RE for AI: What is an RS for an AI?

Daniel M. Berry University of Waterloo

AIs and LMs

In the following,
an artificial intelligence (AI) could be ...
a learned machine (LM) that results from ...
teaching a machine learning (ML) app with ...
some data from the real world (RW).

Tough Question of Alers

When I have asked AI people:

"How does one write a requirements specification (RS), *S*,

for an AI, A, for a task, T,

in a way that S can be used to decide whether

A correctly implements T,

by asking whether

A satisfies S?", ...

Their Answer

they shrug their shoulders,

"Wer weis?"

Substitute Question

So, I ask:

"When you have build an AI, how do you know that it is correct?"

```
They go on and on about recall, sensitivity precision specificity accuracy, F-measure, aut cetera
```

Follow Up Question

I say:

"But those are evaluations! How do you know what measure values signal that the Al is correct?"

Again, I get a shoulder shrug.

Maybe what is missing are criteria that the measure values must satisfy for the AI to be accepted as being correct?

I Remember a Conversation

I remember an e-mail or chat exchange at an RE'21 workshop with Alessio Ferrari about regs for Al.

He remarked very simply that ...

an AI must mimic a human doing the same task.

So maybe the criteria must give measure values that prove that the Al mimics a human or is better.

A Recent Publication in EMSE

Then, in 2021, I published in *EMSE*, a paper explaining how to evaluate tools for hairy RE tasks that require NLP.

A *hairy* task is one that is difficult for humans to do well in the large scale, in the real world.

Its Advice

Its advice for evaluation the goodness of a tool for a hairy RE task includes:

The tool's

achieving high recall

is usually an order of magnitude more important than

achieving high precision.

Its Advice, Cont'd

 The tool's effective recall after a human's manual vetting the tool's output must be compared to a human's recall doing the task manually.

Its Advice, Cont'd

The time to run the tool and do the manual vetting

must be compared to

the time for a human to do the entire task manually.

To Evaluate a Tool

Thus, the evaluation of a tool for a hairy task requires ...

gathering more data than ...

just its recall and precision ...

against a gold set (ground truth).

To Evaluate a Tool, Cont'd

It requires gathering at least also the

- average recall of humans against the same gold set,
- time for humans to find a true positive in building the gold set, and
- time for humans to reject a false positive from the tool.

Main Insight of REFSQ Paper

The main insight of my REFSQ'22 paper is that a specification for an Al for a hairy task consists of

- 1. a set of measures used for evaluation,
- 2. criteria that the measures must satisfy, and
- 3. other data about the context of the use of the AI, including the RW data that teaches an LM.

Set of Measures

The set of measures used for evaluation measures *correctness* in some sense and is usually calculated from a confusion matrix, e.g.,

- recall and precision,
- sensitivity and specificity,
- F-measure
- accuracy

Criteria For Measures

The criteria that the measures must satisfy ...

help show that the Al ...

can be considered as ...

mimicking or doing better than a human doing the same task.

Criteria, Cont'd

These criteria will usually include ...

the values of the measures that humans actually achieve ...

when doing the same task.

Other Data

The other data are data about the context of the use of the AI that ...

- allow engineering tradeoffs to help the Almeet the criteria and
- decide borderline cases.

Allowing Engineering Tradeoffs

Example of allowing engineering tradeoffs to help the AI meet the criteria:

There is time for human vetting, e.g., in diagnosing radiographs for cancer OR in recognizing stop signs to build teaching set for an Al

 \rightarrow want recall = 100%, but low precision is fine

VS

real-time use, recognizing stop signs in AV

→ want recall = precision = 100%

Deciding Borderline Cases

Example of deciding borderline cases:

fast to vet, beats human precision, *but* tool recall is ε < human recall

For Details

For details, read the REFSQ'22 paper.

For details missing in the paper, google for a like-titled tech report at my Web site:

https://cs.uwaterloo.ca/~dberry/ FTP_SITE/tech.reports/RE4AI_TechReport.pdf