled 400. This led to additional 1200

iOS and 1200 Android app-specific reviews. In total, we

had 4400 reviews in our sample.

For the truth set creation, we conducted a peer, manual

content analysis for all the 4400 reviews. Every review in

the sample was assigned randomly to 2 coders from a total

of 10 people. The coders were computer science master

students, who were paid for this task. Every coder read

each review carefully and indicated its types: bug report,

feature request, user experience, or rating. We briefed the

coders in a meeting, introduced the task, the review types,

and discussed several examples. We also developed a

coding guide, which describes the coding task, defines

precisely what each type is, and lists examples to reduce

disagreements and increase the quality of the manual

labeling. Finally, the coders were able to use a coding tool

(shown on Fig. 1) that helps to concentrate on one review

at once and to reduce coding errors. If both coders agreed

on a review type, we used that label in our golden standard.

A third coder checked each label and solved the dis-

agreements for a review type by either accepting the pro-

posed label for this type or rejecting it. This ensured that

the golden set contained only peer-agreed labels.

In the third phase, we used the manually labeled reviews

to train and to test the classifiers. A summary of the

experiment data is shown in Table 3. We only used

reviews, for which both coders agreed that they are of a

certain type or not. This helped that a review in the cor-

responding evaluation sample (e.g., bug reports) is labeled

correctly. Otherwise training and testing the classifiers on

unclear data will lead to unreliable results. We evaluated

the different techniques introduced in Sect. 2, while vary-

ing the classification features and the machine learning

algorithms.

We evaluated the classification accuracy using the

standard metrics precision and recall. Precisioni is the

fraction of reviews that are classified correctly to belong to

type i. Recalli is the fraction of reviews of type i which are

classified correctly. They were calculated as follows:

Precisioni ¼
TPi

TPi þ FPi

Recalli ¼
TPi

TPi þ FNi

ð1Þ

TPi is the number of reviews that are classified as type i

and actually are of type i. FPi is the number of reviews

that are classified as type i but actually belong to another

type j where j 6¼ i. FNi is the number of reviews that are

classified to other type j where j 6¼ i but actually belong to

type i. We also calculated the F-measure (F1), which is

the harmonic mean of precision and recall providing a

single accuracy measure. We randomly split the truth set

at a ratio of 70:30. That is, we randomly used 70 % of the

data for the training set and 30 % for the test set. Based on

the size of our truth set, we felt this ratio is a good trade-

off for having large-enough training and test sets. More-

over, we experimented with other ratios and with the

cross-validation method. We also calculated how infor-

mative the classification features are and ran paired t tests

to check whether the differences of F1-scores are statis-

tically significant.

The results reported in Sect. 4 are obtained using the

Monte Carlo cross-validation [38] method with 10 runs and

random 70:30 split ratio. That is, for each run, 70 % of the

truth set (e.g., for true positive bug reports) is randomly

selected and used as a training set and the remaining 30 %

is used as a test set. Additional experiments data, scripts,

and results are available on the project Web site: http://

mast.informatik.uni-hamburg.de/app-review-analysis/.

4 Research results

We report on the results of our experiments and compare

the accuracy (i.e., precision, recall, and F-measures) as

well as the performance of the various techniques.

4.1 Classification techniques

Table 4 summarizes the results of the classification tech-

niques using Naive Bayes classifier on the whole data of

the truth set (from the Apple AppStore and the Google Play

Store). The results in Table 4 indicate the mean values

obtained by the cross-validation for each single combina-

tion of classification techniques and a review type. The

Table 2 Overview of the evaluation data

App(s) Category Platform #Reviews Sample

1100 apps All iOS Apple 1,126,453 1000

Dropbox Productivity Apple 2009 400

Evernote Productivity Apple 8878 400

TripAdvisor Travel Apple 3165 400

80 apps Top four Google 146,057 1000

PicsArt Photography Google 4438 400

Pinterest Social Google 4486 400

Whatsapp Communication Google 7696 400

Total 1,303,182 4400

316 Requirements Eng (2016) 21:311–331

123

http://mast.informatik.uni-hamburg.de/app-review-analysis/
http://mast.informatik.uni-hamburg.de/app-review-analysis/
dberry
Highlight

dberry
Sticky Note
I believe that it costs a human about 10 times the effort to find a TP than it does for the same human to reject a FP. Do you have any data about these times for your 4 tasks?

If I am right about this time estimate, then you should use F_10 that weights recall 10 times what it weights precision.



numbers in bold represent the highest scores for each

column, which means the highest accuracy metric (preci-

sion, recall, and F-measure) for each classifier.

Table 5 shows the p values of paired t tests on whether

the differences between the mean F1-scores of the baseline

classifier and the various classification techniques are sta-

tistically significant. For Example: If one classifier result is

80 % for a specific combination of techniques and another

result is 81 % for another combination, those two results

could be statistically different or it could be by chance. If

the p value calculated by the paired t test is very small, this

means that the difference between the two values is sta-

tistically significant. We used Holm’s step-down method

[16] to control the family-wise error rate.

Overall, the precisions and recalls of all probabilistic

techniques were clearly higher than 50 % except for three

cases: the precision and recall of feature request classifiers

based on rating only as well as the recall of the same

technique (rating only) to predict ratings. Almost all

probabilistic approaches outperformed the basic classifiers

that use string matching with at least 10 % higher preci-

sions and recalls.

The combination of text classifiers, metadata, NLP, and

the sentiments extraction generally resulted in high preci-

sion and recall values (in most cases above 70 %). How-

ever, the combination of the techniques did not always rank

best. Classifiers only using metadata generally had a rather

low precision but a surprisingly high recall except for

predicting ratings where we observed the opposite.

Concerning NLP techniques, there was no clear trend like

‘‘more language processing leads to better results.’’ Overall,

removing stopwords significantly increased the precision to

predict bug reports, feature request, and user experience,

while it decreased the precision for ratings. We observed the

same when adding lemmatization. On the other hand, com-

bining stop word removal and lemmatization did not had any

significant effect on precision and recall.

We did not observe any significant difference between

using one or two sentiment scores.

4.2 Review types

We achieved the highest precision for predicting user

experience and ratings (92 %), the highest recall, and F-

measure for user experience (respectively, 99 and 92 %).

For bug reports we found that the highest precision

(89 %) was achieved with the bag of words, rating, and one

sentiment, while the highest recall (98 %) with using

bigrams, rating, and one score sentiment. For predicting

bug reports the recall might be more important than pre-

cision. Bug reports are critical reviews, and app vendors

would probably need to make sure that a review analytics

Fig. 1 Tool for manual labeling of the reviews

Table 3 Number of manually

analyzed and labeled reviews
Sample Manually analyzed Bug reports Feature requests User experiences Ratings

Random apps Apple 1000 109 83 370 856

Selected apps Apple 1200 192 63 274 373

Random apps Google 1000 27 135 16 569

Selected apps Google 1200 50 18 77 923

Total 4400 378 299 737 2721

Requirements Eng (2016) 21:311–331 317
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Table 4 Accuracy of the classification techniques using Naive Bayes on app reviews from Apple and Google stores (mean values of the 10 runs, random 70:30 splits for training:evaluation

sets)

Classification techniques Bug reports Feature requests User experiences Ratings

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Basic (string matching) 0.58 0.24 0.33 0.39 0.55 0.46 0.27 0.12 0.17 0.74 0.56 0.64

Document classification (&NLP)

Bag of words (BOW) 0.79 0.65 0.71 0.76 0.54 0.63 0.82 0.59 0.68 0.67 0.85 0.75

Bigram 0.68 0.98 0.80 0.68 0.97 0.80 0.70 0.99 0.82 0.91 0.62 0.73

BOW ? bigram 0.85 0.90 0.87 0.86 0.85 0.85 0.87 0.91 0.89 0.85 0.89 0.87

BOW ? lemmatization 0.88 0.74 0.80 0.86 0.65 0.74 0.90 0.67 0.77 0.73 0.91 0.81

BOW - stopwords 0.86 0.69 0.76 0.86 0.65 0.74 0.91 0.67 0.77 0.74 0.91 0.81

BOW ? lemmatization - stopwords 0.85 0.71 0.77 0.87 0.67 0.76 0.91 0.67 0.77 0.75 0.90 0.82

BOW ? bigrams - stopwords ? lemmatization 0.85 0.91 0.88 0.86 0.83 0.85 0.89 0.94 0.91 0.85 0.90 0.87

Metadata

Rating 0.64 0.82 0.72 0.31 0.35 0.31 0.74 0.89 0.81 0.72 0.34 0.46

Rating ? length 0.76 0.75 0.75 0.68 0.67 0.67 0.72 0.82 0.77 0.70 0.68 0.69

Rating ? length ? tense 0.74 0.73 0.74 0.64 0.71 0.67 0.74 0.80 0.77 0.70 0.68 0.69

Rating ? length ? tense ? 19 sentiment 0.69 0.76 0.72 0.66 0.66 0.66 0.71 0.85 0.77 0.71 0.66 0.68

Rating ? length ? tense ? 29 sentiments 0.66 0.78 0.71 0.65 0.72 0.68 0.67 0.88 0.76 0.69 0.67 0.68

Combined (text and metadata)

BOW ? rating ? lemmatize 0.85 0.73 0.78 0.89 0.64 0.74 0.90 0.67 0.77 0.73 0.89 0.80

BOW ? rating ? 19 sentiment 0.89 0.72 0.79 0.89 0.60 0.71 0.92 0.73 0.81 0.75 0.93 0.83

BOW ? rating ? tense ? 1 sentiment 0.87 0.71 0.78 0.87 0.60 0.70 0.92 0.69 0.79 0.74 0.90 0.81

Bigram ? rating ? 19 sentiment 0.73 0.98 0.83 0.71 0.96 0.81 0.75 0.99 0.85 0.92 0.69 0.79

Bigram - stopwords ? lemmatization ? rating ? tense ? 29 sentiment 0.72 0.97 0.82 0.70 0.94 0.80 0.75 0.98 0.85 0.92 0.72 0.81

BOW ? bigram ? tense ? 19 sentiment 0.87 0.88 0.87 0.85 0.83 0.83 0.88 0.94 0.91 0.83 0.87 0.85

BOW ? lemmatize ? bigram ? rating ? tense 0.88 0.88 0.88 0.87 0.84 0.85 0.89 0.94 0.92 0.84 0.90 0.87

BOW - stopwords ? bigram ? rating ? tense ? 19 sentiment 0.88 0.89 0.88 0.86 0.84 0.85 0.87 0.93 0.90 0.83 0.89 0.86

BOW - stopwords ? lemmatization ? rating ? 19 sentiment ? tense 0.88 0.71 0.79 0.87 0.64 0.74 0.91 0.72 0.80 0.73 0.90 0.80

BOW - stopwords ? lemmatization ? rating ? 29 sentiments ? tense 0.87 0.71 0.78 0.86 0.68 0.76 0.91 0.73 0.81 0.75 0.90 0.82

Bold values represent the highest score for the corresponding accuracy metric per review type
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tool does not miss any of them, with the compromise that a

few of the reviews predicted as bug reports are actually not

(false positives). For a balance between precision and recall

combining bag of words, lemmatization, bigram, rating,

and tense seems to work best.

Concerning feature requests, using the bag of words,

rating, and one sentiment resulted in the highest precision

with 89 %. The bestF-measurewas 85 %with bag of words,

lemmatization, bigram, rating, and tense as the classification

features.

The results for predicting user experiences were sur-

prisingly high. We expect those to be hard to predict as the

basic technique for user experiences shows. The best

option that balances precision and recall was to combine

bag of words with bigrams, lemmatization, the rating, and

the tense. This option achieved a balanced precision and

recall with a F-measure of 92 %.

Predicting ratings with the bigram, rating, and one

sentiment score leads to the top precision of 92 %. This

result means that stakeholders can precisely select rating

among many reviews. Even if not all ratings are selected

(false negatives) due to average recall, those that are

selected will be very likely ratings. A common use case

would be to filter out reviews that only include ratings or to

select another type of reviews with or without ratings.

Table 6 shows the ten most informative features of a

combined classification technique for each review type.

4.3 Classification algorithms

Table 7 shows the results of comparing the different

machine learning algorithms Naive Bayes, Decision Trees,

andMaxEnt.We report on two classification techniques (bag

of words and bag of words ? metadata) since the other

results are consistent and can be downloaded from the pro-

ject Web site.2 In all experiments, we found that binary

Table 5 Results of the paired t test between the different techniques (one in each row) and the baseline BoW (using Naive Bayes on app reviews

from Apple and Google stores)

Classification techniques Bug reports Feature requests User experiences Ratings

F1-score p value F1-score p value F1-score p value F1-score p value

Document classification (&NLP)

Bag of words (BOW) 0.71 Baseline 0.63 Baseline 0.68 Baseline 0.75 Baseline

Bigram 0.80 0.043 0.80 2.5e-06 0.82 0.00026 0.73 0.55

BOW ? bigram 0.87 6.9e-05 0.85 2.6e-07 0.89 4.7e-06 0.87 2.9e-05

BOW ? lemmatization 0.80 0.031 0.74 0.0022 0.77 0.0028 0.81 0.029

BOW - stopwords 0.76 0.09 0.74 0.0023 0.77 0.0017 0.81 0.0019

BOW - stopwords ? lemmatization 0.77 0.051 0.76 0.0008 0.77 0.0021 0.82 0.0005

BOW - stopwords ? lemmatization ? bigram 0.88 6.6e-05 0.85 2.9e-07 0.91 4.3e-08 0.87 0.0009

Metadata

Rating 0.72 1.0 0.31 0.04 0.81 7.1e-05 0.46 6.9e-06

Rating ? length 0.75 0.09 0.67 0.04 0.77 0.0005 0.69 0.0098

Rating ? length ? tense 0.74 0.63 0.67 0.083 0.77 0.0029 0.69 0.029

Rating ? length ? tense ? 19 sentiment 0.73 1.0 0.66 0.16 0.77 0.004 0.68 8.9e-05

Rating ? length ? tense ? 29 sentiments 0.71 1.0 0.68 0.0002 0.76 0.028 0.68 0.029

Combined (text and metadata)

BOW ? rating ? lemmatize 0.78 0.064 0.74 0.0005 0.77 0.0023 0.80 0.0044

BOW ? rating ? 19 sentiment 0.79 0.0027 0.71 0.039 0.81 0.0002 0.83 0.001

BOW ? rating ? 1 sentiment ? tense 0.78 0.0097 0.70 0.039 0.79 0.0002 0.81 0.0012

Bigram ? rating ? 1 sentiment 0.83 0.0039 0.81 9.5e-06 0.85 2e-05 0.79 0.042

Bigram - stopwords ? lemmatization
? rating ? tense ? 29 sentiment

0.82 0.0019 0.80 1.7e-06 0.85 2.5e-05 0.81 0.029

BOW ? bigram ? tense ? 19 sentiment 0.87 0.0001 0.83 1.2e-05 0.91 1.9e-07 0.85 0.0002

BOW ? lemmatize ? bigram ? rating
? tense

0.88 7.6e-06 0.85 7.6e-07 0.92 1.2e-07 0.87 1.6e-05

BOW - stopwords ? bigram ? rating
? tense ? 19 sentiment

0.88 1.6e-06 0.85 7.6e-07 0.90 4.8e-06 0.86 0.0002

BOW - stopwords ? lemmatization
? rating ? tense ? 19 sentiment

0.79 0.064 0.74 0.0008 0.80 0.0014 0.80 0.029

BOW - stopwords ? lemmatization
? rating ? tense ? 29 sentiments

0.78 0.051 0.76 0.0012 0.81 0.0003 0.82 0.0002

2 http://mast.informatik.uni-hamburg.de/app-review-analysis/.
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classifiers are more accurate for predicting the review types

than multiclass classifiers. One possible reason is that each

binary classifier uses two training sets: one set where the

corresponding type is observed (e.g., bug report) and one set

where it is not (e.g., not bug report). Concerning the binary

classifiers Naive Bayes outperformed the other algo-

rithms. In Table 7, the numbers in bold represent the highest

average scores for the binary (B) and multiclass (MC) case.

4.4 Performance and data

The more data are used to train a classifier the more time the

classifier would need to create its prediction model. This is

depicted in Fig. 2 where we normalized themean time needed

for the four classifiers depending on the size of the training set.

In this case, we used a consistent size for the test set of 50

randomly selected reviews to allow a comparison of the results.

We found that when using more than 200 reviews to train

the classifiers the time curve gets much more steep with a

rather exponential than a linear shape. For instance, the time

needed for training almost doubles when the training size

grows from 200 to 300 reviews. We also found that MaxEnt

needed much more time to build its model compared to all

other algorithms for binary classification. Using the classi-

fication technique BoW and Metadata, MaxEnt took on

average � 40 times more than Naive Bayes and � 1:36

times more than Decision Tree learning.

These numbers exclude the overhead introduced by the

sentiment analysis, the lemmatization, and the tense

detection (part-of-speech tagging). The performance of

these techniques is studied well in the literature [4], and

their overhead is rather exponential to the text length.

However, the preprocessing can be conducted once on each

review and stored separately for later usages by the clas-

sifiers. Finally, stopword removal introduces a minimal

overhead that is linear to the text length.

Figure 3 shows how the accuracy changes when the

classifiers use larger training sets. The precision curves are

Table 6 Most informative features for the classification technique bigram - stop words ? lemmatization ? rating ? 29 sentiment

scores ? tense

Bug report Feature request User experience Rating

Rating (1) Bigram (way to) Rating (3) Bigram (will not)

Rating (2) Bigram (try to) Rating (1) Bigram (to download)

Bigram (every time) Bigram (would like) Bigram (use to) Bigram (use to)

Bigram (last update) Bigram (5 star) Bigram (to find) Bigram (new update)

Bigram (please fix) Rating (1) Bigram (easy to) Bigram (fix this)

Sentiment (-4) Bigram (new update) Bigram (go to) Bigram (can get)

Bigram (new update) Bigram (back) Bigram (great to) Bigram (to go)

Bigram (to load) Rating (2) Bigram (app to) Rating (1)

Bigram (it can) Present cont. (1) Bigram (this great) Bigram (great app)

Bigram (can and) Bigram (please fix) Sentiment (-3) Present simple (1)

Table 7 F-measures of the

evaluated machine learning

algorithms (B = binary

classifier, MC = multiclass

classifiers) on app reviews from

Apple and Google stores

Type Technique Bug R. F req. U exp. Rat. Avg.

Naive Bayes

B Bag of words (BOW) 0.71 0.63 0.68 0.75 0.70

MC Bag of words 0.66 0.31 0.43 0.59 0.50

B BOW ? metadata 0.79 0.71 0.81 0.83 0.79

MC BOW ? metadata 0.62 0.42 0.50 0.58 0.53

Decision Tree

B Bag of words 0.81 0.77 0.82 0.79 0.79

MC Bag of words 0.49 0.32 0.44 0.52 0.44

B BOW ? metadata 0.73 0.68 0.78 0.78 0.72

MC BOW ? metadata 0.62 0.47 0.53 0.54 0.54

MaxEnt

B Bag of words 0.66 0.65 0.58 0.67 0.65

MC Bag of words 0.26 0.00 0.12 0.22 0.15

B BOW ? metadata 0.66 0.65 0.60 0.69 0.65

MC BOW ? metadata 0.14 0.00 0.29 0.04 0.12
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represented with continuous lines, while the recall curves

are dotted. From Figs. 2 and 3 it seems that 100–150

reviews are a good size of the training sets for each review

type, allowing for a high accuracy while saving resources.

With an equal ratio of candidate and non-candidate reviews

the expected size of the training set doubles leading to

200–300 reviews per classifier recommended for training.

Finally, we also compared the accuracy of predicting the

Apple AppStore reviews with the Google Play Store

reviews. We found that there are differences in predicting

the review types between both app stores as shown in

Tables 8 and 9. The highest values of a metric are

emphasized as bold for each review type. The biggest

difference in both stores is in predicting bug reports. While

the top value for F-measure for predicting bugs in the

Apple AppStore is 90 %, the F-measure for the Google

Play Store is 80 %. A reason for this difference might be

that we had less labeled reviews for bug reports in the

Google Play Store. On the other hand, feature requests in

the Google Play Store have a promising precision of 96 %

with a recall of 88 %, while the precision in the Apple

AppStore is 88 % with a respective recall of 84 %, by
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Fig. 2 How the size of the training set influences the time to build the classification model (Naive Bayes using BoW ? rating ? lemmatization

(see Table 4))
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Fig. 3 How the size of the training set influences the classifier accuracy (Naive Bayes using BoW ? rating ? lemmatization (see Table 4))
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