Requirements Framework for Video Game Console Security

By: Hauton J Tsang

Outline

- Introduction to the problem
- Explain the objective of the framework
- Initial requirements
- Additional requirements based on past cases
- Practicality of requirements
- Discussion and conclusion

Introduction

- Video game console development
- How can I protect my console from being exploited by hackers?

Objective of Protection

- Prevent unauthorized software from running on game consoles
 - Homebrew: software developed by people without permission of the console manufacturer
 - Pirated games: unauthorized copies of retail games

Initial Requirements

- Protecting physical games:
 - Physical game should contain a secret marker that is difficult to duplicate
 - Firmware of game reader should authenticate the marker
 - Physical game should boot up after marker is authenticated as genuine by the firmware of the console
- Protecting downloaded software:
 - Downloaded software should have cryptographic signatures issued by authorized developers
 - When any software is run on the console, the cryptographic signature should be verified before it is executed
- Is that enough?

- Case 1: PlayStation 1^[1]
 - Protection bypass:
 - Swapping disks after booting
 - Modchips

Image from: https://www.youtube.com/watch?v=XUwSOfO1D3c&t=572s

- Additional Requirements
 - Physical game should be in a custom form-factor
 - Game reader should use cryptographic verification to ensure integrity
 - Firmware should authenticate physical game authenticity continually

- Case 2: Original Xbox ^[2]
 - Protection bypass:
 - Drive swapping to modify secure drive contents
- Additional Requirements
 - Internal storage should be encrypted at rest
 - Encryption keys to decrypt storage should be hardcoded into a trusted element

Image from: https://www.youtube.com/watch?v=iV8B6eZVkBM&t=168s

- Case 3: Nintendo Wii^[3]
 - Protection bypass:
 - Stack overflow due to a long character name in a Legend of Zelda: Twilight Princess save file
- Additional Requirements
 - Games should run in a sandbox that prevents custom code from running
 - Game save files should be cryptographically signed to prevent modification

Image from: https://www.gamebrew.org/images/7/7f/Twilighthackwii2.jpg

- Case 4: PlayStation Portable ^[4]
 - Protection bypass:
 - Service mode enabled by modifying battery serial number
 - Kernel exploit using vulnerable function
- Additional Requirements
 - Service mode should be secured using cryptographic keys
 - Console should contain hypervisor which isolates the kernel

Image from: <u>https://www.youtube.com/watch?v=U8iZaxOPgiw&t=154s</u>

- Case 5: Nintendo Switch ^[5]
 - Protection bypass:
 - An exploit found in firmware of a CPU from a third party
- Additional Requirements
 - Third party firmware should be audited for vulnerabilities

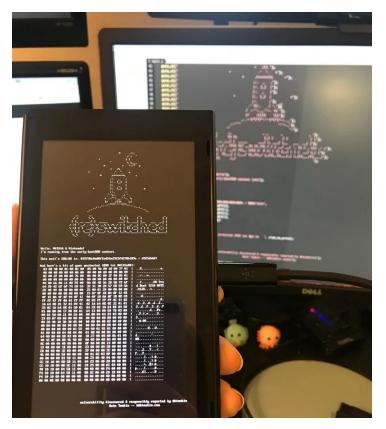


Image from: https://www.bleepstatic.com/content/posts/2018/04/24/Fusee-Gelee.jpg

Final list of requirements

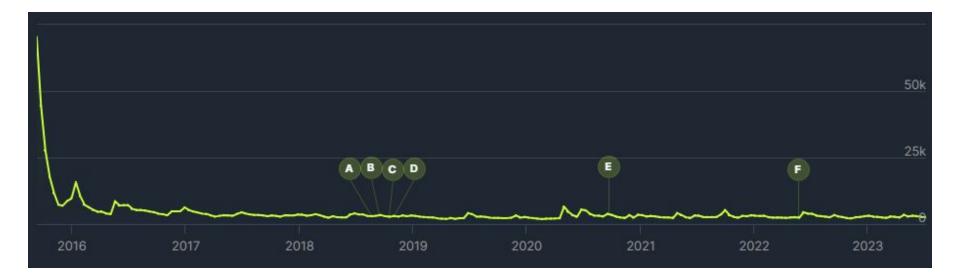
- 1. Physical game should contain a secret marker that is difficult to duplicate
- 2. Firmware of game reader should authenticate the marker
- 3. Physical game should boot up after marker is authenticated as genuine by the firmware of the console
- 4. Downloaded software should have cryptographic signatures issued by authorized developers
- 5. When any software is run on the console, the cryptographic signature should be verified before it is executed
- 6. Physical game should be in a custom form-factor
- 7. Game reader should use cryptographic verification to ensure integrity
- 8. Firmware should authenticate physical game authenticity continually
- 9. Internal storage should be encrypted at rest
- 10. Encryption keys to decrypt storage should be hardcoded into a trusted element
- 11. Games should run in a sandbox that prevents custom code from running
- 12. Game save files should be cryptographically signed to prevent modification
- 13. Service mode should be secured using cryptographic keys
- 14. Console should contain hypervisor which isolates the kernel
- 15. Third party firmware should be audited for vulnerabilities

- Can I guarantee that my system is unhackable now?
 - No, because of the importance of **implementation**
 - Most exploits are due to oversights when implementing requirements, not requirements themselves
- How practical is it to implement all the requirements that were outlined before?

- Low difficulty:
 - Physical game should contain a secret marker that is difficult to duplicate
 - Firmware of game reader should authenticate the marker
 - Physical game should boot up after marker is authenticated as genuine by the firmware of the console
 - Downloaded software should have cryptographic signatures issued by authorized developers
 - When any software is run on the console, the cryptographic signature should be verified before it is executed
 - Internal storage should be encrypted at rest
 - Service mode should be secured using cryptographic keys

- Medium difficulty:
 - Physical game should be in a custom form-factor
 - Game reader should use cryptographic verification to ensure integrity
 - Firmware should authenticate physical game authenticity continually
 - Encryption keys to decrypt storage should be hardcoded into a trusted element
 - Game save files should be cryptographically signed to prevent modification

- High difficulty:
 - Games should run in a sandbox that prevents custom code from running
 - Console should contain hypervisor which isolates the kernel
 - Third party firmware should be audited for vulnerabilities



Discussion and conclusion

- Is it **necessary** to create an unhackable console?
 - Economic impact lower if:
 - Prerequisite hardware needed to achieve exploit
 - Exploits requiring a specific game
 - Exploits requiring a modchip
 - Discovery of an exploit is delayed
 - Technical
 - Social

Discussion and conclusion

From: https://steamdb.info/app/287700/charts

Discussion and conclusion

- Changing scope
 - What is the motivation of game console hackers?
 - Hardware and software freedom ^[6]
 - What if we compromise and implement requirements that will delay possible hacks?
 - Xbox One (2013) developer mode

References

[1]https://wololo.net/2012/12/10/how-ps1-security-works/

[2]https://consolemods.org/wiki/Xbox:Hotswapping

[3]https://www.gamebrew.org/wiki/Twilight Hack Wii

[4]https://www.psdevwiki.com/psp/index.php/JigKick Battery

[5]https://medium.com/@SoyLatteChen/inside-fus%C3%A9e-gel%C3%A9e-the-unpatchableentrypoint-for-nintendo-switch-hacking-26f42026ada0

[6]https://www.youtube.com/watch?v=DUGGJpn2 zY

Thank you for listening!