
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper., 29(15), 1417–1457 (1999)

Stretching Letter and Slanted-baseline Formatting for
Arabic, Hebrew, and Persian with ditroff/ffortid and

Dynamic POSTSCRIPT Fonts§

DANIEL M. BERRY* (BN, , BN)

Computer Science Department, Technion, Haifa 32000, Israel
(email: dberry@uwaterloo.ca)

SUMMARY

This paper describes an extension to ditroff/ffortid, a system for formatting bi-directional text in Arabic,
Hebrew and Persian. The previous version of the system is able to format mixed left-to-right and right-
to-left text using fonts with separated letters or with connecting letters and only connection stretching,
achieved by repeating fixed-length baseline fillers. The latest extension adds the abilities to stretch letters
themselves, as is common in Arabic, Hebrew and Persian calligraphic printing, and to slant the baselines
of words, as is common in Persian calligraphic printing. The extension consists of modifications in ffortid
that allow it to interface with (1) dynamic POSTSCRIPT fonts to which one can pass to the outline pro-
cedure for any stretchable and/or connected letter, parameters specifying the amounts of stretch for the
letter itself and/or for the connecting parts of the letter, and (2) POSTSCRIPT fonts whose characters are
slanted so that merely applying show to a word ends up printing that entire word on a single slanted
baseline. As a self-test, this paper was formatted using the described system, and it contains many exam-
ples of text written in Arabic, Hebrew and Persian. Copyright 1999 John Wiley & Sons, Ltd.

ditroff/ffortid

POSTSCRIPT ffortid
POSTSCRIPT

show

hhhhhhhhhhhhh
* Correspondence to: Daniel M. Berry, Computer Science Department, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada.

§ This paper was submitted to Electronic Publishing in January 1997, and it was revised and finally accepted in August and
September 1997, respectively. Nearly two years later, when it was determined that Electronic Publishing would not be able to
publish this paper in a timely fashion, it was submitted to Software—Practice and Experience.

CCC 0038-0644/99/151417–41/$17.50 Received 9 July 1999
Copyright 1999 John Wiley & Sons, Ltd. Accepted 21 July 1999

1418 D. M. BERRY

D-jO ,ditroff/ffortid B i
lPN B B . P Bj , B B
- D- B j B- D-P B

j C jC C .P B
B . BO j lN D B , ÛB

ï î ù ï , ÝB û lP B ÝB
l D D Û j , P Bj , B , ÛB W B

ÝB . P B B ï î ù ï , B
POSTSCRIPT C (1) î Ý Bj ffortid- B

Ý l B N Ý Bj (dynamic) l
B B , jî j/jCî iú î Û

POSTSCRIPT C (2) jî , ô î ð ÝB B B ÛB j/jCî
.l Bj l B Cù î show P ð

B B B î ð ï B i , BO P ð
, B î ð ï ï ï ð C l j ,i C

. P Bj , B

jN B B BP ditroff/ffortid B

B B RPj . P j , ,

QB B j QB iN B BP BP QB j BP QB W

ð ð PB B j ,

PN , j N B ã . ,

, N j , B P j , ,

QB B . B ã BP , B P PN

QB iN B (1) : B BP Q B jN ã ffortid PN B B

B () ã B POSTSCRIPT N

BP B iQB B BP ij ,NBN BP

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1419

P N g B P POSTSCRIPT i QB iN B (2) j ;

i jP ã g B show

B PN QB iN B B , QãN B .N

PN P j , , QB j i N

.NPBN N

jN B B BP ditroff/ffortid B

BPQBj BP QBW B B RPj. P j, ,

ð ð PB
B j, QBB j QBiN

B BP

PN , j N B ã
. ,

BP,
B P PN , N j,

B P j, ,

(1): B BP Q BjN ã ffortid PN B B QB B
.

B ã

B
(

) ã B POSTSCRIPT N QBiN
B

(2)j; BP B
iQB

B BP ij ,NBNBP

B show P
Ng B P POSTSCRIPT i QBiN

B

QBiN
B B

,
QãN B .N i jP ãg

.NPBNN PN P j, , QB ji N
BPN

KEY WORDS: Arabic; bidirectional; formatting; Hebrew; Keshide; multilingual; Persian; stretching; slanted-baseline; Troff

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1420 D. M. BERRY

INTRODUCTION

The reader is assumed to be familiar with the paper ‘Arabic Formatting with ditroff/ffortid’
by Srouji and Berry, published in Electronic Publishing in December 1992 [1]. This paper
described an Arabic formatting system that is able to format multilingual scientific docu-
ments which contain text in Arabic or Persian, as well as other languages, plus pictures,
graphs, formulae, tables, bibliographical citations and bibliographies. ditroff/ffortid itself
is a collection of pre- and post-processors for the UNIX ditroff (Device Independent
Typesetter RunOFF) [2] formatter. The system was built without changing ditroff itself.
The collection consists of a preprocessor, fonts and a postprocessor.

The preprocessor transliterates from a phonetic rendition of Arabic using only the two
cases of the Latin alphabet. The preprocessor assigns a position, stand-alone, connected-
previous, connected-after, or connected-both, to each letter. It recognizes ligatures and as-
signs vertical positions to the optional diacritical marks. The preprocessor also permits in-
put from a standard Arabic keyboard using the standard ASMO [3] encoding. In any case,
the output has each positioned letter or ligature and each diacritical mark encoded accord-
ing to the font’s encoding scheme.

The fonts are assumed to be designed to connect letters that should be connected when
they are printed adjacent to each other.

The ffortid postprocessor is an enhancement of an earlier version [4] that arranges for
right-to-left printing of identified right-to-left fonts. The main enhancement is stretching
the final connection to letters of lines or words, using multiple fixed-sized baseline fillers,
instead of inserting extra inter-word spaces, in order to justify the text.

This ffortid does not handle letter stretching, and the Srouji and Berry paper [1] observes
in its conclusion that adding the ability to stretch letters would be left for future work. That
future work, applied to Arabic, Hebrew and Persian, together with the abilities to stretch
connections without a filler and to slant the baseline of words as in Persian is the subject of
the present paper.

As usual for papers dealing with formatting issues, this paper was typeset with the
software described herein.

STRETCHING

In high quality Arabic and Persian printing, stretching is preferred to inserting extra inter-
word spacing to achieve left (end-of-the-line) justification. Figure 1 shows an example
from an Egyptian textbook in Arabic calligraphy [5, 6]. This stretching is called keshide in
both Arabic and Persian, from the Persian word keshidan, which means ‘to stretch’.

In Arabic and Persian, there are two kinds of stretching,

1. stretching of the connection to the last connecting-previous letter in a line or words,
and

2. stretching of the last stretchable letter in a line or words.

In Figure 1, the pronounced stretching at the (left) end of line 2 is of a letter, the connect-
ing-previous nun, while those near the middles of lines 3 and 4 are of connections.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1421

Figure 1. Sample of Arabic Calligraphic Writing

In high quality Hebrew printing, especially in the Torah and in prayer books, stretching
is for the same purpose, to achieve justification without spreading words. Figure 2 shows
some stretching in the first verses from the book of Genesis [7]. Since Hebrew letters are
not connected to each other, only letter stretching is available, and it is usually applied to
the last stretchable letter in a line. One sees in line 4 a stretched (bet), in line 20 a
stretched (he), in lines 5, 10, 15, 16, 18 and 19 stretched s (reshes), all of differing
amounts, and in lines 9 and 13 stretched s (lameds), of differing amounts. Because the
amounts of stretch are all different, a collection of stretched versions of letters of specific
amounts of stretch is not likely to work. (All occurrences of words for G-d or G-d’s name
have been removed in order to avoid profaning these words.)

One can imagine a scribe in these languages, writing with indelible ink on expensive
parchment, not having an opportunity to rewrite a line to left justify it after it is known
what text can fit in the line. Stretching is applied near the end of the line, when it is easier
to predict how much more can be written on the line. The scribe merely stretches either the
last connection or the last stretchable letter as is available. It is the perfect way to achieve
justification when there is only one pass over the material and there is no backtracking. Of
course, with modern formatting software, it is not difficult to achieve justification by
spreading words. However, old habits die hard, and still stretching is associated with high
quality printing. Furthermore, not all stretching is applied at the end of the line in a one-
pass mode. There are numerous examples of printing in which the scribe was careful to
balance the stretching over several points in the line to achieve a pleasing appearance, as is
shown in Figure 3, taken from the same textbook from which Figure 1 was taken. It shows

the letters , , and a variation of , without and with stretching. The unstretched ver-

sions of the letters are said to be 5 points wide (the point is the width of the dot that ap-
pears in two of the letters), and the stretched versions are 11 points wide. This figure also

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Rectangle

dberry
Rectangle

dberry
Rectangle

dberry
Rectangle

1422 D. M. BERRY

Figure 2. Sample of Hebrew Calligraphic Writing

shows the importance of aesthetics in stretching, an importance that precludes simple algo-
rithms. Because the three letters that are stretched are structurally similar, for appearance’s
sake, they had to be stretched the same amount rather than individual amounts according to
the needed justification. For this kind of situation, the human calligrapher must exercise
lookahead.

STRETCHING PROBLEMS AND DYNAMIC FONTS

The following discussion is couched in terms of POSTSCRIPT [8] fonts, although the prob-
lems exist and the proposed solutions are available also in other outline-based font formats
such as TrueType [9].

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Rectangle

dberry
Rectangle

dberry
Rectangle

dberry
Rectangle

STRETCHING AND SLANTING 1423

Figure 3. Non-stretched and stretched letters

A form of connection stretching is quite easy to achieve with most available fonts. It re-
quires only that

1. all connecting letters connect via baseline strokes which meet their bounding boxes
at the same y coordinates,

2. that the show command place the characters to be printed bounding box to bounding
box, and

3. that the font provide a narrow rectangular baseline filler that connects on both sides
to the connecting baseline of all connecting letters.

Figure 4 shows the connecting after and the connecting before forms of baa connected to
each other, then disconnected, then with two fillers in between them but disconnected, and
finally with the two fillers and all connected. Letter stretching is much more difficult to
achieve, and that difficulty is probably the reason why it does not seem to appear in any of
the available Arabic formatting systems.

One possible way to achieve letter stretching is for the font to provide additional
stretched forms of each stretchable letter, each form being the stretching of one letter by a
specific amount. The problem with this approach is the large number of additional letters
required in the font to provide enough different sizes of each stretchable letter to cover
most needs. Arabic fonts are usually quite full, taking up nearly all 256 available positions
with all the letters and ligatures and the up-to-four forms of each letter and ligature. More-
over, there will always be specific stretching needs that are not covered by the available
collection.

An alternative and probably better approach would be to make the procedure for each
stretchable letter accept a parameter whose value, defaulted to zero, indicates the amount
of stretch with which the outline of the letter is to be drawn. When it is necessary to stretch
a letter by any specific amount, the show of that letter passes the amount to the letter’s
procedure and informs the font mechanism of the new length of the letter.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Rectangle

1424 D. M. BERRY

Figure 4. Baas with stretched connections

The problem with the second approach is that it requires dynamic fonts, as proposed by
André and Borghi [10]. Such dynamic fonts violate the basic assumption for Type 1
fonts [11], namely that for any given character code, scale (point size) and font name, the
bitmap obtained by executing the character’s procedure is constant. The holding of this as-
sumption allows caching the bitmap so that it does not need to be computed again when a
request to print the same character in the same scale and font comes later. Dynamic fonts
thus print slower, because it is useless to cache a character’s bitmap when, each time it is
printed, it will have a different amount of stretch, and thus a different bitmap. Such dynam-
ic fonts need to be Type 3, i.e. allowing use of the full POSTSCRIPT language, and thus are
slower to print and lose other benefits of Type 1, i.e. the ability to provide hints to improve
low resolution or small point size rasterization and the ability to be handled by the Adobe
Type Manager (ATM). However, in this author’s opinion, the beauty of what can be done
with dynamic fonts, including dynamic optical scaling [12], outweighs the disadvantages.
Moreover, as the use of dynamic fonts grows, Adobe will be given an incentive to extend
hinting and the ATM mechanism to cover the needed dynamism, perhaps through a Type 2
font providing just enough capability from the full POSTSCRIPT to cover most needs for
dynamic fonts. Note that Multi-Master Fonts (MMFs) do not fill the bill. Each can be
thought of as a font definition macro, which when supplied with widths of the font to be
simulated, generates a proper Type 1 font definition, each of whose characters prints to the
specified width.

OPERATION OF ffortid

As shown in Figure 5, ffortid sits between ditroff and the device driver and converts from
the ditroff intermediate form to the same form so that the device driver does not know that
it did not get its input directly from ditroff. Recall that the ditroff intermediate form, be-
sides showing the exact position of each character to be printed, has a specific marker at
the end of each output line and a specific marker at the end of each input word. A program
processing this form does not have to guess, and possibly be wrong, where the ends of
lines and ends of words are. Recall, finally, that the characters come out of ditroff broken
into lines but in logical order [13, 14, 4], that is from left to right in the order that one hears
the characters as they are spoken.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Rectangle

STRETCHING AND SLANTING 1425

With right-to-left text

Normally, with no right-to-left text

ditroff

ditroff ffortid

logical-
ordered

input

formatted
output

device
driver

device
driver

re-
formatted

output

formatted
output

logical-
ordered

input

Figure 5. Flow of ffortid and related programs

The main job of ffortid is to reorganize the characters so that the text is in visual order,
in which the text of each language is written in its own direction and the flow of the sin-
gle-directional chunks in each line is consistent with the current document direction. ffor-
tid works by totally reformatting each line as a function of the current document direction
and the font of each character. For details on this reformatting, please consult Section 6 of
the Srouji and Berry paper [1].

It is clear that the total amount of white space between the words in a line, δ, is calcul-
able as the difference between the current line length and the sums of the lengths of the
words and the minimal spacing. Stretching is achieved by not spreading the words and di-
viding δ by the number of stretching places to get an amount, σ, to stretch at each stretch-
ing place. When connection stretching is used, then a number of these fillers whose total
length is greater than or equal to σ is put in each connection to be stretched. The last of
these can be made to overlap its predecessor so that its end is precisely at the beginning of
the character to which it connects. Clearly, if stretching of letters is added, then the simple
strategy is to pass this σ amount as the length increase parameter to the letters to be
stretched. Therefore, the problem is to modify the POSTSCRIPT definitions of the fonts so
that the procedure for a stretchable letter takes the amount of stretch as a parameter and
modifies the outline appropriately.

DYNAMIC FONTS

With the general strategy laid out, the step of highest technological risk was the production
of the dynamic fonts with parameterized stretchable characters. Hence, this was the first
step to work on.

In Arabic, Hebrew and Persian, all stretching is across horizontal portions of a letter
such that stretching them does not cause the result to look like another letter. Letters, such
as the alif (B) in Arabic and Persian and the vav () in Hebrew, that are entirely vertical can-
not be stretched. In Hebrew, all horizontal portions involve sections bounded by parallel

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Rectangle

1426 D. M. BERRY

horizontal straight line segments. In Arabic and Persian, the horizontal portions are not
straight; they involve smooth curves that are mostly horizontal. Thus, stretching Hebrew
letters is straightforward, but stretching Arabic and Persian letters involves stretching
curves in such a way that the curvature, in the vernacular sense of the word, is somehow
preserved and that the stretched sections flow smoothly to the rest of the letter. Therefore,
it was decided to build a stretchable Hebrew font first. This way, the details of the parame-
terization could be worked out independently of dealing with the æsthetics of curve
stretching.

DYNAMIC HEBREW FONTS

The stretchable Hebrew letters are those with horizontal portions for which stretching the
horizontal portion would not cause the result to look like another letter. Therefore, the
stretchable letters are (bet), (daled), (heh), (khet), (khaph sofit), (kaph), (lamed),

(mem sofit), (resh) and (tav). This author has seen (aleph), (mem) and (quf)
stretched in some documents. Note that (vav) is not stretchable because stretching its
small horizontal portion would cause the result to look like (resh).

It was decided to stick to the definite set for now. Once the technique is understood, it is
easy to add additional stretchable letters. Indeed, the software has been carefully designed
so that the parts affected by adding additional letters to the stretchable set are completely
table-driven from human-editable ASCII tables.

First it was necessary to decide how to pass the amount of stretch to each letter to be
stretched. It was decided that before the show of the letter to be stretched, a global vari-
able called fact would be set to the amount of stretch. The procedure for this letter could
use this value as it sees fit to adjust the values of mostly x coordinates in the outline path.
Following this show, fact would be reset to zero, with the intention that a stretchable
letter finding fact set to zero would end up not being stretched. Initially, the units of
fact were those of the FontMatrix of the font. However, such a unit requires the in-
voker to know the FontMatrix of the font, which is normally considered a hidden im-
plementation detail. Later, it was decided to make the unit of fact be ems. The letter’s
procedure is required to convert the value of fact into FontMatrix units by multiplying
fact by the x value in the FontMatrix, and does so with the POSTSCRIPT code

/fact fact Name-of-font-definition-dictionary
/FontMatrix get 0 get div def

To stretch a character, it is necessary to examine its outline and to find the points
defining the straight line segments to be stretched. The simplest situation is when the
definition of a character’s outline does an absolute move to a starting point and then draws
the path using only relative commands thereafter. Recall that all stretching in Hebrew is
across straight line segments; if the path is described with relative commands, each such
segment is defined with an rlineto whose prefix arguments are the x and y of the ending
point, the starting point assumed to be where the current point is at the start of the com-
mand. Therefore, it suffices to decide which rlineto segments are to be stretched and to
add or subtract fact, depending on the direction in which the segment is being drawn, to
the x argument of the rlineto. Thus, the definition of the Hebrew letter bet from one
font,

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1427

/bet {
464 0 -61 -26 482 541 setcachedevice
0 0 moveto
127 388 rmoveto
-127 0 rlineto
-2 0 35 52 44 62 rcurveto
9 11 54 67 54 65 rcurveto
0 -47 rlineto
22 0 rlineto
114 0 rlineto
30 0 80 0 107 -32 rcurveto
25 -30 19 -90 19 -104 rcurveto
0 -252 rlineto
61 0 rlineto
-61 -80 rlineto
-360 0 rlineto
56 80 rlineto
233 0 rlineto
0 0 -1 221 0 238 rcurveto
0 9 0 42 -9 56 rcurveto
-9 15 -28 14 -46 14 rcurveto
-107 0 rlineto
fill } def

is converted to

/bet {
%%464 0 -61 -26 482 541 setcachedevice
543 fact add 0 setcharwidth
0 0 moveto
127 fact add 388 rmoveto
-127 fact sub 0 rlineto
-2 0 35 52 44 62 rcurveto
9 11 54 67 54 65 rcurveto
0 -47 rlineto
22 0 rlineto
114 fact add 0 rlineto
30 0 80 0 107 -32 rcurveto
25 -30 19 -90 19 -104 rcurveto
0 -252 rlineto
61 0 rlineto
-61 -80 rlineto
-360 fact sub 0 rlineto
56 80 rlineto
233 fact add 0 rlineto
0 0 -1 221 0 238 rcurveto
0 9 0 42 -9 56 rcurveto

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

1428 D. M. BERRY

-9 15 -28 14 -46 14 rcurveto
-107 fact sub 0 rlineto
fill } def .

Observe that the setcachedevice command was replaced by a setcharwidth com-
mand that implements the same net character width. Since a dynamic character may pro-
duce different outline each time it is called, its bitmap cannot be cached; if it were, then the
next time the character is shown, the procedure would be totally ignored and the previously
produced bitmap would be used, possibly of the wrong width. The defined character at
point size 30 and a 1 em stretching of it are

.

The stretching occurs at the boundary between the curves leading to the straight line seg-
ments and the straight line segments both upstairs and downstairs. If the path definition is
not a series of relative commands, but a series of absolute commands, it is necessary to cal-
culate the x coordinate of all points in terms of the fact parameter. Generally, the xs to
the right of the stretching are all increased by the value of fact and those to the left of the
stretching are left alone.

Erez Manor, a student, implemented much of the stretching of the Hebrew font used in
this paper as a project for the author’s electronic publishing seminar.

DYNAMIC ARABIC FONTS

There are two parts of Arabic and Persian letters to be stretched: the letter itself in the
cases of stand-alone as well as connecting letters; and the connecting parts in the cases of
connecting letters only.

Stretching letters
In Arabic and Persian, the situation is more complex than in Hebrew. No letter has por-

tions bounded by horizontal straight line segments. There are letters with curved strokes in
which the predominant flow of the stroke is horizontal. It is more correct to say that there
are forms of letters with these predominantly horizontal curved strokes; not all forms of the
same letter have these strokes. Therefore, a form is stretchable if it has a predominantly
horizontal curved stroke such that stretching it does not yield a result that looks like a form

of another letter. On this basis, the stretchable forms are (stand-alone baa),

(stand-alone seen), (stand-alone sad), (stand-alone faa), (stand-alone qaf),

(stand-alone caf), (stand-alone Gaf), (stand-alone lam), (stand-alone noon),

(stand-alone alifmaksura), (connecting-after caf), (connecting-after Gaf),

(connecting-both caf), (connecting-both Gaf), (connecting-previous baa),

(connecting-previous seen), (connecting-previous sad), (connecting-previous

faa), (connecting-previous qaf), (connecting-previous caf), (connecting-previ-

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Highlight

dberry
Rectangle

dberry
Rectangle

STRETCHING AND SLANTING 1429

ous Gaf), (connecting-previous lam), (connecting-previous noon), (connect-

ing-previous alifmaksura), (stand-alone faa_yaa), (stand-alone lam_alifmaksura),

(connecting-previous lam_alifmaksura), and all other forms that vary from these by ad-

ditional or fewer dots or hamzas. In particular, B (stand-alone alif) is not stretchable be-
cause it has no horizontal strokes.

The outline of any character is a series of elements, each of which is a line, four-point
Bézier curve, circle or arc. As shown in Figure 6, elements that share an end point p are

Shared end point

Figure 6. Smooth meeting and cornered meeting

tangent to the same line which passes through p if the outline is supposed to be smooth
through p, and elements that share an end point p have tangents at an angle at p if the out-
line is supposed to have a corner at p. As a rule, stretching should not introduce, remove
or change any corner. Therefore, tangents at end points of all elements should not change.
While horizontal stretching will definitely change x values in the outline, for other reasons,
it is not good that y values change. For example, it should be possible to vertically position
a diacritical over or under a stretched character as it is positioned over or under the un-
stretched version. Furthermore, it should not be necessary to have to adjust vertical spacing
dynamically as a part of stretching.

With Arabic and Persian, all stretching is across curved portions of letters. Therefore,
the issue is how to stretch curves that are described in the font definition as four-point
Bézier curves. A four-point Bézier curve is easy to stretch, if, as shown in Figure 7, the
stretching is in the interior of the curve between the two middle control points. To stretch
such a curve by A units, simply add A to the x values of the two right-hand points and to all
points to the right of the left-hand one of these. Note that the stretched curve connect with
its neighbors with the same slope and at the same y values as before. Moreover, it appears
that stretching four-point Bézier curves in the middle in this manner always gives æstheti-
cally pleasing results.

It is a problem to stretch through the shared end point of two Bézier curves whose
tangents are the same at the shared point. As shown in Figure 8, adding A to the x values
to the three rightmost points of the right-hand curve in order to stretch between the first
and second point introduces a corner into what was a smooth meeting at the shared point.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Rectangle

dberry
Highlight

1430 D. M. BERRY

A

A

Figure 7. Stretching four-point Bézier curve

Shared end point

A

A

A

Cornered shared end point

Figure 8. Cornered shared end point

As shown in Figure 9, the corner can be avoided by preserving the slope in the left-hand
tangent of the right-hand curve by increasing both the x and y values by amounts consistent
with the slope of the tangent. However, now the right end of the combined curve does not
have the same y value as before. One proper solution requires redesign of the two adjacent
Bézier curves into one or three adjacent curves so that the place of stretch is in the middle
of one four-point Bézier curve. One special case of stretching through a shared end point
works, specifically, when the tangents through the shared end points are completely hor-
izontal, as suggested by Figure 10.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1431

A

A

A
B

B

B

A
B

A

B/2

/2

Figure 9. Avoiding cornered shared end point

A

A

A

A
2

Figure 10. Stretching through shared end point with horizontal tangents

¼
← Start↑ ↑

↓ ↓

Figure 11. Plot of outline of connecting-previous baa

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1432 D. M. BERRY

Another solution was discovered during the first experiments, with the connecting-previ-
ous form of the baa. This turned out to be a case of wanting to stretch across a shared end
point when the tangents going into this point are not completely horizontal.

First it was necessary to plot the outline of this letter in order to see the locations of the
end and control points of the Bézier curves defining the outline. Figure 11 shows the result
of systematically converting the POSTSCRIPT code for the outline of the form into a draw-
ing of its outline with points marked by circles; the starting point of the path that is
stretched is labelled with ‘Start’, the direction of flow is indicated by the arrow coming out
of the label, end points of curves and lines are big circles, control points of curves are little
circles, and the stretched curves are marked with vertical arrows.

Each of the upper and lower strokes defining the horizontal portion to be stretched con-
sists of two Bézier curves meeting at a shared end point which is right in the middle of the
strokes to be stretched. Each end point is marked with a bigger circle with a radius line,
and each interior control point is marked with a smaller circle with a radius line. The
shared end points mentioned above are the bigger circle near the word ‘Start’ and the
bigger circle almost directly above. Stretching through the upper and lower shared points
would introduce corners. Rather than rebuilding the adjacent curves as one curve or
adding an additional curve, it was decided to split the amount of stretch A into two equal
parts A/2, and to stretch each of the adjacent curves in its own middle by A/2. The
stretched Bézier curves are all marked with pluses in the figure. The result was that the
normal code for the outline of the connecting-previous baa,

/baa_CP
{ 502 0 -15 -180 527 153 setcachedevice
0 0 moveto
243 -94 rmoveto
42 -32 rlineto
-34 -38 rlineto
-40 28 rlineto
closepath
0 0 moveto
260 -5 rmoveto
-17 -1 -136 -10 -192 15 rcurveto
-58 25 -18 106 -8 127 rcurveto
0 -6 -11 -57 11 -69 rcurveto
67 -39 163 -24 190 -23 rcurveto
28 2 129 10 156 29 rcurveto
17 11 27 44 28 48 rcurveto
1 -14 3 -27 28 -51 rcurveto
20 -19 27 -15 29 -15 rcurveto
0 -56 rlineto
-1 0 -21 -6 -48 26 rcurveto
-9 11 -16 17 -22 34 rcurveto
0 -1 1 -16 -28 -34 rcurveto
-46 -28 -86 -25 -144 -31 rcurveto
closepath 0 0 moveto fill } def

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

STRETCHING AND SLANTING 1433

is converted into the following code that uses fact initialized to the amount of stretch in
ems (with the changes emboldened):

/baa_CP
{ /fact fact Arabic-NaskhFont /FontMatrix get 0 get div def
502 fact add 0 setcharwidth
/fact_2 fact 2 div def
0 0 moveto
243 fact_2 add -94 rmoveto
42 -32 rlineto
-34 -38 rlineto
-40 28 rlineto
closepath
0 0 moveto
260 fact_2 add -5 rmoveto
-17 -1 -136 fact_2 sub -10 -192 fact_2 sub 15 rcurveto
-58 25 -18 106 -8 127 rcurveto
0 -6 -11 -57 11 -69 rcurveto
67 -39 163 fact_2 add -24 190 fact_2 add -23 rcurveto
28 2 129 fact_2 add 10 156 fact_2 add 29 rcurveto
17 11 27 44 28 48 rcurveto
1 -14 3 -27 28 -51 rcurveto
20 -19 27 -15 29 -15 rcurveto
0 -56 rlineto
-1 0 -21 -6 -48 26 rcurveto
-9 11 -16 17 -22 34 rcurveto
0 -1 1 -16 -28 -34 rcurveto
-46 -28 -86 fact_2 sub -25 -144 fact_2 sub -31 rcurveto
closepath 0 0 moveto fill } def

The defined character at point size 30 and a 1 em stretching of it are

.

The next form considered was the stand-alone form of the qaf. This proved to be a case
of stretching across the middle of a single Bézier curve. Figure 12 shows the outline of the
form in a form similar to that of Figure 11. Only the start of the path that has to be
stretched is marked. The defined character at point size 30 and a 1 em stretching of it are

.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Highlight

dberry
Rectangle

dberry
Rectangle

dberry
Text Box
Good

dberry
Text Box
Bad

1434 D. M. BERRY

Start ↑

↓

↑

Figure 12. Plot of outline of stand-alone qaf

Once it was clear how to proceed, the author got the assistance of a student, Asaf Segal,
to carry out the stretching on the entire font. For the most part, adding stretching to the
stretchable forms went quite straightforwardly after seeing the path followed by the outline
for the form. However, one form, the stand-alone alif maksura, proved to defy an æsthetic
stretching. Items 1, 3, 4 and 5 of Figure 13 show various different attempts. The outline of
this form had a strange situation that had never appeared before. In all but this form, the
upper and lower strokes surrounding the stretched portions were implemented as the same
number of four-point curves. For example, in the connecting-previous baa, both the upper
and lower strokes consisted of two curves and in the stand-alone qaf, both the upper and
lower strokes consists of one curve. Therefore, in both of these cases, the method of
stretching both strokes is the same. In the stand-alone alif maksura, the lower stroke con-
sists of one curve while the upper curve consists of two curves. It appeared that no matter
how stretch in these curves was divided, the results were ugly.

After I had failed to get a pleasing stretch for the stand-alone alif maksura, I recalled
Don Knuth’s difficulties with getting a pleasing letter S when he was building the first ver-
sion of the computer modern fonts with his then new METAFONT system. Interestingly, in a
fashion, the alif maksura can be considered S shaped. After failing many times, he even
considered writing his next book without the letter S. He remarked that the most important
words, ‘Donald E. Knuth’ did not require a letter S. Well, I too despaired of producing a
stretchable stand-alone alif maksura and considered writing this paper without a stretched
stand-alone alif maksura, but in my case, the most important words ‘Daniel M. Berry’ re-
quires a stand-alone yaa at the stretchable end of the second word, and the yaa is an alif
maksura with two dots added underneath. So I had to find a solution. Knuth finally found a
solution when his wife suggested making the S S-shaped. When I showed the problem to
my wife, she did not suggest anything. Moreover, the obvious dictum of making the

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1435

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 13. Various attempts to stretch the stand-alone alif maksura

stand-alone alif maksura stand-alone-alif-maksura-shaped did not help me think of any
solution.

Realizing the hopelessness of trying to get along without the stand-alone alif maksura
and its relatives, I cheated! I had noticed, as shown in item 2 of Figure 13, that the connect-
ing-previous alif maksura stretched just fine. So I built a new stand-alone alif maksura
from the bottom portion of the connecting-previous alif maksura and the top portion of the
stand-alone alif maksura. This construction is item 6 of the same figure. This version
stretched properly, but the new letter did not go as deeply below the baseline as it should.
In the meantime, another student, Yaniv Bejerano, started working on the problem. His
final solution was to change the outline of the form so that the upper stroke consists of only
one four-point Bézier curve. It proved impossible to duplicate with one fewer curve the
original outline, but by fine adjustment of the control points, Bejerano managed to come
very close, closer than can be discerned by the human eye at even phototypesetter resolu-
tion. Furthermore, when we showed the results to a small sample of people here no one
could see the difference at the usual point sizes. Figure 14 shows the old and new outline
side-by-side and below that superimposed; note that the words ‘Old’ and ‘New’ overlap.
The reader can see, in the superimposed outlines, that the upper strokes of the bottom

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Rectangle

dberry
Text Box
Bad

1436 D. M. BERRY

portion is slightly different. Item 7 of Figure 13 shows the final form adopted and a
stretched version. As a side-effect to the investigation, Bejerano found an improved way to
stretch the connecting-previous form, as shown in item 8 of the same figure.

(Old) (New)

(Old)(New)

Figure 14. Old and new alif maksuras individually and superimposed

Stretching connections
Once it is understood how to stretch letters themselves with dynamic fonts, the same ap-

proach can be used to provide alternative, improved and more æsthetic methods to stretch
connections, with and without the baseline filler. First, by making the filler a stretchable
letter with a normal width of zero, it is possible to get smaller connection stretches than the
size of one fixed-length filler. This makes it possible to avoid the problem of what to do
when the needed stretch is not an integral multiple of the length of the fixed-length filler.
Secondly, by applying the letter stretching technique directly to the connecting parts of
connecting letters, it is possible to avoid using the filler entirely. The result is a smoother
connection stretch; gone are the long flatness and the sudden corners where the filler or
fillers meet the connecting parts of its neighbors. In their place is a gently sweeping curve
with a slope of zero only momentarily where the two connecting parts connect. Figure 15

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Rectangle

dberry
Text Box
 Suitable fix

STRETCHING AND SLANTING 1437

····q

(a)

(b)

Figure 15. Stretchable connecting parts (a) vs. fillers (b)

shows the connection between the connecting after baa and the connecting before baa first
done with stretching the connecting parts and then with a filler. The amount of stretching is
the same difference accentuating amount in both cases.

In the POSTSCRIPT outlines, it is much easier to find the connecting parts of letters than
the parts of letters themselves to be stretched, and once the connecting parts are found, it is
easier to modify them for stretching than the parts of letters themselves to be stretched.
Each connecting part consists of a four-point Bézier curve arriving at a vertical line seg-
ment, the vertical line segment, and a four-point Bézier curve leaving the vertical line seg-
ment; moreover, all such vertical line segments are exactly the same length since they have
to be placed adjacent to each other. In the Arabic font used in this paper, each such line
segment was either 0 56 rlineto or 0 -56 rlineto. Still moreover, the Bézier
curves going in and out of the line segment have a slope of zero at the corner with the line
segment. It is straightforward to stretch these zero-sloped Bézier curves in the method sug-
gested by Figure 10.

MODIFICATIONS TO ffortid

The major changes required to ffortid are

1. the addition of the possibility of stretchable letters when replacing justification by
stretching,

2. the addition of the possibility to stretch connections via a single stretchable filler of
zero length rather than via sequences of fixed-length fillers,

3. the addition of the possibility to stretch connections by stretching the connecting
parts of letters, say by putting half of the stretch amount into the connecting part of

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Rectangle

dberry
Highlight

1438 D. M. BERRY

the before letter and the other half into the connecting part of the after letter,
4. the addition of some more command line options to control the nature of stretching,
5. the addition of some new fields to the width tables shared by ditroff and ffortid.

The description of the changes is driven by explaining the new command line options and
the new width table fields. The changes to the algorithm are apparent in this discussion.

The command line to invoke ffortid is of the form

ffortid [−rfont-position-list] ... [−wpaperwidth] [−−font-position-list] ...

[−s[n|[[l|c|e|b][f|2|m[amount]|a|ad|al]]] [−ms[c|l|w]

The job of ffortid is to take the ditroff output, which is formatted strictly left-to-right, to
find occurrences of text in a right-to-left font, and to rearrange each line so that the text in
each font is written in its proper direction. The −r and −w options were explained in detail
in Section 8.2.5 of the Srouji and Berry paper [1].

The −−font-position-list argument is used to indicate which font positions, generally a
subset of those designated as right-to-left, contain fonts for Arabic, Hebrew, Persian or re-
lated languages. For these fonts, left and right justification of a line can be achieved by
stretching instead of inserting extra white space between the words in the line. If requested
by use of the −s argument described below, stretching is done on a line only if the line
contains at least one word in a −− designated font. If so, stretching is used in place of the
normal distributed extra white space insertion for the entire line. The intention is that
stretching soak up all the excess white space inserted by ditroff to adjust the line. If there
are no opportunities for stretching or there are too few to soak up all the excess white
space, what is not soaked up is distributed in between the words according to ditroff’s al-
gorithm. There are several kinds of stretching, and which is in effect for all −− designated
fonts is specified with the −s argument, described below. If it is desired not to stretch a
particular Arabic, Hebrew, Persian, or other font, while still stretching others, then the par-
ticular font should not be listed in the −−font-position-list. Words in such fonts will not be
stretched and will be spread with extra white space if the original containing line is spread
with extra white space.

The −r and the −− specifications are independent. If a font is in the −−font-position-list
but not in the −rfont-position-list, then its text will be stretched but not reversed. This in-
dependence can be used to advantage when it is necessary to designate a particular Arabic,
Hebrew, Persian, or other font as left-to-right for examples, or to get around problems in
the use of eqn, ideal, pic or tbl.

The kind of stretching to be done for all fonts designated in the −−font-position-list is in-
dicated by the −s argument. There are two relatively independent dimensions that must be
set to describe the stretching, what is stretched and the places that are stretched. A stretch
argument is of the form

−smp

or

−sn

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1439

where m specifies the stretching mode, i.e. what is stretched, and p specifies the places that
are stretched. The m and p must be given in that order and with no intervening spaces. The
−sn means that there is no stretching and normal spreading of words is used even in −−
designated fonts. The choices for the mode m are

1. l (letter ell): in the words designated by the p, stretch the last stretchable letter.
2. c: in the words designated by the p, stretch the last connection to a letter.
3. e: in the words designated by the p, stretch either the last stretchable letter or the last

connection to a letter, whichever comes later.
4. b: in the words designated by the p, stretch either the last stretchable letter or the last

connection to a letter, whichever comes later, and if it is a letter that is stretched and
it is a connecting-previous letter then also stretch the connection to the letter.

The stretch arguments used to format this paper, except for the examples of the sections ti-
tled ‘Stretching Examples’ and ‘Slanting Examples’, are −sea and −msw.

Not all modes are available for all fonts. For example, fonts for Hebrew, whose letters
are not connected do not support connection stretching. While Arabic, Hebrew and Persian
traditionally do have letter stretching, not all fonts for them support letter stretching. ffor-
tid attempts to stretch all −− designated fonts in the specified modes, but in any text, ends
up doing only those stretches that are possible given in the text’s current font. To allow
ffortid to know what stretches are possible, the width tables for stretchable fonts have some
additional lines that must come somewhere after the name line and before the charset
line.

stretchable: letters connections
stretchable: connections letters
stretchable: connections
stretchable: letters

Each such stretchable font must have one of the first four lines. We now discuss the various
ways that different kinds of stretch are achieved in the available fonts and how ffortid deals
with each.

Stretching of letters requires a dynamic font which, by its very nature of not having a
constant bitmap for a given font name, point size and character name, cannot be Type 1, in
POSTSCRIPT terminology, and cannot be a bitmapped font. Therefore, not all Arabic and
Persian fonts support stretching of letters. Moreover, within a dynamic font, not all charac-
ters are stretchable. Historically, only characters with strong horizontal components are
stretchable, such as those in the stand-alone and connecting-previous forms of the baa fam-
ily. Obviously, one cannot stretch totally vertical characters such as alif. Therefore, it is
necessary to specify by additional information in the ditroff width table for a font which
characters are stretchable. In the width table for an Arabic or Persian font, for each charac-
ter that is not also an ASCII character, i.e. not also a digit or punctuation, and thus is nei-
ther connected or stretchable, one specifies after the name, width, ascender-descender in-
formation and code, two additional fields, the connectivity and the stretchability of the
character, in that order. The connectivity is either

N for stand-alone,
A for connecting-after,

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1440 D. M. BERRY

P for connecting-previous,
B for connecting-both or
U for unconnected, because it is punctuation or a diacritical, etc.,

and the stretchability is either

N for not stretchable or
S for stretchable.

Some examples of width table lines are

%% 125 2 045 percent

--- 55 0 0101 U N comma
--- 70 0 0105 U N hamza

--- 129 0 0106 N S baa_SA
--- 36 2 0102 N N alif_SA

--- 113 0 0177 A N sad_CA
--- 66 2 0215 A S caf_CA

--- 43 2 0225 P N alif_CP
--- 120 0 0274 P S baa_CP

--- 53 0 0230 B N baa_CB
--- 73 2 0261 B S caf_CB

Recall that --- in the name field of a character means that it can be addressed only by
\N’n’, where n is the decimal equivalent of the character’s code. Only such lines will
have the connectivity and stretchability fields. Also in the character name which is a com-
ment in the table , _SA means ‘stand-alone’, _CA means ‘connecting-after’, _CP means
‘connecting-previous’, and _CB means ‘connecting-both’.

For a Hebrew font, for which there is no notion of connectivity of letters, and therefore
the position of the letters is irrelevant for deciding stretching, there is only the possibility
of stretching letters. Some examples of width table lines for such fonts are

% 132 3 045 percent

--- 95 3 0140 U N quoteleft=alef
--- 92 3 0141 U S a=bet

In a dynamic font, there are two additional, alternative ways that stretching of connec-
tions can be achieved:

g The filler is a stretchable letter, normally of width zero, to which the total width of
the filler is passed as the stretch amount.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1441

g The connecting portions of all connecting letters are themselves stretchable in the
same way as are the stretchable letters. In this situation, to achieve a total connection
stretch of x, one would pass x/2 to each of the connecting-after portion of the before
letter and the connecting-previous portion of the after letter.

The use of the first of these solves the problems caused by the fact that amount of a
given connection stretch may not be integrally divisible by the width of the filler. A
stretchable filler can be stretched to any amount. The use of the second improves the ap-
pearance of the connection stretch. While letter stretching is done with nice, smooth
curves, connection stretching using the very straight filler is noticeably flatter and there are
observable corners where the filler meets the generally curved connecting parts of its adja-
cent letters. While the fixed-size filler seems to be available on all Arabic and Persian
fonts, stretchable fillers and stretchable connecting parts are available only with Type 3
POSTSCRIPT fonts, although it would be possible to provide a stretchable filler as the only
locally defined character in a Type 3 font that falls to another Type 1 font for all the other
characters, which are only virtual in the Type 3 font.

The ditroff width table for any font providing a stretchable filler or stretchable connect-
ing parts must have an additional line to specify the nature of the connection stretch in the
font, which must be one of the following.

connection stretch: fixed filler
connection stretch: stretchable filler
connection stretch: stretchable connections

This line must come somewhere after the name line and before the charset line. If none
is specified, it is assumed to be the first. Therefore, it is not necessary to say anything new
for the typical Type 1 or bitmapped font with a fixed-sized filler. Note that if a font allows
different kinds of connection stretching, only one can be specified per mounting of the font
specified in a single width table. If one wants to use the same font with different ways of
stretching connections, one must mount the same font under different names in different
width tables, each specifying a different kind of connection stretching.

ffortid implements the connection stretching that is requested by the −s command-line
argument as well as it can using the kind of connection stretching available for the font be-
ing used. Thus, if one is not using fixed-sized fillers, ffortid ignores the various options put
in to deal with the fact that an integral number of fillers may not fulfil the needed stretch.

Below, ‘stretchable unit’ refers to what is a candidate for stretching according to the
mode. The choices for p, which specifies places of stretching, are

1. f: in any line, stretch the last stretchable unit.
2. 2: assuming that the mode is b (both), in any line, stretch the last two stretchable un-

its, if they are the connection leading to a stretchable connecting-previous letter and
that letter, and stretch only the last stretchable unit otherwise. If the mode is not b,
then this choice of places is illegal.

3. mn or m: in any line, stretch the last stretchable unit by an amount not exceeding n
ems. If that does not exhaust the available white space, then stretch the next last
stretchable unit by an amount not exceeding n ems, and so on until all the available
white space is exhausted. If n is not given, it is assumed to be 2.0. In general, n can
be any number in floating point format.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1442 D. M. BERRY

4. a, ad, or al: in any line, stretch all stretchable units. In this case, the total amount
available for stretching is divided evenly over all stretchable units on the line
identified according to the mode. Since the units of stretching are the units of device
resolution, the amount available might not divide evenly over the number of places.
Therefore, it is useful to be able to specify what to do with the remainder of this divi-
sion. This specification is given as an extension of the stretching argument. The
choices are d or l, with the former indicating that the excess be distributed as evenly
as possible to the spaces between words and the latter indicating that the excess be
distributed as evenly as possible in stretchable letters only. The latter is the default if
no choice is specified.

Sometimes, it is desirable to be able to manually stretch connections or letters to achieve
special effects, e.g. more balanced stretching or stretching in lines that are not otherwise
adjusted (e.g. centered lines). Stretching a connection can be achieved by using the base-
line filler character explicitly as many times as necessary to achieve the desired length or in
the ditroff line drawing escape sequence to whatever length is desired, e.g.

\l’2m\(hy’

will draw a string of adjacent base-line fillers of length 2 ems.
To achieve stretching of letters, one should immediately precede, with no intervening

white space, the letter to be stretched by the escape sequence

\X’stretch’\h’n’

where n is a valid length expression in ditroff’s input language. ffortid is prepared to deal
with the output from ditroff generated by this input to generate output that will cause the
letter immediately following it to be stretched by the length specified in n. For example,

\X’stretch’\h’1m’\N’70’’

will cause the character whose decimal code is 70 to be stretched by 1 em. The output will
fail to have the desired effect if the letter following the escape sequence is not a stretchable
letter.

Two similar additional escape sequences are provided for explicit stretching of connect-
ing parts of letters.

For finer control over stretching, it may be desirable to inhibit automatic stretching on
manually stretched connections and letters. Accordingly, three command line flags are pro-
vided for this purpose:

1. −msc: do not automatically stretch manually stretched connections.
2. −msl: do not automatically stretch manually stretched letters.
3. −msw: do not automatically stretch any word containing any manual stretching.

STRETCHING EXAMPLES

All of these samples use a very narrow column width to exaggerate the differences and to

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1443

force whatever stretching that is done to be very pronounced. In all the samples, the last
line has no stretching since it is not full and, in the normal word-spreading realm, no addi-
tional space would appear between the words. Because only one setting of the stretch op-
tion applies for the whole of a given document, all the samples were typeset as other docu-
ments and were included in this paper as encapsulated POSTSCRIPT figures. Finally, each
example is designated by its language and the stretch option that was used to typeset it.

In Hebrew, letters are not connected. Therefore, only letters are stretchable, and the
width tables reflect this fact. Therefore, all −scPs, for any place P, look like −sn, and each
−sbP and −seP looks like the corresponding −slP, with the special case of −sb2 looking
like −slf. Therefore, only the −sla and the −slf examples are shown in Figures 16 and 17.

In Arabic, both letters and connections are stretched. The first group of examples, the
−sMfs, show stretching in final places in a line and the second group, the −sMas shows
stretching in all places on a line. As expected, the stretching is more pronounced in the
−sMfs. For −scf, shown in Figure 18, in all non-last lines, the connections absorb all of the
stretch. The effect is most pronounced in lines 2 and 3.

Figure 19 shows the result of the −slf option. The final stretchable letter of each line ab-
sorbs all the stretch, with the effect being most pronounced in line 2. In lines 1 and 6, the
last stretchable letter is not the last letter in the line. In line 3, there is no stretchable letter
at all, so the words are left spread apart.

For −sef, as shown in Figure 20, the final stretchable letter or connection, whichever is
later (left most), and not both, gets stretched. The effect is most pronounced in lines 2 and
3. In line 2, the last letter is stretchable so it gets all the stretch. In line 3, the final letter is
not stretchable, but it is connected to the previous letter, so that connection absorbs all the
stretch.

The −sb2 option is similar to the −sef option, except that, as shown in Figure 21, when a
letter would be stretched and that letter is connected, then the letter and its connection split
all the stretch. In line 2, each of the main body and the connecting part of the final taa ab-
sorbs half of the total stretch. In line 3, the final letter is not stretchable, but it is connected;
so, that connection absorbs all the stretch. In line 4, the final letter is stretchable, but it is
not connected; therefore the letter absorbs all of the stretch.

For the −sMas, the total stretch is distributed over all candidates according to the M.
Thus, each individual stretch tends to be shorter than for the −sMfs. Figure 22 shows the
result of the −sca option, which causes only and all connections to be stretched.

For −sla, it is expected that all stretchable letters in a line be stretched the same amount.
As is shown in Figure 23, for all lines, except lines 2 and 3, the stretches are hardly notice-
able, since each stretch is a fraction of the total stretch for the line. Line 2 has only one
stretchable letter, and it absorbs all the stretch. Line 3 has no stretchable letter; therefore,
the words remain spread with additional white space.

For −sea, each word has at most one stretch, which is either in the body of the last
stretchable letter or in the last connection, whichever is later in the word. In lines 2 and 3
of Figure 24, there are few enough such places that the stretch per place is quite pro-
nounced.

As can be seen in Figure 25, the −sba case differs from the −sea case in line 2. Both the
last letter and its connection are stretched the same amount as the other stretchable places
in the line, which just happen to be connections.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1444 D. M. BERRY

For Persian, only examples with results differing significantly from the corresponding
Arabic examples are shown. With the Persian text, the −sb2 case yields more pronounced
results. There are several occurrences of connecting before yes in lines 5, 6 and 7 of Figure
26 that end up being the stretch places of their lines. Each of these lines shows that ye and
its before connection stretched the same amount.

In the −sef, −scf and −slf examples, which are not shown, the same yes are stretched, but
all the stretch is absorbed by the body of the letter, the connection, and the body of the
letter, respectively. Among the −sMas, which are not particularly remarkable, only the
−sea example is shown in Figure 27.

Figure 16. Hebrew with −sla

Figure 17. Hebrew with −slf

, BO P ð

î ð ï B i
B B

j ,i C B
ï ï ð C l

, B î ð ï
. P Bj , B

Figure 18. Arabic with −scf

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1445

, BO P ð

î ð ï B i
B B
j ,i C B

ï ï ð C l
, B î ð ï

. P Bj , B
Figure 19. Arabic with −slf

, BO P ð

î ð ï B i
B B

j ,i C B
ï ï ð C l

, B î ð ï
. P Bj , B

Figure 20. Arabic with −sef

, BO P ð

î ð ï B i
B B

j ,i C B
ï ï ð C l

, B î ð ï
. P Bj , B

Figure 21. Arabic with −sb2

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1446 D. M. BERRY

, BO P ð

î ð ï B i
B B

j ,i C B
ï ï ð C l

, B î ð ï
. P Bj , B

Figure 22. Arabic with −sca

, BO P ð

î ð ï B i
B B
j ,i C B

ï ï ð C l
, B î ð ï

. P Bj , B
Figure 23. Arabic with −sla

, BO P ð

î ð ï B i
B B

j ,i C B
ï ï ð C l

, B î ð ï
. P Bj , B

Figure 24. Arabic with −sea

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1447

, BO P ð

î ð ï B i
B B

j ,i C B
ï ï ð C l

, B î ð ï
. P Bj , B

Figure 25. Arabic with −sba

, QãN B
QB iN B B

B PN
N

QB j i
,
PN P j ,

.NPBN N
Figure 26. Persian with −sb2

, QãN B
QB iN B B

B PN
N

QB j i
,
PN P j ,

.NPBN N
Figure 27. Persian with −sea

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1448 D. M. BERRY

An imitation, in which each letter is stretched by one em, of the calligraphic example of
Figure 3 is shown below.

This example shows that the balanced stretching can be achieved by manual control, but it
also shows that the font being used is not very good for stretching. Now that the technique
to do stretching has been demonstrated, it is necessary to design a font whose letters stretch
more gracefully.

On the first page of the paper, the stand-alone yaa in the author’s Arabic name and the
resh in the author’s Hebrew name were stretched manually for the purpose of making each
family name approximately the same length as its corresponding private name.

SLANTED BASELINE WRITING

Examination of examples of Persian printing shows that

1. it uses fonts whose characters are observably different from those of fonts typically
used for Arabic,

2. stretching of characters seems to be more prevalent than in Arabic printing, almost to
the exclusion of stretching of connections, and

3. words, but not lines seem to be written on a slanted baseline.

These observations are clear in Figure 28, which shows a sample of some Persian printing
from the author’s favorite Persian cookbook [15]. The font that is used in the cookbook
excerpt is called Nastaliq. To date, neither the author nor any others contributing to an In-
ternet Arabic Script group have seen a decent POSTSCRIPT outline font for Nastaliq or any
other font with the distinctly Persian flavor. As a consequence, at present, computer-aided
Persian typesetting seems to be done using Arabic fonts for results that are not entirely
æsthetic to the Persian eye.

First, by making copies of a large variety of samples and marking these copies up with
lines showing the flow of words and lines running through the slanted baselines, it was
determined that while the line flows horizontally, the baseline of individual words or indi-
vidual groups of consecutive short words is generally slanted 22° downward from the hor-
izontal. (Recall that Persian text flows from right to left, so the slant is described in these
terms.) The sequence of the center points of the slanted-word-or-group-of-words baselines
for a single line of text describe a single horizontal line segment, which is taken as the axis
or baseline of the whole line of text. Figure 29 shows a schematic of the baselines of words
or groups of words that form a single line.

Furthermore, it appears that the beginning of any but the first word on a line is immedi-
ately above the end of the previous word. That is, from the point of view of projections of
the words onto the horizontal axis of the line, there is no spacing between words. The
separation of the words is achieved by the vertical clearance between the end of one word
and the beginning of the next right above it. In the above, when a group of consecutive
short words is treated as a unit for slanting, there is some horizontally visible white space
between the words. It appears that merging short words into a larger unit for slanting is a
physical necessity as there would not be enough vertical clearance between one short word

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

dberry
Rectangle

STRETCHING AND SLANTING 1449

Figure 28. Persian printing

Figure 29. The slanted baselines of words in one line

and the next if each were slanted separately. Finally, it appears that stretching is applied
mainly to letters and not to connections.

It is this author’s opinion that the reason no one has invested the considerable effort to
produce a suitable Nastaliq font is that it was not understood how to implement in POST-
SCRIPT and use in formatters the slanted baseline aspect. This section remedies this prob-
lem by analyzing the slanted baseline requirement and showing how it can be implemented
in POSTSCRIPT fonts and used by formatters to achieve a very Persian appearance. Since
the author does not even have a flat version of Nastaliq available as a Type 3 POSTSCRIPT
font, the author applied the slanting to the Arabic Naskh font with stretchable forms to pro-
duce a font named Persian Naskh also with stretchable letters, and he used this font with a
modified ffortid that knows how to use a slanting font to achieve the proper baseline slant-
ing. It is hoped that the availability of the technology to define and use slanted-baseline-
printing fonts with stretchable forms will provide the incentive for a good typographer to
develop a high quality Nastaliq POSTSCRIPT font definition.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1450 D. M. BERRY

First, the method of slanting POSTSCRIPT fonts is described. Then the modifications to
ffortid and to ditroff width tables to support the use of slanting fonts is described.

SLANTING FONTS

As mentioned, it was decided to apply slanting to a new font called Persian Naskh which is
a copy of a stretchable Arabic Naskh except for the stretching. The simplest way to achieve
the slanting in all characters is to modify the font matrix so that what was horizontal is
now slanted 22° upward (POSTSCRIPT fonts view characters as being laid out from left to
right; therefore the slant is considered in the opposite direction from for the normal right-
to-left flow), and what was vertical is still vertical. Thus the font matrix defining line was
changed from

/FontMatrix [.001200 0 0 .001200 0 0] def

to

/FontMatrix [.00120 .0004495 0 .00120 0 0] def %22 degrees

The value 0.0004495 is tan(22°) ×0.0012, where 0.0012 is both the x and the y value from
the matrix

[.001200 .0004495 0 .001200 0 0] .

Once this font is defined and set, one can print any word with a slanted baseline by mov-
ing to the position of the right end of the word, below the line’s axis and then showing the
word. Figure 30 shows a slanted printing of the word salaam. This output was achieved by

gÜy
Figure 30. Slanted salaam

simply finding and setting the Persian-Naskh font and issuing a show command with the
characters, from left to right, of the word salaam, as its string argument. The use of the
font matrix to achieve the slanting insures that what the POSTSCRIPT show mechanism be-
lieves is a move in the x direction by the width of the last printed character is in fact a
move upward and to the right. Figure 31 shows the example of Figure 5 of the Srouji and

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1451

¼ q

¼q

¼·q
q
q
q

(a)

(b)

(c)

(d)

(e)

(f)

Figure 31. Non-stretched and stretched

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1452 D. M. BERRY

Berry paper [1] printed using the Persian Naskh font. The purpose of this example is to
show that both forms of stretching work quite handily in the presence of slanting.

MORE MODIFICATIONS TO ffortid

Again, there were three main kinds of modifications to ffortid:

1. The layout algorithm of ffortid is changed so that it puts each word, after
justification, either by spreading words or stretching, into its own slanted baseline.

2. New command-line options are added.
3. The width tables shared by ditroff and ffortid are modified slightly.

These changes are discussed in reverse order.
The width tables have to be modified slightly so that there is a line announcing that the

font described by the table is slanted and that line gives the amount of slant in degrees,
which must agree with the angle implicit in the font matrix of the font. In addition, to
cause the beginning of one word to be just above the end of the previous with no horizontal
movement, it is necessary to lie to ditroff and tell it that the normal interword space is 0,
while providing another unpaddable space to be used explicitly by the input document to
group short words together into a single slantable unit. First, ditroff would not accept a
width of 0 for the space; it took it as the default width of 1⁄3 em. So, a space of width 1 was
tried, and it was accepted by ditroff and it produced visually acceptable results which the
human eye could not distinguish from a space width of 0. Recall that the units of the space
width is the unit of device resolution. Thus, for Adobe transcript’s psc device, a width of
1 is a width of 1/576 inches. Figure 32 shows the second paragraph of the Persian abstract
with the same spacing between the words but with nothing slanted. The reader can see that
the words appear run together with no space between them. The unpaddable space was pro-
vided as the character named by the ditroff special character \(ps, for ‘permanent space’
whose width is set to what was the width of the space before setting it to 1. The name for
the unpaddable space had to be a two-character name that is mnemonic and is not in the
special font; if it were in the special font, then it would not be possible to address the like-
named special font character without explicitly mounting the special font.

ji N BPN QBiN B B, QãN B

.NPBNN PN P j, , QB

Figure 32. Unslanted Persian text spaced as for slanted printing

The new command-line option is to indicate which font positions contain slanted fonts.
Of course, it will not work to attempt, through the setting of this option, to slant a font
whose width table does not say that it is slanted. However, the slanting algorithm,
described in the next paragraph, does not happen to a font not in this list.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1453

The change to the ffortid layout algorithm is that after all characters have been put in
visual order and all justification and stretching requested by the user have been applied, the
projection of the starting position of each word on its text line’s axis is known. Note that
the justification and stretching are affected by the fact that the space is of width 1. Of
course, if stretching is not indicated, then as a result of justification, words may be more
than 1 unit apart as a result of the additional white space inserted by the spreading of the
words. If stretching is specified, then if there are stretchable places none of the interword
gaps should be spread, as stretching should absorb all of the excess white space.

At this point ffortid calculates the width of each word and then inserts before the begin-

ning of each word, of length len_word, a vertical movement to v = tan(α) ×
2

len_wordhhhhhhhhh

units below the line’s horizontal axis, where α is the angle of slant, usually 22°, deter-
mined from the font’s width table. To avoid the line’s axis drifting as a result of round-off
error in digitizing the floating point tangent values, the vertical positioning before the
printing of each word is accomplished by using the absolute vertical positioning instruction
with an argument that is the sum of the y of the line’s axis and the calculated movement v
for the word.

The Persian abstract of this paper was typeset in this slanted pseudo-Persian font. In
preparing this example, it was learned that it is not a good idea to slant text that contains
non-slantable text such as that in Latin letters. However, if one is going to slant such text
anyway, then Persian text which is immediately adjacent to Latin text, such as parentheses
and other punctuation or a single letter grammatical article or conjunction, should be in a
non-slanting font whose appearance is coordinated to the slanting font. In this case, since
the slanting Persian Naskh is a slanting version of Arabic Naskh, Arabic Naskh was used
as the non-slanting font whose appearance is coordinated to that of Persian Naskh!

SLANTING EXAMPLES

The same text used earlier for Persian examples is used for the slanted Persian examples.
Only the −slP, for any place P, examples are exhibited, because it appears that connection
stretching is not used in slanted writing. The slanted Persian abstract at the beginning of
the paper is typeset, as are all the abstracts, with −sea, and it shows connection stretching
in slanted text. In these examples, shown in Figures 33 and 34, consecutive words are
grouped together as single slanted units, in order that all slanted units in a line are approxi-
mately the same length. This way, no individual word extends far beyond the others and no
individual word is so short that it does not have a clear separation from its neighbors.
Between two consecutive words of a single slanted unit is an unpaddable space built into
the slanted Persian font, addressed by \(ps in ditroff. These unpaddable blanks are not
candidates for stretching if there is nothing stretchable in the line and are not candidates for
shrinking to give way to stretching. They ensure horizontal separation of the words that
make up a single slanted unit.

EVALUATION OF SLANTED BASELINE WRITING

Farhad Arbab was being very polite to an old friend when he said, about the above exam-
ples of slanted baseline writing,

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1454 D. M. BERRY

iN
B

B
,

QãN B

N
 B PN

 QB

 QB j

i

.NPBN
 N

PN

P j

,
 ,

Figure 33. Slanted Persian with −sla

iN
B

B
,

QãN B

N

B PN
 QB

 QB j
i

.NPBN
 N

PN

P j

,
 ,

Figure 34. Slanted Persian with −slf

Your slanted version looks interesting, but I have never seen this style used any-
where in printing! What I see is something between using a slanted font in print-
ing (which is common) and a certain calligraphic style (which I’ve never seen it

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1455

with printed text) where words are not only slanted, but also somewhat curved.
What you have is neither. It is certainly interesting as a new style, but it is not
very natural to read. The problem with it is that there is too much distance
between the ending of a word (somewhere below the baseline, and the start of the
next word (somewhere above the baseline) and these discontinuities make it
difficult to read. In calligraphy, they play all kinds of tricks, including subtle curv-
ing of the baseline, to make the inter-word flow continuous for the readers’ eyes.
What you have here is too mechanical and the inter-word discontinuities make it
not easy to read. Nevertheless, I think one could use it as a specific style for situa-
tions that can tolerate special effects.

I had countered that it was clear that I was not using the right font, because it was simply
not available, and that perhaps if the technique were applied to a more Persian font, the
results would be more pleasing. However, his remark about the baseline being curved
prompted a closer examination of the examples of Figure 28. The baselines indeed are not
straight lines, but curves that start off downward right-to-left at 22° and end up horizontal.
As suggested by Figure 35, such a curve is quite naturally a Bézier curve with a 22° and a
0° tangent lines.

Figure 35. Curved Baseline as a Bézier Curve

This sort of warping of the baseline of text is precisely the function of Adobe’s
TypeAlign [16]. However, TypeAlign seems to be able to bend only text from Type 1
fonts, and stretching requires Type 3 fonts. Perhaps TypeAlign’s transformations can be
applied directly by a more general Type 3 font BuildChar routine. This is left as future
work.

RELATED WORK

As far as this author has been able to determine, no other Arabic, Hebrew or Persian for-
matting system targeted for high quality fonts provides letter stretching and slanting the
baselines of words. This author is aware of Yannis Haralambous’s ScholarTEX [17], Klaus
Lagally’s ArabTEX [18], and Don Knuth and Pierre MacKay’s TEX-XET [19]. The closest
that this author has seen are systems that provide multiple forms of stretchable forms that
can be selected by the user. TEX systems typically use fonts generated by METAFONT,
which are usually bitmaps. Bitmap-based formatters would be hard put to provide dynami-
cally stretchable characters that are necessary to implement the solution outlined in this pa-
per and implemented with ditroff/ffortid, a system that supports easy use of POSTSCRIPT
outline fonts. There are options to use POSTSCRIPT outline fonts with TEX, but to date,
only Type 1 fonts seem to be available for the METAFONT-generated fonts. It would be
necessary to obtain Type 3 versions of these fonts so that the character definitions can be
edited to make them dynamic.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

1456 D. M. BERRY

The work of Ameur Khettar at Academie de Montpellier [20] provides a number of algo-
rithms for dealing with ligatures and with stretching and shrinking of letters. The work ap-
pears to carry out these algorithms with very low resolution bitmapped screen fonts with
very flat, one-pixel wide strokes, which are easy to stretch by adding more pixels to the flat
stroke to be stretched. The algorithms are very useful because they are intended to be car-
ried out in real time in a WYSIWYG editor formatter in which a letter’s form changes as
soon as its after-neighbor is entered or changed.

CONCLUSIONS

This paper has described the addition of full stretching and slanting to Hebrew, Arabic and
Persian typesetting with ditroff/ffortid. The changes necessary to the POSTSCRIPT fonts and
the ffortid ditroff postprocessor were described. As to whether the results are æsthetically
pleasing is left to the reader. However, if the æsthetics are lacking, perhaps applying the
techniques described in this paper to better designed fonts, perhaps designed specifically to
be stretched and slanted, will yield more pleasing results. It is hoped that the proof of prin-
ciple given in this paper increases the incentive for developing these better fonts.

ACKNOWLEDGEMENTS

This research was supported by the Fund for Promotion of Research at the Technion. The
author thanks the anonymous referees, Jacques André, Bijan Arbab (PB), Farhad
Arbab (PB N), Yaniv Bejerano בג’רנו) ,(יניב Avron Cohen (oכה oאברו), Gershon
Elber אלבר) oגרשו), Achi Gvirtzman (oמvגביר ,(אחי Yannis Haralambous, Ziv Horesh
חורש) ,(זיב Nir Katz (u’’כ ,(ניר Don Knuth, Eli Leiba לייבה) ,(אלי Erez Manor ארז)
,(מנור Shahrzade Mazaher (NBQ), Asaf Segal סגל) sאס), Johny Srouji (

j) and Uri Yifrah יפרח) (אורי for their help and suggestions.

REFERENCES

1. J. Srouji and D.M. Berry, ‘Arabic Formatting with ditroff/ffortid’, Electronic Publishing, 5 (4), 163–208
(1992).

2. B.W. Kernighan, ‘A Typesetter-independent TROFF’, Computing Science Technical Report No. 97, Bell
Laboratories, Murray Hill, NJ, 1982.

3. ‘Arab Standards and Metrology Organization, 8-Bit Coded Arabic/Latin Character Set for Information In-
terchange’, ASMO DS 708, Amman, Jordan, 1985.

4. C. Buchman, D.M. Berry, and J. Gonczarowski, ‘DITROFF/FFORTID, An Adaptation of the UNIX
DITROFF for Formatting Bi-Directional Text’, ACM Transactions on Office Information Systems, 3 (4),
380–397 (1985).

5. , , P , : B B ,N B
, ,l B , Bj Q Bj , D , P
1987.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

STRETCHING AND SLANTING 1457

6. Mahdi ElSayed Mahmud, Learning Arabic Calligraphy: Naskh, Requah, Tholoth, Farsi, Ibn Sina, Pub-
lisher, Cairo, Egypt, 1987.

7. ‘Genesis ()’, Torah Scrolls (), Found in any synagogue, Unknown.
8. POSTSCRIPT Language Reference Manual, Second Edition, Adobe Systems Incorporated, Addison Wesley,

Reading, MA, 1992.
9. D. Weise and D. Adler, ‘TrueType and Microsoft Windows Version 3.1’, Technical Report, Microsoft

Corporation, Redmond, WA, 1992.
10. J. André and B. Borghi, ‘Dynamic Fonts’, POSTSCRIPT Language Journal, 2 (3), 4–6 (1990).
11. ‘Adobe Type 1 Font Format’, Part No. LPS0064, Adobe Systems, Inc., 1990.
12. J. André and I. Vatton, ‘Dynamic Optical Scaling and Variable Sized Characters’, Electronic

Publishing—Origination, Dissemination, and Design, 7 (4), 231–250 (1994).
13. J.D. Becker, ‘Multilingual Word Processing’, Scientific American, 251 (1), 96–107 (1984).
14. J.D. Becker, ‘Arabic Word Processing’, Communications of the ACM, 30 (7), 600–611 (1987).
15. N. Batmanglij, New Food of Life, Mage, Washington, DC, 1992.
16. ‘Adobe TypeAlign, Windows Version, User Guide’, Part No. 0299 4255, Adobe Systems, Inc., 1991.
17. Y. Haralambous, Scholar TEX, Y. Haralambous, Lille, France, 1991.
18. K. Lagally, ‘ArabTEX, a System for Typesetting Arabic, User Manual Version 3.00’, Report Nr. 1993/11,

Fakultät Informatik, Universität Stuttgart, Stuttgart, Germany, 1993.
19. D.E. Knuth and P. MacKay, ‘Mixing Right-to-left Texts with Left-to-right Texts’, TUGboat, 8 (1), 14–25

(1987).
20. A. Khettar, ‘Prise en compte de la typographie traditionelle arabe dans un système de Publication Assistée

par Ordinateur’, Dr. Ing. These, Academie de Montpellier, Université des Sciences et Techniques du
Languedoc, Montpellier, France, 1988.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper., 29(15), 1417–1457 (1999)

