
Basics of the Unicode BiDirectional
Algorithm (UBDA)

The formatting system implied in (and used to typeset) the
slides for the brief bidirectional text reading lesson assumes:

Every character has a direction, LTR or RTL.

There are (at least) two each of each punctuation character, one
LTR and one RTL.

E.g., there are (at least) two periods, “.”, one LTR and one RTL.

Actually, in the formatting system used to typeset the slides for
the brief reading lesson, there is one period for each font.

For the typesetting of any document, each mounting of each font
is given a direction, and its period has that direction.

The Unicode designers thought it was too complex for a user to
keep track of the direction of each instance of a punctuation
character, and wanted something simpler.

The Unicode character set has only one period, and its direction
is determined from its context.

Assuming that lower case letters are LTR and upper case letters
are RTL, then in:

joe said “hello!” to daniel.

the quotation marks, exclamation point, and period would be
LTR, but in

.LEINADL “!MOLAHS” ARMA ISSOY

which is

YOSSI AMRA ”SHALOM!“ LDANIEL.

in time order, the quotation marks, exclamation point, and
period would be RTL.

The difficulty with this contextual determination is that it is
sometimes wrong, particularly in bidirectional text.

If in the midst of LTR text xxxxxx () yyyyyy,

the RTL text (In time order)

ABCDE, FGHIJ, KLMNO

is considered a single RTL phrase, then the commas are RTL,
and the total text is

xxxxxx ONMLK ,JIHGF ,EDCBA yyyyyy

but if it is considered a list of three RTL words, then the
commas are LTR and the total text is

xxxxxx EDCBA, JIHGF, ONMLK yyyyyy

In the formatting system used to typeset the slides for the brief
reading lesson, the user would indicate which interpretation is
intended by making clear the font for each comma.

Unicode deals with these situations by specifying a default
interpretation to the time ordered text and providing non-
printing escape codes to allow the user to force an interpretation
different from the default.

You will decide later which is more complex for the user.

UBDA Concepts:

Logical Order vs Visual Order
stored normal display

Characters:
Strong
Weak
Neutral

Strong Characters: Letters in alphabet, each with a direction
LTR most alphabets
RTL Arabic + Persian, Urdu; Hebrew; and others

A change in direction creates a directional boundary

From now on, in examples (sans serif), lower case letters are
LTR strong and UPPER CASE LETTERS are RTL strong

Left column shows logical order and right column shows visual
order

Unless otherwise stated, document direction is LTR

ab ab
AB BA
aABbc aBAbc
AabBC AabCB

abAB abBA
BAab if document direction is RTL

Weak Characters: digits and other punctuation and symbols that
appear with numerals, e.g., . , ° $

LTR
RTL

When weak characters are embedded inside other text, they do
not create a directional boundary EVEN when they are
embedded in text of the opposite direction

This comes from the fact that in Arabic + and Hebrew, numerals
are written from left to right but are considered not as a shift to
LTR text as would embedded English would be.

ab12c ab12c
A12BC CB12A (compare with AabBC)

Neutral Characters: white space, international punctuation not
appearing inside or with a numeral

A neutral character takes its direction from its surroundings,
e.g.:

Neutral character c surrounded by strong characters of the same
direction d ⇒ c gets direction d.

aaaAB!Cbbb aaaC!BAbbb

! is RTL since it is surrounded by two RTL strong characters B
and C

Neutral character c surrounded by strong characters of different
directions ⇒ c gets direction of document.

aaaAB!bbb aaaBA!bbb

! is LTR since it is surrounded by an RTL and an LTR strong
character, and the document direction is LTR

One way to force ! to be RTL is to use [RLM]
Each of [LRM] (LTR Mark) and [RLM] (RTL Mark) is zero
width, strong, and directed as the first two letters of its name.

aaaAB![RLM]bbb aaa!BAbbb

! is RTL since it is surrounded by two RTL strong characters B
and [RLM]

Aside: also the space is neutral. So, it gets treated the same way
as the !.

ab_cd_AB_CD_ef_gh
ab→cd→AB←CD→ef→gh ab cd DC BA ef gh

Each of the first and last →s is LTR since it is surrounded by
two strong LTR letters. The ← in the middle is RTL since it is
surrounded by two strong RTL letters. Each of the inner →s is
LTR since the letters that surround it are of different directions,
but the document direction is LTR.

Other ways to achieve the same visual ordering:
Embedding
Overriding

Embedding:
[LRE] to the next [PDF]
[RLE] to the next [PDF]

([LRE], [RLE] are strong, [PDF] is weak, and each is zero
width)

Embedding is used to mark a block of text as a subdocument
with its own direction.
(In Unicode, each paragraph is a document whose direction is
determined by its first strong character, which could be a letter,
[LRM], [RLM], [LRE], [RLE], [LRO], or [RLO])

In an embedding, a neutral character gets the direction of the
embedding.

aaa[RLE]AB![PDF]bbb aaa!BAbbb

! is RTL since it is surrounded by an RTL and an LTR strong
character, and the subdocument (embedding) direction is RTL.

Embedding is not recommended as are [RLM] and [LRM] since
one can forget to close off an embedding with [PDF] (but
maybe the word processor can enforce that!).

Overriding:
[LRO] to the next [PDF]
[RLO] to the next [PDF]

([LRO], [RLO] are strong, [PDF] is weak, and each is zero
width)

Within an override, a neutral character, and for that matter a
strong or weak character, is forced to be strong in the override
direction.

aaa[RLO]AB![PDF]bbb aaa!BAbbb

! is RTL since it has been forced to be RTL by being in an RTL
overriding.

Overriding is not recommended as are [RLM] and [LRM] since
one can forget to close off an overriding with [PDF] (but maybe
the word processor can enforce that!).

Notice the difference between embedding and overriding, with
respect to the treatment of weak characters.

abA12B!cd abB12A!cd

abA12B![RLM]cd ab!B12Acd

ab[RLE]A12B![PDF]cd ab!B12Acd

ab[RLO]A12B![PDF]cd ab!B21Acd

Now some tables directly from the Unicode Bidi Algorithm
Specification in Lucida Sans Unicode (with an occasional
comment in Times Roman):

2.1 Explicit Directional Embedding
Abbr. Code Chart Name Description

LRE U+202A LEFT-TO-RIGHT EMBEDDING Treat the following text as embedded left-to-right.

RLE U+202B RIGHT-TO-LEFT EMBEDDING Treat the following text as embedded right-to-left.

The effect of right-left line direction, for example, can be accomplished by embedding the text with RLE...PDF.

2.2 Explicit Directional Overrides
The following codes allow the bidirectional character types to be overridden when required for special cases, such
as for part numbers.

Abbr
.

Code Char
t

Name Description

LRO
U
+202D

LEFT-TO-RIGHT
OVERRIDE

Force following characters to be treated as strong left-to-right
characters.

RLO
U
+202E

RIGHT-TO-LEFT
OVERRIDE

Force following characters to be treated as strong right-to-left
characters.

The right-to-left override, for example, can be used to force a part number made of mixed English, digits and
Hebrew letters to be written from right to left.

2.3 Terminating Explicit Directional Code
The following code terminates the effects of the last explicit code (either embedding or override) and restores the
bidirectional state to what it was before that code was encountered.

Abbr
.

Code Char
t

Name Description

PDF
U
+202C

POP DIRECTIONAL
FORMATTING

Restore the bidirectional state to what it was before the last
LRE, RLE, RLO, or LRO.

2.4 Implicit Directional Marks
Abbr. Code Chart Name Description

LRM U+200E LEFT-TO-RIGHT MARK Left-to-right zero-width character

RLM U+200F RIGHT-TO-LEFT MARK Right-to-left zero-width character

... their effect on bidirectional ordering is exactly the same as a corresponding strong directional character; the only
difference is that they do not appear in the display.

3.2 Bidirectional Character Types
Table 4. Bidirectional Character Types

Categor
y

Typ
e

Description General Scope

Strong L Left-to-Right LRM, most alphabetic, syllabic, Han ideographs, non-European or
non-Arabic digits, ...

LRE Left-to-Right
Embedding

LRE

LRO Left-to-Right
Override

LRO

R Right-to-Left RLM, Hebrew alphabet, and related punctuation

AL Right-to-Left
Arabic

Arabic, Thaana, and Syriac alphabets, most punctuation specific to
those scripts, ... (these may connect, Hebrew does not!)

RLE Right-to-Left
Embedding

RLE

RLO Right-to-Left
Override

RLO

Weak PDF Pop Directional
Format

PDF

EN European Number European digits, Eastern Arabic-Indic digits, ...

ES European Number
Separator

plus sign, minus sign

ET European Number
Terminator

degree sign, currency symbols, ...

AN Arabic Number Arabic-Indic digits, Arabic decimal and thousands separators, ...

CS Common Number
Separator

colon, comma, full stop (period), no-break space, ...

NSM Nonspacing Mark Characters marked Mn (Nonspacing_Mark) and Me (Enclosing_Mark)
in the Unicode Character Database (These are Arabic and Hebrew
vowels or diacritics.)

BN Boundary Neutral Default ignorables, non-characters, and control characters, other
than those explicitly given other types. (These are control characters
after they have been obeyed once, to prevent second obeying.)

Neutral B Paragraph
Separator

paragraph separator, appropriate Newline Functions, higher-level
protocol paragraph determination

S Segment Separator Tab

WS Whitespace space, figure space, line separator, form feed, General Punctuation
spaces, ...

ON Other Neutrals All other characters, including object replacement character (and ES,
ET, and CS characters that are not parts of ENs and ANs)

Categor
y

Typ
e

Description General Scope

Strong L Left-to-Right LRM, most alphabetic, syllabic, Han ideographs, non-European or
non-Arabic digits, ...

LRE Left-to-Right
Embedding

LRE

LRO Left-to-Right
Override

LRO

R Right-to-Left RLM, Hebrew alphabet, and related punctuation

AL Right-to-Left
Arabic

Arabic, Thaana, and Syriac alphabets, most punctuation specific to
those scripts, ... (these may connect, Hebrew does not!)

RLE Right-to-Left
Embedding

RLE

RLO Right-to-Left
Override

RLO

Weak PDF Pop Directional
Format

PDF

EN European Number European digits, Eastern Arabic-Indic digits, ...

ES European Number
Separator

plus sign, minus sign

ET European Number
Terminator

degree sign, currency symbols, ...

AN Arabic Number Arabic-Indic digits, Arabic decimal and thousands separators, ...

CS Common Number
Separator

colon, comma, full stop (period), no-break space, ...

NSM Nonspacing Mark Characters marked Mn (Nonspacing_Mark) and Me (Enclosing_Mark)
in the Unicode Character Database (These are Arabic and Hebrew
vowels or diacritics.)

BN Boundary Neutral Default ignorables, non-characters, and control characters, other
than those explicitly given other types. (These are control characters
after they have been obeyed once, to prevent second obeying.)

Neutral B Paragraph
Separator

paragraph separator, appropriate Newline Functions, higher-level
protocol paragraph determination

S Segment Separator Tab

WS Whitespace space, figure space, line separator, form feed, General Punctuation
spaces, ...

ON Other Neutrals All other characters, including object replacement character (and ES,
ET, and CS characters that are not parts of ENs and ANs)

Categor
y

Typ
e

Description General Scope

Strong L Left-to-Right LRM, most alphabetic, syllabic, Han ideographs, non-European or
non-Arabic digits, ...

LRE Left-to-Right
Embedding

LRE

LRO Left-to-Right
Override

LRO

R Right-to-Left RLM, Hebrew alphabet, and related punctuation

AL Right-to-Left
Arabic

Arabic, Thaana, and Syriac alphabets, most punctuation specific to
those scripts, ... (these may connect, Hebrew does not!)

RLE Right-to-Left
Embedding

RLE

RLO Right-to-Left
Override

RLO

Weak PDF Pop Directional
Format

PDF

EN European Number European digits, Eastern Arabic-Indic digits, ...

ES European Number
Separator

plus sign, minus sign

ET European Number
Terminator

degree sign, currency symbols, ...

AN Arabic Number Arabic-Indic digits, Arabic decimal and thousands separators, ...

CS Common Number
Separator

colon, comma, full stop (period), no-break space, ...

NSM Nonspacing Mark Characters marked Mn (Nonspacing_Mark) and Me (Enclosing_Mark)
in the Unicode Character Database (These are Arabic and Hebrew
vowels or diacritics.)

BN Boundary Neutral Default ignorables, non-characters, and control characters, other
than those explicitly given other types. (These are control characters
after they have been obeyed once, to prevent second obeying.)

Neutral B Paragraph
Separator

paragraph separator, appropriate Newline Functions, higher-level
protocol paragraph determination

S Segment Separator Tab

WS Whitespace space, figure space, line separator, form feed, General Punctuation
spaces, ...

ON Other Neutrals All other characters, including object replacement character (and ES,
ET, and CS characters that are not parts of ENs and ANs)

Summary of Unicode Bidi Algorithm as User Sees It:

A Unicode compliant word processor is supposed to do the
EFFECT of this algorithm after EACH change to the logically
ordered file.

Each step is a complete pass over the characters c in the file,
from beginning to end.

1. Break the text into paragraphs. For each paragraph p, give p
an initial current embedding level (CEL) according to its first
strong character, c.

if c is LTR then CEL ← 0 else (c is RTL) CEL ← 1

(Thus each paragraph gets its own document direction based
on its first character. Thus, if you want a paragraph’s direction
to be different from that of its first character, insert LRM or
RLM before its first character to force the direction the other
way.)

2. First assignment of embedding level (EL):
In a complete pass over the characters c in the file, from
beginning to end:

if c = LRE or c = LRO then push CEL;
CEL ← next higher even level

(0,1 -> 2; 2,3 -> 4; etc)

if c = RLE or c = RLO then push CEL;
CEL ← next higher odd level

(0 -> 1; 1,2 -> 3; 3,4 -> 5 etc)

EL(c) ← CEL

if c = PDF then pop CEL
(to recover CEL = what it was before the corresponding
LRE, LRO, RLE, RLO)

(Note that a direction change among strong and weak
characters does NOT change the CEL. So, if there is never a
LRE, LRO, RLE, RLO, or PDF, then each neutral gets the
direction of the first strong character in its paragraph.)

3. Apply each override to all characters of any strength in its
embedding level until and including its corresponding PDF,
forcing each character to have the direction of its override. (An
override is interrupted for a nested embedding level.)

4. Give a direction and possibly a new type to each character of
weak type.

(Remember that weak type characters are intended to be
numerals, including their punctuation, which are written LTR
even in the midst of RTL text, such as European numbers
(ENs), e.g., $150.25, and Arabic numbers (ANs), e.g., ١٤٠.٠٠
(No $ in this number).)

A European separator character between two EN characters
is considered an EN character unless the ENs immediately
follow a strong Arabic letter (AL).

A Common separator character between two EN characters
is considered an EN character.

A Common separator character between two AN characters
is considered an AN character.

A European terminator character adjacent to an EN
character is considered an EN character unless the ENs
immediately follow a strong AL.

Otherwise each separator or terminator is considered a
neutral character.

Finally, any sequence of ENs immediately following a
strong LTR letter is considered a sequence of strong LTR
letters.

5. Give a direction to each neutral character:
In a complete pass over the characters c in the file, from
beginning to end:

Consider the characters b and d, before and after c in the file

If both b and d are strong and
direction(b) = direction(d) = D then

direction (c) ← D

elseif b is strong and direction(b) = RTL
and d is an AN or EN then

direction (c) ← RTL

elseif b is an AN or EN and d is strong and
direction(d) = RTL then

direction (c) ← RTL

elseif b is an AN or EN and d is an AN or EN then
direction (c) ← RTL

else direction(c) ← direction(EL(c))

In the above,
if c is at the beginning of a run then

b is the boundary at the beginning of the run

if c is at the end of a run then
d is the boundary at the end of the run

a boundary is considered strong and
its direction is that of the higher EL
on the two sides of the boundary

6. Second assignment of embedding level (EL):
In a complete pass over the characters c in the file, from
beginning to end:

if EL(c) is even (LTR) then

if c is a strong RTL letter then EL(c) ← EL(c) + 1
elseif c is an AN or EN then EL(c) ← EL(c) + 2

else (EL(c) is odd (RTL))

if c is a strong LTR or an AN or an EN then
EL(c) ← EL(c) + 1

(In this pass, within any run at any EL, each substring in the
opposite direction gets a higher EL of the correct direction and
within any run at an even (LTR) EL, each subsubstring which
is an AN or EN in the same direction gets a still higher EL in
the LTR direction, thus creating nested runs (fake embeddings)
in preparation for the reversing of RTL text in Step 9.)

7. Carry out mirroring on mirror characters in odd ELs:

e.g., a "(" at an odd EL is changed to ")" and a ")" at an odd EL
is changed to "(".

8. Form Arabic ligatures, replacing adjacent Arabic characters
by a new one. Then determine each Arabic character’s position
and assign its shape.

(Now the width of each character is known and the length of
sequences of characters can be calculated.)

9. Compute visual ordering of characters line by line:

For each line l ,

for i from the highest EL elh in l
to the lowest odd EL loel in l ,

for each extended run er of text in l of
ELs i through elh,

reverse the characters of er in place in l .

(This is a recursive version of the basic algorithm described in
the “Brief Bi-Directional Text Reading Lesson”.)

in logical order with strengths, directions (A=Arabic + R), initial ELs, directions
for neutrals, and final ELs:
dan lives at SALAAM 49AB15 SHALOM in a beautiful house.
SSSNSSSSSNSSNSSSSSSNWWSSWWNSSSSSSNSSNSNSSSSSSSSSNSSSSSN
LLL LLLLL LL AAAAAA nnRRnn RRRRRR LL L LLLLLLLLL LLLLL
000
 L L L R R L L L L L
0000000000000111111122112211111110000000000000000000000

reverse EL 2:
dan lives at SALAAM 94AB51 SHALOM in a beautiful house.

reverse ELs 1 + 2:
dan lives at MOLAHS 15BA49 MAALAS in a beautiful house.
which is the desired visual order

with RLE (→) and PDF(↑)
in logical order with strengths, directions (A=Arabic + R), initial ELs, directions
for neutrals, and final ELs:
dan lives at !SALAAM 49AB15 SHALOM↑ in a beautiful house.
SSSNSSSSSNSSNSSSSSSSNWWSSWWNSSSSSSWNSSNSNSSSSSSSSSNSSSSSN
LLL LLLLL LL AAAAAA nnRRnn RRRRRR LL L LLLLLLLLL LLLLL
000000000000011111111111111111111110000000000000000000000
 L L L R R L L L L L
000000000000011111111221122111111110000000000000000000000

reverse EL 2 with RLE and PDF removed:
dan lives at SALAAM 94AB51 SHALOM in a beautiful house.

reverse ELs 1 + 2:
dan lives at MOLAHS 15BA49 MAALAS in a beautiful house.
which is the desired visual order

with RLO (⇒) and PDF(↑)
in logical order with strengths, directions (A=Arabic + R), initial ELs, directions
for neutrals, and final ELs:
dan lives at ⇒SALAAM 49AB15 SHALOM↑ in a beautiful house.
SSSNSSSSSNSSNSSSSSSSNWWSSWWNSSSSSSWNSSNSNSSSSSSSSSNSSSSSN
LLL LLLLL LL RRRRRRRRRRRRRRRRRRRRRR LL L LLLLLLLLL LLLLL
000000000000011111111111111111111110000000000000000000000
 L L L L L L L L
000000000000011111111111111111111110000000000000000000000

reverse EL 1 with RLO and PDF removed:
dan lives at MOLAHS 51BA94 MAALAS in a beautiful house.
which is the desired visual order

Because a comma is not a European number terminator, in Step
4, they end up being neutral in the following examples. By the
"else" of Step 5, the list of numbers separated by neutrals and
embedded in a directional run will come out in the run’s order.
Storage: he said "THE VALUES ARE 123, 456, 789, OK".

Display: he said "KO ,789 ,456 ,123 ERA SEULAV EHT".

In this case, both the comma and the space between the numbers
take on the direction of the surrounding text (uppercase = right-
to-left), ignoring the numbers. The commas are not considered
part of the number because they are not surrounded on both
sides by digits.

However, if there is a preceding left-to-right sequence, then
European numbers will adopt that direction:
Storage: IT IS A bmw 500, OK.

Display: .KO ,bmw 500 A SI TI

The following examples illustrate the reordering, showing the
successive steps in the application of Step 9.The original text,
including any embedding codes for producing the particular
levels, is shown in the "Storage" row in the examples. Each
successive row thereafter shows the one pass of reversal from
Step 9. At each iteration, the underlining shows the text that has
been reversed.
The paragraph embedding level for the first and third examples
is 0 (left-to-right direction), and for the second and fourth
examples is 1 (right-to-left direction).

Example 1 (embedding level = 0)

Storage: car means CAR.

Before Reordering: car means CAR.

Resolved levels: 00000000001110

Reverse level 1: car means RAC.

Example 2 (embedding level = 1)

Storage:
car MEANS CAR.

Before Reordering: car MEANS CAR.

Resolved levels: 22211111111111

Reverse level 2: rac MEANS CAR.

Reverse levels 1-2: .RAC SNAEM car

Example 3 (embedding level = 0)

Storage:
he said “ car MEANS CAR .”

Before Reordering: he said “car MEANS CAR.”

Resolved levels: 000000000222111111111100

Reverse level 2: he said “rac MEANS CAR.”

Reverse levels 1-2: he said “RAC SNAEM car.”

Example 4 (embedding level = 1)

Storage:
DID YOU SAY ’ he said “ car MEANS CAR ” ‘?

Before Reordering: DID YOU SAY ’he said “car MEANS CAR”‘?

Resolved levels:: 11111111111112222222224443333333333211

Reverse level 4: DID YOU SAY ’he said “rac MEANS CAR”‘?

Reverse levels 3-4: DID YOU SAY ’he said “RAC SNAEM car”‘?

Reverse levels 2-4: DID YOU SAY ’”rac MEANS CAR“ dias eh‘?

Reverse levels 1-4: ?‘he said “RAC SNAEM car”’ YAS UOY DID

Because of the implicit character types and the heuristics for
resolving neutral and numeric directional behavior, the implicit
bidirectional ordering will generally produce the correct display
without any further work. However, problematic cases may
occur when a right-to-left paragraph begins with left-to-right
characters, or there are nested segments of different-direction
text, or there are weak characters on directional boundaries. In
these cases, embeddings or directional marks may be required to
get the right display. Part numbers may also require directional
overrides.

The most common problematic case is that of neutrals on the
boundary of an embedded language. This can be addressed by
setting the level of the embedded text correctly. For example,
with all the text at level 0 the following occurs:
Memory: he said "I NEED WATER!", and expired.

Display: he said "RETAW DEEN I!", and expired.

If the exclamation mark is to be part of the Arabic quotation,
then the user can select the text I NEED WATER! and
explicitly mark it as embedded Arabic, which produces the
following result:
Memory: he said "<RLE>I NEED WATER!<PDF>", and expired.

Display: he said "!RETAW DEEN I", and expired.

However, a simpler and better method of doing this is to place a
right directional mark (RLM) after the exclamation mark.
Because the exclamation mark is now not on a directional
boundary, this produces the correct result.
Memory: he said "I NEED WATER!<RLM>", and expired.

Display: he said "!RETAW DEEN I", and expired.

This latter approach is preferred because it does not make use of
the stateful format codes, which can easily get out of sync if not
fully supported by editors and other string manipulation.

The stateful format codes are generally needed only for more
complex (and rare) cases such as double embeddings, as in the
following:
Memory:
DID YOU SAY ‘<LRE>he said "I NEED WATER!<RLM>", and
expired.<PDF>’?

Display:
?‘he said "!RETAW DEEN I", and expired.’ YAS UOY DID

