Machine Learning Problem Framework

Presenters:
Bikramjeet Singh(20752928)
Priyansh Narang (20716980)
Agenda

- Background research
- Brief introduction to Machine Learning
- ML Problem: Formulation
- ML Pipeline
- Questions
Background Research
RE for ML/ ML for RE feat. Google Scholar

- We tried multiple keywords to review past work done in this space: requirement engineering, requirement elicitation, SDLC for ML
- No credible source for RE for ML
- Several papers where authors have used techniques from ML to improve Requirement Engineering:
 - Estimation of effort for tasks
 - Prioritizing requirements
- Few online publishing platforms have articles about the intersection of SE and ML
- This is an attempt at developing an end-to-end framework for systems leveraging Machine Learning
Introduction to Machine Learning
Formal definition

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E”
Type of Machine Learning Problems

<table>
<thead>
<tr>
<th>Type of ML Problem</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Pick one of N labels</td>
<td>cat, dog, horse, or bear</td>
</tr>
<tr>
<td>Regression</td>
<td>Predict numerical values</td>
<td>click-through rate</td>
</tr>
<tr>
<td>Clustering</td>
<td>Group similar examples</td>
<td>most relevant documents (unsupervised)</td>
</tr>
<tr>
<td>Association rule learning</td>
<td>Infer likely association patterns in data</td>
<td>If you buy hamburger buns, you’re likely to buy hamburgers (unsupervised)</td>
</tr>
<tr>
<td>Structured output</td>
<td>Create complex output</td>
<td>natural language parse trees, image recognition bounding boxes</td>
</tr>
</tbody>
</table>
ML Mindset

Machines thinking like humans
or
Humans thinking like machines
Identifying suitable problems for ML

- **Clear use case for ML**
 - Traditional programming is rule-based
 - Problems where a clear approach for developing the solution isn’t clear: identifying objects in a picture

- **Data data data**
 - A rule of thumb is to have at least thousands of examples for basic linear models, and hundreds of thousands for neural networks.
 - If you have less data, consider a non-ML solution first.

- **Knowing the features/signals or the intuition behind it**

- **Prediction vs Decisions:**
 - ML is better at making decisions.
 - Statistical approaches are better suited for finding “interesting” things in the data.
<table>
<thead>
<tr>
<th>Prediction</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit limit based on past spending history</td>
<td>Allowed approval credit limit = 1.2 times the usual spending</td>
</tr>
<tr>
<td>What video will the user watch next?</td>
<td>Show those videos in the recommendation bar.</td>
</tr>
</tbody>
</table>
ML Problem: Formulation
1: Describing the problem using simple English

- In plain terms, what would you like your ML Model to do?
- Qualitative in nature
- Real goal, not an indirect goal
- Example: We want our ML Model to predict a user’s credit limit
2. What’s your ideal outcome?

- Incorporating ML model in the product should produce a desirable outcome.
- This outcome may be entirely different from how the model’s quality is assessed.
- Multiple outcomes of a single model possible
- Looking beyond what the product has been optimizing for to the larger objective.
- Example: reduce the man-hours spent on deciding credit limit for new applicants of credit cards.
3. What are your success metrics?

- How do you know the system has succeeded? Failed?
- Phrased independently of evaluation metrics
- Tied to the ideal outcome
- Domain/product/team specific
- Are the metrics measurable?
- When are you able to measure them?
- How long will it take for you to know that system is a success or failure?
- Example: Predict the credit limit within 10% range of the manual process
- Example: Reduce the time taken to approve the user for a certain credit limit by 90%
4. What’s the ideal output?

- Write the output you want your models to produce in plain English.
- The output must be quantifiable so the machine is capable of producing.
- For instance: “User did not enjoy the article” produces much worse results than “User down-voted the article.”
- For your ideal output, can you obtain example outputs for training data?
5. How can you use the output?

- Predictions can be made:
 - In real-time as a response to user activity: Online
 - Batch/Cache: Offline

- Define how will the model use these predictions?

- Predictions vs Decisions: we want our model to make decisions, not just predictions.

- Example: if we are trying to predict the number of order’s an e-commerce website might receive on Black Friday, this can help determine the number of compute nodes to spin for ensuring fail proof transactions.
6. Identify the heuristics

- How would you have solved the problem without Machine Learning?
- Write down the answer to this question in plain English
- For instance: to predict the credit limit, you might take monthly average expenditure of the user and approve that as the credit limit
7. Simplify the problem

- Simpler problem formulations are easier to reason about
- Multi class classification to binary classification
- Example: predicting that a news article is fake instead of related/unrelated/agree/disagree
8. Designing data

- Know what data is currently available to the team/developers
- Use domain expertise of Product Owners to identify what the dataset would look like in an ideal world?
- Analyze if there are requirements for data available from sources outside the current datasets?
- Analyze whether those requirements are feasible to be implemented?: time and money
8. Designing data

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Input 3</th>
<th>Input 4</th>
<th>Input 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg monthly expenditure</td>
<td>Avg. monthly income</td>
<td>Avg credit limit of other customers with similar income</td>
<td>Number of credit defaults</td>
<td>Years of association with the bank</td>
</tr>
</tbody>
</table>
9. Evaluation Metric

- Evaluating your machine learning algorithm is an essential part of any project
- Assess the quality of the model
- Depends on:
 - Outcome of the project
 - Problem statement
 - Dataset at hand
- Different metric for regression and classification problems
Metrics for Regression

- **Mean Absolute Error (MAE)** - average of the absolute differences between the prediction and actual values

\[
Mean\ Absolute\ Error = \frac{1}{N} \sum_{j=1}^{N} |y_j - \hat{y}_j|
\]

- Gives an idea of the magnitude of the error, but no idea of the direction
- Example: House Price Prediction
Metrics for Regression

- **Mean Square Error (MSE)** - average of the square differences between the prediction and actual values

\[
\text{MeanSquaredError} = \frac{1}{N} \sum_{j=1}^{N} (y_j - \hat{y}_j)^2
\]

- **Root Mean Square Error (RMSE)**: Taking root of MSE and converts the units back to the original units of the output variable

\[
RMSE = \sqrt{\frac{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}{n}}
\]

- Example: House Price Prediction
Metrics for Regression

- **R Squared** - provides an indication of the goodness of fit of a set of predictions to the actual values. Also, called the coefficient of determination

\[
R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}
\]

- **Example**: House Price Prediction
Metrics for Classification

- **Accuracy** - number of correct predictions made as a ratio of all predictions made

\[
\text{Accuracy} = \frac{\text{Number of Correct predictions}}{\text{Total number of predictions made}}
\]

- Works well only if there are equal number of samples belonging to each class.
- Example: Classify email spam or not spam
Metrics for Classification

- **Log Loss** - classifier must assign probability to each class for all the samples

\[
LogarithmicLoss = \frac{-1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \log(p_{ij})
\]

- The scalar probability between 0 and 1 can be seen as a measure of confidence for a prediction by an algorithm.
- Example: Classify a set of images of fruits which may be oranges, apples, or pears.
Metrics for Classification

- **Confusion Matrix**: number of correct and incorrect predictions made by the classification model compared to the actual outcomes in the data.

![Confusion matrix diagram]

\[
\text{Precision} = \frac{tp}{tp + fp} \\
\text{Recall} = \frac{tp}{tp + fn}
\]

- Used for imbalanced class
Metrics for Classification

- **Area Under the Curve (AUC)** - represents a model’s ability to discriminate between positive and negative classes.
- Performance metric for binary classification

\[
\frac{TP}{P} = \frac{TP}{TP + FN} \quad \frac{FP}{N} = \frac{FP}{FP + TN}
\]

- An area of 1.0 represents a model that made all predictions perfectly. An area of 0.5 represents a model as good as random.
- Used for imbalanced classes.
Metrics for Classification

- **F1 Score** - Harmonic Mean between precision and recall. Tell sow precise your classifier is (how many instances it classifies correctly), as well as how robust it is (it does not miss a significant number of instances).

\[
F_1 = \left(\frac{\text{recall}^{-1} + \text{precision}^{-1}}{2} \right)^{-1} = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}
\]

- Range from [0, 1]
- F1 Score tries to find the balance between precision and recall
10. Formalism

Example: ML Model that predicts which tweets will get retweets

- **Task** (T): Classify a tweet that has not been published as going to get retweets or not.

- **Experience** (E): A corpus of tweets for an account where some have retweets and some do not.

- **Performance** (P): Classification accuracy, the number of tweets predicted correctly out of all tweets considered as a percentage.
ML Pipeline
Planning

- ML model is an algorithm that is learned and updated dynamically
- Once an algorithm is released in production, it may not perform as planned prompting the team to rethink, redesign and rewrite
- New set of challenges that require Product Owners, Engineering and Quality Assurance teams to work together
- Example: daily standups
- Typically, you develop policies to address user issues in a SE application but with machine learning we are learning these policies in real-time
- Planning is embedded in all stages
Data Engineering

● 80% of time and resources is spent on data engineering

● Activities:
 ○ Data Collection
 ○ Data Extraction
 ○ Data Transformation
 ○ Data Storage
 ○ Data Serving

● Tools used: SQL/ NoSQL, Hadoop, Apache Spark, ETL Pipelines
Modelling

- Split the data into training, validation and testing set
- Feature engineering
- Offline vs online learning
- Hyper-parameter tuning using validation set: dependent on the algorithm being used and problem that we are attempting to solve
- One-shot training is only effective in academic and single-task use cases
- Evaluation using the pre-defined metric for candidate model

3. Deploying Machine Learning Models
 https://christophergs.github.io/machine%20learning/2019/03/17/how-to-deploy-machine-learning-models/

4. Defining Machine Learning Problem:
 https://machinelearningmastery.com/how-to-define-your-machine-learning-problem/

5. Machine Learning Model from Scratch:
 https://towardsdatascience.com/machine-learning-general-process-8f1b510bd8af

6. Data: A key requirement for ML Product
 https://medium.com/thelaunchpad/data-a-key-requirement-for-your-machine-learning-ml-product-9195ace977d4
Questions?