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Introductions
1 My name is Joseph Scott. I am a final year Ph.D. Student in AI

1 Advisors: Vijay Ganesh, Derek Rayside
2 What is AI?

1 AI/AGI means anything to many different people and has different
definitions

2 One thing that is invariant amongst scholars: AI can reason
3 My opinion: A truly general AI system must be able to do all

orthogonal forms of reasoning.
3 How do we reason? Some prominent ones

1 Deductive Reasoning – conclusions are derived from a set of premises
that are considered to be true.

2 Inductive Reasoning – conclusions are drawn from specific observations
or examples.

3 Others (e.g., abductive, common sense, cultural and moral, analogical,
etc.).

4 During my Ph.D., I have worked mostly in AI systems (not philosophy
,). How do modern AI systems realize these blackbox forms of
reasoning?
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Modern Logic Solving – Deductive AI (1/3)

A logic solver is a tool that can determine whether or not a logical formula
has a solution.
The input to a logic solver is a formula (i.e., written in propositional logic,
first-order logic).
The output of a logic solver is a satisfying assignment to all of the inputs
of a formula, if one exists, else a certificate of unsatisfiability (or unknown).
Determining the satisfiability of a formula lies at the heart of automated
theorem proving, verification, and artificial intelligence.

Σ ⊧ ψ ⇐⇒ (⋀
ϕ∈Σ

ϕ ∧ ¬ψ) is SAT

However, solvers suffer from poor worst-case performance, often observing
exponential runtimes (or worse) or even undecidable.

Introductions and Abstract August 1, 2023 4 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modern Logic Solving – Deductive AI (2/3)

1 Logic solvers have observed a
significant empirical
improvement in recent years

2 This is despite exponential
runtimes or even undecidable in
the worst case

3 While some select hand-crafted
formulas remain to be quite
challenging to solve, modern
solvers can scale to
industrial-grade problems:

1 Intel Chip Design
2 AWS Zelkova
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Modern Logic Solving – Deductive AI (3/3)

1 Logic solvers frequently overcome worst-case complexity in practice
2 This is in part due to the ability of a solver to exploit:

1 Syntactic structure and patterns
2 Heuristics based on inductive principles from performance histories

3 Recently, breakthroughs in machine learning and pattern recognition
has had impacts in many fields

4 A major question of my PhD: Can we use machine learning to exploit
these further?
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Modern Machine Learning – Inductive AI
Inductive AI: Instead of explicitly programming rules (deductive AI),
modern machine learning algorithms learn patterns directly from data.
Software 2.0: Machine learning represents a shift in programming
paradigm, often termed as ”Software 2.0”. In this approach, systems
are taught rather than explicitly programmed.
Key Components:

Data: The ”fuel” for inductive AI, used to learn patterns.
Models: The ”engine” that learns from data, ranging from linear
models to deep neural networks.
Tasks: The ”direction” for learning, defined by a specific problem (e.g.,
classification, regression, reinforcement learning).

Advantages:
Flexibility: Can adapt to new data, making them more resilient and
dynamic than traditional software.
Capability: Can learn to perform complex tasks that are difficult to
explicitly program.

Challenges:
Data Dependence: The quality and quantity of available data can
significantly impact performance.
Interpretability: Software 2.0 systems often operate as ”black boxes”,
making understanding and debugging them difficult.
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Motivation: Why a Retrospective?

Evolution: As we transition from Software 1.0 to Software 2.0,
understanding past practices gives context to our present challenges.
Learning from the Past: The successes and failures of requirements
engineering in Software 1.0 provide valuable lessons to inform the
development of Software 2.0.
Preparation: A thorough understanding of the state of requirements
engineering in Software 1.0 helps us prepare for the complexities and
new challenges posed by Software 2.0.
Improvement: Identifying the gaps in our current practices can lead
to the development of new methodologies better suited for Software
2.0’s data-driven paradigm.
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The Waterfall Model – Traditional Software(1/7)

1 Requirements – Define what the client needs
in the software.

2 Specification – Translate requirements into
technical terms for the development team.

3 Design – Architect the software, deciding how
it will operate, its interfaces, and data
structures.

4 Realization – Code the software, ensuring
each component works as per design.

5 Integration – Combine the individually tested
components into a single system, ensuring they
function correctly together.

6 Operation – Work required post-deployment to
keep the software running smoothly, including
bug fixes, updates, and improvements.
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The Waterfall Model for ML – Requirements (2/7)

What type of problem(s) are you trying to solve?
Classification? Regression? Clustering?
What data do you have? What data can you collect?
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The Waterfall Model for ML – Specifications (3/7)

Define success metrics and data needs.
Consider model interpretability, robustness, scalability, and latency.
Perform exploratory data analysis to guide subsequent steps.
Formal Methods?
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The Waterfall Model for ML – Design (4/7)

Plan ML model architecture and data pipeline.
Choose the type of ML model, cost function, and optimization
method.
Account for data privacy, model fairness, and explainability.
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The Waterfall Model for ML – Realization (5/7)

Gather, clean, and preprocess data.
Handle missing values, categorical variables, and create new features.
Train the model using an optimization algorithm.
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The Waterfall Model for ML – Integration (6/7)

Deploy the ML model into the existing system.
Validate the model with test data.
Ensure ML system works well with other software components.
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The Waterfall Model for ML – Operation (7/7)

Monitor model performance and retrain as needed with new data.
Handle model drift or changes in the data distribution.
Maintain the ML system to ensure performance over time.
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Other RE Models
1 Spiral Model

1 Similar to waterfall, but with more emphasis on a more systematic and
iterative approach to risk management.

2 In ML, each iteration allows for refinement of model, incorporating
feedback, and reassessing risks, including evaluation of model performance,
and potential biases.

2 V Model
1 Requires a strong emphasis on requirement definition and corresponding

validation procedures from the start, reducing the risk of error and costly
fixes later on.

2 In ML, careful upfront analysis is crucial to ensure the right data is
collected and that the model’s outputs will actually meet the project’s
needs. Likewise, validation procedures must be robust to handle the
inherent uncertainty in ML outputs.

3 Agile
1 Emphasizes iterative development with constant feedback, close

collaboration, and adaptability over strict planning.
2 In ML, Agile can allow for quick integration of new data, adjustments based

on model performance, and adaptability to changing project needs or data
environments.
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Which RE model is best for ML?

1 All models have value, bringing structure (Waterfall), risk mitigation
(Spiral), or flexibility (Agile) to ML projects.

2 Yet, there is no silver bullet. Every ML project is unique, requiring a
tailored approach or even a hybrid of these models.

3 The ’no silver bullet’ concept reminds us that success in ML
requirements engineering comes from a thoughtful and adaptable
approach, rather than rigid adherence to one single model.
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Belady-Lehman Phenomenon in ML

An observation of software
becoming more complex and
less reliable over time due
Why it applies to ML:

Model’s performance can
degrade due to concept drift.
Users better understand and
exploit what the model is
optimizing for

Why it might not apply to ML:
ML models can adapt to
changes through learning.
Periodic retraining can
mitigate aging effects.
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Information Hiding in ML

A principle that hides implementation details to allow for changes in
abstraction without affecting its users.
Why it applies to ML:

Protects sensitive data (e.g., weights, training and label data) from
unnecessary exposure.
Enhances system safety and privacy by restricting access to critical
parts.
Allows flexibility in modifying model internals without disrupting overall
system.

Why it might not apply to ML:
Complete hiding of weights might limit model interpretability and
tuning.
In distributed learning environments, data privacy and hiding becomes
more complex.
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Emotional Requirements Engineering in ML

Definition:
An approach to requirements engineering attentive to social,
emotional, political, and cultural factors among users.

Why it applies to ML:
Helps prevent biased model behavior (e.g., an image recognition system
wrongly classifying individuals of certain races or genders due to biased
training data).
Facilitates user acceptance and ethical use of ML systems (e.g.,
ensuring a language translation model doesn’t favor any cultural or
social group).

Challenges:
Emotional and cultural factors can be hard to interpret and model; for
example, a sentiment analysis model might misinterpret text from
different cultural contexts.
Emotional RE requires deep understanding of user emotions and
societal nuances, which may exceed the current capabilities of ML
models.
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Formal Methods in ML

Definition:
FMs are mathematically rigorous techniques and tools for specification,
design, and verification of software and hardware systems.

Why they apply to ML:
Improves model reliability by ensuring mathematical correctness (e.g.,
formal verification of neural network properties).
Facilitates rigorous reasoning and proof of consistency, reducing bugs
and errors early in model design.

Why they might not apply to ML:
Many ML concepts (e.g., ”model interpretability”) are hard to
formalize, as von Neumann and Morgenstern observed.

1 ”There’s no point to using exact methods where there’s no clarity in
the concepts and issues to which they are to be applied.”

FMs primarily ensure internal consistency, but ML also deals with
external validity - the alignment of model behavior with real-world
phenomena. Formal methods may not adequately address this aspect.
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Motivation

1 Advances in machine learning have lead to
incredible new applications

2 However, they remain brittle, despite eager
deployment into safety-critical-systems
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Motivation

1 Advances in machine learning have lead to
incredible new applications

2 However, they remain brittle, despite eager
deployment into safety-critical-systems
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Verification of Neural Networks

X W

MatMul

Y

C

>

If

1 0

X

MatMul

Y

B

Add

W2

W1

ReLU

X

MatMul

1 Let C be a computation graph, representing a machine learning model

1 Neural Networks
2 Decision Trees

2 Let ψ be a linear specification ψ over the input/output behaviour of
C.

3 The neural network verification question asks if ψ is valid over C
(C ⊧ ψ)
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The Goose Tool

1 Goose is a solver for VNN-LIB
benchmarks

2 Goose is a meta-solver – a
solver designed to call subsolvers

3 Goose leverages three key
synergetic techniques

1 ML driven algorithm selection
2 Probabilistic Satisfiability

Inference
3 Time Iterative Portfolio

Deepening
4 We evaluate Goose in a

VNN-COMP environment and
see a 41.3% improvement over
the 2021 competition winner.

Etymology: Named after the Canadian
Goose, in honor of Canada
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Goose Input/Output

1 Input:
1 A computation graph (DNN)

1 Open Neural Network Exchange (ONNX) format
2 A specification

1 Assertions on the DNN’s input
2 Assertions on the DNN’s output

2 Output:
1 A satisfying assignment such that the input and output constraints are

satisfied
2 A certificate of correctness/robustness
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What are the requirements of ML?

From my perspective, there are two sorts of specifications in this space.
1 General specifications
2 Instance Ad-Hoc specifications

Coming up with general specifications is hard. What are the requirements
of ML from a training perspective?

1 Accuracy
2 Model Complexity (regularization)

Requirements and Verification August 1, 2023 28 / 33



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Local Robustness

Definition: Local robustness in machine learning refers to the invariance
of a model’s predictions in a small ϵ-ball around the input x.
Mathematically, ∀x′ ∈ B(x, ϵ), the model’s prediction remains the same:
f(x) = f(x′).
Significance:

Ensures model stability: Minor perturbations should not drastically alter the
model’s predictions.
Critical for security: Helps protect against adversarial attacks.

Challenges:
Trade-off with accuracy: Increased robustness can sometimes lower
performance on clean data.
Complexity: Constructing robust models can be computationally expensive
and require complex techniques.
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Other General Requirements?

1 What are other general requirements?
2 This question seems very difficult.
3 Going back to Von Neuman

1 ”There’s no point to using exact methods where there’s no clarity in
the concepts and issues to which they are to be applied.”
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Ad Hoc Examples

When your X,Y have fixed semantics (i.e., tabular data, not perception) its
often possible to engineer specifications in an Ad-Hoc fashion
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Conclusion

We explored the retrospective of requirements engineering in the
context of machine learning.
We discussed different models and approaches, including the
Waterfall Model, Spiral Model, V Model, and Agile, and their
applicability to machine learning.
We also highlighted specific challenges and considerations in ML
requirements, such as local robustness, information hiding, emotional
requirements engineering, and formal methods.
While there is no one-size-fits-all solution, understanding these
requirements and considering them in the development process can
contribute to the success and reliability of machine learning systems.
Moving forward, it is essential to continue exploring and refining
requirements engineering practices to address the unique
characteristics and challenges of machine learning.
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