
Scope Determined (D)
Versus

Scope Determining (G)
Requirements:

A New Significant
Categorization of Functional

Requirements
Daniel M. Berry
Márcia Lucena

Victoria Sakhnini
Abhishek Dhakla

Realities About Software
Development Projects

Everyone says,
“We know that we should work out all the
requirements before we start to code,
but we don’t have time!
We gotta get started coding; otherwise we will
not finish in time!”

Wrong!

The problem is that if you start coding before
you work out all the requirements, then …
the cost of correcting the code when a missing
requirement defect is finally discovered is …
10–200 times — depending on when the defect
is found — the cost of writing the code with that
requirement already specified.

The Data Show

Phenomenon A:
Start Coding Earlier, Finish Later!

Starting coding before all the requirements are
worked out and specified completely means that
…

you finish coding much later than if you had
delayed the starting of the coding until after all
the requirements were worked out and
specified completely!

Phenomenon A:
Start Coding Later, Finish Earlier!

In other words:
• start coding earlier, finish later
• start coding later, finish earlier.
This truth goes against every manager’s guts;
so no sane manager delays coding until after the
requirements are completely specified (even
though the data are clear!), for fear of losing job
if the project with a new-fangled method fails.

Phenomenon B: But But But…

“But but but.. requirements keep coming with
no end in sight.
Users think of new requirements all the time.
So what difference does it make?
We’re going to have to deal with new
requirements after the coding is done anyway?”

That’s absolutely right!

Phenomena A and B

That’s absolutely right!

In fact, empirical studies go both ways or are
inconclusive.

In fact, both A and B are right! So, now what?

Two Different Kinds of
Requirements

You see, the Phenomena A and B are talking
about entirely different sets of requirements!
• Scope DetermininG Requirements (G

requirements) that keep coming and are
Phenomenon B.

• Scope DetermineD Requirements (D
requirements) that are expensive to fix and
are Phenomenon A.

Pocket Calculator Example

Pocket calculator (PC): with scope +, -, *, and /
This is the scope of the PC.
• G requirements: **, log

Adding them would determine a new scope
for the PC.

• D requirement: ...

Pocket Calculator Example

Pocket calculator (PC): with scope +, -, *, and /
• D requirement: NZD: “in /, the denominator

cannot be 0”
Its presence determined by the presence of /
in the PC’s scope.

In a sense, NZD is already in the PC’s scope.

Completion of a Scope

Thus, there is a notion of
the completion of a scope
to contain all its D requirements.

If You Start Coding Too Soon

So if you start coding the requirement /, and you
are not aware of its D requirement, NZD, you
will write code that will break if ever / is
presented with a 0 denominator.

At that point, …

If You Start Coding Too Soon

At that point,
depending on when the discovery is made,
fixing the code will cost 10–200 times what it
would have cost to have specified NZD upfront
so that coding took it into account from the
beginning.
Sometimes, fixing a missing D requirement
requires restructuring.

The G Requirements Are Different

• Yes, if you now add a new G requirement,
particularly one that is not anticipated, there
is a chance that it will clash with the existing
architecture, and you’ll have to do an
expensive restructuring.

• But that’s unavoidable. And that’s the sort of
thing iterative and agile methods are designed
to deal with.

The G Requirements Are Different

• And, if you have to restructure, it will cost 10–
200 times more than it would have cost if you
had included the G requirement from the
beginning.

• There is evidence that throwing out the code
and starting all over with all the requirements
is much cheaper.

• But no manager’s guts permits doing that!

Inescapable Fact Affecting D
Requirements

The basic fact is that there is no way that you
can write any code without knowing what its
requirements are, i.e., what it is supposed to do,
even if you have to decide what the
requirements are as you are coding.

It’s inevitable, like death and taxes.

So the nature of D requirements is:

Once you have picked a scope for your next
sprint or iteration, i.e., a particular set of G
requirements w.r.t. the empty scope, the D
requirements associated with the chosen scope
are there even if you have not written them
down.
I.e., every requirement in a scope’s completion
is there, even if you have not written it down!

The Nature of D Requirements:

If you start coding with them missing from the
specification, and you discover their existence
during coding, you will have to specify the
missing D requirements before you can finish
the coding, at 10 times the cost of having
determined them before coding.

This is major technical debt from postponing full
RE!

So the nature of D requirements is:

This is a stupidly expensive way to discover and
specify D requirements, because they were
already apparent when specifying them was
much cheaper.

Worse Comes to Worst

If worse comes to worst, and as very typically,
you deliver the code before a D requirement is
discovered, then a user — the best defect finder
in the universe — will eventually discover it, …

and it will cost 200 times more to fix it than
having written it down up front.

Alternative Names for D and G
Requirements

D Requirement G Requirement

Use Case: Variation/Exception Use Case: New/Independent

Internal External

Non-E-Type E-Type

Req Needed to Build the System Right Req Needed to Build the Right System

Dependent/Implied/Interacting Independent/Axiom/Orthogonal

Update New Release

Revision (Vx.Rn → Vx.Rn+1) New Version (Vx.Rn → Vx+1.R1)

Maintain Consistency Add New Feature

System Req Environment/World Req

White Box Req Black Box Req

Research Questions

How relevant is the G vs. D categorization of
requirements?
How prevalent are
• missing requirements,
• missing D requirements, and
• missing G requirements
in computer-based system (CBS) development
projects?

Preliminary Results: Summary

We reexamined past case studies,
done with no notion of D and G requirements,
with a D vs. G requirements lens:
• Challenged and Failed Projects
• Successful Project
Berry was one of the authors in each.
The studies are described in tech report cited by
proceedings short paper.

Challenged and Failed Projects :
Summary

In all the challenged and failed projects, it
appears that many if not a majority of the
defects were …

from missing or wrong D requirements, ...

and not from missing G requirements
and not from implementation defects.

Successful Project : Summary

The one project that focused its RE on finding all
D requirements of its scope, letting RE continue
until it had found the completion of the
project’s scope …

delivered two versions of its software on time,
matching its specification, with no known
defects.

Preliminary Results
from Work in Progress

We are studying defect tickets from a company
that has about the same number of Waterfall &
Agile projects.
Unfortunately, we have no access to domain
experts in the company. So we have to guess
about the nature of each defect.
Each author classified separately,
but Fleiss’s 𝜅 among them is 0.056 !.

Preliminary Results, Cont’d

Among all projects, using only tickets classified
unanimously:
• 100% of the defects are from missing

requirements & none of the defects are from
implementation errors,

• of the 100%, 92% are from missing D
requirements & 8% are from missing G
requirements.

Preliminary Results, Cont’d

Among the Waterfall projects , using only tickets
classified unanimously :
• 100% of the defects are from missing

requirements & none of the defects are from
implementation errors,

• of the 100%, 87% are from missing D
requirements & 13% are from missing G
requirements.

Preliminary Results, Cont’d

Among the Agile projects:
• 100% of the defects are from missing

requirements & none of the defects are from
implementation errors,

• of the 100%, 95% are from missing D
requirements & 5% are from missing G
requirements.

Preliminary Results, Cont’d

In these projects, …
each missing D requirement could end up
costing up to 10 times what it would have cost
to have identified them during RE.

Ouch! !
This is MAJOR technical debt, from postponing
full RE, done intentionally or not

Preliminary Results, Cont’d

None of the projects is doing a good job of
finding D requirements in its scope, probably
because none is spending enough time doing
RE, if any at all.

However, Waterfall projects are doing a slightly
better job than are Agile projects.

Plan for the Rest of the Talk

Reexamine past case studies,
done with no notion of D and G requirements,
with a D vs. G requirements lens:
• Challenged and Failed Projects
• Successful Project
Berry was one of the authors in each.
The original slides from each are used, with
current remarks in red.

Challenged and Failed Projects

In all the challenged and failed projects, it
appears that many if not a majority of the
defects were from missing or wrong D
requirements, ...
and not from missing G requirements and not
from implementation defects.

Successful Project

The one project that focused its RE on finding all
D requirements of its scope, letting RE continue
until it had found the completion of the
project’s scope delivered two versions of its
software on time, matching its specification,
with no known defects.

Challenged and Failed Projects

• Experiences of Requirements Engineering for
Two Consecutive Versions of a Product at VLSC
(2006)

• Requirements Determination is Unstoppable:
An Experience Report (2010)

• Developers Want Requirements, but Their
Project Manager Doesn’t … (2011)

Experiences of Requirements Engineering for Two
Consecutive Versions of a Product at VLSC (2006)

https://student.cs.uwaterloo.ca/~se463/Slides/SoBerry.pdf

See Pages 4—7.
See Pages 20—45.
Because the version being developed is a
refactoring (with no behavioral change) of
the previous version, it’s clear that most of
the defects were missing D requirements.

https://www.student.cs.uwaterloo.ca/~se463/Slides/SoBerry.pdf

Requirements Determination is Unstoppable: An
Experience Report (2010)

https://student.cs.uwaterloo.ca/~se463/Slides/RDisUnstoppable.pdf

See Pages 10—18.
See Page 35.
See Pages 39—41.
It’s clear from the nature of the so-called
requirements creep, that most of the defects
were missing D requirements.

https://www.student.cs.uwaterloo.ca/~se463/Slides/RDisUnstoppable.pdf

Developers Want Requirements, but Their
Project Manager Doesn’t … (2011)

https://student.cs.uwaterloo.ca/~se463/Slides/IsaacsBerryFullSlides.pdf

First, see Page 27 to see scope of PX.
See Pages 21—29.
See Pages 72—77.
See Pages 89—90.
Because PX is supposed to be identical in
behavior to an implemented PY, the 37 missing
requirements are clearly D requirements..

https://www.student.cs.uwaterloo.ca/~se463/Slides/IsaacsBerryFullSlides.pdf

Successful Project

• WD-pic, ... its Development as a Case Study of
the Use of its User’s Manual as its
Specification (2002)

WD-pic, ... its Development as a Case Study of the
Use of its User’s Manual as its Specification (2002)

https://student.cs.uwaterloo.ca/~se463/Slides/users.man.pdf

See Page 1.
https://student.cs.uwaterloo.ca/~se463/Slides/IcebergSlides.pdf

See Pages 113—132.
Serious upfront RE, planned for 2 months, took
5 months, but project planned for 10 months
still finished on time, with 2, not just 1 planned
versions, and very few, easy defects to correct.

https://student.cs.uwaterloo.ca/~se463/Slides/users.man.pdf
https://student.cs.uwaterloo.ca/~se463/Slides/users.man.pdf

WD-pic, ... (2002), Cont’d
https://student.cs.uwaterloo.ca/~se463/Slides/OuData/Chaps3and4LihuaOuThesis.pdf

Via the D and G requirements lens:
Berry forced Ou to not start implementing until
RE was done to his satisfaction (incomplete RE,
no degree!).
Ou had focused her RE on trying to find all D
requirements for Berry’s scope, and …
she nearly succeeded.

https://student.cs.uwaterloo.ca/~se463/Slides/OuData/Chaps3and4LihuaOuThesis.pdf

WD-pic, ... (2002), Cont’d

After RE took 5 months instead of 2, …
implementation went much faster than Ou
expected, and she made up all the slipped time.
There was almost no backtracking and
correction of the code and manual.
The little she had to do were to fix wrong, not
missing, D requirements, whose effect were very
localized.

For the Future

We need more
and targeted
empirical studies to confirm these preliminary
findings.

For the Future

If these findings hold up, a modified agile
lifecycle model is suggested:
• globally, agile iteration on backlog list to

identify scope for each sprint.
• within each sprint, full upfront RE to identify

all D requirements of the scope, to specify the
completion of the sprint’s scope, and to build
a complete test data set for the scope, testing
also all exceptions.

Questions?

