
Dynamic Fonts and Type 1 Fonts

by

Daniel M. Berry

1



Problem with dynamic font solution

Font definition cannot be made type 1

Nu? What’s so bad about that?

First must explain type 1 fonts and implications
on cache and ATM (Adobe Type Manager)
mechanisms

But even before that, must explain how images
are printed on printers

2



PRINTING CONFIGURATION

program or bit map

Printer

printed page

engine

printing

bit map

computer

page description

computer

application

3



Two choices:

Compilation:

Application computer produces bitmaps,
e.g.,

METAFONT

Interpretation:

Printer computer produces bitmaps, e.g.,

POSTSCRIPT printers, e.g., LaserWriter,
QMS 800, Linotronic 300

4



Printer

INTERPRETATION

printed page

engine

printing

bit map

computer

language program

page description

computer

application

5



bit map

COMPILATION

Printer

printed page

engine

printing

bit map

computer

page description

computer

application

6



Most popular interpretation language: POST-

SCRIPT

Favorite method to specify characters in fonts
(also with TrueType) is by specifying path of
outline of character together with instruction to
fill the inside of the path

When blow up or shrink (scale) bitmap get jag-
gies (staircases) or lose information

If outline specified as lines and curves through
real number (actually in integral points at
.000014 of inch), path can be scaled and filled
with bits at current resolution without introduc-
ing jaggies or losing information

But, in the last analysis, need bitmaps

7



For later on, note that at 300 dpi ∼ 118 dpc

An upper case letter of point size 10 (really 8 or
9 points high) is only 38 dots high

A lower case letter of point size 10 (really 5, 6,
or 7 points high) is only 29 dots high

and stems are often only 2 or 3 dots wide!

For point size 5, half of that!

8



Problem with outline fonts

While outline font
is scaleable and bitmap is not

and
takes much less space than anyone bitmap
and even less than that less of a complete
collection of bitmaps for (only some)
needed point sizes

Sending outline to printer,
the printer tracing the outline,
the printer filling the outline with bits, and
the printer printing the bitmap

takes a lot more time than

sending bitmap to printer, and
the printer printing the bitmap

directly

9



However, ...

In most fonts, once the point size is fixed, the
bitmap of most characters does not change from
one printing to another

So maybe can cache the bitmap for a given font,
size, and character (F,S,C)

So that once a bitmap has been calculated, until
the cache is filled and the bitmap is replaced by
another, the same bitmap can be used if the
same (F,S,C) is encoutered later, thus saving the
tracing and filling of the outline

10



If cache is big enough to hold, say 3 full fonts
worth of characters at size 12, then most docu-
ments will get up to bitmap downloading speed
after the first printing of all the characters, gen-
erally on the first page

Notice how printer slows down for banner
pages, pages with figures, and between troff and
TEX jobs!

11



Cache is set up with a triple (F,S,C) indexing
each saved bitmap

Cached bitmap is used whenever possible
before calculating bitmap

LRU or similar replacement scheme when cache
is full

12



In normal POSTSCRIPT outline fonts, no guaran-
tee when start executing the outline for a partic-
ular (F,S,C) that its bitmap is constant

Therefore, it is required for a character
definition to declare whether its generated bit-
map is to be cached

If to be cached, say “width 0 bounding box
setcachedevice”

If not, say “width 0 setwidth”

at beginning of character definition

No algorithm to decide from character definition
if the bitmap is constant (≡ to deciding whether
program halts)

13



In case of dynamic font, for a given (F,S,C), bit-
map is not constant

In the specific case of using dynamic font to
implement keshida, for a given (F,S,C, character
width), the bitmap is probably constant, but not
for a given (F,S,C)

In the fully general case, such as with Jacques
André’s examples, the bitmap is not constant
even for (F,S,C,W)

ransom note font, using random number
generator in character definition

letter serifs that extend to page boundary

14



Now back to Type 1 fonts!

A type 1 font is a font specified in a so-called
type 1 subset and extension of the full POST-

SCRIPT which guarantees that no matter what
you write, for any given (F,S,C) the bitmap is
constant

Sublanguage: no variables in arguments of
path operators

Extension: hinting for improved appearance
at small sizes (relative to device resolution)

Unfortunately, hinting is not available in type 3
font definitions that can make use of the full
(except for hinting) POSTSCRIPT language; some
hints do not work when the ratio between
widths of stems depends on variables

15



Also, the POSTSCRIPT engine can optimize many
instructions if it knows that no variables can
show up in argument lists

In fact, there are special versions of general path
following instructions that permit no variable
arguments and allow further optimization by the
engine

Thus, on a general POSTSCRIPT printer, type 1
fonts are faster, and because of the hinting,
better looking

They are faster both in the faster computing of
the first bitmap for an (F,S,C) and guaranteed
use of the cache!

16



Adobe Type Manager (ATM)

Basically, ATM is a POSTSCRIPT interpreter sit-
ting inside your computer (rather than inside the
printer) for computing bitmaps, at correct reso-
lution, from font defintions for both

displaying on your screen

sending down to non-POSTSCRIPT printers

But Adobe does not really want you to have a
full POSTSCRIPT interpreter on your computer

1. You won’t buy the more expensive POST-

SCRIPT printer if you can get by with a
cheaper bitmap printer

2. It is easier to reverse engineer the POST-

SCRIPT interpreter when it is sitting inside
the computer (with all your secret-cracking

17



software) than when it is locked away, exe-
cute only, inside an inaccessible computer
inside your printer

18



Type 1 fonts make the perfect compromise!

Enough of the POSTSCRIPT language to compute
the bitmaps for most font definitions

Not enough to print an arbitrary POSTSCRIPT

program that draws all sorts of fancy pictures

Restricted language interpreter does not even
contain the really juicy secrets that are in the
full POSTSCRIPT interperter

But, sigh!

Will not be able to make type 1 fonts Arabic
fonts with arbitrary stretching letter keshida and
Farsi fonts with arbitrary slanting base lines

19



Open research problem: redesign the cache-
type-1-font-ATM mechanism to work well
when bitmaps are constant only for (F,C,S,W)!

20



The outline of any character is a series of
{curves, lines, arcs} such that

elements sharing an end point are tangent to the
same line which passes through the point, if the
outline is supposed to be smooth through the
point

elements sharing an end point have tangents at
an angle at the point if the outline is supposed to
have a corner at the point

Shared end point

21



Stretching should not introduce or remove any
corner

This means that tangents at shared end points of
elements should not change

22



All stretching is in horizontal direction only

A horizonal line is easy to stretch by A units:

Add A to all X values at and to the right of
the right end point of the line

A vertical or slanted line cannot be stretched!

23



Curves with pronounce horizontal components
can be stretched; only X values and no Y values
should change

A four-point Beziér curve is easy to stretch if
the stretching is in the interior between the two
middle points

To stretch such a curve by A:

Add X to the X values of the two right hand
points and to all points to the right of the
inner one of these

24



A

A

25



It is a problem to stretch through the shared end
point of two Beziér curves that meet in a com-
mon tangent running through the shared point

Shared end point

Cannot stretch by just increasing the X values of
rightmost three points of the righthand curve

A

A

A

Cornered shared end point

26



Changes slope of right hand curve through the
shared end point and introduces corner that was
not there before

Could avoid corner by preserving slope by
increasing both X and Y values by amounts
consistent with slope of tangent through the
shared end point

A

A

A

AB

B

B

B

A/2

B/2

27



But now the right end of the curve does not
have the same Y value as before

Solution requires redesign of these two adjacent
curves into three adjacent curves such that the
shared end point of the two curves is in the inte-
rior of the middle of the three curves

Messy!

28



One special case of stretching through shared
end point works!

When the tangents through the shared end
points are completely horizontal!

A/2 A

A

A

29


