
End to End Framework for 
Developing Machine 
Learning Solution 

Presenter: Karan Vijay Singh



Outline

▪ Introduction to Machine Learning

▪ Types of Learning
▪ Why designing a Machine Learning Solution is different from  designing a 

Software solution?

▪ Motivation 

▪ Goal

▪ Key Phases in Developing a ML solution

▪ CACE Principle

▪ Underutilised Data Dependencies

▪ Feedback



Introduction to Machine Learning

▪ It is a discipline where computer programs make predictions or draw insights

based on patterns they identify in data and are able to improve those insights

with experience — without humans explicitly telling them how to do so.

▪ At a conceptual level, we’re building a machine that given a certain set of

inputs will produce a certain desired output by finding patterns in data and

learning from it.

▪ For example, given the area in square feet,furnished, address, parking and

number of bedrooms (the input) we’re looking to predict a home’s sale price

(the output).



Types of “Learning”

▪ Supervised Learning

▪ Unsupervised Learning

▪ Semi-supervised Learning

▪ Reinforcement Learning



Why designing a Machine Learning Solution is different 
from  designing a Software solution?

For  software product,

▪ Testing a software system is relatively straight-forward as compared to testing

an ML solution as you know the desired outcomes in software.

▪ Also in Traditional software engineering, using encapsulation and modular

design helps us to create maintainable code and it is easy to make isolated

changes and improvements.

But in ML,

▪ Desired outcome depends on kind of problem you are trying to solve.

▪ You may get the output you are looking for but it’s not always the case.

▪ Desired behavior cannot be effectively implemented in software logic without

dependency on external data.



Motivation

▪ Google Scholar Search -> No papers on RE for ML but lot on ML for RE.

▪ No authoritative source available that can be consulted when designing a

machine learning solution.

▪ This is an attempt to develop an end to end framework for developing

machine learning solutions.



Goal 

Our goal is to develop an end to end framework that can be referred by a team  to 

develop a machine learning solution.

Developing a machine learning solution can be divided into following steps:

▪ Ideation Phase

▪ Data Understanding

▪ Prototyping and Testing

▪ Model Exploration

▪ Model Validation & Evaluation

▪ Model Deployment

▪ Ongoing Model Maintenance



Ideation Phase

▪ Business Understanding - Clearly understand what the business

needs.

▪ Objective Function - What the goal of model should be ?

▪ Quality Metrics - What is the appropriate metrics for the problem?

▪ Brainstorm Data Inputs - What could be the potential features to solve

the business problem?

▪ Feasibility - Know what’s possible.



Taxonomy (Evaluation metrics)

Data

Numerical

(Tabular)

Images

Text

Balanced

Timeseries

Imbalanced

Classification

Regression

Forecasting

Precision

Recall

F1 Score

Weighted F score

Accuracy

R2

Adjusted R2

RMSE

MSE

MAPE

Other NLP Tasks
Perplexity

BLEU Score

RMSE

MSE

MAPE



Data Understanding
▪ Gathering Data

▪ Does the team has the relevant data for the required problem?

▪ Do the team need to buy data from other sources/ department?

▪ Know the data 

▪ Exploratory Data Analysis

▪ How does the data vary with time?

▪ How is the data structured and how accessible is it?

▪ How much data is missing?

▪ Validate the data quality.

▪ Data Preprocessing / Preparation:

▪ 80 percent of a data scientist’s time is spent simply finding, cleaning and 

reorganizing the data.

▪ Includes handling missing data, categorical data, outlier detection, data 

transformations etc



Prototyping & Testing

Model Exploration:

▪ Feature Selection : Selecting the relevant features 

▪ Researching model that will best fit the data

▪ Establishing baselines for Model Performance 

▪ Researching and experimenting the state of art models for the problem 

domain (if available)



Prototyping & Testing

Prototype Validation and Evaluation:

▪ Assessing different models performance on predefined quality metrics.

▪ Comparing performance of different models.

▪ Hyperparameter tuning : performing model-specific optimizations.

▪ Checking whether the predictions make sense when comparing to ground 

truth.

▪ Are the results significant enough to make an impact on the present business 

situation?

▪ Do we require any additional features/data that can help in further improving 

the performance?

▪ Brainstorming  with team.



Prototyping Phase of building a ML model

Evaluating Machine Learning Models, O’Reilly



Evaluating Machine Learning Models, O’Reilly



Evaluation Metrics
Why we evaluate the predictive performance of a model?

▪ to estimate the generalization performance, the predictive performance of our model on 

future (unseen) data.

▪ to increase the predictive performance by tweaking the learning algorithm and selecting 

the best performing model.

▪ to identify the machine learning algorithm that is best-suited for the problem at hand by 

comparing different algorithms.

▪ to know when to update the model.

Offline Evaluation
measures offline metrics of the prototyped model on historical data like accuracy or precision 

recall.

Online Evaluation

might measure business metrics such as customer lifetime value, which may not be available 

on historical data but are closer to what your business really cares about.



Confusion Matrix

Precision = TP / (TP + FP)

= TP / Total Predicted Positive

▪ Proportion of data points that the model

says are relevant and are actually

relevant.

▪ A good measure to determine, when the

costs of False Positive is high.

▪ For eg, in email spam detection, an

email that is not Spam (actually

negative) has been predicted as spam

by model.



Confusion Matrix

Recall      = TP / (TP + FN)

= TP / Total Actual Positive

▪ Out of all the data points that are truly

relevant in the dataset,how many are 

found by the model.

▪ A good measure to determine, when the 

costs of False Negative is high.

▪ For eg, in fraud detection, if a fraudulent 

transaction (actual positive) is predicted 

as non-fraudulent (predicted negative), 

can have bad outcomes.



Confusion Matrix

F1 Score = 2 * (Precision*Recall)

(Precision+Recall)

▪ Is the harmonic mean of precision and

recall.

▪ Used when we want to seek a balance

between Precision and Recall.

▪ Gives equal weight to both measures

and is a specific example of the general

Fβ metric where β can be adjusted to

give more weight to either recall or

precision



Model Deployment

▪ Exposing the model as a REST API.

▪ Deploying model to a subset of users to ensure everything goes smoothly and

then rolling out to all.

▪ Having the ability to roll back model to previous version if anything goes

unexpected.

▪ Monitoring the model performance with live data coming.



Ongoing Model Maintenance

▪ Updating the model as business needs change.

▪ Updating the model as new data comes (Data distribution changes)

▪ Retraining the model as and when necessary.

▪ Often shipping the first version of a machine learning system is easy, but 

making subsequent improvements is unexpectedly difficult.



CACE principle

Changing Anything Changes Everything

▪ Adding a new feature

▪ Removing a feature

▪ Distribution change of an existing feature

▪ Input Data Dependency from some other model

▪ Changes in thresholds.

Enhancements to inputs can have arbitrary effects (often undesirable) that are 

expensive to diagnose and address.



Underutilised Data Dependencies

Includes input features that provide little or no value to the performance of model

▪ Legacy Features: Feature F that is included in a model in its initial stages and

as time goes, other features are added that make F mostly redundant but is

not detected.

▪ Bundled Features: Sometimes, a group of features is added and evaluated

together and found to be useful. This process can hide features that add little

or no value.

▪ E-Feature: Adding a new feature to a model that improves accuracy, even

when the accuracy gain is very small or when the complexity overhead might

be high.



Any Questions?

Thank You


