
Just how close to 100% must the recall of a tool for a hairy
task be? First, recognize that

• achieving 100% recall is probably impossible, even for a
human, as is finding all bugs in a program, particularly
because the task is hairy, and

• we have no way to know if a tool has achieved 100%
recall, because the only way to measure recall for a tool
is to compare the tool’s output against the set of all correct
answers, which is impossible to obtain, even by humans.

Let us call what humans can achieve when performing the task
manually under the best of conditions the “humanly achievable
recall4 (HAR)” for the task, which we hope is close to 100%.
If a tool can be demonstrated to achieve better recall than the
HAR for its task, then a human will trust the tool and will not
feel compelled to do the tool’s task manually, to look for what
the human feels that the tool failed to find.

Thus, the real goal for any tool for a hairy task is to achieve 
at least the HAR for the task. Therefore, a tool for a hairy task 
must be evaluated by empirically comparing the recall of hu-
mans working with the tool to carry out the task with the recall 
of humans carrying out the task manually [29,75,87]. Empirical 
studies will be needed to estimate the HAR and other key values 
that inform the evaluations.

4This used to be called the ‘humanly achievable high recall (HAHR)”, ex-
pressing the hope that it is close to 100%. However, actual values have proved
to be quite low, sometimes as low as 32.95%.
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In these formulae, β is the ratio by which it is desired to
weight R more than P [38]. Call the β for a tool t for a task T
“βTt”. βTt should be calculated as the ratio of

numerator: the average time for a human, performing T man-
ually, to find a true positive (i.e., correct) answer among
all the potential answers in the original documents and

denominator: the average time for a human to determine whether
or not an answer presented by t is a true positive answer8.

The numerator can be seen as the human time cost of each item
of recall, and the denominator can be seen as the human time
cost of each item of precision.

Sometimes, one needs to estimate β for T before any tool
has been built, e.g., to see if building a tool is worth the effort or
to be able to make rational tradeoffs in building any tool. Call
this task-dependent, tool-independent estimate “βT ”. It uses the
same numerator as βTt but a different denominator:

numerator: the average time for a human, performing T man-
ually, to find a true positive answer among all the poten-
tial answers in the original documents and

denominator: the average time for a human, performing T
manually, to decide whether or not any potential answer
in the original document is a true positive answer.

8on the assumption that the time required for a run of t is negligible or other
work can be done while t is running on its own.
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The difference between the denominator and the numerator for
βT is that to find a true positive, one will have to decide about
some a priori unknown number of potential answers to find one
true positive answer, a number dependent on the incidence of
true positive answers among the potential answers in the docu-
ment. Let λ be the fraction of the potential answers in the doc-
ument that are true positive answers. Then, βT is 1 [50]. Theλ
less frequent the true positives are in a document, the hairier the
task of finding them is.

In general, the denominator of a task’s βT is expected to
be larger than the denominator of βTt for any well-designed
t for T . A well-designed t will show for each potential true
positive answer it offers, the snippets of the original document
that it used to decide that the offered answer is potentially a true
positive. These snippets should make deciding about an answer
offered by t faster than deciding about the same answer while
it is embedded in the original document. Thus, T ’s βT should
be a lower bound for the βTts for all well-designed ts for T . In
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the rest of this paper, “β” is a generic name covering both “βT ”
and “βTt”.

Some want to adjust β according to the ratio of two other
values,

• an estimate of the cost of the failure to find a true positive
and

• an estimate of the cost of the accumulated nuisance of
dealing with tool-found false positives.

For any particular hairy task, a tool for it, and a context in which
the task must be done, a separate empirical study is necessary
to arrive at good estimates for these values.

There is empirical evidence for any of a variety of hairy
tasks that β is greater than 1, and in many cases, significantly
so. For example, Section 8.4 shows a variety of estimates of
βT for the tracing task as 23.17, 22.70, 143.21, 23.65, 27.91,
57.05, and 18.40. Section 9.4 shows estimates for βT s for the
three hairy tasks [51] the section discusses as 10.00, 9.09, and
2.71. Tjong, in doing her evaluation of SREE, an ambiguity
finder, found data that give a βTt of 8.7 [78].
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Cleland-Huang et al calculate the returns on investment and
costs vs. benefits of several tracing strategies ranging from
maintaining full traces for immediate use at any time through
tracing on the fly. To come to their conclusions, they estimated,
probably based on their extensive experience with the tracing
task, T , that

• during the writing of the software being traced, creating
a link takes on average 15 minutes and keeping any cre-
ated link takes on average 5 minutes over five years of
development, and

• when tracing on the fly is needed, e.g., during update of
the software, finding a link manually takes on average 90
minutes [17].

Even though one of their tracing strategies involves use of a
tool, t, to generate traces on the fly, they give no estimate at all
for the time to vet a tool-found candidate link, and estimate total
costs of strategies without considering any costs associated with
tool use. Therefore, they must regard that time as negligible. If
the vetting time is truly negligible, it must be in the seconds.
Let us assume a conservative vetting time of 1 minute. These
two times yield an estimate of βTt = 90 for the tracing tools
Cleland-Huang et al were thinking of in their model.
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6.2 Selectivity
For the tracing task, there is a phenomenon similar in effect
to summarization. Suppose that the documents D to be traced
consists of M items that can be the tail of a link and N items
that can be the head of a link. Then, there are potentially M×N
links, only a fraction of which are correct, true positive links. If
a tool returns for vetting by the human user L candidate links,
then the tool is said to have

selectivity =
L

M ×N
. (7)

As Hayes, Dekhtyar, and Sundaram put it [38],

“ In general, when performing a requirements trac-
ing task manually, an analyst has to vet M × N
candidate links, i.e., perform an exhaustive search.
Selectivity measures the improvement of an IR al-
gorithm over this number: . . . The lower the value
of selectivity, the fewer links that a human analyst
needs to examine.”

Thus, selectivity is S, summarization, adapted to the tracing
task10. If a tool for the tracing task has 100% recall and any se-
lectivity strictly less than 100%, using the tool will offer some
savings over doing the task manually, even if the precision is
0%. As is shown in Section 9.2, Sundaram, Hayes, and Dekht-
yar found for various tracing tool algorithms, selectivity values
in the range of 41.9% through 71.5% [76]. Therefore, the sav-
ings will be real.

10It is unfortunate that the senses of the summarization and selectivity mea-
sures are opposed to each other. A high summarization, near 100%, is good,
and a low one, near 0%, is bad, while a low slectivity, near 0%, is good, and a
high one, near 100%, is bad. Therefore, for clarity, the terms “good” and “bad”
are used instead of “high” and “low” when talking about either.
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There are other factors that indicate even greater savings by
using a tool. While the output of a tracing tool is not in the same
language as the input, the output, namely a list of candidate
links, is physically much smaller than the input and is entirely
focused on providing information to allow rapid vetting of the
candidate links. A candidate link will show the snippets of the
documents that are linked by the link. It may also show the data
that led the tool declare the link to be a candidate.

As Barbara Paech observed in private communication [64],

For me the value of the tool would be the organi-
zation. It takes notes of everything I have done. I
cannot mix up things and so on.

So I think the value is not so much per decision, but
there is saving in the overall time.

Furthermore I can imagine that the tool has other
support. It could e.g. highlight for IR-created links
the terms which are similar in the two artifacts.
That would make the decision much easier.”
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It should take less time to vet a candidate link in a tracing tool’s
output than it does to manually find the same candidate link in
the input and then to vet it, if for no reason other than the latter
time includes the former. So, if one knows that the output of the
tracing tool has recall greater than the tracing task’s HAR, i.e.,
the tool beats the average human in finding true positive links,
it really does not matter if the output has low precision, because
in any case, the tool user will spend less total time to vet the
tool’s output than he or she would to do the tracing manually.

These observations suggest that in developing a tracing tool,
it is probably best to trade away precision towards achieving
recall as close as possible to 100% with decent selectivity of
no higher than 70%. While users may balk at high impreci-
sion [15], perhaps their being shown the evaluation data will
convince them that the alternative of doing the task manually is
much much worse!
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7 An Empirical Method to Evaluate Tools
for NL RE Task

In order to evaluate a tool for a NL RE task to be performed on
some documents, two questions need to be answered.

1. One question is the obvious: “What is the relative impor-
tance of recall and precision, i.e., what is the correct value
of β to use in Fβ?’

2. The second is a deeper question, “What is the best method
to perform T : entirely manually, with only t, or with
some mixture thereof?” [7]

The answers to both of these questions can come only empiri-
cally, e.g., by adapting IR’s cost-based evaluation measures [83]
to the hairy task context.
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In order to evaluate a tool t for a NL RE task T to be per-
formed on the documents D for the development of a CBS, we
need to determine as many of the following values as are possi-
ble and relevant:

1. numerator of both βs: the average time, τfind, that an av-
erage human needs to manually find a correct answer in
D,

2. denominator of βTt: the average time, τvet, that an aver-
age human needs to manually vet any potential answer
that t returns,

3. denominator of βT : the average time, τdet, that an average
human needs to manually determine whether or not any
potential answer in D is a correct answer,

4. λD: the frequency of the true positive answers among all
potential answers in D,
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5. S or selectivity: the summarization of D achieved by t or,
in the case T is tracing, the selectivity achieved by t on
D,

6. cost of a false negative: the criticality of achieving 100%
recall on T , by estimating the cost of a false negative, an
undetected correct answer,

7. cost of low precision: the criticality of high precision, by
estimating the tool-use deterrence created by each false
positive reported by t,

8. average tool recall: the average recall that t achieves on
T , and

9. HAR: the average recall that humans achieve when they
do T manually.

Note that as a consistency check or as a means to calculate a
missing value, it should be that, or be assumed that

τfind

τdet
=

1
λD

. (8)

For any of these value in which there are multiple data con-
tributing to it, the average, minimum, maximum, and standard
deviation of these data should be reported to allow fuller under-
standing of the estimated value.
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Many of these data can be obtained during a multi-person
construction of a gold standard G of correct answers from man-
ually performing T on a representative and substantial sam-
pling of documents D from the construction of a representative
CBS [55]. Generally, G is constructed by a group of people
familiar with the CBS or its domain:

1. Each member of the group performs T on D indepen-
dently to produce his or her own list of answers that he or
she believes are correct.

2. The union of the group members’ lists is formed.

3. The group meets to discuss the union list and its mem-
bers’ lists in order to arrive at a mutually-agreed-upon
single list which is some variation of the union list.

The mutually-agreed-upon list is taken as G. Gold standard
construction has its own problems [13] that have to be consid-
ered to ensure that evaluations based on it are valid. Also, there
are issues in the estimation of a HAR that should be investigated
empirically. How is the value of a HAR affected by the experi-
ence of, the domain familiarity of, and the number of analysts
building a gold standard?

During the construction of G, each group member keeps
track of the total time he or she spent performing T on D, the
number of correct answers he or she found, and the number of
potential answers he or she examined. These data allow esti-
mating (1) the numerator of β and (2) the denominator of βT .
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The average human recall is the average of the fractions of
G that were found by the members of the group. This value can
be taken as the HAR for T .

Other data can be obtained during a test of a tool t applied
to D. First, the recall and precision for t can be estimated by
vetting the output of t with G. This estimated recall for t can be
compared with the HAR for T . Second, S or selectivity of the
output of t with respect to D can be computed.

In addition, the user of t doing the vetting keeps track of
the time he or she spends on the vetting. These times allow
estimating the denominator of βTt. If for t for T , τvet > τdet,
then using t to do T may be an impediment, and it might be
better to do T manually.

The cost of a false negative and the cost of low precision will
have to be estimated by considering the context in which T is
performed. Cleland-Huang et al and Heindl and Biffl suggest a
number of risk-based strategies for estimating the cost of miss-
ing link on the CBS development in which traces are used to
track down the impacts of requirements changes [17,40]. Huang
et al, Hayes et al, and Winkler and Vogelsang have found em-
pirical evidence of the effect of a tool’s low precision on the
motivation, attentitiveness, and performance of the users of the
tool [15, 39, 82].
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MKMSBP give some data from which it is possible to com-
pute βT . They say that they manually created gold standard
trace matrices (GSTMs). From the paragraph titled “Gold Stan-
dard Trace Matrices” in their Section 5.1, it is revealed that
for each project, three of the authors together made 4950 man-
ual comparisons. Table 2 of their paper shows in the “GSTM
generic” row, the number of links found for the four projects.
They are 102, 18, 55, and 94, for a total of 269 links. Thus,
for this context, λ = 269

4950 = 0.054, and βT = 4950
269 = 18.40,

nearly twice as large as 10.
Let’s round 18.40 downward to 18. Columns 6 and 7 of

Table 6 show F18 and F21 values for the same pairs of P s and
Rs. With F18, the R and P of MKMSBP just underperform the
R and P of both of the Related Works. With F21, the R and
P of MKMSBP just outperform the R and P of either of the
Related Works. The F18 is with βT , the task β. If vetting a tool
t’s candidate link is only 14.13% faster than manually deciding
a candidate link in situ in the documents, then βTt is 21. When
β = 21, an R of 1.0 is truly better than an R of 0.9, regardless
of the P value, if close to 100% recall is essential. There are
reasons to believe that βT

βT t
is larger than 1 for the tracing task.

See the last half of Section 6.2.
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The MKMSBP R and P , being 100% and 2%, respectively,
raises the spectre that the high recall is achieved by the extreme
tradeoff of delivering the entire document, as is described in the
beginning of Section 6. However, because MKMSBP’s tool is
for tracing, the tracing task, the output is in a language different
from that of the input, this tradeoff is not possible. So, selectiv-
ity becomes the deciding measure. Even if selectivity is close to
100%, i.e., bad, vetting a link in a tool’s output is usually faster
than deciding the correctness of a potential link in a manual
search. The MKMSBP context seems to be like that described
by Hayes et al, when they observed that [36],

In our prior work [citing [38]], we observed that
even a high-recall, low-precision candidate TM [(trace
matrix)] already generates savings as compared to
the analyst’s need to examine every pair of low-
level/high-level elements when measured in terms
of selectivity.
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