
ar
X

iv
:2

50
7.

00
78

8v
1 

 [
cs

.S
E

] 
 1

 J
ul

 2
02

5

Echoes of AI: Investigating the Downstream

Effects of AI Assistants on Software

Maintainability

Markus Borg1,3*, Dave Hewett2, Nadim Hagatulah3,
Noric Couderc3, Emma Söderberg3, Donald Graham4,

Uttam Kini5, Dave Farley6

1*CodeScene, Malmö, Sweden.
2Equal Experts, London, UK.

3Dept. of Computer Science, Lund University, Lund, Sweden.
4Equal Experts, Cape Town, South Africa.

5Equal Experts, Bengaluru, India.
6Continuous Delivery, London, UK.

*Corresponding author(s). E-mail(s): markus.borg@codescene.com;
Contributing authors: dave.hewett@equalexperts.com;
nadim.hagatulah@cs.lth.se; noric.couderc@cs.lth.se;

emma.soderberg@cs.lth.se; donald.graham@equalexperts.com;
uttam.kini@equalexperts.com; info@continuous-delivery.co.uk;

Abstract

[Context] AI assistants, like GitHub Copilot and Cursor, are transforming soft-
ware engineering. While several studies highlight productivity improvements,
their impact on maintainability requires further investigation. [Objective] This
study investigates whether co-development with AI assistants affects software
maintainability, specifically how easily other developers can evolve the resulting
source code. [Method] We conducted a two-phase controlled experiment involv-
ing 151 participants, 95% of whom were professional developers. In Phase 1,
participants added a new feature to a Java web application, with or with-
out AI assistance. In Phase 2, a randomized controlled trial, new participants
evolved these solutions without AI assistance. [Results] AI-assisted develop-
ment in Phase 1 led to a modest speedup in subsequent evolution and slightly
higher average CodeHealth. Although neither difference was significant overall,
the increase in CodeHealth was statistically significant when habitual AI users

1

https://arxiv.org/abs/2507.00788v1
Daniel Berry
Highlight



completed Phase 1. For Phase 1, we also observed a significant effect that cor-
roborates previous productivity findings: using an AI assistant yielded a 30.7%
median decrease in task completion time. Moreover, for habitual AI users, the
mean speedup was 55.9%. [Conclusions] Our study adds to the growing evidence
that AI assistants can effectively accelerate development. Moreover, we did not
observe warning signs of degraded code-level maintainability. We recommend that
future research focus on risks such as code bloat from excessive code generation
and the build-up of cognitive debt as developers invest less mental effort during
implementation.

Keywords: software engineering, programming with AI, controlled experiment,
maintainability, code quality

1 Introduction

Generative AI is rapidly transforming software development, disrupting the discipline
as we know it. Tools based on Large Language Models (LLMs), such as GitHub Copilot
and ChatGPT, have seen widespread adoption among developers (JetBrains, 2024).
The former exemplifies an IDE-integrated code completion assistant, while ChatGPT
represents a general-purpose tool that supports chat-based programming. The appeal
of AI assistants for code synthesis is clear and, as we will review in Section 2.3, several
empirical studies, in fact, suggest that working with them can lead to significant
productivity gains.

For many developers, AI assistants are now a natural part of the development
context. The first secondary studies on their use have now been published, e.g., reviews
by Ani et al (2024) and Husein et al (2025), which summarize the risks of LLM-
based code synthesis identified in primary studies. Risks include the generation of
incorrect code, the introduction of security vulnerabilities, unnecessarily complex code
completions, and reduced code maintainability. In this study, we focus on the last
aspect: how AI-assisted development influences maintenance and evolution.

As many organizations move into a hybrid world where human- and machine-
generated code coexist, we urgently need to understand how the use of AI assistants
affects long-term maintainability. Recent public announcements from Microsoft, Meta,
and Google state that roughly a third of their new code is already AI-generated,
demonstrating that the change is happening now. Thus, we argue that maintain-
ability has never been more important since the sheer volume of code will increase
rapidly from this point on. Furthermore, we posit that in the foreseeable future, human
developers must remain able to manually evolve source code no matter its provenance.

About 20 years ago, Simula Research Laboratories conducted a series of controlled
experiments on maintainability (Arisholm, 2010). The experiments pushed the bound-
aries of software engineering experiments in terms of the degree of realism, scale, and
methodological rigor. Most strikingly, Simula pioneered large-scale experiments with
professional developers (Benestad et al, 2005). Inspired by Simula’s seminal exper-
imental research, we now revisit the question of maintainability, but in light of AI
assistants – again focusing on professional developers.

2

Daniel Berry
Highlight



We conduct a preregistered two-phase controlled experiment (Borg et al, 2024b).
Our starting point is that maintainable code should be easy to reason about and mod-
ify by someone other than the original author. In Phase 1, participants extend a Java
web application with or without the help of an AI assistant. Phase 2 is a Random-
ized Control Trial (RCT), in which new participants are randomly assigned to evolve
a solution from Phase 1 without using AI assistants. Accordingly, we primarily assess
maintainability by the ease with which a new developer can add features to existing
code. To complement this perspective, we include CodeScene’s CodeHealth (Tornhill
and Borg, 2022) and test coverage measurements to broaden the assessment. Finally,
we measure perceived productivity guided by the SPACE framework (Forsgren et al,
2021) and collect rich free-text data through exit questionnaires.

For an experiment relying on volunteers from a wide range of organizations, our
study is unique in both the number of participants and their level of seniority. Our
results show that the AI assistants in Phase 1 led to a modest acceleration in subse-
quent Phase 2 evolution, but the difference is not statistically significant. Furthermore,
we found that building on AI-assisted code resulted in slightly higher CodeHealth in
Phase 2, and this effect was significant for experienced users of AI assistants. Although
not the primary focus of our study, the Phase 1 results corroborate previous findings:
AI assistants significantly reduced task completion time, with a median improvement
of 30.7%. Moreover, the posterior mean effect for highly AI-skilled participants was
about 60%.

Note that the AI disruption is in full swing at the time of this writing. Coding
agents, introduced as the third-generation AI assistants in Section 2.2, are now on
the rise, offering autonomous code synthesis based on a developer’s intent. Our study
was conducted in late 2024, which means that its empirical results predate this trend.
Instead, our study might be one of the last to include a large sample of developers
who had not yet been fundamentally affected by AI assistants. There is a clear need
for additional empirical studies to investigate these agentic trends, both controlled
experiments like ours and longitudinal case studies, to explore direct and indirect
effects on maintainability.

The rest of the manuscript is organized as follows:

• Section 2 introduces fundamental constructs, presents different generations of AI
assistants for code, and reviews related empirical studies.

• Section 3 introduces the Java system under study, as well as the two tasks provided
in Phases 1 and 2, respectively.

• Section 4 describes the research method, including data collection and analysis.
• Section 5 first presents the results from Phase 1, to provide enough background
context, before reporting the results from the RCT in Phase 2.

• Section 6 discusses the results in light of previous work and shares our interpretation
of implications for practice.

• Section 7 discusses the limitations of our study and its threats to validity.
• Section 8 concludes the paper and outlines directions for future work.

3



2 Background and Related Work

This section first introduces background on software maintainability and productivity.
Second, we present the disruptive trend of AI-assisted development. Finally, we review
empirical studies on the impact of AI assistants.

2.1 Software Maintainability and Productivity

The two constructs maintainability and productivity are cornerstones of this research.
As both are complex and multi-faceted, this section describes how we rely on state-
of-the-art approaches to measure them.

The ISO 25010 quality model defines maintainability as “the degree of effectiveness
and efficiency with which a product or system can be modified to improve it, correct
it or adapt it to changes in environment, and in requirements” (International Orga-
nization for Standardization, 2011). To acknowledge the different constituents of this
quality, ISO 25010 further defines five sub-qualities: 1) modularity, 2) reusability, 3)
analyzability, 4) modifiability, and 5) testability. We use the top-level maintainabilty
definition in this work, and argue that our choice of measuring completion time for
adaptation tasks is one good proxy for the construct.

A related concept is Technical Debt (TD), defined as: ´´In software-intensive sys-
tems, TD is a collection of design or implementation constructs that are expedient in
the short term but set up a technical context that can make future changes more costly
or impossible. Technical Debt presents an actual or contingent liability whose impact is
limited to internal system qualities, primarily maintainability and evolvability” (Avge-
riou et al, 2016) Note that this definition includes the term evolvability, which is not
explicitly mentioned in ISO 25010. We rely on its definition by Cook et al (2003) as
“the capability of software products to be evolved to continue to serve its customer
in a cost-effective way” and consider it subsumed by the ISO 25010 maintainability
definition.

The presence of code smells is widely recognized as a factor that degrades main-
tainability. Code smells, a term (like TD) coined by the agile community, refer to
problematic code that developers should preferably refactor – typically to make it
easier to understand and extend (Mantyla and Lassenius, 2006). The academic liter-
ature on code smells is extensive, to the point that even a tertiary study has been
published (Lacerda et al, 2020). Thanks to extensive lists of code smells, and capable
detection tools, maintainability can pragmatically be treated as a negative quality,
i.e., the degree to which code does not contain smells.

CodeScene measures maintainability using the CodeHealthTM metric. The file-
level score penalizes the presence of 25+ code smells1 known to increase cognitive load
on developers. Our previous work shows that CodeHealth correlates with increased
maintenance costs and defect risks (Tornhill and Borg, 2022; Borg et al, 2024c), as
well as slower onboarding (Borg et al, 2023). Furthermore, CodeHealth outperforms
competing metrics (Borg et al, 2024a), including SonarQube’s Maintainability Rating
and Microsoft’s Maintainability Index on the Maintainability Dataset – a benchmark
developed by Schnappinger et al (2020).

1Some are language- or paradigm-dependent, thus not an exact number.

4



CodeHealth is a numeric value between 1 and 10. The metric aligns with Fen-
ton (1994)’s seminal work on software measurement, particularly the philosophy that
the best way to assess code complexity is by identifying and quantifying specific
complexity-inducing attributes. A file with no detected code smells receives a perfect
score of 10. For each code smell that is detected, the file gets a decreased CodeHealth
score – infinitesimally approaching 1 for the very worst files. In our study, we com-
plement task completion time with CodeHealth to better measure the maintainability
construct. Note that we customize the CodeHealth scoring for increased sensitivity in
this study, as described in Section 4.2.

Developer productivity is notoriously difficult to define. Numerous publications
have addressed the topic since the early days of software engineering (Sadowski and
Zimmermann, 2019), and there is broad agreement that productivity is inherently
multi-dimensional (Jaspan and Sadowski, 2019). Yet, many näıve myths and simplis-
tic metrics continue to circulate in the software industry. In this study, we rely on
the SPACE framework by Forsgren et al (2021) to discuss productivity. Rather than
providing an overarching definition of productivity, SPACE decomposes the construct
into five dimensions:

S atisfaction and wellbeing. How fulfilled developers feel with their work, team,
tools, and culture. Also, how their work impacts their happiness and health.

P erformance. The outcome of a process. Note that outcome goes beyond mere
output, as in “Did the contributed code reliably do what it was supposed to do?”

A ctivity. The volume of actions or outputs completed while performing work, such
as commits or issues closed.

C ommunication and collaboration. How developers exchange information and
coordinate work, including perceptions of effectiveness in information seeking.

E fficiency and flow. The ability to complete work or make progress on it with
minimal interruptions or delays.

As evident from the above, the personal perception of productivity plays a central
role. While A is easily quantified in contemporary development pipelines, and P at
least partly can be automated, the remaining three dimensions (S, C, and E) have
large subjective components. In this study, we refer to this subset of productivity
dimensions as perceived productivity. Following previous work on productivity with
GitHub Copilot by Ziegler et al (2024), we measure this using Likert scales. These are
used both to pre-screen participants’ preference for working with AI assistants and to
assess their experience with the development tasks. In contrast, A and P, are derived
from version control data and the development pipeline.

2.2 AI-assisted Software Development

Hindle et al (2012) conducted seminal work on “the naturalness of software.” The
authors showed that source code exhibits far more local repetitiveness and pre-
dictability than natural language text. While they were not the first to propose code
completion tools, they convincingly demonstrated that statistical language models are
highly effective for this task. In 2022, the authors received the Most Influential Paper

5



Award for the work, and today we have all witnessed the power of LLMs for both
code completion and code generation.

The development of AI assistants is evolving at an astonishing pace. We refer
the reader to an Awesome-list2 curated by Sonargraph for an up-to-date overview.
The most widely adopted benchmark for comparing different code-oriented LLMs is
SWE-bench (Jimenez et al, 2023), which contains real-world GitHub issues paired
with corresponding codebases. Various LLMs are evaluated based on their ability to
generate valid patches for the reported issues.

In February 2025, Andrej Karpathy coined the term vibe coding3, which now has
gained substantial traction. However, the term is currently used in very different ways,
from recklessly generating code for throwaway prototypes – “going with the vibe” –
to referring to any use of generative AI for code, including workflows that incorporate
careful quality assurance. We avoid the term in this paper and instead discuss three
generations of AI assistants as outlined by Kim and Yegge (2025).

The first generation of AI assistants refers to LLM-driven code completion tools.
The most well-known is undoubtedly GitHub Copilot, released in October 2021 –
GitHub recently communicated (May 2025) that it now has 15 million users. Other
tools in this category include TabNine, Google Gemini Code Assist, and IBM’s watsonx
Code Assistant. These tools have in common that they are 1) largely reactive and 2)
limited to local context. For example, code completion tools can provide next-token
predictions or fill in method signatures based on nearby code. A grounded theory study
by Barke et al (2023) found that the interaction is bimodal. In acceleration mode,
developers know what to do and complete it faster with the assistant; in exploration
mode, they are instead uncertain and use the assistant to quickly explore options.
Academic evaluations of this generation primarily focused on Completion Acceptance
Rates (Ziegler et al, 2022), which are far from the maintainability and productivity
constructs central to our study.

The second generation of AI assistants focuses on enabling chat-based program-
ming. The interaction follows the prompt-response mode popularized by OpenAI’s
ChatGPT, released in November 2022. Although launched as a general-purpose assis-
tant, ChatGPT quickly demonstrated impressive coding capabilities. While many
users still copy-paste from web browsers, specialized IDEs such as Cursor and Wind-
surf soon emerged to bring chat-based functionality into the developers’ environment.
This generation of tools is typically characterized by 1) responding to natural language
queries and 2) operating with larger context windows than previous code completion
tools. Compared to the first generation, chat-based assistants tend to generate larger
amounts of code, including full functions and boilerplate based on comments. Most
empirical studies on second-generation tools focus on the generated code rather than
developer interactions – our study provides new insights to fill this gap.

The third generation of AI assistants refers to autonomous coding agents. This
is a rapidly evolving space, with several vendors actively competing at the time of
this writing. Notable examples are Anthropic’s Claude Code, Sonargraph’s Amp, and
OpenAI’s Codex (a name previously referring to an LLM trained on code). These

2https://github.com/sourcegraph/awesome-code-ai
3https://x.com/karpathy/status/1886192184808149383

6

https://github.com/sourcegraph/awesome-code-ai
https://x.com/karpathy/status/1886192184808149383


agents accept high-level tasks from developers and follow plan–execute–validate–revise
loops until a stopping condition is met. Compared to previous generations, these AI
tools are distinguished by 1) persistent memory across chat interactions, 2) better
understanding of project-level context, and 3) integration with other development
tools such as linters, test runners, and documentation systems. Interoperability is often
enabled via command-line interfaces or Model Context Protocol (MCP) servers.

As will be discussed in Section 5.1.1, the most common AI assistant used by our
study participants was GitHub Copilot, i.e., a first-generation code completion tool.
However, more participants used second-generation chat-based programming overall,
e.g., ChatGPT, Cursor, and Windsurf. We observed no instances of fully autonomous
agents being tasked with the entire problem in Task 1, although recent versions of
Cline and Claude can be used in such workflows. Still, some of our participants relied
heavily on autonomous code generation for parts of the task – shifting into product
managers and treating the AI assistant as a junior developer.

Two sets of researchers have recently published roadmap papers related to AI-
assisted development. Abrahao et al (2025) argue that software will continue to be
developed by, for, and with humans also in the AI era – and call for researchers to
keep a human-first perspective going forward, in line with the “Copenhagen Mani-
festo” (Russo et al, 2024). The authors frame their analysis using McLuhan’s Tetrad, a
four-dimensional framework describing how new technologies enhance certain aspects,
obsolesce other technologies and approaches, reverse common practices, and retrieve
elements from the past (McLuhan, 1977). Among other things, their analysis concludes
that AI assistance:

• Enhances diversity and customization, self-adaptation and evolution, field testing
and autonomous bots, autonomic verification, and data productization.

• Retrieves (from times before) simulation, digital twins, formal models, static
and dynamic analysis, domain-specific languages, requirements engineering, and
enterprise architectures.

• Reverses (when pushed to the extreme) into overreliance on natural language,
voice, image and video processing, and generative AI.

• Obsolesces contemporary structural, regression, and GUI testing, and traditional
testbed-based verification approaches.

The second roadmap paper is provided by Hassan et al (2024), and starts with a
critical analysis of contemporary AI assistants. The key point is that today’s tools are
helpful but fundamentally limited, as humans remain central for problem decomposi-
tion, integration, and testing. Moreover, most AI assistants primarily add rather than
improve code, which increases cognitive load and undermines maintainability. This
argumentation echoes the rationale behind our previous work on AI-assisted refac-
toring (Tornhill et al, 2025). To move beyond the limitations, the authors envision
“Software Engineering 3.0,” an AI-native and chat-driven paradigm that centers on
developer intent while source code turns peripheral. Their vision aligns with the third-
generation coding agents described earlier. We find that both roadmap papers provide
forward-looking conceptual frameworks, while our new study contributes empirical

7



evidence to this evolving landscape – offering one of the first large-scale experiments
that provides both quantitative results and qualitative insights.

2.3 Empirical Studies on AI-Assisted Development

Our current study adds to a growing body of empirical research on AI-assisted devel-
opment. In this section, we focus on studies where participants 1) complete realistic
tasks, and 2) evaluations go beyond Completion Acceptance Rates and simplistic
code metrics such as keystrokes and Lines of Code (LoC). We include both controlled
experiments and field surveys that capture developers’ real-world experiences.

We provide the first RCT that explicitly targets the maintainability of code written
by AI-assisted developers. In contrast, the most closely related prior studies have
focused on developer productivity, pioneered by GitHub’s internal research on GitHub
Copilot. The first and most widely cited work is the controlled experiment by Peng
et al (2023), which recruited freelance programmers (N=95) to implement an HTTP
server in JavaScript. Participants were randomly assigned to either a treatment group
with GitHub Copilot or a control group without assistance. The authors report that
the treatment group completed the task 55.8% faster on average. Although this study
generated substantial attention and was used in marketing, it remains unpublished in
a peer-reviewed venue.

A year later, another GitHub team published a paper combining repository mining
of usage data with a questionnaire-based survey (N=2,047) (Ziegler et al, 2024). The
results included usage telemetry and survey responses structured around the SPACE
framework described in Section 2.1, which we adopt in our current study. By sending
the survey to 17,240 users of the GitHub Copilot free technical preview, the authors
captured experience from real usage in early 2022. Their findings suggest that the
AI assistant had a significant positive impact on perceived productivity across mul-
tiple dimensions, e.g., task completion time, quality, cognitive load, enjoyment, and
learning. Notably, the reported gains were higher among junior developers.

IBM Research conducted a similar questionnaire-based survey among users of the
internal AI assistant watsonx Code Assistant (WCA) (Weisz et al, 2025). Instead of
using the dimensions of SPACE, they designed the instrument to collect attitudinal
measures of productivity and surveyed participants (N=669) from a WCA training
program. The authors report that the main WCA use case was code comprehension
rather than generation. While the respondents generally felt that their work was faster,
easier, and of higher quality with WCA, the magnitudes were small. Moreover, the
individual differences were substantial – 42.6% felt that WCA made them less effective.

Google has also published results from related internal research activities. Paradis
et al (2024) conducted an RCT (N=96) with Google developers to assess the impact of
three AI features on the completion time of a realistic C++ task: 1) code completion,
2) smart paste, and 3) chat-based programming. Participants were randomly assigned
to either the treatment group with all three features enabled, or the control group with
all disabled. The authors report a 21% average speedup with AI support, although
this effect was not significant when controlling for developer proficiency and task
familiarity. In contrast to previous work, they found that more senior participants

8



were faster with AI than juniors. The task under study in our RCT is larger in terms
of both LoC and expected task completion time.

Chatterjee et al (2024) report on a six-week controlled experiment (N≈1004)
at ANZ Bank, in which participants completed algorithmic programming tasks in
Python. After two weeks of GitHub Copilot training, the study design included both
between-group and within-subject comparisons. The results show that participants
using the AI assistant completed tasks 42.3% faster on average, with developers less
proficient with Python benefiting the most. Furthermore, the authors report that the
code quality improved, with fewer bugs and code smells. Finally, participants shared
that Copilot supported them in understanding, testing, and documenting code.

Weber et al (2024) conducted a controlled experiment (N=24) using a within-
subjects design in which participants completed three Python programming tasks.
Each task was paired with one level of AI-assistance: GitHub Copilot, chat-based pro-
gramming (GPT-3), or traditional web search. The authors report that both types
of AI-assistance led to more completed requirements per minute, greater code out-
put, and higher self-reported satisfaction. Compared to our study, we note that the
sample was small, the tasks were short, and only nine participants were professional
developers, with an average age of 26.8 years, indicating a mostly junior cohort.

Liang et al (2024) conducted a questionnaire-based survey in January 2023
(N=410) with a diverse set of AI-assisted developers to study usability. GitHub Copi-
lot was the most widely used tool (74.6%), whose users reported that a median of
30.5% of their code was now generated by the AI assistant. The primary motivations
for adopting AI assistants were 1) reducing keystrokes, 2) completing tasks faster, and
3) skipping web searches for code examples. On the other hand, the most common
reasons for not using such tools were 1) that the code output often is of subpar qual-
ity, and 2) the difficulty of controlling the AI assistants to produce the desired output.
Our prescreening survey (N=449, see Section 5.1) is of similar size, but features a
notably higher proportion of professional developers (92.2% vs. 49.5%).

Butler et al (2025) conducted a mixed-methods study at a multinational company
to examine the impact of introducing GitHub Copilot to new users. The authors com-
bined an RCT (N=51) with surveys, telemetry analysis, and a three-week diary study
(N=106). A difference-in-difference analysis of telemetry data found no statistically
significant differences, but medium to large effect sizes for most of the metrics. How-
ever, the surveys and diaries showed interesting subjective experiences: 84% reported
positive changes in their daily work, e.g., reduced web searching and less manual
boilerplate coding. Moreover, 66% described feeling more positive about work after
introducing GitHub Copilot.

Finally, Cui et al (2025) conducted a massive field experiment combining three
RCTs (N=4,867) at Microsoft, Accenture, and an anonymous Fortune 100 company.
Participants were were randomly assigned to use GitHub Copilot or serve in the control
group without access. During a two to eight month period, participants using the
AI assistant completed 26% more tasks per week, with larger effects among junior
developers. While the sample size is outstanding, no direct measurements of code
quality measurements were collected – only build success rate as a simple proxy. It was

4Some methodological details are not fully disclosed in the paper.

9



significantly lower at Accenture with a medium effect size, but there was no difference
in the pooled results.

In summary, several early studies were conducted by the major tech companies
Microsoft, IBM, and Google, leveraging unique access to AI assistants. Across both
experiments and survey research, studies consistently report productivity gains from
AI assistants – typically on the order of 20–30% faster task completion for profes-
sionals, and sometimes more for novices or repetitive tasks. However, findings related
to code quality and its potential impact on maintainability are less clear. There are
no indications that AI-assisted development leads to code that is inherently worse in
readability or complexity. Our new study places particular emphasis on this latter
concern.

3 System and Tasks Under Study

Controlled experiments on software maintainability require both a realistic system
and carefully designed tasks. The system must be large enough to simulate real-world
project conditions, and the tasks must reflect typical software development work. At
the same time, the tasks must be possible to solve within a reasonable time. This
section first describes how we designed the experimental artifacts, then outlines the
two maintainability tasks, and finally provides a technical overview of the system
under study.

3.1 Task Development and Context

We initiated the development of the experimental artifacts with a brainstorming work-
shop with four senior consultants from Equal Experts and the first author. Together,
we defined the design goal as specifying a standard real-world problem that should be
recognizable by any professional developer. This approach helps mitigate threats to
internal validity related to task familiarity. Furthermore, we specified that the system
under study should exhibit the following attributes:

• code spread across multiple files;
• subpar code quality;
• an injected bug in the code;
• unit tests present, but not complete coverage;
• API and database integration;
• involving a well-known framework;
• easily understandable domain;
• problem statement should be fun – or at least interesting;
• possible to complete in 2–4 hours.

Guided by the above, we introduced participants to the experiment through a
lightweight role-playing scenario. They took on the role of consultants hired by a hypo-
thetical new business, Recipes4Success (R4S), whose mission is to ignite a passion for
cooking among young people. Participants were told that R4S had previously engaged
a software consultancy to develop a recipe service: RecipeFinder. Unfortunately, the
collaboration did not meet expectations – a working web application was eventually

10

Daniel Berry
Highlight

Daniel Berry
Rectangle



delivered, but with poor software quality. R4S now seeks to enhance this service with
new features and to establish a fruitful partnership with another consultancy, setting
the stage for the participant’s involvement.

RecipeFinder consists of a rudimentary web application (see Figure 1) and a sup-
porting API. The base system offers the following features: 1) filtering the recipe list
by a search term, 2) listing all recipes when the search term is blank, and 3) filtering
recipes by total time (preparation time + cooking time). The service is built around
a back-end API that exposes two endpoints: 1) listing all recipe IDs (with names and
descriptions) and 2) getting recipe details by ID.

Fig. 1: Screenshot of the web
application.

The task instructions and system described
next evolved over several iterations with con-
tributions from several developers from Equal
Experts.

3.2 Maintainability Tasks

Participants will complete one of two tasks. In
Task 1, they were tasked with enhancing the
existing search feature to include filtering recipes
by the total time required to prepare a meal.
Task 1 participants were explicitly told that
changing the API was not expected. Finally, we
explained that there are several design problems
in the existing codebase, as well as a known
defect related to the presentation of preparation
and cooking times. We concluded the feature
request by stating: “We would like you to build
this feature for us, and we expect a high level of
quality. In particular, it should be easy to read
and maintain.”

In Task 2, participants were asked to further
develop the Task 1 search feature by incorporat-
ing a filter for the cost per serving. Completing
this task required the participant to build on the solution provided by the Task 1
participant. Note that we used the same R4S roleplaying scenario for Task 2, no mat-
ter the quality of the Task 1 solution. Again, the feature request concluded with the
same statement about our quality expectations. Both tasks included three acceptance
tests to be executed using GitHub Actions, which target the expected behavior of the
completed solution – and ensure that the Task 1 defect has been resolved.

To validate the setup, five consultants from Equal Experts pilot-tested either
Task 1 or Task 2. These pilots tested the clarity of the instructions, the esti-
mated time budget, and the supporting infrastructure (especially snapcode.review,
described in Section 4.3.1). The exact task descriptions are available in the replication
package (Experts et al, 2025).

11

Daniel Berry
Highlight

Daniel Berry
Highlight

Daniel Berry
Highlight



Fig. 2: Original search handler in RecipeFinderController.java used in Task 1.
The red dashes indicate the Bumpy Road code smell (bumps on lines 13, 20, and 27).
The Complex Method smell is triggered due to a cyclomatic complexity of 13.

1 @GetMapping("/recipes")

2 public String search(@RequestParam(name="query", required=false) String query , Model model) {

3 List <Recipe > recipes = recipeRepository.findAll ();

4 model.addAttribute("recipes", recipes.stream ().filter(recipe -> {

5 if (query == null) {

6 return true;

7 }

8 if (recipe.getName ().toLowerCase ().contains(query.toLowerCase ())) return true;

9 if (recipe.getDescription ().toLowerCase ().contains(query.toLowerCase ())) return true;

10 long count = 0L;

11 for (Ingredient x : recipe.getIngredients ()) {

12 if (x.getName ().toLowerCase ().contains(query.toLowerCase ())) {

13 count ++;

14 }

15 }

16 if (count > 0) return true;

17 count = 0;

18 for (Method m : recipe.getMethod ()) {

19 if (m.getDescription ().toLowerCase ().contains(query.toLowerCase ())) {

20 count ++;

21 }

22 }

23 if (count > 0) return true;

24 count = 0;

25 for (Diet diet : recipe.getDiets ()) {

26 if (diet.getName ().toLowerCase ().contains(query.toLowerCase ())) {

27 count ++;

28 }

29 }

30 if (count > 0) return true;

31 count = 0;

32
33 return false;

34 }).collect(toList ()));

35
36 return "recipe -search";

37 }

3.3 RecipeFinder Codebase: Technical Details

The base application, RecipeFinder, is a deliberately substandard Java/Spring Boot
application used as the starting point for Task 1. We chose to rely on Spring Boot as
it is widely regarded as a standard framework in the contemporary Java stack (Gorla
et al, 2025). Features related to our tasks include Spring Data JPA for database access,
Spring MVC for REST endpoints, and annotation-based dependency injection.

The total size of the base system, i.e., the codebase sent to the Task 1 participants,
is 2 KLoC across 47 files. We analyzed the maintainability of the base system using
CodeScene and complemented the results with low-level style checks using the PMD5

linting tool (v7.13.0) using all Java rules6. We present these analyses when comparing
how AI-devs and !AI-devs evolved the Task 1 code in Section 5.3.2.

Figure 2 shows a Java method from RecipeFinderController.java, which is at
the core of both tasks. In Task 1, participants modified this method to implement the
new feature – and in Task 2, other participants changed it again. The code displays
subpar characteristics and violations of standard Java conventions. The method con-
tains two CodeScene code smells, i.e., Bumpy Road and Complex Method, which will
be further discussed in Section 5.3.2.

5https://pmd.github.io/
6https://github.com/pmd/pmd/blob/e5516daad869a4895ca14e3257af15f528993bc7/pmd-core/src/

main/resources/rulesets/internal/all-java.xml

12

https://pmd.github.io/
https://github.com/pmd/pmd/blob/e5516daad869a4895ca14e3257af15f528993bc7/pmd-core/src/main/resources/rulesets/internal/all-java.xml
https://github.com/pmd/pmd/blob/e5516daad869a4895ca14e3257af15f528993bc7/pmd-core/src/main/resources/rulesets/internal/all-java.xml


The codebase contains a unit test suite that helps participants understand the
behavior of key Java methods. Moreover, it provides a starting point for those who
prefer test-driven development. Participants could add or modify the unit tests as they
added new features. Note that the unit tests did not expose the injected defect.

Finally, to preserve the integrity of the study, i.e., preventing any leakage to AI
assistants’ training data (Silva et al, 2024), we chose not to host the code in a public
git repository. Instead, all relevant documents and code are shared as PDF documents
in the replication package (Experts et al, 2025).

4 Method

Our goal is to investigate the impact of AI assistants on software maintainability. We
break down the goal into two research questions: RQ1) Do developers manually evolve
code that has been co-developed with AI assistants more efficiently? and RQ2) Does
code co-developed with AI assistants result in higher quality upon manual evolution?
We rely on four metrics to answer these RQs: task completion time, perceived pro-
ductivity according to the SPACE framework, CodeHealth, and test coverage. Fig. 3
summarizes the aim of this study, structured using the GQM model (Basili et al,
1994). Our preregistered design was guided by the ACM SIGSOFT Empirical Stan-
dard for Experiments with Human Participants (ACM SIGSOFT, 2024b) and we used
its essential attributes as a reporting checklist when writing this manuscript.

Fig. 3: Goal of the study, outlined using the GQM structure.

4.1 Study Design and Participant Recruitment

Figure 4 shows an overview of our preregistered, two-phase sequential design. In
Phase 1, half of the participants prepare artifacts to be used by either the treatment
group or the control group. In Phase 2, the remaining participants take part in an
RCT, in which all participants receive only one treatment. The rest of this section is
organized according to the Steps A] – E] indicated in the figure, and the experimental
variables on the right-hand side are defined in Section 4.2.

13



Fig. 4: Overview of the study. The part in the yellow box, to which about 50% of the
participants were assigned, constituted the RCT.

Step A] We called for volunteers to take part in a controlled experiment about
“Software Development with AI Assistants” (see A] in Fig. 4). All participants volun-
teered to engage in the research, and agreed to complete assigned tasks remotely in
the preferred development environment. We recruited participants through i) social
media advertisements on platforms such as YouTube, LinkedIn, and X and ii) using
our personal networks. To incentivize participation, all participants were offered a
signed copy of the last author’s latest book (Farley, 2022), and a chance to win a
private online “Ask Me Anything” session with him.

Step B] Participants signed up for the study by completing the pre-screening ques-
tionnaire outlined in Table 1. In total, 449 participants submitted valid questionnaires.
The primary purpose of the pre-screening questionnaire was to facilitate subsequent
stratified random sampling into Phase 1 or Phase 2. In Phase 1, we aimed to assign
an equal share of participants to either use AI assistants or work without any AI sup-
port. We refer to these cohorts as AI-devs and !AI-devs, respectively. In Phase 2,
all participants were instructed to work without AI support.

To facilitate the assignment, the pre-screening collected participant information
about 1) experience with AI assistants and 2) whether such assistance was currently
the preferred way of working (measured using a Likert scale). To qualify for the AI-
devs cohort, participants had to: i) answer yes to Q1-6, ii) agree to statement Q1-7a),
and iii) have a positive mean response to the preference questions Q1-7 b)–i) – taking
the inverted question g) into account.

Allowing participants to adhere to their preferred work methods reduces the like-
lihood of protocol non-compliance, such as using AI tools when told not to. However,
this flexibility might introduce a bias, e.g., less experienced developers could be more
inclined to use AI assistants. To compensate for this, we will control for developer
experience in our analysis. Note that early research suggests that junior developers
might benefit more from AI assistance (Ziegler et al, 2024).

A total of 118 participants (26.2%) who answered confirmatory to both 1) and 2)
were split into the AI-devs cohort (see B] in Fig. 4 and Section 4.3.1 for details).
The remaining 311 participants were assigned to the !AI-devs cohort. Notably, the
proportion of AI-devs (26.2%) was closely aligned with our ideal target of one quarter

14



Table 1: Outline of the pre-screening questionnaire. A colon indicates a free-text
input field. A letter within parentheses shows a mapping to the corresponding SPACE
dimension – item g) in Q1-8 is inverted. As will be explained in Section 4.2.2, we refer
to participants who strongly agree to Q1-7a as “habitual AI users.”
Question Type Operationalization
Q1-1. What is your gender? Nominal a) Man b) Woman c) Non-binary d) Prefer not to disclose, e) Prefer to

self-describe:
Q1-2. What is your age? Ordinal a) 19 or younger b) 20-29, ... g) 70 or older, h) Prefer not to disclose
Q1-3. Where do you live? Nominal Closed country list + Prefer not to disclose
Q1-4. Which of the following
best describes what you do?

Nominal a) Student, full-time or part-time, b) Professional programmer, writing
code for work, c) Hobbyist programmer, writing code for fun or outside
of work, d) Researcher, e) Prefer not to disclose, f) Other:

Q1-5. How proficient are you in
software development with Java?

Ordinal a) Beginner, I can write a correct implementation for a simple function b)
Intermediate, I can design and implement whole programs, c) Advanced,
I can design and implement a complex system architecture

Q1-6. Do you have experience
of working with an AI assistant
while programming?

Binary a) Yes, b) No (ends the questionnaire)

Q1-7. Experience and prefer-
ences

5-point
Likert
+ N/A

Thinking of your experience as a developer and your ways of working,
please indicate your level of agreement with the following statements.

a) I am a habitual user of AI assistants while programming.
b) I am more productive when using AI assistants. (E)
c) I complete tasks faster when using AI assistants. (E)
d) I spend less time searching for information or examples when using
AI assistants. (C)
e) I complete repetitive programming tasks faster when using AI assis-
tants. (E)
f) Using AI assistants helps me stay in the flow. (E)
g) Using AI assistants is distracting. (E)
h) I feel more fulfilled with my job when using AI assistants. (S)
i) I can focus on more satisfying work when using AI assistants. (S)

of the participants in this cohort (Borg et al, 2024b). As AI-assisted development
becomes increasingly prevalent, finding developers without prior exposure to AI will
surely become harder – our study may represent one of the last opportunities to
examine developers with limited experience reviewing AI-generated code.

Step C] We used random stratified sampling to divide the participants into Task
1 or Task 2 of the experiment. Stratification was needed to ensure that we assigned an
equal share of AI-devs and !AI-devs to Task 1. The assignment is further described
as part of the data collection in Section 4.3.1.

Step D] In Task 1, the AI-devs and !AI-devs cohorts each added a new feature
to an existing Java system. Both the system and the task are described in Section 3.
The code submitted by these participants is then handed off to another developer in
Task 2 for further evolution. Task 1 was concluded by the exit questionnaire presented
in Table 2, and the code was analyzed as part of the submission system described in
Section 4.3.1. Only one of the Task 1 participants did not submit the questionnaire.

Step E] In Task 2, which constituted the RCT, new participants were randomly
assigned to evolve a valid Task 1 solution. These solutions originated either from the
AI-dev cohort (treatment) or the !AI-dev cohort (control). Note that all Task 2 par-
ticipants worked without AI assistants, and the task itself is described in Section 3.2.
Finally, Task 2 was concluded with the same exit questionnaire as Task 1 (see Table 2).
All but three Task 2 participants submitted the questionnaire.

15



Table 2: Overview of the exit questionnaire. A colon indicates a free-text input field.
A letter within parentheses shows a mapping to the corresponding SPACE dimension
– items d) and j) are inverted.
Question Type Operationalization
Q2-1. Did you complete the task in one
uninterrupted sitting?

Nominal a) Yes, b) Yes, but with short breaks, c) No

Q2-2. Did you use AI assistants whilst
completing the task?

Binary a) Yes, c) No

Q2-3. (AI-devs only) Which AI assis-
tant did you work with?

Closed
list

a) GitHub Copilot, b) Amazon CodeWhisperer, c) JetBrains AI
Assistant, d) Visual Studio IntelliCode, e) TabNine, f) ChatGPT,
g) Other:

Q2-4. (AI-devs only) How frequently
did you interact with the AI assistant?

Ordinal a) Hardly at all, b) Sometimes, c) Often, d) Almost for every
statement I wrote

Q2-5. The task generally resembled
development work I have done in the
past.

5-point
Likert

a) Strongly disagree, b) Disagree, c) Neutral, d) Agree, e) Strongly
agree

Q2-6. Please list any development tools
used during the task beyond the stan-
dard IDE. Examples include code lint-
ing tools, quality analyzers, and vulner-
ability scanners.

Nominal a) N/A, b) Used tools:

Q2-7. Perceived productivity 5-point
Likert
+ N/A

Thinking of your experience with the task, please indicate your
level of agreement with the following statements.

a) I was focused on the task during the programming session. (E)
b) I was a productive programmer while completing the task. (E)
c) I felt fulfilled while completing the programming task. (S)
d) I found myself frustrated while completing the programming
task. (S)
e) I made fast progress despite working with an unfamiliar system.
(E)
f) The code I wrote was of high quality. (S)
g) I maintained a state of flow during the programming task. (E)
h) I enjoyed completing this task. (S)
i) I completed the repetitive programming activities fast during
the task. (E)
j) I spent considerable time searching for information or examples
during the task. (C)

Q2-8. Is there anything you would like
to add regarding the study or your role
in the experiment?

Free-
text

:

Q2-9. Please provide your email if you
want to receive the report when the
study is done.

Free-
text

:

4.2 Experimental Variables and Hypotheses

We conducted a two-level, single-factor experiment with underlying variations within
the two levels. The independent variable was whether participants evolved code that
had been co-developed with an AI assistant during Phase 1 (treatment group) or not
(control group). As shown in Figure 4, we measured four dependent variables in the
Phase 2 RCT.

Completion time was measured by the submission system as the duration
between 1) the moment a participant gained access to their unique GitHub repository
and 2) the point at which they irrevocably submitted their solution. In line with the
definition of technical debt (see Section 2.1), we consider the time it takes to implement
changes a valid proxy for maintainability. Between 1) and 2), participants were free

16

Daniel Berry
Highlight



to push commits to the GitHub repository as frequently as they liked, allowing them
to follow their preferred Git workflow. However, many participants reported not com-
pleting the task in one uninterrupted session. For this subset, we largely replaced the
measurements with self-reported time estimates. This adjustment is further explained
in Section 4.3.1 and critically discussed in Section 7.

CodeHealth (CH) was measured as the weighted average of the files in the
codebase. CH ranges from 1 to 10 on an interval scale (no true zero) and has been
shown to align well with expert assessments of maintainability (Borg et al, 2024a).
CH can be customized by adjusting violation thresholds and adjusting the weights of
individual rules. The default settings have been calibrated over years to match large
proprietary codebases. However, when comparing small tasks it might not be sensitive
enough to detect meaningful differences. Thus, we used a custom rule set developed
together with Codility7, a CodeScene partner specializing in developer tests in the
recruitment process. In this rule set, two code smells have lower thresholds: Complex
Method and Nested Complexity. The configuration file is available in the replication
package. The average CH was calculated in the CI pipeline using a GitHub Action.

Test coverage (TC) was measured as the line coverage of the final solution’s test
suite, reported as a percentage on an interval scale. We consider TC an indicator of how
much attention participants gave to testing. Participants could freely add test cases,
and the resulting coverage was measured using the Java code coverage library JaCoCo,
integrated into the CI pipeline via the same GitHub Action. We used JaCoCo’s default
metric, which is line coverage rather than statement coverage.

Perceived productivity (PP) is a subjective assessment based on the SPACE
framework (see Section 2.1). We measured PP using a Likert scale composed of ordinal
Likert items as part of the exit questionnaire, for which participants received a link
upon completing the task. The Likert scale was inspired by the approach described
by Ziegler et al (2024) and it allowed us to complement objective measurements with
developer perceptions. We adapted the statements to suit both AI-devs and !AI-
devs, and avoided references to specific tools. The scale consisted of ten 5-point
Likert items (with an optional N/A response), structured according to the SPACE
framework; see Q2-7 a)–j) in Table 2.

Several contextual and individual-level variables inevitably influence outcomes in
software engineering experiments. While our RCT helps balance both observed and
unobserved confounders across treatment and control groups, the realism introduced
by remote participation limits experimental control. In addition to the core variables,
we preregistered four contextual variables that we expected would particularly influ-
ence the results. Specifically, we measured the following in the pre-screening and exit
questionnaires to enable post hoc analysis:

• Whether the participant completed the task in one uninterrupted sitting (Q2-1).
• Which AI assistant was used during Phase 1 (Q2-3).
• The extent to which the AI assistant was used during Phase 1 (Q2-4).
• Whether the participant used additional supportive development tools (Q2-6).

7https://www.codility.com/

17

https://www.codility.com/
Daniel Berry
Highlight

Daniel Berry
Highlight

Daniel Berry
Highlight

Daniel Berry
Highlight



Fig. 5: DAGitty causal graph. Dev1 and Dev2 represent the full complexity of the
human participants in Phases 1 and 2, respectively. Code1 and Code2 are the partici-
pants’ solutions after Phases 1 and 2, respectively. AI use is the independent variable.
The other variables are explained in Table 3.

4.2.1 Frequentist Hypotheses

In the frequentist analysis, we hypothesize that the use of AI assistants will have a
positive impact on the dependent variables in the Phase 2 RCT. To formally assess
these effects, we define four null hypotheses (H01–H04), each corresponding to one
of the dependent variables. Each null hypothesis states that there is no difference
between participants evolving code (in Task 2) co-developed with an AI assistant and
those evolving code written without AI assistance (in Task 1).

H01 There is no difference in completion time.
H02 There is no difference in CodeHealth (CH).
H03 There is no difference in test coverage (TC).
H04 There is no difference in perceived productivity (PP).

For each null hypothesis, we also define a corresponding non-directional alternative
hypothesis (HA1–HA4), stating that there is a difference.

4.2.2 Bayesian Causal Analysis

To determine which variables to control for, we rely on causal inference. Figure 5 shows
the causal graph underlying our Bayesian analysis. The directed acyclic graph, created
using DAGitty, shows how we connect the variables involved in our two-phased study:
each vertex represents a variable, and we trace an arrow between two variables when
we consider they have a causal relationship. Based on this graph, we can determine
which variables need to be controlled for to estimate causal effects.

As an example, consider the effect of using an AI assistant (AI use) on TC. Devel-
oper 1 (Dev1) has a level of Java proficiency level (Dev1 skill), which will influence
the quality of their submission (Code1). In Phase 2, developer 2 (Dev2) continues
working on this code, and extends it into a new submission (Code2), which will have
a test coverage (TC). As a result, there is a causal path between AI use and TC.

18

Daniel Berry
Highlight



Table 3: Covariates in the causal analysis. The questionnaire is available in Table 1.
Variable Description Scale and

Operationalization
Role in Analysis

Dev1 Full complexity of the Task 1 par-
ticipant, including intrinsic motiva-
tion, cognitive ability, and psychologi-
cal state.

N/A Unobserved; assumed balanced by
randomization.

Dev1 skill Java programming skill of Dev1. Ordinal 3-point scale,
Q1-5.

Controlled; used for adjustment.

AI xp Habitual use of AI assistants. Ordinal 5-point scale,
Q1-7a.

Controlled; used for adjustment.

AI pref Stated preference for AI-assisted devel-
opment.

Binary, derived from
Q1-7 items b-i.

Used for preceding group assignment
(see Section 4.1), not adjusted.

Code1 Solution produced by Dev1 in Task 1. Only partially observed. Unobserved; treated as latent medi-
ator.

Dev2 The full complexity of the human par-
ticipant in Task 2.

N/A Unobserved; assumed balanced by
randomization.

Code2 Solution produced by Dev2 in Task 2. Only partially observed. Unobserved; treated as latent medi-
ator.

Dev2 interrupted To what extent Dev2 completed Task 2
in one uninterrupted session.

Ordinal 3-point scale,
Q2-1.

Controlled; used for adjustment.

Note, however, that in the causal graph, there are two additional paths between
AI use and TC. The previously discussed is causal (AI use → Code1 → Code2 →
TC), since we follow the arrows. However, there are two other paths that connect
the two variables, if we ignore the direction of the arrows: (AI use ← AI pref ←
Dev1 → Dev1 skill → Code1 → Code2 → TC). These paths are called non-causal
or backdoor (McElreath, 2020), and indicate the presence of a potential confounder:
What if developers who are less proficient at Java prefer to use AI assistants, and more
proficient Java developers prefer to avoid them? We would compare two cohorts that
are different in two ways: More Java-proficient developers who do not want to use AI,
and less proficient developers who prefer to use it. As a result, we need to control for
the Java proficiency level of developer 1 to isolate the effect of using AI assistants.

Using the graph, we reason in a similar way to deduce that we should also control
for developer 1’s habitual use of AI assistants. However, there is an important caveat:
when developer 1 does not use an AI assistant, their prior habitual use of such tools
becomes irrelevant. We present in Appendix A how we model this fact. Throughout
the remainder of this paper, we refer to participants who answered “Strongly agree”
to the statement “I’m a habitual user of AI assistants while programming” in the
prescreening questionnaire (Q1-7a) as “habitual AI users.”

Table 3 summarizes the covariates in the causal graph. The last column indicates
whether each variable is directly controlled for, to block backdoor paths, or unobserved
(latent). Further details are available in Appendix A.

In summary, we state that AI use (the independent variable), AI xp, and
Dev1 skill causally influence Code1 in Phase 1. In Phase 2, Code1 and Dev2 jointly
influence the final solution, Code2. By adjusting for Dev1 skill and AI xp, DAGitty
identifies a green causal path that extends through Phase 2 to the four dependent vari-
ables. We measure the causal effects on Code2 using the two dependent variables CH
and TC. The dependent variables PP and Completion time, on the other hand, are
causally influenced by both Code1 and Dev2. When modeling Completion time, we

19



also control for Dev2 interrupted, to improve the precision of our estimates of other
effects, as it has a major impact of the Completion time.

Finally, to validate our controlled variables, we examined how the AI-devs and
!AI-devs differ. We report this demographic information in Section 5.1.1, but high-
light two key findings here. First, AI-devs are more often habitual users of AI
assistants, which is expected since we purposefully assigned developers accordingly
to encourage compliance. Second, !AI-devs include fewer Java beginners and more
advanced Java developers. This aligns with previous findings that experienced devel-
opers benefit less from using AI assistants (Ziegler et al, 2024; Cui et al, 2025). These
two findings validated our controlled variables.

4.3 Data Collection and Processing

This section presents how we collected data during the experiments, and how we
processed it afterwards.

4.3.1 Data Collection

The programming tasks were administered using the snapcode.review8 platform, a
service used by Equal Experts for coding tests during recruitment processes. snap-
code.review automates take-home challenges and integrates with GitHub to manage
individual repositories per participant. This solution enabled us to trigger acceptance
test runs, run CodeScene analyses (to measure CH), execute JaCoCo measurements
(for TC), and collect time stamps (for completion time) as part of a CI pipeline.

We used Typeform9 to distribute and collect both the prescreening and exit ques-
tionnaires. Both questionnaires were piloted with four developers from Equal Experts
to ensure clarity and relevance. The feedback led to only minor adjustments.

We opted for a phased rollout of the programming tasks to validate the scalability
of our infrastructure. The first batch of participants was recruited through an inter-
nal announcement in the Equal Experts developer community on October 10, 2024.
Thirty-one developers signed up for the experiment in this round. We assigned eight of
them to the Phase 1 AI-dev subgroup based on two prescreening criteria. First, par-
ticipants had to report whether they were habitual users of AI assistants by answering
4 or 5 to statement Q1-7a. Second, participants had to express a preference for work-
ing with AI assistants by providing a median response greater than 3 across items
Q1-7b to Q1-7i (taking the inverted Q1-7g into account). The remaining participants
were randomly assigned to either the !AI-dev subgroup or Phase 2. After two weeks,
we concluded this pilot phase with satisfactory results and opened up the experiment
to all volunteers, using the same assignment criteria.

We invited all qualifying AI-dev participants to begin Phase 1 at the end of
November, alongside a matching number of randomly selected !AI-dev participants.
Every time a Task 1 solution was submitted, three new !AI-dev participants were
continuously invited to build on it as part of Task 2 in Phase 2. We selected three to
increase the chances of obtaining at least one valid Task 2 solution per submission.

8https://snapcode.review
9https://www.typeform.com

20

https://snapcode.review
https://www.typeform.com


Both automatic and manual reminder emails were sent to encourage participation.
The submission system automatically sent up to two acceptance reminders (after 7
and 12 days) to participants who had not yet accepted their task invitation. Similarly,
participants who had accepted, but not yet submitted, received up to two additional
reminders. In addition, we manually sent a reminder email to participants approxi-
mately one month after they completed the prescreening questionnaire, followed by
up to two additional chaser emails. We closed the data collection on January 18, 2025.

4.3.2 Data Cleaning and Pre-processing

For both tasks, we excluded participants whose solutions failed to pass the accep-
tance test suite. We manually inspected all passing solutions and their corresponding
exit questionnaire responses. We found no indications of attempts to game or manip-
ulate the system, nor any responses suggesting non-serious engagement. However, we
identified three protocol violations:

• One AI-dev participant (anon126 ) completed Task 1 twice, both times with AI
assistance. Since both these solutions received valid follow-up solutions in Task 2, we
chose to keep them. While this means that two Task 1 solutions are not independent,
it does not affect the RCT in Phase 2. However, it introduces a minor threat to
internal validity when comparing AI-dev and !AI-dev for Task 1, as discussed in
Section 7.

• One participant assigned to the !AI-dev group self-reported using AI assistance in
the exit questionnaire. We resolved this violation by reclassifying the corresponding
Task 1 solution as belonging to the AI-dev group.

• About half of the participants (73 out of 151, 48.3%) self-reported (Q2-1) that
they did not complete the task in a single uninterrupted session. As a result,
the corresponding submission time stamps recorded by the submission system are
highly unreliable. While randomization mitigates the effects in comparisons between
groups, we took additional steps to address this issue, as explained next.

We reached out via email to 71 participants who responded b) or c) to Q2-1 in
Table 2. Note that only two of our participants opted out from follow-up questions.
Moreover, we also reached out to participants who responded a) to Q2-1 but had a
recorded completion time of more than 8 hours. We asked all of them to provide their
best time estimate with 30 min granularity. This way we received 67 time estimates,
which we use instead of the recorded time estimates. The longest estimate we received
was 15 hours, thus we decided to consider all longer time values (> 16 hours) unrea-
sonable and removed them from the analysis (1 AI-dev, 4 !AI-dev, 1 treatment,
2 control). Note that for the four participants who did not submit exit surveys, two of
them had reasonable completion times of less than 5 hours, which we include in the
analysis.

We validated the internal consistency of the Likert scale used to measure PP using
Cronbach’s alpha. After inverting the two negatively worded items, the resulting alpha
was 0.82, which shows a good internal consistency. Based on this result, we proceeded
to compute mean values for PP rather than medians in the frequentist analysis. In the

21



Bayesian analysis, however, we use the individual Likert items as will be explained in
Section 4.4.2.

4.4 Data Analysis

We follow a mixed-methods approach, using multiple methods “to collect, analyze,
and integrate both qualitative and quantitative data in our analysis” (Storey et al,
2025). Throughout the analysis, we assume independence of observations, i.e., that the
participants did not communicate or influence each other. As outlined in the registered
report (Borg et al, 2024b), we present both frequentist and Bayesian analyses of the
quantitative data. The rationale is that Bayesian analysis will explore uncertainties to
provide a robust probabilistic understanding, whereas frequentist hypothesis testing
will facilitate communication of results to a broader audience. Moreover, we conduct
qualitative analyses of free-text responses from the questionnaires and the submitted
source code solutions.

4.4.1 Quantitative Frequentist Analysis

The purpose of the frequentist analysis is to apply inferential statistics to test the
hypotheses in Section 4.2.1. We assessed the normality of the dependent variables using
Shapiro-Wilk tests. All results are available in the replication package, a summary of
the outcomes follows:

• Completion time. Normality was rejected. We proceeded with Wilcoxon rank-sum
Test and report Cliff’s delta as the effect size.

• CH. Normality was not rejected, neither was equal variances. We used Welch’s
t-test and report Cohen’s d as the effect size.

• TC. Normality was rejected. We proceeded withWilcoxon rank-sum Test and report
Cliff’s delta as the effect size.

• PP. Normality was not rejected, neither was equal variances. We used Welch’s t-test
and report Cohen’s d as the effect size.

Given the limited number of hypotheses, we did not apply corrections for multiple
testing. To estimate confidence intervals for the dependent variables, we used non-
parametric bootstrapping: drawing 1,000,000 samples with replacement from each
group.

As part of our pre-registration, we conducted an a priori power analysis using
G*Power (v.3.1.9.7) to determine the required sample size for the Phase 2 RCT.
Assuming a medium effect size (d = 0.5) for the dependent variables, a significance
level of α = 0.05, and a desired power of 0.80, the analysis indicated a minimum of
128 participants to support frequentist hypothesis testing. As our study design assigns
50% of participants to Phase 1, this implies a target of 256 completed tasks across both
phases. As reported in Section 4.1, 449 participants signed up and 151 participants
completed their tasks (33.6%), which means we did not reach our target – further
motivating the Bayesian complement.

22



4.4.2 Quantitative Bayesian Analysis

We conducted a Bayesian analysis to gain a probabilistic understanding of the treat-
ment effects, an approach that remains robust even in the case of smaller sample
sizes (McElreath, 2020).

Statistical Models

Our choice of statistical models is guided by the type of variables we consider, as depen-
dent and independent variables (also called predictors). Throughout this section, we
indicate dependent variables (defined in Section 4.2) in bold and predictors (defined
in Section 4.2.2) in italics. AI xp, Dev1 skill, and Dev2 interrupted are ordinal predic-
tors. AI xp ranges on a five-point scale based on habitual use of AI assistants (Q1-7a).
Dev1 skill refers to the self-reported (Q1-5) Java proficiency using the levels: Begin-
ner, Intermediate, and Advanced. Dev2 interrupted is developer 2’s answer to Q2-1,
i.e., whether Task 2 was completed in one uninterrupted sitting: Yes, Short breaks,
and No.

Completion time is a metric (continuous) variable, strictly positive. CH is a
metric variable, on a scale between 1 and 10. TC is a continuous variable on a scale
between 0 and 1 (a percentage). PP is measured using a Likert scale in the exit
questionnaire. Unlike the frequentist analysis, which uses the mean value, the Bayesian
analysis uses the individual Likert items to estimate a latent variable.

Since AI xp, Dev1 skill and Dev2 interrupted represent ordered categories, we
expect, for example, that a developer with an advanced level of Java also has the level
of a beginner. Modeling the effects of these variables as nominal or continuous would
be incorrect (Bürkner and Charpentier, 2020). We therefore use an appropriate model,
described in more detail in Appendix A.

For CH, we use a classical linear regression with normally distributed residuals.
We choose this model as the CH score for a solution is the weighted average of the
score of each file. Therefore, we could expect residuals to be normally distributed.

For TC, we use a fractional logistic regression model, since the variable is a per-
centage bounded between 0 and 1. In essence, this model is a classical linear regression
on the logit of the percentage (Papke and Wooldridge, 1996). We also tested with a
classical linear regression, with similar results, since the range of test coverages in our
dataset is narrow (65% to 75%).

For PP, we use a more complex model for two reasons. First, each answer is
obtained using a set of ten discrete, ordinal Likert items (questions) on a narrow
range (1-5). Second, and more importantly, PP is not measured directly, but instead
approximated via these 10 questions. It is possible that some questions are more
relevant than others when estimating a developer’s productivity. To model this type
of answer, we use an ordinal logistic regression (McElreath, 2020; Gelman et al, 2021),
with a latent variable representing PP.

Figure 6 displays a simple example of an ordered logistic regression. In our case, the
model represents the productivity of each developer using a latent PP score, predicted
from the independent variables. This latent score is then reflected in the answers to
each question, where each question has a different set of cutoffs.

23



Fig. 6: A diagram explaining an ordered logistic regression model. If we observe
the two predictors x and y, as well as the observed responses (observed). The model
infers both a latent score (latent) for each point (as a linear combination of x and
y), and cutoffs between the different response levels. In other words, the model finds
hyperplanes separating each response level with the next, where all hyperplanes are
parallel.

This model has three major advantages: First, it estimates the properties of each
question, i.e., the cutoffs between response levels. Second, it uses information from
every question in estimating the developer productivity, making our estimates of the
developer’s productivity more precise. This estimate is then what we use as a response
variable when studying the effect of predictors on PP.

Because we work in a Bayesian inference setting, our estimates of developer pro-
ductivity are imprecise, which is reflected in the posterior distribution of productivity.
This uncertainty is taken into account when we estimate the effect of predictors too.

Sensitivity Analysis

In a Bayesian setting, the priors of effects at play can influence the analysis. To study
the importance of priors, we constructed three types: i) uninformative priors (neu-
tral), ii) AI-skeptical priors (pessimistic), and iii) AI-enthusiastic priors (optimistic),
to reflect different stances on the maintainability impact of AI assistance — this serves
as a sensitivity analysis.

For Completion Time, we used an optimistic prior based on GitHub’s
research (Peng et al, 2023), which reported a 55% improvement. While the GitHub
research investigated the direct effects of working with AI, we use the same improve-
ment to inform our optimistic prior for subsequent manual development. For the other
response variables, we defined priors that implied an effect of about one standard devi-
ation in the response, where the optimistic prior predicted an improvement, and the
pessimistic prior a decline. Table 4 summarizes our priors for the effect of AI. For full
details about our statistical models, we refer to Appendix A.

24



Table 4: Summary of priors used in the Bayesian Analysis.

Variable Prior Type Distribution (Normal)

Completion Time
Optimistic N (−0.55, 0.32)
Neutral N (0.0, 1.02)
Pessimistic N (0.55, 0.32)

Test Coverage
Optimistic N (0.25, 0.52)
Neutral N (0.0, 1.02)
Pessimistic N (−0.25, 0.52)

CodeHealth
Optimistic N (0.5, 0.52)
Neutral N (0.0, 1.02)
Pessimistic N (−0.5, 0.52)

Perceived Productivity
Optimistic N (0.25, 0.52)
Neutral N (0.0, 1.02)
Pessimistic N (−0.25, 0.52)

4.4.3 Qualitative Analysis

This section describes how we conducted qualitative analyses of Free-text Responses
and Source Code, respectively.

Free-text Responses

We collected qualitative feedback from participants through free-text responses in the
exit survey. In total, we received 59 responses from Phase 1 and 45 from Phase 2.
Additionally, more than a third of the participants shared insights via (often rich)
follow-up emails, typically in response to clarification questions we sent after task
completion. Despite conducting the experiment remotely, we believe we gained a solid
understanding of participants’ perceptions.

The first and sixth author started by independently conducting inductive coding of
the free-text responses. Already at this stage, we observed strong agreement on high-
level themes, supported by the participants’ focused and relevant feedback. Notably,
there were no junk responses. The two authors discussed discrepancies and collabora-
tively refined the initial coding scheme into a two-level structure. The first author then
re-applied the coding, and the sixth author validated the outcome. The final coding
scheme is presented in Table 5, organized around three high-level topics 1) Develop-
ment without AI, 2) AI-assisted development, and 3) Task reflections. The number of
times the codes were applied is also reported, which will be discussed in Section 5.6.

Source Code

We also spent substantial effort in qualitatively analyzing the submitted source code.
For Task 1, we applied a systematic approach to investigate the impact of AI assis-
tants. We began by sampling five random AI-dev and five random !AI-dev solutions.
The first, third, fourth, and sixth author independently analyzed them to identify
interesting variation points. We then met to discuss our findings and compiled a list of
15 aspects that appeared to characterize the solutions. We organized them into four
categories: 1) refactoring, 2) solution style, 3) testing, and 4) misc. Furthermore, we
found it useful to describe a) the overall solution type, and b) specific changes to the
search method presented in Figure 2.

25



Table 5: Coding scheme for free-text responses. Numbers in parentheses show the
number of occurrences.

1) Development without AI (30)
Refactoring (9) Manual restructuring of code to improve readability, design, or

maintainability.
Testing and debugging (5) Manually creating or running tests, identifying and reproducing

defects, and fixing them.
Learning and onboarding (7) Understanding of the tech stack or onboarding into the specific

project without AI support.
Misc. (9) Other development activities.

2) AI-assisted development (46)
Refactoring (4) Using AI to suggest or implement code improvements or restruc-

turing.
Testing and Debugging (4) Leveraging AI to create tests, identify and reproduce defects,

and assist in fixing them.
Learning and onboarding (8) Using AI to explore unfamiliar technologies, frameworks, or

project-specific structures.
Productivity boost (5) Reports of increased speed or efficiency as a result of AI assis-

tance.
AI limitations (10) Situations where AI failed, gave incorrect suggestions, or hin-

dered progress.
Interaction mode (10) Descriptions of how participants engaged with AI.
Misc. (5) Other development activities.

3) Task reflections (101)
Instruction uncertainty (9) Confusion or ambiguity related to task requirements or scope.
Tech stack (28) Comments on familiarity or challenges with the programming

tools or frameworks.
Setup friction (25) Difficulties encountered during environment setup, configura-

tion, or initial project use.
Quality expectations (21) Uncertainty or reflections about how much to improve, test, or

refactor the code.
Simplistic task (18) Perceptions that the assignment was too easy, trivial, or lacked

meaningful complexity.

Following this joint meeting, we independently re-coded the same sample of Task
1 solutions and found satisfactory inter-rater agreement. To scale the analysis, we
designed regular expressions to automatically identify keywords indicative of specific
attributes of Task 1 development. Running these expressions over the git diff output
between each modified and original repository enabled us to efficiently identify the
addition of unit tests (e.g., assertions) or comments, as well as code patterns suggesting
a shift to the functional paradigm (e.g., map, collect, and reduce).

To complement this manual analysis, we also ran detailed static analysis of the
Task 1 solutions using CodeScene (v6.19.15) and PMD (v7.13.0 with default settings)
to identify patterns by comparing with the base RecipeFinder (see Section 3.3). More-
over, we ran RefactoringMiner 2.0 by Tsantalis et al (2022) on all Task 1 git diffs

to investigate what types of refactoring operations the participants undertook.

5 Results

We organize this section as follows. First, we present participant demographics and
descriptive statistics related to Tasks 1 and 2. Second, we compare AI-dev and

26



Fig. 7: Respondents’ experience and preference with AI assistants (Q1-7 in Table 1),
1=Strongly disagree, 5=Strongly agree.

!AI-dev solutions to Task 1, providing necessary context for interpreting subsequent
results. Third, we present the results related to our RQs.

In this section, all mentioned participants are professional developers unless other-
wise stated. Shorter quotes are inlined, longer quotes are separated and indicated with
a blue vertical line. When presenting longer quotes, we report the following metadata
(the four dependent variables listed in parentheses):

• Participant ID, Task {1, 2}, {AI-dev/!AI-dev} [HABITUAL] (if Q1-7a=5) or
{Treatment/Control} , Role (Q1-4)+Java proficiency (Q1-5), AI assistants used (if
applicable), resemblance agreement (R1-5, Q2-5), added LoC, (time, CH, TC, and
PP).

5.1 Participant Demographics

In total, 449 participants signed up for the experiment by completing a valid pre-
screening survey. While controlled experiments in software engineering tend to largely
rely on student participants (Feldt et al, 2018), this study stands out: 92.2% of our
participants were professional developers. The median age group was 40-49 years,
underscoring the experience level of our volunteer base.

The prescreening revealed that 73.6% of the volunteers had prior experience with
AI assistants (Q1-6 in Table 1). We asked this subset to self-report their experience
using the Likert scale in Q1-7, with results presented in Figure 7. These responses
provide a timely snapshot of AI-related development experience and preferences at
the end of 2025 – a very fast-moving area of practice.

We assigned the 118 participants who expressed a preference for AI-assisted devel-
opment to the AI-dev group in Task 1. Among the remaining participants, 106 were

27



randomly selected for the !AI group in Task 1. The remaining 225 participants were
reserved for the RCT in Task 2.

5.1.1 Task 1 Demographics

Task 1 was designed to establish a baseline for the RCT in Task 2. The task concluded
with 39 valid AI-dev solutions and 37 !AI-dev solutions. We consider this a solid
starting point for the RCT. More specifically, the Task 1 completion rates were as
follows:

• AI-devs submitted 38 valid solutions (38 of 118, 32.2%) and a corresponding exit
questionnaire. Sixteen of them (42.1%) were habitual AI users. For the remaining
80 participants

– 51 participants never started the task,
– 20 participants never submitted a valid solution, and
– 9 participants actively dropped out.

• !AI-devs submitted 38 valid solutions (38 of 106, 35.8%) – three of them never
submitted the exit questionnaire, but are still included. One participant reported
using an AI assistant and was thus moved toAI-dev (this person was not a habitual
AI user). For the remaining 67 participants

– 36 participants never started the task,
– 23 participants never submitted a valid solution, and
– 8 participants actively dropped out.

Figure 8 shows demographics for the Task 1 participants. We found that most par-
ticipants were men and between 30-49 years old. Most participants were professional
developers, but there were slightly more Java beginners in the AI-dev group. This
aspect will be further analyzed later. Overall, we do not observe any major systematic
biases that threaten the validity of the RCT.

Figure 9 shows the geographic distribution of Task 1 participants. We notice par-
ticipation from many Western countries. However, we find that neither South America
nor Africa is represented. Notably, several major countries with large developer
populations, including China, Japan, and South Korea, are also absent.

Table 6 shows the frequencies of AI tool usage reported by AI-devs in Task 1
(Q2-3), both for all participants and habitual AI users only. The bolded alternatives
were explicitly listed in the questionnaire, whereas all others were entered manually
by participants. We note that GitHub Copilot was clearly the most used AI assistant,
followed by ChatGPT and Cursor. The distribution resembles what has been reported
in previous work, see Section 2.3. Regarding the frequency of AI usage (Q2-4), we
obtained: Every statement 17, Often 10, and Sometimes 12.

Some Task 1 participants reported using (non-AI) development tools beyond a
standard IDE. In AI-dev, three used SonarQube and one used Docker. In !AI-dev,
the following tools were each reported once: SonarQube, GitHub Codespaces, Firefox,
and Chrome. The two web browsers’ debug windows were used to check the web
application. The four participants using SonarQube submitted solutions with CH 8.35,

28



(a) Gender (b) Age

(c) Role (d) Java Skill Level

Fig. 8: Demographic distribution of Task 1 participants.

Table 6: Frequencies of AI tools reported in Task 1 (Q2-3).

AI tool G
it
H
u
b

C
o
p
il
o
t

C
h
a
tG

P
T

C
u
rs
o
r

J
e
tB

r
a
in

s
A
I

C
la
u
d
e

T
a
il
w
in
d
A
I

V
S

In
te

ll
iC

o
d
e

M
ix
tr
a
l

M
ic
ro
so
ft

C
o
p
il
o
t

W
in
d
su

rf

C
li
n
e

G
ro
k

G
em

in
i

S
u
p
er
m
a
v
en

C
o
d
e
W

h
is
p
e
r
e
r

T
a
b
N
in

e

All participants 21 13 9 5 4 2 2 1 1 1 1 1 1 1 0 0
Habitual AI users 8 7 7 1 0 2 0 0 0 1 0 0 1 0 0 0

8.34, 8.23, 8.16, respectively. These scores do not stand out (see Figure 14b), and
we consider the influence of additional development tools to be negligible and thus
controlled in the rest of the analysis.

29



Fig. 9: Location of Task 1 participants.

5.1.2 Task 2 Demographics

Task 2 involved extending the feature developed by an unknown Task 1 developer. In
the end, 75 out of 225 (33.3%) assigned participants submitted valid Task 2 solutions.
The completion rate matches what we observed for both AI-dev and !AI-dev groups
in Task 1. Figure 10 shows an overview of how the Task 1 solutions were evolved by
Task 2 participants. The number of Task 2 submissions building on Task 1 solutions
varied between 0 and 410. Of the 75 Task 1 solutions, 24 were not evolved further (see
the black box in Figure 10). The most common outcome was that a Task 1 solution
was evolved by one Task 2 participant. In some cases, individual Task 1 solutions were
evolved by multiple Task 2 participants. More specifically, 14 were evolved twice, 3
three times, and 1 four times.

Figure 11 shows the demographics of the 75 participants who completed Task 2.
As in Task 1, most participants were men, and the median age in both groups was 40-
49 years. Similarly, the Task 2 participants are predominantly professional developers.
The reported levels of Java mastery differed slightly between the treatment and control
groups, which we account for later.

Figure 12 shows the geographic distribution of Task 2 participants. The distribution
resembles what we found for Task 1, but now both South America and Africa are
represented. However, there are still no participants from China, Japan, or South
Korea.

Eight Task 2 participants reported using development tools beyond a standard IDE.
In the treatment group, three used SonarQube and one used GitHub Codespaces. In
the control group, three used SonarQube and one used Postman. The six participants
who used SonarQube submitted solutions with CH 8.84, 8.55, 8.54, 8.32, 8.25, and
8.24, respectively. The highest score (8.84) was obtained by the ambitious anon050,

10On a few occasions, we assigned more than three participants to a single Task 1 solution – essentially
due to rounding in the assignment logic.

30



Fig. 10: Flow of Task 1 solutions into Task 2 evolutions by group.

who spent 5.5 hours on the task and also achieved the top TC score (90%). The two
lowest scores belong to 1) a Java beginner who stated “I found it fun working in an
unfamiliar language. My main language is C# and I work normally in Visual Studio
and with .NET.” and 2) an advanced developer who complained about the lack of
unit tests: “I’m very used to TDD so finding no to very few tests, specially unit tests,
is somewhat frustrating.” The remaining three CH scores align well with the overall
distribution (see Figure 20), and we find no indications of systematic differences caused
by the tool usage.

5.2 Descriptive statistics of Tasks 1 and 2

Table 7 shows summary statistics of git activity in Task 1 and Task 2. In Task 1, we
notice that four AI-devs skew the distribution by adding more than 2,000 lines of
code – well above the maximum number of 660 observed in the !AI-dev group. Still,
the median number of added lines for !AI-dev is lower than for AI-dev. The four
most prolific AI-devs were:

anon126 Java beginner. Used Cursor and Tailwind AI. Also the participant who completed
Task 1 twice (see Section 4.3.2). In the first submission, anon126 explained pushing
AI to the maximum, resulting in 10,788 added lines. Despite the volume, the CH
was the second highest in Task 1: 8.88.

anon054 Advanced Java developer. Used Cursor, ChatGPT, and Cline. Added 3,094 lines,
and achieved the highest recorded CH: 9.12 with 98% TC. Explained:

“My approach was to learn how well it works letting the AI do most of the work

on its own and me being the mentor like with a new colleague at work steering

where necessary. [...] Cline did most of the work autonomously based on the existing

code and description.” — anon054, Task 1, Pro+Advanced, AI-dev [HABITUAL],

ChatGPT+Cline+Cursor, R4, 3094 LoC, (5h, CH=9.12, TC=98%, PP=4.4 )

31



(a) Gender (b) Age

(c) Role (d) Java Skill Level

Fig. 11: Demographic distribution of Task 2 participants.

anon139 Java beginner. Used GitHub Copilot, ChatGPT, VS IntelliCode, and Claude. Added
2,032 lines. Explained “going a bit deep in making it more maintainable”, but the
CH remained at a modest 8.48.

anon073 Advanced Java developer. Used Cursor. Added 2,635 lines and reached CH 8.38.
Provided a rich comment:

“I haven’t programmed in Java for 15 years, and never touched Spring Boot. It would

have taken me a lot longer without the help of an AI. The interaction with the AI

felt like pair programming with someone with a vast experience but lazy who some-

times gives hacky answers. I had to constantly remind the AI to use the most recent

and best practice information to get better code. I do have 30 years experience in

development and multiple frameworks. I felt that that experience was important with

identifying subpar code or dead leads that the AI suggested. Just pointing out those

to the AI was enough for it to come up with better code. I hardly had to tamper

with the code manually.” — anon073, Task 1, AI-dev [HABITUAL], Pro+Advanced,

Cursor, R4, 2635 LoC, (4.5h, CH=8.38, TC=67%, PP=4.2)

We note that the two Task 1 participants who added the most code using AI also
obtained the highest CH. This suggests that heavy use of AI assistants can result in

32



Fig. 12: Location of Task 2 participants.

code that is, on average, easily understandable by humans. However, maintainability
effort also increase with the overall size of the codebase. We revisit this dilemma in
Task 2.

Table 7: Descriptive statistics of git activity.

Task 1 Task 2
AI-dev (n=39) !AI-dev (n=37) Treatment (n=40) Control (n=35)

commits
mean / std 6.85 / 13.66 5.16 / 7.48 5.62 / 12.16 4.40 / 4.72
min / median / max 1 / 3 / 82 1 / 3 / 38 1 / 2 / 74 1 / 3 / 21

added lines
mean / std 642.74 / 1801.63 216.41 / 187.41 158.62 / 202.54 154.23 / 172.97
min / median / max 18 / 123 / 10,788 22 / 166 / 660 6 / 56.5 / 703 7 / 80 / 703

deleted lines
mean / std 128.54 / 141.45 102.32 / 111.79 72.53 / 129.67 103.26 / 196.53
min / median / max 8 / 74 / 642 4 / 57 / 512 0 / 10 / 562 0 / 17 / 854

changed files
mean / std 10.92 / 14.92 9.65 / 6.71 5.92 / 5.90 6.60 / 6.04
min / median / max 2 / 7 / 88 2 / 8 / 29 1 / 4 / 29 2 / 4 / 27

The Task 2 git activity of the treatment and control groups (see Table 7) appears
similar. The median number of added and deleted lines is slightly higher in the control
group, but the difference is modest. We have no other patterns to report.

Figure 13 shows answers to Q2-5, i.e., the level of agreement to the statement “The
task generally resembled development work I have done in the past.” The results show

33



that both Tasks 1 and 2 were perceived as realistic development tasks, which supports
the validity of our study.

(a) Task 1. (b) Task 2.

Fig. 13: Perceived resemblance to prior development work (Q2-5: 1=Strongly disagree,
5=strongly agree).

5.3 Influence of AI Assistants on Task 1

While Task 1 is not the main target of the study, analyzing potential differences AI-
dev and !AI-dev solutions is important to understand the results. Furthermore, our
findings can be discussed in light of the related work introduced in Secion 2.3.

5.3.1 Task 1: Experimental Variables

Figure 14 shows the distribution of the four variables: completion time, CH, TC, and
PP. Completion times (see Figure 14a) are not normally distributed and the Wilcoxon
Rank-Sum Test shows that there are significant differences (p = 0.0029). There is a
medium effect size of using an AI-assistant (Cliff’s δ=-0.42) and we observed that
AI-devs had a 30.7% shorter median completion time. The !AI-dev anomaly with
a very long completion time, anon081, explained: “Not fluent with Java, so a lot of
reading up of the basics was required.” The Bayesian analysis in Section 5.4.1 will later
confirm the positive effect of using AI assistants on Task 1 completion time.

CH for !AI-devs is not normally distributed, but we cannot reject this hypothesis
for AI-devs. Wilcoxon Rank-Sum Test shows that there are no significant differences
between the groups (p = 0.52) and the effect size is negligible (Cliff’s δ=0.09). How-
ever, we notice that the spread of CH is lower for AI-devs, which explains why the
normality assumption holds. The two AI-devs (anon054 and anon126 ) who reached
the highest CH (9.12 and 8.88, see Figure 14b) both heavily used capable AI-assistants
for more than three hours (ChatGPT+Cline+Cursor and Cursor+Tailwind AI, respec-
tively), iterated a lot (54 and 287 test runs, respectively), and added substantial
amounts of code (3,094 and 10,788 added LoC, respectively). We conclude that the
AI-generated code was of high quality and raised the average CH substantially – note
that the subpar 2,500 LoC of the base system is modest in comparison.

34



TC consistently clustered around 70% in Task 1. We note that the four highest
TC scores were all obtained by AI-devs, while the lowest outlier corresponds to an
!AI-dev (see Figure 14c). The highest two TC scores (98% and 91%, respectively)
belong to anon054 and anon126 just mentioned – both users of AI assistants that go
beyond code completion.

PP appears similar across the AI-dev and !AI-dev groups. However, Figure 14d
shows that the six participants who reported the highest scores all worked with AI
assistants. While it is reasonable that such tools increase PP – that is aligned with
their purpose – we acknowledge the potential for confirmation bias. AI-devs may
have been more inclined to evaluate their productivity positively due to their belief in
the value of AI assistance.

(a) Completion time (b) CodeHealth (CH)

(c) Test coverage (TC) (d) Perceived productivity (PP)

Fig. 14: Descriptive statistics of Task 1 solutions.

5.3.2 Task 1: Detailed Code-Level Differences

This section describes results from our detailed analysis of how AI-devs and !AI-
devs changed the code in Task 1. We remind the reader that a handful of AI users
generated large volumes of code, thus skewing mean values.

35



Regular Expressions

New unit tests were added by 46% of AI-devs, compared to 31% of !AI-devs. Thus,
there was no clear tendency for participants to use AI assistants to supplement the
existing test suite.

AI-devs added comments more frequently than !AI-devs – 79% versus 54%. AI-
generated code is known for generating noisy surface-level comments. Such comments
can aid the LLMs in subsequent code evolution, but offer limited value to human read-
ers. In fact, noisy comments risk bloating the codebase and introducing discrepancies
between documentation and logic if they are not kept aligned.

Finally, we observe that both AI-devs and !AI-devs tend to shift toward the
functional programming paradigm. The proportion of solutions that introduce such
constructs is 87% and 76%, respectively. Manual inspection shows that AI-dev sub-
missions more frequently evolve existing usages of the Java Stream API, while !AI-dev
submissions almost exclusively introduce new Stream APIs.

CodeScene Code Smells

Table 8 unpacks the CH of the base system and Task 1 solutions (see also Figure 14b
for the CH distributions). The code smells are described in Appendix B. The “Base”
column depicts that the base RecipeFinder contains: 1) one Bumpy Road, 2) eleven
Complex Methods, and 3) two Code Duplication smells. As shown in the last row, the
average CH is similar across the three columns. Furthermore, Table 9 presents details
about how participants worked with the base system’s existing code smells. Code
smells can be removed, improved (modified to be less severe), unchanged (moved from
one location to another), degraded (more severe), and introduced (if a new instance
appears) – we refer to these five options as delta types. We observed differences between
AI-devs and !AI-devs, which we discuss next.

The search method in Figure 2 shows the instance of the Bumpy Road – and
it also triggers one of the Complex Method smells. Since Task 1 participants had to
modify this method, it serves as a natural refactoring target, which we investigate in
detail. We found that 72% of AI-devs resolved the Bumpy Road smell, compared to
46% of !AI-devs. Interestingly, 14% of !AI-devs even introduced another instance
of this, whereas this never happened for AI-devs.

These results suggest that AI assistants can effectively resolve the Bumpy Road
smell while !AI-devs appear to struggle with such structural cleanups. Furthermore,
38% of the !AI-devs left the original code smell unchanged in the file. Manual inspec-
tion showed that this occurred when the problematic code block was merely extracted
into a new method rather than being properly refactored to eliminate the underly-
ing issue. Regarding effective refacorings, the most common resolution pattern was to
rewrite the search method using a functional programming style – which was slightly
more common among AI-devs, as discussed under the regular expressions.

On the contrary, AI assistants appear to less effectively resolve Complex Method
code smells. 18% of the AI-devs (7 solutions) removed at least one Complex Method
code smell compared to 32% of the !AI-devs (12 solutions). On the other hand, 54%
of the AI-devs (21 solutions) improved smells in the Complex Method category, while

36



35% of the !AI-devs (13 solutions) did. This indicates that AI-assisted developers are
likely to improve existing Complex Methods, but less able to fully resolve them.

Table 8: Unpacking Task 1 CodeHealth into code smells, showing mean / std /
median [min–max].

Code Smell Base AI-dev (n=39) !AI-dev (n=37)

Bumpy Road 1 0.28 / 0.46 / 0 [0–1] 0.68 / 0.47 / 1 [0–1]
Code Duplication 2 3.79 / 5.62 / 2 [2–36] 3.08 / 3.94 / 2 [0–25]
Complex Conditionals 0 0.15 / 0.43 / 0 [0–2] 0.08 / 0.36 / 0 [0–2]
Complex Method 11 11.56 / 1.94 / 11 [6–20] 11.41 / 1.17 / 11 [6–14]
Constructor Over-Injection 0 0.03 / 0.16 / 0 [0–1] 0.00 / 0.00 / 0 [0–0]
Duplicated Assertion Blocks 0 0.03 / 0.16 / 0 [0–1] 0.00 / 0.00 / 0 [0–0]
Excess Function Args 0 0.13 / 0.66 / 0 [0–4] 0.05 / 0.33 / 0 [0–2]
Large Assertion Blocks 0 0.23 / 1.44 / 0 [0–9] 0.00 / 0.00 / 0 [0–0]
Large Method 0 0.03 / 0.16 / 0 [0–1] 0.00 / 0.00 / 0 [0–0]
Nested Complexity 0 0.08 / 0.27 / 0 [0–1] 0.00 / 0.00 / 0 [0–0]
Primitive Obsession 0 0.13 / 0.41 / 0 [0–2] 0.05 / 0.23 / 0 [0–1]
String-Heavy Args 0 0.08 / 0.27 / 0 [0–1] 0.14 / 0.42 / 0 [0–2]

Total code smells 14 16.51 15.49
Avg. CodeHealth 8.3 8.3 8.4

Table 9: Overview of Task 1 changes in code smells grouped by delta types
and code smells, showing mean / std / median [min–max].

Delta Type Code Smell AI-dev (n=39) !AI-dev (n=37)

Removed
Bumpy Road 0.72 / 0.46 / 1 [0-1] 0.46 / 0.51 / 0 [0-1]
Code Duplication 0.00 / 0.00 / 0 [0-0] 0.05 / 0.23 / 0 [0-1]
Complex Method 0.28 / 0.86 / 0 [0-5] 0.46 / 1.04 / 0 [0-6]

Improved Complex Method 0.54 / 0.51 / 1 [0-1] 0.41 / 0.60 / 0 [0-2]

Unchanged
Bumpy Road 0.18 / 0.39 / 0 [0-1] 0.38 / 0.49 / 0 [0-1]
Code Duplication 0.18 / 0.39 / 0 [0-1] 0.27 / 0.45 / 0 [0-1]
Complex Method 0.03 / 0.16 / 0 [0-1] 0.05 / 0.23 / 0 [0-1]

Degraded Complex Method 0.31 / 0.52 / 0 [0-2] 0.43 / 0.50 / 0 [0-1]

Introduced

Bumpy Road 0.00 / 0.00 / 0 [0-0] 0.14 / 0.35 / 0 [0-1]
Code Duplication 0.41 / 1.07 / 0 [0-6] 0.14 / 0.42 / 0 [0-2]
Complex Conditionals 0.15 / 0.43 / 0 [0-2] 0.08 / 0.36 / 0 [0-2]
Complex Method 0.72 / 1.52 / 0 [0-7] 0.62 / 0.83 / 0 [0-4]
Nested Complexity 0.08 / 0.27 / 0 [0-1] 0.00 / 0.00 / 0 [0-0]
Primitive Obsession 0.13 / 0.41 / 0 [0-2] 0.05 / 0.23 / 0 [0-1]

AI-devs show a higher tendency to introduce certain new code smells not orig-
inally present in the base RecipeFinder project. Notably, at least one Complex
Conditionals code smell was introduced by 13% of AI-devs (5 solutions) compared to
5% of !AI-devs (2 solutions). Additionally, 8% of AI-devs (3 solutions) also intro-
duced the Nested Complexity code smell while none of !AI-devs did. Furthermore,

37



new Code Duplication code smells are introduced by 23% of AI-devs (9 solutions)
while 11% of !AI-devs (4 solutions). Lastly, 10% of AI-devs (4 solutions) introduced
the Primitive Obsession when 5% of !AI-devs (2 solutions) did. Although these dif-
ferences are minor–showing notable differences in mean values but high variance and
identical medians–they hint that AI assistants may be prone to introducing certain
code smell patterns.

Al Madi (2023) studied the readability of Copilot’s generated code in a controlled
experiment with students (n=21). Their results suggest that code written by a human
pairing with an AI assistant is comparable in complexity and readability to code
written by human pair programmers. Except for some outlier AI-devs who produced
large volumes of code, our findings support their conclusion.

RefactoringMiner’s Refactoring Operations

Table 10 presents descriptive statistics of refactoring operations identified by Refactor-
ingMiner in the git diffs. The data reveal notable differences between AI-devs and
!AI-devs. First, we observe that AI-Devs are more inclined to apply simplification
refactorings, such as Inline Variable, Rename Variable, and Spring Boot annotation
improvements. In contrast, !AI-Devsmore frequently perform structural refactorings,
including Extract Class and Move Method (to another class). Moreover, Extract And
Move Method, another operation that requires deeper architectural considerations,
was only recorded by !AI-devs. Despite these group-level patterns, we acknowledge
considerable variation in how individuals refactor, no matter if they work with AI
assistants or not.

Table 10: Subset of identified Task 1 refactoring operations, showing mean /
std / median [min–max].

Refactoring Operation AI-dev (n=39) !AI-dev (n=37)

Add Method Annotation 0.36 / 1.35 / 0 [0–8] 0.05 / 0.33 / 0 [0–2]
Add Param. Annotation 0.15 / 0.67 / 0 [0–4] 0.00 / 0.00 / 0 [0–0]
Change Attr. Access Modifier 0.26 / 0.79 / 0 [0–3] 0.00 / 0.00 / 0 [0–0]
Extract And Move Method 0.00 / 0.00 / 0 [0–0] 0.19 / 0.70 / 0 [0–3]
Extract Class 0.26 / 0.68 / 0 [0–3] 0.43 / 0.83 / 0 [0–4]
Extract Method 1.56 / 3.65 / 0 [0–16] 1.19 / 2.11 / 0 [0–8]
Inline Variable 0.64 / 1.74 / 0 [0–8] 0.08 / 0.36 / 0 [0–2]
Modify Param Annotation 0.33 / 1.15 / 0 [0–6] 0.00 / 0.00 / 0 [0–0]
Move Method 0.21 / 0.73 / 0 [0–4] 1.89 / 4.21 / 0 [0–19]
Rename Variable 0.87 / 1.64 / 0 [0–7] 0.30 / 0.57 / 0 [0–2]
Remove Method Modifier 0.00 / 0.00 / 0 [0–0] 0.14 / 0.48 / 0 [0–2]

Total refactorings 18.26 / 28.82 / 7 [1–126] 15.43 / 19.23 / 5 [1–69]

PMD Linting Results

Table 11 presents an overview of PMD violations (see Appendix C) organized per set
rule, i.e., related rules grouped under a common theme. By far the most frequently
violated rules for both AI-devs and !AI-devs belong to the Code Style set, covering

38



conventions such as naming, formatting, or method ordering. However, AI-devs dis-
play a much higher standard deviation (154 vs. 45) despite a lower median (258 vs.
267), confirming the impact of prolific outlier AI-devs. For all other rule sets, median
violation counts barely differ between the groups.

Table 11 further shows a sample of particularly interesting PMD rules. We
find some interesting group-level patterns. First, AI-devs triggered significantly
fewer violations related to algorithmic complexities, such as NPathComplexity and
CyclomaticComplexity. Second, AI-devs also produced fewer violations related to
documentation rules. Third, AI-devs’ rule violations were more concentrated in
surface-level issues, such as formatting and naming. A possible explanation is that
the AI-generated code tends to be more verbose, including boilerplate code that may
deviate from best-practice – a pattern consistent with the Code Style rule set in
Table 11.

Overall, it appears that contemporary use of AI assistants may reduce complexity
but add stylistic clutter. This finding is in line with a study by Siddiq et al (2022),
where they found that GitHub Copilot produced code with similar stylistic issues. We
hypothesize that this can potentially increasing the cognitive burden of human code
reviews and downstream maintainance tasks. This concludes our comparative analysis
of AI-dev and !AI-dev solutions, and we are now ready to investigate Task 2’s RCT
results.

Table 11: Statistics for PMD set rules and a subset of individual rules for Task 2, showing
mean / std / median [min–max].

Rule Base AI-dev (n=39) !AI-dev (n=37)

Best Practices: 38 49.21 / 29.83 / 40 [32–207] 42.97 / 7.65 / 40 [31–62]
UnusedAssignment 1 0.21 / 0.41 / 0 [0–1] 0.41 / 0.50 / 0 [0–1]

Code Style: 253 294.97 / 153.68 / 258 [204–1037] 279.30 / 44.54 / 267 [233–489]
AtLeastOneConstructor 11 12.62 / 6.52 / 11 [7–45] 12.08 / 2.03 / 11 [8–20]
ControlStatementBraces 23 19.67 / 3.28 / 18 [12–30] 21.73 / 3.49 / 23 [8–26]
LinguisticNaming 3 3.49 / 1.54 / 3 [3–9] 2.95 / 0.52 / 3 [0–4]
MethodArgCouldBeFinal 68 81.15 / 32.51 / 69 [53–232] 76.92 / 8.06 / 75 [69–99]
OnlyOneReturn 19 20.59 / 3.17 / 19 [15–33] 23.03 / 3.95 / 24 [12–30]
ShortVariable 25 25.79 / 4.36 / 25 [16–45] 26.03 / 2.75 / 25 [16–33]
UseExplicitTypes 0 0.08 / 0.35 / 0 [0–2] 3.35 / 12.75 / 0 [0–69]

Design: 27 26.21 / 5.84 / 25 [19–57] 26.51 / 3.43 / 27 [15–32]
AvoidCatchingGenExcep 0 0.33 / 1.46 / 0 [0–9] 0.00 / 0.00 / 0 [0–0]
CyclomaticComplexity 0 0.05 / 0.22 / 0 [0–1] 0.38 / 0.49 / 0 [0–1]
ImmutableField 4 3.05 / 1.45 / 4 [0–4] 3.54 / 1.50 / 4 [0–6]
NPathComplexity 1 0.31 / 0.47 / 0 [0–1] 0.70 / 0.46 / 1 [0–1]

Documentation: 114 122.38 / 23.56 / 115 [109–244] 124.19 / 12.68 / 118 [114–159]
CommentRequired 113 117.05 / 12.43 / 114 [102–181] 122.68 / 12.12 / 117 [113–158]

Total Rule Violations 450 512.18 / 222.17 / 456 [399–1632] 490.00 / 57.44 / 465 [438–705]

39



5.4 RQ1: More Efficient Manual Evolution?

This section reports results related to the two dependent variables Completion time
and Perceived Productivity (PP) (see Figure 3). For each variable, we discuss the
distribution followed by frequentist inferential statistics and a Bayesian analysis.

5.4.1 Completion Time

Figure 15a shows the distribution of 72 completion times for Task 2. Most participants
completed the task within 300 minutes, and as described in Section 4.4.1, the data
is not normally distributed. The longest time was 13 hours, based on an estimated
breakdown from one particularly ambitious participant, an advanced Java developer,
who explained their process as follows:

“I’d say I’ve spent around 12-16 hours studying the stack – last time I worked with

Java it was Java 7, and a lot has changed. In that time I did, of course, spend some

time experimenting with different solutions which did not make it into the project. After

settling with the JPA Specification API, it took me 2-4 hours to have the acceptance

test green [...] Sticking to the role I was playing as a consultant, I then invested some

time in refactoring, which then took another 8-12 hours, I’d say. I wasn’t sure if this

was expected for the task, but its description gave me the impression that the assessment

would be reviewed as if I were hired to do a job.” — anon123, Task 2, Treatment,

Pro+Advanced, R5, 645 LoC, (13h, CH=8.89, TC=71%, PP=2.7)

We excluded the initial 12-16 hours of exploratory learning and summed the remaining
estimates to 13 hours. This is potentially an underestimate, and it shows that some
participants were highly motivated to deliver high-quality solutions.

(a) Distribution of completion times. (b) 95% confidence intervals.

Fig. 15: Task 2 completion time.

40



Frequentist Analysis

Figure 20b shows 95% confidence intervals for the median completion times. The treat-
ment group had a median of 136 minutes (95% CI: 105.5–180.0), while the control
group had a median of 173 minutes (95% CI: 118.1–210.0). Cliff’s δ was -0.079, indi-
cating a negligible effect size. The difference was not statistically significant (Wilcoxon
rank-sum test, p=0.56).

Bayesian Analysis

Figure 16 shows the posterior distribution of the treatment effect on completion time
when the Task 1 developer was highly skilled in using AI assistants (AI xp). In this
scenario, the orange curve represents dev2’s completion time for Task 2 when dev1
was assisted by AI in Task 1. We find that dev2s’ who built on the AI-assisted solution
completed the task 12.45% faster on average, but the difference is not significant (95%
Credibility Interval (CI): −44.68% – +31.74%).

A major influence on completion time is whether dev2 completed Task 2 in one
uninterrupted session or not (see Dev2 interrupted in Figure 5). When dev2 took
breaks (interruption level 2 or 3), they finished 172.18% later than when they did
not (95% CI: +35.24% – +410.77%. Note that this applies to the self-reported time
estimates (described in Section 4.3.2), which suggests that there is a systematic bias
in overestimating the time it took to complete Task 2.

Besides dev2’s breaks, the effect of dev1’s use of an AI assistant or not is smaller
than the effect of dev1’s Java proficiency. When dev1 was an advanced Java developer,
dev2 finished 27.99% faster on average compared to when dev1 was a beginner, but the
difference is not significant (95% CI: −58.21% – +11.98%). Our sensitivity analysis
underscores that priors play an important role, indicating that we might need more
data to draw conclusions. Using an optimistic prior, the model estimates that when
dev1 used AI, dev2 finished about 28% faster (CI: −49.76% – −3.30%) — a result
that excludes zero.

For comparison, we also estimate the direct effect of using an AI assistant in Task 1.
We find that developers with high AI skills finished Task 1 approximately 60% faster
on average, and the difference is significant (95% CI: −76.68% – −33.2%). Our results
confirm those of Peng et al (2023), indicated by the dashed line on Figure 16.

Key Takeaways – Task 2 Completion Time

• The variability is high, making the difference statistically unreliable – the
effect size is negligible and the difference is not significant.

• The posterior mean effect (when the Task 1 developer was a habitual AI
user) was a 12.5% speedup – but the 95% credibility interval included zero.

5.4.2 Perceived Productivity

Figure 17a shows the distribution of PP for 72 Task 2 solutions. As described in
Section 4.4.1, we consider the data approximately normally distributed. We continue
by describing the seven participants who stand out the most. All of them agreed or

41



Fig. 16: Posterior effect on completion time when a habitual AI user applies AI
assistants in Task 1. The orange curve shows the effect on manual evolution in Task 2,
i.e., the focus of our study.

strongly agreed that the task resembled previous development work (Q2-5). Three of
them reported low PP (2.7):

anon123 This participant, discussed in Section 5.4.1 as the one who spent the most time,
evolved AI-dev and made substantial changes, i.e., 14 files in 16 commits. The low
PP is explained in Q2-8:

“It’s been years since I’ve touched any Java code, even longer since using Spring [Boot].

The broadness of the task also left it open to which optimizations should be done, but

I feel much more satisfied and know the system is easier to work with after work-

ing on it” — anon123, Task 2, Treatment, Pro+Advanced, R5, 645 LoC, (13h,

CH=8.89, TC=71%, PP=2.7)

anon014 A beginner Java developer who spent 12 hours on the task, evolving !AI-dev code.
Despite the long time, only four files were changed across three commits. The low
PP is attributed to the participant’s inexperience with Java web apps:

“I also spent about 6 additional hours on non-essential environment setup tasks (i.e.

Containerizing the app so I didn’t have to run a JDK locally). In case this is rele-

vant, I am not primarily a Java developer, and this was my first time working with a

Java web application.” — anon014, Task 2, Control, Pro+Beginner, R4, 33 LoC,

(12h, CH=8.33, TC=70%, PP=2.7)

anon119 An advanced Java developer who spent 134 minutes on the task and evolved AI-
dev code. Surprisingly, the participant made many changes in a short time, i.e., 7
files in 20 commits, but still felt unproductive.

42



Four participants, all advanced Java developers, reported a PP of either 5 or 4.9.

anon100 Evolved AI-dev code. Worked for 4.5 hours, changing 6 files in 21 commits.

“I adhered to the Pomodoro technique. For around every 24 minutes, I’d take a 6-

minute break. I’d estimate I spent 3.5 hours on task typing.” — anon100, Task 2,

Treatment, Pro+Advanced, R5, 290 LoC, (4.5h, CH=8.61, TC=69%, PP=5.0)

anon109 Evolved AI-dev code. Solved the task in a single commit with minimal churn.
Reported that the task was a bit simple and that they finished it in under 30 minutes
even though not knowing the code.

anon146 Evolved !AI-dev and finished the task in 88 minutes. Changed 4 files in a single
commit.

anon144 Evolved !AI-dev and finished the task in 3 hours. Changed 12 files in 21
commits.

“In total I think I spent about 2.5 hours on the actual task [...] I had some initial set

up issues the previous day and couldn’t get the project to build correctly. I probably

spent 45 mins in total messing mainly with IntelliJ config.” — anon144, Task 2,

Treatment, Pro+Advanced, R5, 290 LoC, (4.5h, CH=8.61, TC=69%, PP=5.0)

(a) Distribution of Perceived Productivity (PP). (b) 95% confidence intervals.

Fig. 17: Task 2 Perceived Productivity.

Frequentist Analysis

Figure 17b shows 95% confidence intervals for the mean PP. The treatment group
had a mean of 3.95 (95% CI: 3.77–4.12), while the control group had a mean of 4.06
(95% CI: 3.88–4.24). Cohen’s d was -0.21, indicating a small negative effect size. The
difference was not statistically significant (Welch’s t-test, p=0.37).

43



Fig. 18: Relationship between inferred productivity and responses to question 1. The
left-hand plot shows the probability of each response level being observed based on the
productivity on the x-axis. The shaded area shows an inferred productivity approx-
imately between 3-4 points. The dashed lines indicate the inferred cutoffs between
response levels. Looking at the curves, we can see that for a productivity in that range,
the most likely answers for question 1 are level 5 (highest curve) or 4, and perhaps a
few 3. This is consistent with the observed responses, showed on the right-hand plot.

Bayesian Analysis

As explained in section 4.4.2, our ordered logistic model infers a latent productivity
score on a continuous scale for each developer. Figure 18 illustrates the relationship
between inferred productivity and responses for question 1 (Q2-7a in Table 2), other
questions follow the same model (taking the two inverted questions into account).

For Task 1, the inferred (latent) productivity score covers a range from 2.6 to
6. For Task 2, the latent productivity scores are more compressed and range from
2.9 to 3.8. For Task 1, using AI has a clear positive effect on latent productivity for
habitual AI users (95% CI: +1.32 – +2.07), i.e., AI-assisted users felt really productive
when working with their preferred tools. However, this positive effect does not carry
over to the manual evolution in Task 2 (95% CI: −0.48 – +0.15), i.e., the CI covers
zero. Increased Java proficiency (from “Beginner” to “Advanced”) also did not have
a significant effect (mean: −0.11, 95% CI: −0.53 – +0.22).

Overall, the effect of AI usage in Task 1 seems to be a small, negative effect on latent
productivity in Task 2. To clarify how this influences the responses to productivity
questions, we compare two simulations for habitual AI users with high Java proficiency
and compare outcomes for an AI-dev and !AI-dev. Figure 19 presents a comparison
of predicted responses in both cases. When evolving an AI-assisted solution, the model
predicts that developers are 3 percentage points less likely to answer 5 (“fully agree”)
to each of the questions. Instead, the developer is slightly more likely to answer 3
(“neutral”) or 4 (“agree”). For question 1, the probability of answering 5 shifts from

44



−0.04 −0.02 0.00 0.02 0.04
difference

1

2

3

4

5

6

7

8

9

10

qu
es
ti
on

1
2
3
4
5

level

Fig. 19: Difference in predicted responses for a habitual AI user with an advanced
level of Java, comparing evolution of AI-assisted vs. non-assisted solutions. Each row
represents a survey question and the x-axis shows changes in response probabilities.
Developers evolving AI-assisted code are about 4 percentage points less likely to answer
5 (“fully agree”) and slightly more likely to answer 3 (“neutral”). The overall effect is
small but consistent.

0.51 to 0.47. For question 9, the probability of answering 3 shifts from 0.28 to 0.31.
Our sensitivity analysis shows the same results with optimistic, pessimistic, or neutral
priors.

Key Takeaways – Task 2 Perceived Productivity

• There is a small negative effect on PP when evolving AI-assisted code, but
the difference is not significant.

• The posterior mean effect on latent productivity when evolving AI-assisted
code (from a habitual AI user) is slightly negative – but the 95% credibility
interval included zero.

5.5 RQ2: Higher Quality Upon Evolution?

This section reports results related to the two dependent variables CodeHealth and
Test Coverage (see Figure 3). We follow the same structure as for RQ1.

5.5.1 CodeHealth

Figure 20a shows the distribution of CH for 75 Task 2 solutions. As described in
Section 4.4.1, we consider the data approximately normally distributed. The lowest
observed CH (8.07) was submitted by a participant who evolved AI-assisted code. At

45



the other end of the spectrum, three participants submitted solutions with CH scores
greater than 8.8.

(a) Distribution of CodeHealth (CH). (b) 95% confidence intervals.

Fig. 20: Task 2 CodeHealth.

Certain patterns emerge in how CH evolves for participants in the control and
treatment groups, as shown in Table 12. The treatment group built on codebases
developed by AI-devs, while the control group worked on code from !AI-devs. The
CH characteristics of those Task 1 solutions are detailed in Section 5.3.2 (see Tables 8
and 9).

We observe that the treatment group degraded the Complex Method code smell
significantly more often (55%, 22 solutions) compared to the control group (31%, 11
solutions). This suggests that AI-devs tended to include methods with multiple log-
ical paths, and that evolving these solutions for Task 2’s requirements often led to
the addition of yet another logical path. Manual inspection confirms that this addi-
tional logical path is generally related to the handling of the new cost parameter in
the search method (see the Task 2 description in Section 3.2). At the same time,
the treatment group also removes more Complex Method code smells (20%, 8 solu-
tions) than the control group (9%, 3 solutions), indicating that more opportunities for
simplification existed in the AI-devs code.

The Complex Conditional code smell was significantly introduced more frequently
in the treatment group (18%, 7 solutions) compared to the control group (3%, 1
solution). This pattern typically emerged when participants extended existing null-
checks (for query from the base system and time from Task 1) with a third condition
for the Task 2 cost parameter, resulting in a long compound conditional expression.
Alternative solutions used cleaner branching strategies, separating the cost and cost

query logic.
Finally, the Primitive Obsession code smell appeared significantly more frequently

in the control group (26%, 9 solutions) than in the treatment group (8%, 3 solutions).
Manual inspection suggests that !AI-devs tended to extract smaller methods, leading

46



to more parameter passing – typically simple types such as int, long, and String for
the search time, cost, and query arguments. In contrast, AI-devs more often used
a functional style with fewer method boundaries, reducing the number of primitives
exposed between methods.

Table 12: Overview of Task 2 changes in code smells grouped by delta
types and code smells, showing mean / std / median [min-max].

Delta Type Code Smell Treatment (n=40) Control (n=35)

Removed

Bumpy Road Ahead 0.10 / 0.30 / 0 [0-1] 0.06 / 0.24 / 0 [0-1]
Code Duplication 0.05 / 0.32 / 0 [0-2] 0.03 / 0.17 / 0 [0-1]
Complex Conditional 0.03 / 0.16 / 0 [0-1] 0.03 / 0.17 / 0 [0-1]
Complex Method 0.23 / 0.48 / 0 [0-2] 0.09 / 0.28 / 0 [0-1]
Primitive Obsession 0.03 / 0.16 / 0 [0-1] 0.00 / 0.00 / 0 [0-0]

Improved Complex Method 0.07 / 0.27 / 0 [0-1] 0.09 / 0.28 / 0 [0-1]

Unchanged

Bumpy Road Ahead 0.05 / 0.22 / 0 [0-1] 0.09 / 0.28 / 0 [0-1]
Code Duplication 0.10 / 0.30 / 0 [0-1] 0.17 / 0.45 / 0 [0-2]
Complex Method 0.03 / 0.16 / 0 [0-1] 0.09 / 0.28 / 0 [0-1]
Primitive Obsession 0.05 / 0.22 / 0 [0-1] 0.06 / 0.24 / 0 [0-1]

Degraded
Bumpy Road Ahead 0.05 / 0.22 / 0 [0-1] 0.06 / 0.24 / 0 [0-1]
Complex Conditional 0.03 / 0.16 / 0 [0-1] 0.00 / 0.00 / 0 [0-0]
Complex Method 0.60 / 0.59 / 1 [0-2] 0.31 / 0.47 / 0 [0-1]

Introduced

Bumpy Road Ahead 0.07 / 0.27 / 0 [0-1] 0.00 / 0.00 / 0 [0-0]
Code Duplication 0.10 / 0.30 / 0 [0-1] 0.11 / 0.32 / 0 [0-1]
Complex Conditional 0.17 / 0.38 / 0 [0-1] 0.03 / 0.17 / 0 [0-1]
Complex Method 0.15 / 0.36 / 0 [0-1] 0.37 / 0.77 / 0 [0-3]
Primitive Obsession 0.10 / 0.38 / 0 [0-2] 0.26 / 0.44 / 0 [0-1]

Frequentist Analysis

Figure 20b shows 95% confidence intervals for the mean CH. The treatment group
had a mean of 8.49 (95% CI: 8.43–8.54), while the control group had a mean of 8.44
(95% CI: 8.39–8.49). Cohen’s d was 0.28, indicating a small positive effect size. The
difference was not statistically significant (Welch’s t-test, p=0.24).

Bayesian Analysis

Figure 21 shows the posterior distributions for the effects of using AI assistants in
Task 1 on the CH of the manually evolved Task 2 solution. The five curves correspond
to different levels of AI skill reported in the prescreening questionnaire. Each estimate
is computed while holding Java proficiency constant, allowing a fair comparison across
AI skill levels.

When measuring the effect on CH in Task 2, we find very little effect of the treat-
ment when Task 1 participants had minimal AI skills (blue curve, 95% CI: 0.0 – +0.08
absolute CH difference). However, the effect increases for developers who more fre-
quently work with AI assistants and becomes statistically significant. For habitual AI
users, we notice a small positive effect of +0.10 points (brown curve, 95% CI: +0.02

47



Fig. 21: Posterior effect of AI use in Task 1 on CH after manual evolution in Task 2.
The effect is negligible when Task 1 developers had minimal AI skills but increases
with more habitual use.

– +0.19). Our sensitivity confirms that this result is robust to both pessimistic and
optimistic priors.

As a point of comparison, when comparing dev1s with high Java proficiency versus
beginners, we observed that CodeHealth increased by 0.17 points (95% CI: +0.08 –
+0.26). Proficiency in Java, therefore, had an impact similar to that of being a habitual
AI user.

Key Takeaways – Task 2 CodeHealth

• The CH difference between treatment and control was small and positive
(mean 8.49 vs. 8.44) but not statistically significant.

• The posterior mean effect was slightly positive (mean +0.10) when Task 1
was completed by a habitual AI user.

5.5.2 Test Coverage

Figure 20a shows the distribution of TC for 75 Task 2 solutions. Most submissions
achieved around 70% test coverage. As noted in Section 4.4.1, the data is not normally
distributed. The highest observed TC was 0.90, submitted by Participant anon050,
who evolved a Task 1 solution with TC=0.91 – the second highest score in Task 1. Note
that we received no Task 2 solution building on the Task 1 solution with the highest
TC (0.98). At the lower end, three participants submitted solutions with TC=0.59:

anon042 Decreased the TC of a !AI-dev solution by 7 percentage points. They worked on
the task for 9 hours, modifying 27 files across 10 commits (703 added lines, 749

48



deleted lines). Although new test cases were added, the participant did not maintain
TC. The average CH, however, increased by 0.09.

anon145 Decreased the TC of an AI-dev solution by 11 percentage points. They worked
for 7 hours, editing 29 files in 74 commits (753 added lines, 562 deleted lines).
The average CH increased by a substantial 0.60. The participant actively modified
test code: “I was refactoring test code as well, for me that is also production code,
refactoring only the main service would be significantly faster.”

anon080 Increased the TC of a !AI-dev solution by 3 percentage points and the average CH
by 0.21. They worked for 2.5 hours, and changing 21 files in 12 commits (399 added
lines, 180 deleted lines).

We note that anon042 and anon145 were among the participants who decreased TC
the most. Both were also among the participants who added the most new LoC, which
might explain the phenomenon.

(a) Distribution of Test Coverage (TC). (b) 95% confidence intervals.

Fig. 22: Task 2 Test Coverage.

Frequentist Analysis

Figure 22b shows 95% confidence intervals for the median TC. The treatment group
had a median of 0.70 (95% CI: 0.695–0.71) which was matched by the control group
with a median of 0.70 (95% CI: 0.69–0.74). Cliff’s δ was 0.09, indicating a negligible
effect size. The difference was not statistically significant (Wilcoxon rank-sum test,
p=0.49).

Bayesian Analysis

When measuring TC in Task 2, we observe no meaningful effect of AI assistance in
Task 1. When comparing a habitual AI user versus a similar developer who did not
use AI assistants as frequently, the posterior difference is +0.91 percentage points
(95% CI: −0.59 – +2.62) and the credibility interval includes zero. However, if we

49



compare a Task 1 developer with high Java proficiency compared to a beginner, we
notice a difference of −4.06 percentage points (95% CI: −7.25 – −0.35). That is,
when increasing the Java proficiency of the Task 1 developer from “Beginner” to
“Advanced”, we see a small decrease of 4 percentage points on average. We see the
same results when using optimistic, neutral, and pessimistic priors.

Key Takeaways – Task 2 Test Coverage

• Test coverage was similar across groups (median 70%) – the effect size was
negligible and the difference was not statistically significant.

• The posterior mean effect of AI assistance was small and included zero – but
high Java skill in Task 1 slightly decreased TC in Task 2.

5.6 Analysis of Free-text Answers

The qualitative insights provided in this section enrich our data, and we triangulate
them with quantitative results in the reporting. Table 5 presents the coding scheme
used for the qualitative analysis of responses to Q2-8 and, in some cases, follow-up
emails. In total, we coded 177 pieces of free-text input, organized into three overarching
groups.

5.6.1 AI-assisted Development

Four Task 1 participants commented positively on using AI for refactoring, which lies
at the core of the study. The two most positive reflections came from users of Cursor,
both describing substantial improvements. For example:

“The AI did most of the work, really. I just had to approve its changes and ask

it to solve error messages if encountered. It even provided some nice enhancement

ideas when asked. I honestly felt more like a product manager than a program-

mer.” — anon148, Task 1, AI-dev, Pro+Intermediate, Cursor, R4, 92 LoC, (3h,

CH=8.31, TC=68%, PP=4.6)

The other two positive participants worked with GitHub Copilot and instead described
assistance at the syntax level. This contrast reflects capability differences between
the first and second generations of AI assistants. Cursor encourages more chat-based
programming, while GitHub Copilot rather supports traditional code completion
workflows. This is reflected below:

“Using Copilot made the task easy. I used it to find correct syntax and refactor code

to better readability.” — anon103, Task 1, AI-dev, Pro+Intermediate, GH Copilot,

R4, 129 LoC, (1.5h, CH=8.42, TC=70%, PP=4.8)

Eight participants expressed how they found value in using AI assistants for learn-
ing and onboarding, demonstrating the relevance of this use case. Several seasoned
developers had limited experience with Java and Spring Boot, and appreciated using

50



AI assistance to get up to speed. Two of them even stated that they used AI solely dur-
ing onboarding, to understand the stack and generate code examples, and then wrote
all new code manually for Task 1. One explanation is that they found the onboarding
challenge to be much greater than the actual coding task. A representative reflection
is:

“I am an experienced software developer with other tech stacks, I have no professional

experience with Java. This task would have been very difficult and time-consuming if

not impossible for me without GitHub Copilot. It gave critical clues about where to start

my debugging.” — anon110, Task 1, AI-dev [HABITUAL], Hobbyist+Intermediate,

GH Copilot, R3, 134 LoC, (5h, CH=8.49, TC=70%, PP=4.4)

However, regarding the initial debugging, we also observed contrasting comments.
One participant reported that GitHub Copilot misguided them toward the wrong
problem when doing initial debugging, which wasted time. A similar sentiment was
shared by a student participant who highlighted that the assistant – while good at
generating new code – was really bad at debugging:

“I tried using AI for all parts, I found that AI was good at new features, but was terrible

at bug-fixing, it completely overlooked things and it took me some time to realize that

the API call to retrieve the data doesn’t overwrite the data, but appends it, so I would

manually need to clear it after implementing the fix. AI didn’t help with this at all.”

— anon009, Task1, AI-dev [HABITUAL], Student+Beginner, GH Copilot+ChatGPT,

R3, 46 LoC, (3h, CH=8.22, TC=70%, PP=2.5)

Five participants mentioned how they experienced a productivity boost using AI,
often in relation to onboarding into an unfamiliar codebase, as just discussed. Three
of the participants, two of them using Cursor, explained how AI helped them with
knowledge transfer, i.e., helping them apply their prior development experience to
Java, which they had not worked with in years. For example:

“I have not used Java as a full-time professional language since 2011 [...] One thing

where Copilot really accelerated my work was that once I understood the structure

of the system I could make reference to constructs from languages and frameworks

that I use on a daily basis and have it translate them into the Java and Spring

[Boot] paradigm.” — anon133, Task 1, AI-dev [HABITUAL], Pro+Intermediate, GH

Copilot+Grok, R4, 90 LoC, (3h, CH=8.43, TC=70%, PP=4.1)

Obviously, not all experiences with AI assistants were positive. Ten participants
mentioned limitations they found with the AI assistants during Task 1. Issues encoun-
tered include 1) “AI getting in the way,” 2) ChatGPT being very sensitive to prompt
formulation, i.e., finding the right prompt might be slower than using web search, and
3) AI generally focusing on syntax rather than program flow. As the last statement
about syntax was mentioned by anon064, who used GitHub Copilot, ChatGPT, Jet-
Brains AI Assistant, and Gemini, it shows that this experience does not only hold for
GitHub Copilot.

51



Regarding the trustworthiness of the output, two participants stressed the impor-
tance of double-checking what the AI assistants produced. For example:

“The interaction with the AI felt like pair programming with someone with a

vast experience but lazy who sometimes gives hacky answers. I had to con-

stantly remind the AI to use the most recent and best practice information to get

better code.” — anon073, Task 1, AI-dev, Pro+Advanced, Cursor, R4, 2635 LoC,

(4.5h, CH=8.38, TC=67%, PP=4.2)

Finally, there was also an interesting reflection on AI-assisted development by
anon063 who was assigned to the !AI-dev group: “Not relying on LLMs as I usually
do these days made me reconsider their value. Honestly I’m not sure if they actually
have that much value as I initially expected.” Still, we conclude that the general tone
in the comments around AI assistants was moderately positive.

Key Takeaways – Task 1 Reflections on AI-assistance

• Some users of second-generation AI assistants reported success with highly
automated chat-based programming.

• Several participants described very positive experiences using AI assistants
for onboarding.

• Others noted limitations, including poor debugging support and prompt
sensitivity – but the overall tone was moderately positive.

5.6.2 Development without AI

This section presents reflections by participants who did not use any AI assistants.
The quotes include both Task 1 and Task 2 concerns.

Nine participants provided comments related to refactoring. Two expressed a sense
of satisfaction or fulfilment from improving the code. This shows that developers in
our study could have a positive experience regarding the tasks even without AI –
which is a reassuring observation, suggesting the tasks we designed were not just a
boring chore.

Two participants raised insightful comments about the difference between refactor-
ing in this study compared to a setting in a professional development team. anon098
explained: “I usually don’t do deeper refactorings when starting with a new codebase,
respecting the current conventions and asking more experienced devs what they think
about my ideas before implementing them.” Another participant went a bit further
down the refactoring path, but reflected critically in hindsight:

“I refactored the structure of part of the code, including tests, to make it easier for my

brain, but I did not apply this change to the whole codebase. This will undoubtedly create

problems for whoever comes next because part of the code is in the new format and part in

the old. This is a typical legacy code problem though.” — anon027, Task 2, Treatment,

Pro+Advanced, R4, 606 LoC, (4h, CH=8.66, TC=72%, PP=3.3)

52



Seven participants mentioned how they approached the onboarding activity. As in
the AI-dev group, several seasoned developers were either rather new to Java, or had
not used it in a long time. Most comments focused on how they familiarized themselves
with the tech stack, without using AI, as exemplified by the .Net and C++ developers
below:

“I am not familiar [enough] with JPA and Java to effectively solve the coding challenge. In

.NET I would have been able to finish the task in the suggested 2-4h. Most of my time was

spent on discovering the framework for testing, Spring [Boot] annotations, Java standards

and practice [...] I was reading one StackOverflow page after another.” — anon012, Task

1, !AI-dev, Pro+Advanced, R5, 602 LoC, (3.5h, CH=8.42, TC=73%, PP=3.7)

“As a C++ developer for embedded systems, Java is not my first language. I had to do

some functions earlier with it, and that is how far my knowledge [goes]. [...] Figuring

out the tools, environment and project structure took considerable time in the begin-

ning. Not knowing language idioms and best practices slowed down the refactoring part

and kept me from doing more.” — anon059, Task 2, Control, Researcher+Beginner,

R1, 161 LoC, (4h, CH=8.32, TC=66%, PP=4.0)

Five participants working without AI assistants were somewhat put off by the
limited number of test cases available. Two explicitly expressed their preferences for
test-driven development. Separately, anon116 complained about the mundane task of
creating test data and felt slowed down. anon112 considered adding more tests, but
found it would require refactoring the code for testability – so they decided to finish
the task without making such intrusive changes to the codebase.

Key Takeaways – Task 1 and 2 Reflections on non-AI Development

• Many participants had to ramp up on Java and Spring Boot using manual
self-study, e.g., documentation and StackOverflow.

• Some participants avoided doing invasive refactoring either to respect
existing conventions or due to the lack of test cases and testability.

5.6.3 Task Reflections

Beyond tool usage, many participants shared reflections on the task itself – feedback
we actively elicited in Q2-8. This resulted in a total of 101 coded reflections, more
than in the other two categories.

The most recurring theme was the participants’ unfamiliarity with the technology
stack, i.e., modern Java, Spring Boot, and Jakarta Persistence (JPA). Twenty-eight
participants mentioned this in some form. In the AI-dev group, it was common to
mention how AI assistants helped them understand the new stack, as already discussed
in Section 5.6.1. Among the !AI-devs, it was instead common to mention which other
stacks they typically used – often pointing out that the task would have been faster to

53



solve with their familiar tools. Again, this reinforces the value of controlling for Java
proficiency in the causal analysis.

Almost as common, mentioned 25 times, were reflections on the effort required
to set up the environment properly before starting the task. Notably, this was only
mentioned once by AI-devs, suggesting that AI assistants may indeed help reduce
setup friction. Among the !AI-devs, reported issues include cloning the repository
to local environments, JDK versions, IDE settings, Spring Boot and Maven, setting
up the test infrastructure, GitHub Single Sign-On (SSO) over HTTPS, git configura-
tions, and database versions. The only AI-dev who mentioned setup friction proposed
distributing the task as a containerized solution, which was rather a suggestion for
improvement. We acknowledge that containerization could have saved several partic-
ipants quite some time. Nevertheless, for Task 2, randomization should mitigate any
systematic impact of setup time.

Twenty-one participants mentioned that it was unclear when a solution was “good
enough” for submission. The vague instructions were intentional from our side, and the
random assignment should again mitigate any systematic effects. Participants reported
different strategies for managing quality, including: 1) spending hours on improving
large parts of the codebase, 2) delivering only the bare minimum, 3) timeboxing a
fixed amount of time for refactoring, 4) prioritizing improvements to the most critical
parts, 5) focusing on product code rather than test code, and 6) refactoring only areas
that were touched (in line with the “Boy Scout rule” (Martin, 2009)). One participant
shared an insightful comment that also captured a broader sentiment of confusion,
i.e., the need for discussions with the client before undertaking larger changes:

“The biggest thing I was left feeling was an indecision on how far to take quality refac-

tors/changes. If I were working on a real problem for a real client, I probably would’ve

needed to have discussions about desirable performance characteristics, etc. that weren’t

possible here. That information could inform how far to take, and in what direction

to take, additional changes.” — anon067, Task 2, Control, Pro+Intermediate, R3,

404 LoC, (3h, CH=8.56, TC=65%, PP=4.4)

A related theme that recurred, often in combination with the above comments
about quality expectations, was that the task was simple or even simplistic. Eighteen
participants mentioned this in some way, but only four related to Task 1. It is evident
that Task 2 was underwhelming to some participants:

“I was very confused about what I had to do during the entire experiment. Still unsure

if I completed all the required tasks or not. The mentions of 3 hours and multiple sit-

tings got me even more confused, since it probably took me less than 5 minutes for

the actual code changes.” — anon136, Task 2, Treatment, Pro+Intermediate, R4,

14 LoC, (1.5h, CH=8.42, TC=73%, PP=3.0)

Still, note that the median Task 2 completion time was 136 minutes (see Figure 15)
with a median of 56.5 added LoC for the Treatment group, and 173 minutes and 80
LoC for the Control group. The impression of Task 2 probably depended on how the

54



preceding Task 1 was solved, as indicated by this quote mentioning a “clear prior
standard”:

“The task was extremely simple, only requiring less than 10 lines of code, and had a

clear prior standard. I felt there was no room for creative thinking or really any prob-

lem solving at all.” — anon101, Task 2, Control, Pro+Intermediate, R4, 19 LoC,

(1h, CH=8.25, TC=71%, PP=3.7)

Finally, we identified nine mentions of uncertainties in the task instructions, apart
from imprecise quality expectations. Three participants mentioned details in the
README.md file: 1) a poorly described fact that the Backend-API was externally hosted
and not part of the codebase, 2) the importance of using the Spring Boot framework’s
@Autowire annotation, and 3) unclear instructions regarding the acceptance tests.
While it is possible that some participants dropped out because of bad instructions,
we consider this threat minor, as the total number of comments related to instruction
problems was low.

Key Takeaways – Reflections on Tasks 1 and 2

• Many participants found the unfamiliar tech stack and setup requirements
challenging, but AI assistance eased onboarding and reduced initial friction.

• Several participants were unsure how far to take refactoring and the vague
quality expectations triggered a wide range of strategies.

• Although resembling previous development tasks, several participants found
Task 2 simplistic – especially when Task 1 had established a high baseline.

6 Discussion

Our study is unique in its two-stage design, in which the second phase constitutes
an RCT. In this phase, developers manually evolve code written by an unknown pre-
decessor – who was either assisted by AI (treatment) or not (control). This section
revisits the two RQs and discusses our findings in light of the closest related work –
for which we also share findings from Task 1. Finally, we discuss the implications for
research and practice.

6.1 RQ1: More Efficient Manual Evolution?

Do developers manually evolve code that has been co-developed with AI assistants
more efficiently? To answer this question, we analyzed two metrics collected in the
RCT and enriched the picture through free-text answers. First, the completion time
for the manual evolution task (Task 2) performed by a second developer. Second, the
perceived productivity of that developer, guided by the SPACE framework (Forsgren
et al, 2021).

We found substantial variability in Task 2 completion time, with no significant
differences between the treatment and control groups. Free-text reflections from the
participants provided several explanations for this variance, including large individual

55



variations in 1) ramp-up time needed to become familiar with the Java tech stack,
2) setup friction in configuring the local development environment, and 3) personal
“definitions of done” related to code quality.

We designed the tasks around common Java technologies, but still observed a large
variation in learning time, even with the same self-reported Java proficiency level.
Regarding setup friction, we underestimated the extent to which participants would
invest in configuring their preferred local Java environment. The vague expectations on
code quality were deliberate, however, and we counted on randomization to mitigate
its effects – but given the other sources of variation, we would have needed more data
to have a reasonable chance to detect a significant effect using frequentist statistics.

Bayesian analysis tends to be a suitable alternative in such situations, providing
both an estimated effect and a transparent representation of uncertainty – instead of
dichotomous verdicts. Using our causal model, we found a mean effect corresponding
to a 10.8% speedup when Task 1 was completed by a habitual AI user (see Figure 16).
However, the 95% credibility interval includes zero, which means that we cannot rule
out that the observed effect is due to random chance. Moreover, with an optimistic
prior we observed a significant effect, which we interpret as a failed sensitivity analysis.
We consider this another indication that the available data was insufficient to draw
firm conclusions related to completion time.

As described in Section 2.3, most previous work on AI-assisted development has
focused on direct productivity gains. By examining the completion times in Task 1,
we can position our findings to these studies. In our study, participants using AI
assistants completed Task 1 with a 30.7% shorter median completion time – a statis-
tically significant difference corresponding to a medium effect size. This result aligns
with prior studies on speedups with GitHub Copilot. For example, Peng et al (2023)
reported a 55.8% speedup when implementing an HTTP server in JavaScript; Paradis
et al (2024) reported a 21% speedup for C++ tasks at Google; and Chatterjee et al
(2024) reported a 42.3% speedup for algorithmic Python tasks at ANZ Bank.

Furthermore, our Bayesian analysis of Task 1 supports this trend, showing that
habitual AI users completed the task about 59.6% faster than the control group,
matching the most optimistic results previously reported by Peng et al (2023). Thus,
our study adds to the growing body of evidence that AI assistants can significantly
accelerate development – providing supporting data from a different task and a
different programming language.

As recommended in the SPACE framework, we complement the direct measure-
ments with participants’ self-reported perceptions of productivity. Both the frequentist
and Bayesian analyses revealed small negative effects on perceived productivity, but
the differences were not statistically significant. The free-text answers offer no explana-
tion for this effect. However, we did notice a handful of AI-assisted Task 1 participants
who reported feeling very productive and also produced substantial amounts of new
code. It is possible that Task 2 participants assigned to evolve larger solutions experi-
enced longer onboarding periods – and thus felt less productive. While we find no clear
patterns supporting this in the data, previous work highlights code size as a (or the)
key maintainability challenge (Sjoberg et al, 2013). The risk that widespread adoption

56

Daniel Berry
Highlight

Daniel Berry
Highlight



of AI-assistants will inflate codebases – at an unprecedented scale – is an important
trend to closely monitor in the near future.

Several previous studies have examined the impact of AI assistants on perceived
productivity. Ziegler et al (2024) surveyed over 17,000 GitHub Copilot users and
reported a large positive impact across different dimensions. Similarly, Liang et al
(2024) and Butler et al (2025) found that developers generally feel productivity gains
using the same assistant. Weisz et al (2025) contrasts the picture somewhat for the
watsonx Code Assistant, showing that while most developers feel faster with the tool,
a large fraction feel less effective. Our Task 1 results (see Figure 14d reveal large indi-
vidual variation. On the other hand, our Bayesian analysis found that AI-assisted
developers felt more productive, and they are overrepresented among the participants
who reported the highest scores. Free-text answers showed that some of them worked
with more autonomous AI assistants, approaching the third-generation coding agents
described in Section 2.2. Clearly, we need more empirical research on this emerging
category of more capable tools.

RQ1: Is AI-assisted code more efficient to evolve manually?

AI-assisted code led to a modest speedup in subsequent manual Task 2 evolu-
tion, but perceived productivity was slightly lower – and neither difference was
statistically significant. In contrast, effects of AI use were significant in Task 1:

• Median completion times decreased by 30.7%.
• For habitual AI users, the mean effect was a 55.9% speedup.

6.2 RQ2: Higher Quality Upon Evolution?

Does code co-developed with AI assistants result in higher quality upon manual evo-
lution? Again, we addressed this question by analyzing two metrics from the RCT,
complemented by free-text answers. First, the average CodeHealth of the resulting
code after the manual evolution task (Task 2). Second, the test coverage of that same
Task 2 solution.

The frequentist analysis found a small positive effect of Task 1 AI usage on Task 2
average CodeHealth, but the difference was not statistically significant. One key source
of quality variability, as discussed in Section 5.6.3, is that participants interpreted the
deliberately vague task instructions differently, leading to a varied judgment about
when the task was “good enough” to submit. The sample size was not large enough
for randomization to fully mitigate this effect.

As with the completion time, the Bayesian analysis provides more nuanced insights.
We found that the more AI-skilled the Task 1 participants were, the stronger the effect
of their AI usage on Task 2 CodeHealth. For habitual AI users, the estimated mean
effect was a significant absolute increase of +0.10 in CodeHealth. While the effect may
appear small, we should note that this signal corresponds to half a standard deviation,
detected in an average over about 50 files – and the effect is robust across priors.

The findings show that developers vary in their ability to work effectively with AI
assistants. While this is not surprising, it suggests that training developers to properly

57

Daniel Berry
Rectangle



use these tools remains important in the current AI era. Adding to that, we also
found that the Task 1 developer’s Java proficiency had a stronger influence on Task 2
outcomes than AI-usage, even among habitual AI users. Human development expertise
clearly still matters when working with first- and second-generation AI assistants. How
this finding translates to third-generation coding agents is an open question for future
work.

Previous research has reported mixed findings on how developer seniority affects
the impact of AI assistants. The early work by Peng et al (2023) reported that junior
developers benefited the most from GitHub Copilot, while Paradis et al (2024) reported
greater speedups among senior developers at Google. Although our study includes
a few juniors, we contribute a new perspective: habitual AI users using preferred
tools refactor code in ways that leave lasting improvements – effects that remain even
after the code is manually evolved by someone else. This provides a strong argument
for equipping capable developers with refactoring-oriented AI assistants to support
long-term maintainability.

Finally, we complemented the CodeHealth measurements with test coverage. We
found no significant differences in Task 2 test coverage between the treatment and
control groups, with both achieving a median coverage of 70%. Some AI-assisted
Task 1 participants reached high coverage scores, but no free-text answers elaborated
on the use of AI assistants to support testing, despite this being a realistic use case
(Ouedraogo et al, 2024). However, some participants mentioned issues related to test-
ing, such as missing test cases or poor testability. The Bayesian analysis surprisingly
revealed significantly lower test coverage in Task 2 solutions preceded by highly pro-
ficient Java developers in Task 1. Given the lack of a plausible causal explanation, we
consider this to be a spurious result.

RQ2: Does prior AI use improve quality after manual evolution?

Building on AI-assisted code led to a slightly higher average CodeHealth in sub-
sequent manual evolution (+0.10). The difference was statistically significant
for habitual AI users. Test coverage was similar across groups, and we found no
evidence that participants systematically used AI assistance to support testing.

6.3 Implications for Industry Practice

Our study has resulted in several novel insights backed by empirical data. But what
does all this mean in practice? We conclude the section by discussing three interpre-
tations for industry: one relieving finding, one risk that needs to be managed, and one
challenge that remains open.

1) AI assistants tend to help with file-level maintainability issues

From a maintainability perspective, our findings suggest that developers who prefer
working with AI assistants should continue doing so. We observe no systematic main-
tainability issues for the next developer continuing to evolve the code down the line.
On the contrary, habitual AI users appear to use these supporting tools in ways that
benefit future manual evolution.

58

Daniel Berry
Highlight

Daniel Berry
Highlight



We speculate that AI assistants homogenize code into standard constructs. This
is supported by a recent study on LLM creativity by Haase et al (2025), which shows
homogenization effects across LLMs, i.e., output from models lacks originality and
clusters around similar solutions. This can be a major benefit for maintainability.
Tornhill’s notion of “Beauty in Code” (Tornhill, 2024) defined high-quality code by
its lack of surprises and the ease with which a developer can form a correct mental
model of its behavior. If AI assistants successfully shave off surprises, they offer a
substantial maintainability advantage by reinforcing idiomatic language patterns and
avoiding novel solutions to known problems. While our work highlights the value of
AI assistants among capable developers, it is reasonable that these “surprise shaving”
benefits would manifest at least as much among less skilled developers.

2) Reckless use of AI assistants might quickly bloat codebases

Generative AI is a new power tool in the developer’s toolbox. But like any power
tool, it can cause serious damage when misused. With the cost of creating new code
nearing zero, the efforts to understand and maintain the code remain. This asymmetry
risks bloating codebases with redundant logic, abandoned attempts, and code with
questionable purpose. User discipline and project-wide retention policies will be critical
in a time when we will inevitably see examples of “firehose generation” of new code.

Even if individual files become highly maintainable, the sheer code volume may
undermine system-level maintainability. Code volume is a primary driver of complex-
ity (Sjoberg et al, 2013), and AI-assisted development can accelerate growth at an
unprecedented pace. One clear risk of unrestrained code synthesis is the unnoticed
introduction of code clones – a long-standing maintainability concern, even if empiri-
cal studies are not conclusive on their severity (Rahman et al, 2012). Regardless, the
total amount of code on the planet will reach new magnitudes, potentially triggering
unforeseen phenomena as tipping points in size are crossed.

We see two primary ways to mitigate the risks. First, organizations must continu-
ously monitor the inflow of new code into the repositories. Given the expected adoption
of AI-assisted generation, tools are essential since the output volume will surpass what
humans can oversee. Beyond volume, tools should also assess various quality aspects
such as clone rates and security vulnerabilities. Tool vendors are already exploring how
to support organizations in scaling AI adoption reliably. Second, developers should
receive training to ensure disciplined AI usage. Guardrails, both technical and proce-
dural, will help embed best practices in the workflows of the AI era. Interestingly, as
several participants in our study noted, AI assistants can also be helpful for onboard-
ing and understanding new code – suggesting that these tools may both contribute to
the code size challenge and help us navigate its effects. Time will tell where the new
equilibrium settles.

3) Over-reliance on AI assistants might erode skills and understanding

Neither industry nor higher education institutions yet know how to proceed with
knowledge management in the AI-assisted era Franklin et al (2025). What skills will
be central for future generations of “LLM-native” developers? How will sustained use

59

Daniel Berry
Highlight

Daniel Berry
Highlight



of AI assistants affect software craftsmanship and deep understanding of complex soft-
ware systems? More research along the lines of Abrahao et al (2025) is clearly needed
to carefully examine what AI assistance enhances, retrieves, reverses, and obsolesces.
One thing is clear: AI assistance is here to stay. The alluring simplicity of working
with the tools makes the path of least resistance difficult to resist.

But as demonstrated in a recent electroencephalography experiment by Kosmyna
et al (2025) (N=54), some resistance is vital for learning. In the context of essay
writing, they found that participants assisted by ChatGPT showed significantly lower
cognitive activity than those using web search or no tools at all. Moreover, the
LLM-assisted participants underperformed in remembering details of their work. The
authors refer to this as cognitive debt, i.e., mental effort is deferred in the short term
but accumulates long-term costs, such as diminished critical inquiry and decreased
creativity.

While AI-assisted development does not appear to introduce code-level technical
debt, we warn about a future with build-up of cognitive debt in software organiza-
tions. The repercussions could be massive if developers end up with only a shallow
understanding of codebases increasingly generated by machines. Over time, this might
not only threaten maintainability but also impede innovation. To counter this risk,
we should revisit decades-old research on “innovative software engineering environ-
ments” (Ambriola et al, 1991) and explore how to best support human inventiveness
with the combinatorial creativity that LLMs excel at.

Finally, we recommend that organizations adopt a strategic approach to knowledge
management in this new era. Tool support will be needed for provenance tracking,
e.g., to monitor where only little human effort has been involved. Teams must make
deliberate decisions about which components should remain under human cognitive
control. Mitigating developer deskilling will become a priority when convenience drives
LLM usage – “keepskilling” may emerge as a complement to upskilling and reskilling.
There is a new dawn for strategic HR in software organizations, where policies ensure
that developer maintain their core skills. This is analogous to pilots who are encouraged
to manually land aircraft from time to time to retain their flying skills. We find this
to be a substantial challenge for the future of software engineering.

7 Limitations and Threats to Validity

Selecting an empirical research method for a software engineering study always involves
trade-offs. By opting for a controlled experiment, we prioritize control over realism.
That said, we believe our Java development tasks are realistic and span development
durations. The participants also largely agreed that they resembled prior development
tasks (see Figure 13).

While we argue that our tasks are realistic, they represent only a slice of real-world
Java development. Before discussing specific threats, we acknowledge four important
limitations. First, our two-phase study only allows us to observe short-term maintain-
ability effects. Maintainability is obviously part of the long game, but investigating
long-term consequences requires longitudinal case studies. Second, our study focuses
on individual developers. Although software engineering is inherently social, team

60



dynamics falls outside our scope. Still, our design includes a rare controlled hand-off
between developers. Third, the RecipeFinder system was kept small to allow reason-
able onboarding times. Studying architectural considerations requires larger systems
that deserve case study research. Fourth, we did not investigate security in this study,
although previous research found that developers who work with AI assistants tend
to write less secure code (Perry et al, 2023).

We organize the remaining discussion according to the categories proposed by the
ACM SIGSOFT Empirical Standards (ACM SIGSOFT, 2024b).

7.1 Construct Validity

A backbone construct in our study is AI-assisted development. AI assistants vary
in interaction mode and capability, and Task 1 participants might have interpreted
the concept differently. We mitigated this by providing concrete tool examples in
the Task 1 instructions and again in the exit questionnaire (Q2-3). We also asked
participants to report how frequently they used their assistant (Q2-4). Moreover, the
main target of this study is Task 2, in which participants were randomly assigned to
evolve solutions that had been AI-assisted in a variety of ways. We consider this threat
minor.

Section 2.1 explains how we define and measure the complex constructs of main-
tainability and productivity. We build on state-of-the-art research and operationalize
the constructs using a combination of completion time, objective CodeHealth, and
subjective perceived productivity guided by the SPACE framework. We consider both
constructs valid, and we argue that the completeness of our measurement approach is
sufficient for the scope of this study.

Still, we highlight two threats related to completion time and perceived productiv-
ity. First, as discussed in Section 4.3.2, many participants did not complete the task
in one uninterrupted session (Q2-1). To remedy this protocol violation, we asked them
to provide their best time estimates. Since these participants tended to have longer
completion times, we believe that they generally overestimated the time it took to
complete the task. However, this risk is mitigated: in Task 1 the distribution of these
time estimates (instead of git-based time stamps) was evenly distributed (19 AI-devs
and 20 !AI-devs), and in Task 2, randomization should balance the bias, and we
directly controlled for the effect in the Bayesian analysis. Second, we speculate that
AI-devs may have been more inclined to evaluate their productivity positively due
to personal beliefs in the value of AI assistance. We accept this second threat.

Finally, our qualitative analysis of free-text answers introduces construct threats.
Coding activities involve interpretations and may thus reflect researcher expectations.
To mitigate this threat, we employed two coders and iteratively developed the coding
scheme. For the qualitative analysis of source code solutions, five of the authors were
involved.

7.2 Internal Validity

As we conducted a controlled experiment, the internal validity is our main concern.
RCTs are textbook examples of designs that maximize internal validity, although

61



Bayesian causal analysis is equally potent. The core argument for high internal validity
lies in the random assignment in Task 2, which guards against confounding threats and
balances known and unknown factors between the treatment and control groups – most
importantly, the variation in Task 1 solution quality and the implicit definitions of
the participants of “good enough” code quality. Still, we acknowledge some remaining
risks.

Participants completed tasks remotely and we cannot guarantee protocol adher-
ence. Regarding AI-assistance, Q2-2 caught one violation, i.e., an !AI-dev had to be
moved to the AI-dev group. While we detected no indications of other violations, e.g.,
use of AI assistants in Task 2, we cannot entirely rule them out. Likewise, some par-
ticipants may have received other types of assistance, such as pairing up with senior
friends to solve the tasks collaboratively.

As reported in Section 4.3.2, one AI-dev (anon126 ) submitted two Task 1 solu-
tions. The two solutions are very different in size and completion time, with the second
being minimal in comparison. Thus, we accept to treat these as two separate inputs
to Task 2. This design decision affects Task 1 analysis as there is obviously a learning
effect at play that we choose to accept.

Given the home-based experiment setting, we expected some unusual variation
points. Indeed, the free-text answers reveal some anomalies that surely had an impact
on the outcome of the tasks. Self-reported anomalies include family business such as
taking care of babies, drinking a glass of wine while completing the task, and having
the TV on in the background. Again, we trust that randomization can properly control
these effects.

7.3 External Validity

The results from our study cannot be generalized to all software development con-
texts. Nonetheless, we argue that our tasks reflect a realistic scenario: progressing
code previously developed by an unknown contributor. This is a common assignment
in industry. Moreover, since 92% of our participants are professional developers, and
most of them between 30 and 49 years of age, we avoid the common debate about the
validity of using students as subjects in controlled experiments (Feldt et al, 2018).

Still, the main threats to external validity relate to our system and task design.
RecipeFinder is a small Java web application built on Spring Boot. We believe this
codebase is the largest feasible size for participants to understand and extend within
a reasonable time. However, the value of AI assistants may change with system size.
In addition, our study does not provide any insight into what would happen if also
the Task 2 developers used AI assistants. This might be standard practice in the near
future and should be the focus of future work. Another consideration is our choice
of a tech stack. The results might differ in other languages or problem domains.
For example, our results might not generalize to algorithmic challenges in C++ or
Python. We note that many evaluations of LLM programming capabilities have tar-
geted competitive programming, e.g., AlphaCode (Li et al, 2022), but we are instead
happy to provide results for tasks that we co-designed with senior developers to ensure
practically relevant research (Garousi et al, 2020).

62

Daniel Berry
Highlight

Daniel Berry
Highlight



Another threat to the external validity concerns the specific AI assistants used. We
did not restrict participants in the AI-dev group to any particular assistants, as we
prioritized allowing them to use their preferred tools. Table 6 shows that a variety of
tools were used, building on different underlying LLMs. Given this distribution, our
findings primarily reflect the impact of mature commercial assistants. We cannot claim
that the same results would hold for smaller, cheaper, or less sophisticated models
running locally. Such models may generate lower-quality code that could potentially
challenge downstream maintainability.

Finally, we acknowledge sampling bias in the demographics of the participants.
Our sample is heavily male (95%), a stronger imbalance than in the general devel-
oper population. It is possible that societal roles make women less likely to participate
in voluntary experiments of this nature. Geographic representation is also uneven.
Large countries with substantial developer workforces are missing entirely, such as
China, Japan, South Korea, and Iran. Our sample reflects the reach of the last
author’s English-language YouTube channel. Future work should broaden demographic
representation.

7.4 Conclusion Validity

We used mixed-method research, combining objective and subjective measures, to
assess the maintainability effects of AI-assisted development. We applied random-
ization, data cleaning, robust statistical methods, and multi-researcher coding for
qualitative analysis. However, some risks remain.

First, a fundamental assumption for statistical analyses is the independence of
observations. We assume that the participants completed their tasks without com-
municating during or after the assignment. This cannot be verified, but the wide
geographical spread and the variety of email domains suggest that the risk is minor.
There is a group of participants from Equal Experts, but we trust that they did not
discuss the tasks.

Second, several of our preregistered statistical tests assume normality of the under-
lying data. After running Shapiro-Wilk tests (see Section 4.4.1), we found that the
completion time and the test coverage violated this assumption. In these cases, we
used non-parametric alternatives in the frequentist analysis. While most previous work
reports mean completion times, which can be misleading for skewed distributions, we
discuss medians. Moreover, our parallel Bayesian analysis relaxes the distributional
assumptions and supports the robustness of our findings.

Third, our analysis of perceived productivity is based on a Likert scale. We verified
high internal consistency (Cronbach’s α > 0.85), but calculating means from ordinal
data remains contested. We mitigated the threat by method triangulation, as the
Bayesian analysis modeled a latent productivity variable based on the individual Likert
items.

Finally, the collection of free-text responses adds richness to our results but might
introduce self-selection bias. Participants who were more motivated, or opinionated,
probably submitted more detailed reflections. We consider this threat acceptable, as we
use these responses to enrich our understanding, rather than to support any statistical
inference.

63



8 Conclusion and Future Work

We set out to investigate the impact of AI assistants on software maintainability. To
this end, we formulated two research questions targeting evolution efficiency and code
quality, respectively. We conducted a preregistered two-phase controlled experiment.
In Phase 2, a randomized control trial (N=75), participants manually evolved a Phase 1
solution developed by someone else – who had either worked with AI assistants such
as GitHub Copilot, ChatGPT, and Cursor (treatment), or not (control). In total,
we collected 151 solutions to our realistic development tasks, 95.4% of which were
completed by professional software developers.

Our results show that the AI assistants in Phase 1 led to a modest speedup in
subsequent Phase 2 evolution, though the difference was not statistically significant.
Furthermore, building on AI-assisted code resulted in slightly higher average Code-
Health in Phase 2, and this effect was significant for habitual AI users. We found
additional evidence that individual variation in AI proficiency matters: in Phase 1, the
posterior mean effect on completion time for habitual AI users was a 55.9% speedup,
compared to a 30.7% median decrease across the entire sample. We conclude that
learning to work effectively with AI assistants is a valuable developer skill – and that
such proficiency may even benefit others working manually downstream.

Some Phase 1 participants assisted by chat-based programming shared enthusias-
tic comments about their experience. Developers who reported the highest levels of
perceived productivity all worked with AI assistants that went beyond code comple-
tion, most notably Cursor. This boost to perceived productivity did not carry over to
Phase 2, however, where we observed a slight negative effect in the treatment group
– but the difference is not significant. We found no treatment effect on test coverage
in Phase 2, but we observed that the few outstanding test suites in Phase 1 were all
submitted by AI-assisted participants.

Our study adds to the growing evidence that AI assistants can effectively acceler-
ate development. What is more interesting, however, is that we see no warning signs
of degraded code-level maintainability. This is a reassuring finding, as we are con-
vinced that AI assistants are here to stay. We conclude that AI-assisted development
is unlikely to introduce technical debt at the code construct level. On the contrary,
the large language model output is likely to shave off surprising or idiosyncratic code
constructs that impede maintainability. Instead, a greater concern is that reckless use
of AI can bloat codebases. And large volumes of code, regardless of quality, are known
to be hard for human developers to maintain.

Our concerns go beyond code volume. We also worry about the cognitive debt that
over-reliance on AI assistants might introduce. If we increasingly generate code with
minimal cognitive effort, developers may end up with only a shallow understanding
of large, AI-generated codebases. Over time, this could erode core programming skills
and probably stifle innovation. Whenever we automate an activity, something human
is inevitably lost. How software organizations should navigate these neural tides in
relation to knowledge management deserves substantial research attention in the next
decade. And to what extent can the AI assistants help us cope with all the code
they generate? This is not only an essential question for tool providers, but also for
engineering managers, educators, and developers themselves.

64



These concerns point to several important directions for future work. The AI dis-
ruption is unfolding rapidly, and current AI assistants are already far more capable
than the generation we studied half a year ago. With coding agents entering the scene,
human bottlenecks will increasingly be sidelined. What will be the direct and indirect
effects of this shift? Longitudinal case studies are needed to track these changes as they
unfold, ideally complemented by action research that explores possible interventions
in real time.

We also see a potential need for further controlled studies. We encourage repli-
cation of our work to explore several new angles. First, we did not study evolution
by developers who were themselves AI-assisted. This is a very relevant scenario going
forward. Second, future experiments should evaluate third-generation AI assistants,
such as Claude Code or Sonargraph’s AMP, which radically change developer work-
flows. Third, our analysis should be extended to consider security implications. This
will be particularly important for the agentic era, since agent ensembles will emerge.
Combining agentic workforces, e.g., through model context protocols, opens up cans
of new security worms where autonomous agents may unintentionally expose vulner-
abilities or be exploited by antagonistic actors. However, such security research is an
endeavor quite different from our focus on maintainability.

Acknowledgment

We thank all participants of the study. Their willingness to voluntarily invest time
and effort in completing the tasks was essential to this research.

This work was partly funded by the NextG2Com Competence Centre – Next-
Generation Communication and Computing Infrastructures and Applications – under
the Vinnova grant number 2023-00541. Nadim Hagatulah was supported by the Wal-
lenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation. Emma Söderberg was supported by the Swedish
strategic research environment ELLIIT and the Swedish Foundation for Strategic
Research (grant nbr. FFL18-0231).

Conflict of Interests

Markus Borg is employed by CodeScene, the company behind the CodeScene anal-
ysis tool used in this study, including the CodeHealth metric. Dave Hewett, Donald
Graham, and Uttam Kini are consultants at Equal Experts, a company offering
AI-accelerated software delivery services among other offerings. Dave Farley is an
independent consultant and author who runs the YouTube channel Modern Soft-
ware Engineering. The authors declare that no commercial interests compromised the
scientific rigor of the study design, data collection, or analysis.

Data Availability Statement

All materials required to replicate this study, e.g., task instructions, cleaned and
anonymized participant data, and the causal graph, are available on Zenodo (Experts

65



et al, 2025) under the Creative Commons Attribution 4.0 International license. A
GitHub repository containing the full code base, scripts for data cleaning and anal-
ysis, and notebooks to conveniently reproduce the figures is available at https://
github.com/codescene-research/echoes-of-ai-emse-2025. The contents of the GitHub
repository are versioned and mirrored in the Zenodo archive. CodeScene was used
to calculate the Code Health metric as an indicator of maintainability. While Code-
Scene is a commercial tool, academic researchers can request a free license for research
purposes.

Compliance with Ethical Standards

The design of our study adheres to the essential attributes of the ACM SIGSOFT
Empirical Standard “Ethics (Studies with Human Participants)” (ACM SIGSOFT,
2024a). Additionally, the peer review of the registered report (Borg et al, 2024b) acted
as an independent assessment that the study design meets the ethical standards of the
empirical software engineering community.

This study involved voluntary participation by developers who completed program-
ming tasks and questionnaires. Before assigning tasks, we ensured that participants
understood their privacy was protected, that the study was intended for academic
publication, and that they could withdraw at any time without consequence. Sev-
eral participants chose to do so. All participants gave informed consent prior to
participation.

There were no anticipated risks of harm to participants. The task required an esti-
mated time investment of 2–4 hours, similar in nature and duration to programming
assessments used in recruitment. All participants who completed that task received
a signed copy of Dave Farley’s book ´´Modern Software Engineering: Doing What
Works to Build Better Software Faster” (Farley, 2022) as an incentive to complete the
task.

References

Abrahao S, Grundy J, Pezze M, et al (2025) Software Engineering by and for Humans
in an AI Era. ACM Trans Softw Eng Methodol 34(5):129:1–129:46. https://doi.org/
10.1145/3715111

ACM SIGSOFT (2024a) Ethics (Studies with Human Participants). URL https:
//github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/supplements/
EthicsHumanParticipants.md(Commitf82836c)

ACM SIGSOFT (2024b) Experiments (with Human Participants). URL
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/standards/
Experiments.md(Commitc4dbe93)

Al Madi N (2023) How Readable is Model-generated Code? Examining Readability
and Visual Inspection of GitHub Copilot. In: Proc. of the 37th International Con-
ference on Automated Software Engineering, ASE ’22, pp 1–5, https://doi.org/10.

66

https://github.com/codescene-research/echoes-of-ai-emse-2025
https://github.com/codescene-research/echoes-of-ai-emse-2025
https://doi.org/10.1145/3715111
https://doi.org/10.1145/3715111
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/supplements/EthicsHumanParticipants.md (Commit f82836c)
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/supplements/EthicsHumanParticipants.md (Commit f82836c)
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/supplements/EthicsHumanParticipants.md (Commit f82836c)
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/standards/Experiments.md (Commit c4dbe93)
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/standards/Experiments.md (Commit c4dbe93)
https://doi.org/10.1145/3551349.3560438
https://doi.org/10.1145/3551349.3560438


1145/3551349.3560438

Ambriola V, Ciancarini P, Corradini A, et al (1991) Towards Innovative Software
Engineering Environments. Journal of Systems and Software 14(1):17–29. https:
//doi.org/10.1016/0164-1212(91)90085-K

Ani ZC, Hamid ZA, Zhamri NN (2024) The Recent Trends of Research on GitHub
Copilot: A Systematic Review. In: Zakaria NH, Mansor NS, Husni H, et al (eds)
Computing and Informatics. Springer Nature, Singapore, pp 355–366, https://doi.
org/10.1007/978-981-99-9589-9 27

Arisholm E (2010) A Series of Controlled Experiments on Software Maintenance. In:
Tveito A, Bruaset AM, Lysne O (eds) Simula Research Laboratory: By Thinking
Constantly About It. Springer, Berlin, Heidelberg, p 459–479

Avgeriou P, Kruchten P, Ozkaya I, et al (2016) Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162). Dagstuhl Reports 6(4):110–138. https://
doi.org/10.4230/DagRep.6.4.110

Barke S, James MB, Polikarpova N (2023) Grounded Copilot: How Programmers Inter-
act with Code-Generating Models. In: Proc. of the ACM on Prgramming Languages,
pp 85–111, https://doi.org/10.1145/3586030

Basili V, Caldiera G, Rombach D (1994) The Goal Question Metric Approach. In:
Encyclopedia of Software Engineering. p 528–532

Benestad H, Arisholm E, Sjoberg D (2005) How to Recruit Professionals as Subjects in
Software Engineering Experiments. In: Proc. of the Information Systems Research
in Scandinavia (IRIS28)

Borg M, Tornhill A, Mones E (2023) U Owns the Code That Changes and How
Marginal Owners Resolve Issues Slower in Low-Quality Source Code. In: Proc.
of the 27th International Conference on Evaluation and Assessment in Software
Engineering, pp 368–377, https://doi.org/10.1145/3593434.3593480

Borg M, Ezzouhri M, Tornhill A (2024a) Ghost Echoes Revealed: Benchmarking
Maintainability Metrics and Machine Learning Predictions Against Human Assess-
ments. In: Proc. of the 40th International Conference on Software Maintenance and
Evolution, pp 678–688

Borg M, Hewett D, Graham D, et al (2024b) Does Co-Development with AI Assistants
Lead to More Maintainable Code? A Registered Report. https://doi.org/10.48550/
arXiv.2408.10758

Borg M, Pruvost I, Mones E, et al (2024c) Increasing, Not Diminishing: Investigat-
ing the Returns of Highly Maintainable Code. In: Proc. of the 7th International
Conference on Technical Debt, pp 21–30

67

https://doi.org/10.1145/3551349.3560438
https://doi.org/10.1145/3551349.3560438
https://doi.org/10.1145/3551349.3560438
https://doi.org/10.1016/0164-1212(91)90085-K
https://doi.org/10.1016/0164-1212(91)90085-K
https://doi.org/10.1007/978-981-99-9589-9_27
https://doi.org/10.1007/978-981-99-9589-9_27
https://doi.org/10.4230/DagRep.6.4.110
https://doi.org/10.4230/DagRep.6.4.110
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3593434.3593480
https://doi.org/10.48550/arXiv.2408.10758
https://doi.org/10.48550/arXiv.2408.10758


Butler J, Suh J, Haniyur S, et al (2025) Dear Diary: A Randomized Controlled Trial
of Generative AI Coding Tools in the Workplace. In: Proc. of the International
Conference on Software Engineering. arXiv

Bürkner PC, Charpentier E (2020) Modelling Monotonic Effects of Ordinal Predictors
in Bayesian Regression Models. The British Journal of Mathematical and Statistical
Psychology 73(3):420–451. https://doi.org/10.1111/bmsp.12195

Chatterjee S, Liu CL, Rowland G, et al (2024) The Impact of AI Tool on Engineering at
ANZ Bank An Empirical Study on GitHub Copilot within Corporate Environment.
In: Proc. of the 10th International Conference on Software Engineering (SEC), https:
//doi.org/10.48550/arXiv.2402.05636

Cook S, Ji H, Harrison R (2003) Software Evolution and Software Evolvability. In:
Proc. of the Workshop on Software Analysis and Maintenance

Cui ZK, Demirer M, Jaffe S, et al (2025) The Effects of Generative AI on High Skilled
Work: Evidence from Three Field Experiments with Software Developers. https:
//doi.org/10.2139/ssrn.4945566

Experts E, Borg M, Couderc N (2025) Does Co-Development with AI Assistants Lead
to More Maintainable Code? Replication Package. https://doi.org/10.5281/zenodo.
11243196

Farley D (2022) Modern Software Engineering: Doing What Works to Build Better
Software Faster. Addison Wesley, Boston, MA, USA

Feldt R, Zimmermann T, Bergersen GR, et al (2018) Four Commentaries on the
Use of Students and Professionals in Empirical Software Engineering Experi-
ments. Empirical Software Engineering 23(6):3801–3820. https://doi.org/10.1007/
s10664-018-9655-0

Fenton N (1994) Software Measurement: A Necessary Scientific Basis. IEEE Transac-
tions on Software Engineering 20(3):199–206

Forsgren N, Storey MA, Maddila C, et al (2021) The SPACE of Developer Pro-
ductivity: There’s more to it than you think. Queue 19(1):10:20–10:48. https:
//doi.org/10.1145/3454122.3454124

Franklin D, Denny P, Gonzalez-Maldonado DA, et al (2025) Generative AI in Com-
puter Science Education: Challenges and Opportunities. Cambridge University
Press, Cambridge, MA, USA

Garousi V, Borg M, Oivo M (2020) Practical Relevance of Software Engineering
Research: Synthesizing the Community’s Voice. Empirical Software Engineering
25(3):1687–1754. https://doi.org/10.1007/s10664-020-09803-0

68

https://doi.org/10.1111/bmsp.12195
https://doi.org/10.48550/arXiv.2402.05636
https://doi.org/10.48550/arXiv.2402.05636
https://doi.org/10.2139/ssrn.4945566
https://doi.org/10.2139/ssrn.4945566
https://doi.org/10.5281/zenodo.11243196
https://doi.org/10.5281/zenodo.11243196
https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1007/s10664-020-09803-0


Gelman A, Hill J, Vehtari A (2021) Regression and Other Stories. Cambridge

Gorla D, Kumar S, Lorenzini PNR, et al (2025) CUBETESTERAI: Automated JUnit
Test Generation using the LLaMA Model. In: Proc. of the 18th International
Conference on Software Testing, Verification and Validation

Haase J, Hanel PHP, Pokutta S (2025) Has the Creativity of Large-Language Models
Peaked? An Analysis of inter- and Intra-LLM Variability. https://doi.org/10.48550/
arXiv.2504.12320, URL http://arxiv.org/abs/2504.12320

Hassan AE, Oliva GA, Lin D, et al (2024) Towards AI-Native Software Engineering
(SE 3.0): A Vision and a Challenge Roadmap. https://doi.org/10.48550/arXiv.2410.
06107

Hindle A, Barr ET, Su Z, et al (2012) On the Naturalness of Software. In: Proc.
of the 34th International Conference on Software Engineering, pp 837–847, https:
//doi.org/10.1109/ICSE.2012.6227135

Husein RA, Aburajouh H, Catal C (2025) Large language models for code completion:
A systematic literature review. Computer Standards & Interfaces 92:103917. https:
//doi.org/10.1016/j.csi.2024.103917

International Organization for Standardization (2011) Systems and Software Engi-
neering - Systems and Software Quality Requirements and Evaluation (SquaRE) -
System and Software Quality Models

Jaspan C, Sadowski C (2019) No Single Metric Captures Productivity. In: Sadowski
C, Zimmermann T (eds) Rethinking Productivity in Software Engineering. Apress,
Berkeley, CA, p 13–20

JetBrains (2024) The State of Developer Ecosystem 2024. Tech. rep., JetBrains s.r.o.,
URL https://www.jetbrains.com/lp/devecosystem-2024/

Jimenez CE, Yang J, Wettig A, et al (2023) SWE-bench: Can Language Models
Resolve Real-world Github Issues? In: Proc. of the 12th International Conference
on Learning Representations

Kim G, Yegge S (2025) Vibe Coding: Building Production-Grade Software With
GenAI, Chat, Agents, and Beyond. IT Revolution, to appear

Kosmyna N, Hauptmann E, Yuan YT, et al (2025) Your Brain on ChatGPT: Accu-
mulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task.
https://doi.org/10.48550/arXiv.2506.08872

Lacerda G, Petrillo F, Pimenta M, et al (2020) Code Smells and Refactoring: A Ter-
tiary Systematic Review of Challenges and Observations. Journal of Systems and
Software 167:110610

69

https://doi.org/10.48550/arXiv.2504.12320
https://doi.org/10.48550/arXiv.2504.12320
http://arxiv.org/abs/2504.12320
https://doi.org/10.48550/arXiv.2410.06107
https://doi.org/10.48550/arXiv.2410.06107
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1016/j.csi.2024.103917
https://doi.org/10.1016/j.csi.2024.103917
https://www.jetbrains.com/lp/devecosystem-2024/
https://doi.org/10.48550/arXiv.2506.08872


Li Y, Choi D, Chung J, et al (2022) Competition-Level Code Generation With
AlphaCode. Science 378(6624):1092–1097. https://doi.org/10.1126/science.abq1158

Liang JT, Yang C, Myers BA (2024) A Large-Scale Survey on the Usability of AI
Programming Assistants: Successes and Challenges. In: Proc. of the IEEE/ACM
46th International Conference on Software Engineering, pp 1–13, https://doi.org/
10.1145/3597503.3608128

Mantyla MV, Lassenius C (2006) Subjective Evaluation of Software Evolvability Using
Code Smells: An Empirical Study. Empirical Software Engineering 11(3):395–431.
https://doi.org/10.1007/s10664-006-9002-8

Martin R (2009) Clean Code: A Handbook of Agile Software Craftsmanship. Upper
Saddle River, NJ

McElreath R (2020) Statistical Rethinking: A Bayesian Course with Examples in R
and STAN, 2nd edn. Boca Raton, FL, USA

McLuhan M (1977) Laws of the Media. ETC: A Review of General Semantics
34(2):173–179

Ouedraogo WC, Kaboré K, Tian H, et al (2024) Large-scale, Independent and Com-
prehensive Study of the Power of LLMs for Test Case Generation. https://doi.org/
10.48550/arXiv.2407.00225

Papke LE, Wooldridge JM (1996) Econometric Methods for Fractional Response Vari-
ables With an Application to 401(k) Plan Participation Rates. Journal of Applied
Econometrics 11(6):619–632

Paradis E, Grey K, Madison Q, et al (2024) How Much Does AI Impact Develop-
ment Speed? An Enterprise-based Randomized Controlled Trial. https://doi.org/
10.48550/arXiv.2410.12944

Peng S, Kalliamvakou E, Cihon P, et al (2023) The Impact of AI on Developer
Productivity: Evidence from GitHub Copilot. https://doi.org/10.48550/arXiv.2302.
06590

Perry N, Srivastava M, Kumar D, et al (2023) Do Users Write More Insecure Code with
AI Assistants? In: Proc. of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pp 2785–2799, https://doi.org/10.1145/3576915.3623157

Rahman F, Bird C, Devanbu P (2012) Clones: What Is That Smell? Empirical Software
Engineering 17(4):503–530. https://doi.org/10.1007/s10664-011-9195-3

Russo D, Baltes S, van Berkel N, et al (2024) Generative AI in Software Engineering
Must Be Human-Centered: The Copenhagen Manifesto. Journal of Systems and
Software 216(112115). https://doi.org/10.1016/j.jss.2024.112115

70

https://doi.org/10.1126/science.abq1158
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1007/s10664-006-9002-8
https://doi.org/10.48550/arXiv.2407.00225
https://doi.org/10.48550/arXiv.2407.00225
https://doi.org/10.48550/arXiv.2410.12944
https://doi.org/10.48550/arXiv.2410.12944
https://doi.org/10.48550/arXiv.2302.06590
https://doi.org/10.48550/arXiv.2302.06590
https://doi.org/10.1145/3576915.3623157
https://doi.org/10.1007/s10664-011-9195-3
https://doi.org/10.1016/j.jss.2024.112115


Sadowski C, Zimmermann T (eds) (2019) Rethinking Productivity in Soft-
ware Engineering. Apress, Berkeley, CA, URL https://link.springer.com/10.1007/
978-1-4842-4221-6

Schnappinger M, Fietzke A, Pretschner A (2020) Defining a Software Maintain-
ability Dataset: Collecting, Aggregating and Analysing Expert Evaluations of
Software Maintainability. In: Proc. of the 36th International Conference on Software
Maintenance and Evolution, pp 278–289

Siddiq ML, Majumder SH, Mim MR, et al (2022) An Empirical Study of Code Smells
in Transformer-based Code Generation Techniques. In: Proc. of the International
Working Conference on Source Code Analysis and Manipulation, pp 71–82, https:
//doi.org/10.1109/SCAM55253.2022.00014

Silva A, Saavedra N, Monperrus M (2024) GitBug-Java: A Reproducible Benchmark
of Recent Java Bugs. In: Proc. of the 21st International Conference on Mining
Software Repositories, https://doi.org/10.48550/arXiv.2402.02961

Sjoberg DI, Yamashita A, Anda BC, et al (2013) Quantifying the Effect of Code Smells
on Maintenance Effort. IEEE Transactions on Software Engineering 39(8):1144–
1156. https://doi.org/10.1109/TSE.2012.89

Storey MA, Hoda R, Milani AMP, et al (2025) Guiding Principles for Using Mixed
Methods Research in Software Engineering. https://doi.org/10.48550/arXiv.2404.
06011

Tornhill A (2024) Use Beauty as a Guiding Principle. In: Your Code as a Crime Scene:
Use Forensic Techniques to Arrest Defects, Bottlenecks, and Bad Design in Your
Programs, 2nd edn. The Pragmatic Programmers, Raleigh, NC, USA

Tornhill A, Borg M (2022) Code Red: The Business Impact of Code Quality - A
Quantitative Study of 39 Proprietary Production Codebases. In: Proc. of the 5th
International Conference on Technical Debt, pp 11–20

Tornhill A, Borg M, Hagatulah N, et al (2025) ACE: Automated Technical Debt
Remediation with Validated Large Language Model Refactorings. In: Proc. of the
1st International Workshop on Artificial Intelligence for Integrated Development
Environments

Tsantalis N, Ketkar A, Dig D (2022) RefactoringMiner 2.0. IEEE Transactions on
Software Engineering 48(3):930–950. https://doi.org/10.1109/TSE.2020.3007722

Weber T, Brandmaier M, Schmidt A, et al (2024) Significant Productivity Gains
through Programming with Large Language Models. Proc of the ACM on Hum-
Comput Interact 8(EICS):256:1–256:29. https://doi.org/10.1145/3661145

71

https://link.springer.com/10.1007/978-1-4842-4221-6
https://link.springer.com/10.1007/978-1-4842-4221-6
https://doi.org/10.1109/SCAM55253.2022.00014
https://doi.org/10.1109/SCAM55253.2022.00014
https://doi.org/10.48550/arXiv.2402.02961
https://doi.org/10.1109/TSE.2012.89
https://doi.org/10.48550/arXiv.2404.06011
https://doi.org/10.48550/arXiv.2404.06011
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/3661145


Weisz JD, Kumar SV, Muller M, et al (2025) Examining the Use and Impact of an
AI Code Assistant on Developer Productivity and Experience in the Enterprise.
In: Proc. of the Extended Abstracts of the CHI Conference on Human Factors in
Computing Systems, pp 1–13, https://doi.org/10.1145/3706599.3706670

Ziegler A, Kalliamvakou E, Li XA, et al (2022) Productivity Assessment of Neural
Code Completion. In: Proc. of the 6th ACM SIGPLAN International Symposium on
Machine Programming, MAPS 2022, pp 21–29, https://doi.org/10.1145/3520312.
3534864

Ziegler A, Kalliamvakou E, Li XA, et al (2024) Measuring GitHub Copilot’s Impact on
Productivity. Communications of the ACM 67(3):54–63. https://doi.org/10.1145/
3633453

A Bayesian Statistical Models

This appendix provides an introduction to Bayesian analysis and presents details for
our modeling of the four dependent variables.

A.1 Preamble

In the models described below, we describe a generative model of the data. Each model
contains a likelihood, which describes how we think the observed data was generated.
This likelihood usually has parameters that we do not know and want to infer. For
each of these parameters, we provide a prior (another distribution). Bayesian inference
software (in our case, the Turing Julia library11) then estimates a posterior distribution
of the likely values of the parameters. Posterior distributions are a compromise between
the likelihood and the prior distributions. For example, the model below estimates the
mean and variances (µ and σ) of a dataset y.

µ ∼ Normal(0, 1)

σ ∼ Exponential(1)

yi ∼ Normal(µ, σ)

We follow the same notation for all our models, α ∼ d denotes that parameter
α has distribution d. The last line is the likelihood, and uses parameters µ and σ,
which we want to estimate, we therefore give them priors. In the following models,
we use the normal, exponential, Dirichlet, and ordered logsitic distributions. The nor-
mal distribution is the familiar “bell curve” distribution, with the difference that we
denote Normal(µ, σ) = N (µ, σ2), for simplicity. The exponential distribution covers
a continuous range of positive values, we use it for variance terms, which are strictly
positive.

The Dirichlet distribution is a distribution of vectors, where the sum of the vectors
is equal to 1. We use it to represent monotonic effects, which we clarify with an

11https://turing.ml/

72

https://doi.org/10.1145/3706599.3706670
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3633453
https://doi.org/10.1145/3633453
https://turing.ml/


Fig. 23: Two plots, showing the relationship between the latent variable z and an
ordered logistic distribution with cutoffs [1, 3, 6]. The top plot shows the probability of
each of the 4 levels as a function of z, where the cutoffs are shown using black dashed
lines. The bottom plot shows the probability of each response level for z = 4. The
bottom plot is a slice indicated on the top plot by a gray dashed line. As z increases,
higher response levels become more probable, but there is no assumption that cutoff
levels are evenly separated.

example. Suppose we want to quantify the effect of education (BSc, MSc, or PhD)
on another variable (e.g., yearly income). Modeling this with independent effects does
not necessarily make sense, because people who have a master’s degree usually have
a bachelor’s degree too. Instead, we represent the effect of education as a cumulative
sum of effects, with two components. First, we have a parameter for the maximum
effect of the variable (e.g., for education, the effect of having a PhD). And second, we
have a vector of reals between 0 and 1 that sum to 1. This vector represents the effect
of each level as a fraction of the maximum.

In our models, we usually use this distribution to represent the effect of 1) expe-
rience in Java and 2) experience in AI-assisted development. Consider the following
equations:

β ∼ Normal(0, 1), λxp ∼ Dirichlet(5, 1.0)

θxp[j] =

(
j∑

k=1

λxp[k]

)
· β for j = 1, 2, 3, 4, 5

θxp[j] represents the effect of having the experience level j on the outcome (not
shown here). In our analyses, 1 corresponds to “Minimal experience”, and 5 to “High

73



experience”. β represents the effect of the maximum level of experience in AI (“High”).
λxp represents the “ladder” of effects. The example shows a vector of 5 values, which
sum to 1, and each element represents the difference with the previous level.

The ordered logistic distribution is useful for modeling variables on a discrete scale
on K levels, where the levels are ordered but we do not know how distant they are
from each other. It takes two parameters: z is real number and a vector of “cutoffs”
c1, c2, . . . , cK−1. It describes the probability of obtaining a discrete response level
r ∈ [1, 2, . . . ,K]. In our analysis, we assume that when z < 0, the most probable level
is the minimum, and as z increases, the probabilities of observing each of the K levels
behave like displayed in Figure 23.

Next, we present the details related to the four dependent variables under study.

A.2 Completion Time

• ai: AI usage (binary)
• xi ∈ {1, 2, 3, 4, 5}: Degree of habitual AI assistant use (Q1-7a)
• si ∈ {1, 2, 3}: Developer 1 Java skill level (Q1-5)
• ui ∈ {1, 2, 3}: Developer 2 interruption level (Q2-1)
• yi: Observed completion time
• µβ and σβ : Mean and variance of the prior we select.

In the model below, the likelihood of the logarithm of completion time log(yi) is
modeled with a normal distribution. The mean µi is the sum of an intercept α, the
effect of Java proficiency of the developer θskill[si], and the effect of their experience
in AI ai · θxp[xi] (multiplied by ai so that this effect disappears if AI is not used
(ai = 0)), and the effect of interruptions θint[ui]. The notation v[i] refers to vector
indexing, starting at 1.

α ∼ Normal(0, 1) (1)

β ∼ Normal(µβ , σβ), λxp ∼ Dirichlet(5, 1.0) (2)

θxp[j] =

(
j∑

k=1

λxp[k]

)
· β for j = 1, 2, 3, 4, 5 (3)

γ ∼ Normal(0, 1), λskill ∼ Dirichlet(3, 1.0) (4)

θskill[j] =

(
j∑

k=1

λskill[k]

)
· γ (5)

δ ∼ Normal(0, 1), λint ∼ Dirichlet(3, 1.0) (6)

θint[j] =

(
j∑

k=1

λint[k]

)
· δ (7)

σj ∼ Exponential(1) for j = 1, 2, 3 (8)

µi = α+ θskill[si] + ai · θxp[xi] + θint[ui] (9)

log(yi) ∼ Normal(µi, σui
) (10)

74



A.3 CodeHealth

• ai: AI usage (binary)
• xi ∈ {1, 2, 3, 4, 5}: Degree of habitual AI assistant use (Q1-7a)
• si ∈ {1, 2, 3}: Developer 1 Java skill level (Q1-5)
• yi: Observed CodeHealth score
• µβ and σβ : Mean and variance of the prior we select.

Model:

α ∼ Normal(0, 1) (11)

β ∼ Normal(µβ , σβ) (12)

λxp ∼ Dirichlet(5, 1.0) (13)

θxp[j] =

(
j∑

k=1

λxp[k]

)
· β for j = 1, 2, 3, 4, 5 (14)

γ ∼ Normal() (15)

λskill ∼ Dirichlet(3, 1.0) (16)

θskill[j] =

(
j∑

k=1

λskill[k]

)
· γ for j = 1, 2, 3 (17)

σ ∼ Exponential(1) (18)

µi = α+ ai · θxp[xi] + θskill[si] (19)

yi ∼ Normal(µi, σ) (20)

A.4 Test Coverage

• ai: AI usage (binary)
• xi ∈ {1, 2, 3, 4, 5}: Degree of habitual AI assistant use (Q1-7a)
• si ∈ {1, 2, 3}: Developer 1 Java skill level (Q1-5)
• yi: Observed logit-transformed test coverage
• µβ and σβ : Mean and variance of the prior we select.

α ∼ Normal(0, 1) (21)

β ∼ Normal(µβ , σβ) (22)

λxp ∼ Dirichlet(5, 1.0) (23)

θxp[j] =

(
j∑

k=1

λxp[k]

)
· β for j = 1, 2, 3, 4, 5 (24)

γ ∼ Normal() (25)

λskill ∼ Dirichlet(3, 1.0) (26)

75



θskill[j] =

(
j∑

k=1

λskill[k]

)
· γ for j = 1, 2, 3 (27)

σ ∼ Exponential(1) (28)

µi = α+ ai · θxp[xi] + θskill[si] (29)

logit(yi) ∼ Normal(µi, σ) (30)

A.5 Perceived Productivity

• ai: AI usage (binary)
• xi ∈ {1, 2, 3, 4, 5}: Degree of habitual AI assistant use (Q1-7a)
• si ∈ {1, 2, 3}: Developer 1 Java skill level (Q1-5)
• yi,q ∈ {1, . . . , L}: Ordinal response for person i on question q
• L: Number of ordinal levels
• Q: Number of questions
• µβ and σβ : Mean and variance of the prior we select.

α ∼ Normal(0, 1) (31)

β ∼ Normal(µβ , σβ) (32)

λxp ∼ Dirichlet(5, 1.0) (33)

θxp[j] =

(
j∑

k=1

λxp[k]

)
· β for j = 1, 2, 3, 4, 5 (34)

γ ∼ Normal() (35)

λskill ∼ Dirichlet(3, 1.0) (36)

θskill[j] =

(
j∑

k=1

λskill[k]

)
· γ for j = 1, 2, 3 (37)

πi = α+ ai · θxp[xi] + θskill[si] (38)

δq,ℓ ∼ Exponential(1) for q = 1, . . . , Q, ℓ = 1, . . . , L− 2 (39)

cq,0 = 0 (40)

cq,ℓ =

ℓ∑
m=1

δq,m for ℓ = 1, . . . , L− 2 (41)

yi,q ∼ OrderedLogistic(πi, [cq,0, cq,1, . . . , cq,L−2]) (42)

B CodeScene Code Smells

This appendix describes the CodeScene code smells observed and referenced in the
article. These smells were identified using the CodeScene CLI tool through file-level

76



analysis. The following commands were used: cs check ${FILE} for analyzing indi-
vidual files, and cs delta ${FIRST USER COMMIT} HEAD for analyzing the diff of
individual files between commits.

Bumpy Road (or Bumpy Road Ahead). Assigned to a function that contains multi-
ple chunks of nested control structures. The deeper the nesting, the more bumps, and
the more severe the Bumpy Road smell is. These bumps in the code represent missing
abstractions and make the function harder to understand and maintain.
Complex Conditionals indicates branch expressions that combine multiple logical
operations, such as conjunctions and disjunctions, within a single condition. These
statements are harder to read and reason about than a well-named boolean identifier
that could represent the behavior and logic of the conditions. Complex conditionals
obscure the intent of the code and contribute to the overall complexity of the method
in which they appear.
Complex Method is assigned to functions with high cyclomatic complexity, which
means that they contain many independent logical paths. Such methods are more
difficult to test thoroughly and are more prone to bugs. They often try to do too much
and lack a clear separation of concerns. Splitting complex methods into smaller, more
focused units improves both readability and testability.
Nested Complexity (or Deep, Nested Complexity) is a smell that arises when con-
trol structures, such as loops and conditionals, are nested within each other to multiple
levels. This kind of nesting increases the cognitive effort required to understand the
flow of execution.
Excessive Function Arguments is assigned when functions take too many param-
eters. This can indicate that the function is doing too much or that it lacks a proper
abstraction to group related data. Functions with many arguments are harder to call
correctly and more difficult to refactor.
Large Assertion Blocks is a test code smell that is a sign of poor structure. When
many assertions are grouped together without clear separation, it can become harder
to understand what each test is verifying, which reduces the effectiveness of the test
suite and makes failures harder to diagnose.
Large Method indicates a method with many LoC, this typically indicates multiple
responsibilities, which can make the method harder to read and should be decomposed
into smaller, more cohesive units.
Code Duplication is a file-level smell that potentially makes code evolution harder.
Any change must be replicated across all instances, increasing the risk of inconsisten-
cies and bugs. Duplication also inflates the codebase, making it potentially harder to
navigate and understand.
Duplicated Assertion Blocks is a test code smell similar to code duplication, mak-
ing code harder to maintain. Duplicated test criteria indicate missing abstractions or
a test suite that attempts to test too many things inside the same module.
Constructor Over-Injection is assigned when a constructor has many arguments.
This indicates that either a unit has low cohesion or an injection of dependencies on
the wrong abstraction level.

77



Primitive Obsession is assigned to code that uses a high degree of built-in primi-
tives such as integers, strings, and floats. This shows a lack of domain language that
encapsulates the validation and semantics of function arguments.
String-heavy Arguments is related to primitive obsession, where the heavy usage
of strings could indicate a missing domain language. String is a generic type that often
fails to capture the constraints of the domain object it represents.

C PMD Rules

This appendix describes the significant PMD rules violations observed and referenced
in the article12.

UnusedAssignment Triggers when a variable is assigned a value that is never used.
This may indicate leftover code or incomplete logic.
AtLeastOneConstructor Flags non-static classes that do not declare an explicit
constructor. Adding one makes the class definition clearer and more consistent.
ControlStatementBraces Enforces the use of curly braces in control structures such
as if and for to reduce ambiguity and prevent logic errors.
LinguisticNaming Detects mismatches between identifier names and their types,
such as a non-boolean variable named like a boolean. This improves naming consis-
tency and code readability.
MethodArgCouldBeFinal
OnlyOneReturn Encourages methods to have a single return statement at the end,
simplifying control flow and enhancing maintainability.
ShortVariable Flags variable names shorter than three characters unless used in
conventional contexts like loop counters. Short names reduce clarity and hinder
comprehension.
UseExplicitTypes Warns when the var keyword is used. Requiring explicit types
improves code clarity and reduces cognitive overhead for readers.
AvoidCatchingGenExcep Warns against catching overly generic exceptions such
as Exception or ‘Throwable‘, which can mask programming errors and complicate
debugging.
CyclomaticComplexity Flags methods with high cyclomatic complexity (threshold:
10). Complex methods are harder to test and understand and often benefit from
refactoring.
ImmutableField Identifies fields that can be marked final but are not. Immutabil-
ity strengthens code reliability and reduces potential side effects.
NPathComplexity Calculates the number of possible execution paths through a
method. A high value (threshold: 200) suggests the method may be overly complex
and hard to test.
CommentRequired Ensures that key elements like public classes and methods
include Javadoc comments. Proper documentation supports better understanding and
long-term maintainability.

12https://pmd.github.io/pmd/pmd rules java.html

78

https://pmd.github.io/pmd/pmd_rules_java.html

	Introduction
	Background and Related Work
	Software Maintainability and Productivity
	AI-assisted Software Development
	Empirical Studies on AI-Assisted Development

	System and Tasks Under Study
	Task Development and Context
	Maintainability Tasks
	RecipeFinder Codebase: Technical Details

	Method
	Study Design and Participant Recruitment
	Experimental Variables and Hypotheses
	Frequentist Hypotheses
	Bayesian Causal Analysis

	Data Collection and Processing
	Data Collection
	Data Cleaning and Pre-processing

	Data Analysis
	Quantitative Frequentist Analysis
	Quantitative Bayesian Analysis
	Statistical Models
	Sensitivity Analysis

	Qualitative Analysis
	Free-text Responses
	Source Code



	Results
	Participant Demographics
	Task 1 Demographics
	Task 2 Demographics

	Descriptive statistics of Tasks 1 and 2
	Influence of AI Assistants on Task 1
	Task 1: Experimental Variables
	Task 1: Detailed Code-Level Differences
	Regular Expressions
	CodeScene Code Smells
	RefactoringMiner's Refactoring Operations
	PMD Linting Results


	RQ1: More Efficient Manual Evolution?
	Completion Time
	Frequentist Analysis
	Bayesian Analysis

	Perceived Productivity
	Frequentist Analysis
	Bayesian Analysis


	RQ2: Higher Quality Upon Evolution?
	CodeHealth
	Frequentist Analysis
	Bayesian Analysis

	Test Coverage
	Frequentist Analysis
	Bayesian Analysis


	Analysis of Free-text Answers
	AI-assisted Development
	Development without AI
	Task Reflections


	Discussion
	RQ1: More Efficient Manual Evolution?
	RQ2: Higher Quality Upon Evolution?
	Implications for Industry Practice
	1) AI assistants tend to help with file-level maintainability issues
	2) Reckless use of AI assistants might quickly bloat codebases
	3) Over-reliance on AI assistants might erode skills and understanding



	Limitations and Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion and Future Work
	Bayesian Statistical Models
	Preamble
	Completion Time
	CodeHealth
	Test Coverage
	Perceived Productivity

	CodeScene Code Smells
	PMD Rules



