Ethics in RE

Evan Citulsky
July 20th 2017
Contents

• Introduction
• A Brief Look at Ethics
• Software Engineering Code of Ethics
• Three Ways RE Can Be Unethical
• RE Ethical Dilemmas
• Value Stories
• Conclusion
Ethics

• Morals
 • Right, wrong, good, bad, evil to an individual

• Ethics
 • A subset of morals in which a society agrees upon
 • Code of conduct in a society
 • Can vary in different parts of the world
 • Eastern and Western Views
Why Ethics

• Software systems
 • Surround us in our daily lives
 • Support human lives
 • Carry out decisions on a persons behalf
 • Provide a blind truth of information (We trust what the computer spits back out to us)
Ethics and Software Systems

• Software Systems CANNOT poses morals
 • This would imply true AI

• It may be possible to program a code of ethics
 • Either built on set of agreed upon societal morals, or the programmer’s morals
 • What morals to use?
 • How to handle ethical dilemmas?
 • More on this coming up
Software Engineering Code of Ethics (SECE)

1. PUBLIC - Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best interests of their client and employer, consistent with the public interest.

3. PRODUCT - Software engineers shall ensure that their products and related modifications meet the highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain integrity and independence in their professional judgment.
Software Engineering Code of Ethics (SECE)

5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and promote an ethical approach to the management of software development and maintenance.

6. PROFESSION - Software engineers shall advance the integrity and reputation of the profession consistent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the practice of their profession, and shall promote an ethical approach to the practice of the profession.
Requirements Engineering

• RE is the process of discovering, defining, documenting, and maintaining requirements for a system

• An important step in software engineering that is sometimes rushed or completely skipped

• Without RE, can a developer guarantee that a system will behave ethically?

• SECE can be applied to the RE process
Three Ways RE Can Be Unethical

• Toxic Requirements
• Improper RE
• Deception
Toxic Requirements

- Software Requirements and the Ethics of Software Engineering (Caper Jones)
- Requirements
 - That can have long term problems
 - That can have hazardous unknown effects
 - That have potential to cause the system to crash
 - May be a “one-in-a-million” scenario
- All requirements should be investigated for these problems
Toxic Requirements Examples

• Famous Y2K bug
 • Original requirement (1960’s) of date format was mm/dd/yy to save on memory
 • Supported only the current century
 • Did not change the requirement when memory became cheap
 • Lead to wide spread panic in the late 90’s, with a rush to repair software
Toxic Requirements Examples

• Los Angeles Air Traffic Control system (2004)
 • Without warning crashed while handling approximately 400 planes
 • Lost main voice communication system (VSCS)
 • Backup system crashed within minutes
 • What went wrong?
 • Timer inside VSCS control system that starts counting down from 2^{32} and stops once it hits zero. Enough to last about 50 days
 • FAA procedure to reset system every 30 days
 • Did not happen
 • Was this human error?
Improper RE

• Requirements Engineering may be skipped or rushed process due to:
 • Time
 • Management
 • Laziness

• Consequences of improper RE can lead to devastating situations caused by
 • Not knowing “side effects” of requirements
 • Not verifying requirements
 • Not implementing requirements
 • And the list goes on...
Improper RE Example

• Radiation Treatment
 • Computerized treatment planning system for radiation treatments
 • Responsible for calculating shielding blocks during radiation
 • Limitation of being able to input a maximum of four shielding blocks
 • Engineers discovered that shielding blocks could be inputted in groups with some changes to the software
 • August 2000 - Update applied
 • March 2001 - Error discovered, 28 patients affected
 • New input method results in incorrect radiation dosage calculation, patients experience overexposure
 • August 2003 - 17 patients deceased
Deception

• Software developers can easily choose to be unethical by purposefully deceiving the user or public
 • Malware are common examples of such software
• Stakeholders may set out requirements that are designed to deceive the public
Deception Example

Deception Example

• Volkswagen Turbo Diesel Injection (TDI) 2009-2015 models
 • Requirement for TDI engine to expel no more than government regulated emissions level.
 • TDI engine was NOT designed to satisfy this requirement
 • Improper RE performed?
 • Could not meet requirement?
 • Software designed with the following requirements
 • Detect when an emissions test is being performed
 • Turn ON all emissions control features when a test is detected
 • Turn OFF some emissions control features when not testing to improve drivability, power and “funness”
RE Ethical Dilemmas

• What does a RE analyst do when presented with a requirement that leads to an ethical dilemma??
• Ethical dilemmas can also occur as functional requirements, where the software must make the ethical decision
• Situations
 • When and where to store log files
 • How much protection is enough
 • Choice between two or more human lives
 • Questionably ethical design purpose
RE Ethical Dilemmas Examples

Self Driving Cars

• Consider the following scenario
 • Autonomous Vehicle approaches a group of pedestrians at a crosswalk at a speed in which it cannot stop.
 • The vehicle can either
 1. Crash into the pedestrians, killing them
 2. Crash into a wall, killing the occupants of the vehicle
 • The software system must decide which lives of sacrifice
RE Ethical Dilemmas Examples

Autonomous Killer Robots (AKR)

- The concept of AKRs is to replace humans on the front lines of battle with autonomous machines.
 - Must have the capability to identify *friendly*, *enemy* and *neutral* targets
- At first, the idea of AKRs doesn’t seem that bad...
 - Save “good” human lives by sacrificing machines
 - Save “good” human lives by killing only “evil” humans
RE Ethical Dilemmas Examples

Autonomous Killer Robots (AKR)

• Problems?
 • The system designer defines what constitutes as a *friendly, enemy* or *neutral* target
 • An emotional disconnect between AKR operators and the targets that are destroyed
 • Difficulty maintaining transparent accountability
 • AKRs vs AKRs?
Value Stories

• How can we incorporate Ethics into the RE process?
• Putting human values into RE – Detweiler and Harbers
 • Use existing values elicitation techniques to identify stakeholder values
 • Translate those values into a suitable form to be used for later RE processes
Conclusions & Future Work

• Ethics must be taken into account in all phases of the RE process
 • RE is the best method to discover unethical properties of a system
• Toxic requirements should be avoided or eliminated
• Deceptive requirements should also be avoided or eliminated
• Developing software systems that make ethical decision is a very active field of research
• New processes are being developed to incorporate ethics into RE
Thank You!
References

