
Gustavo Sutter, July 25th 2024

Infinitely Scalable Signatures
using PostScript

1

Project Goal

Input Strokes Scalable Signature
in PostScript

2

Project Steps

Input Strokes Drawing Tool
(GUI)

Stroke
Simplification

Bezier Spline
Fitting

Signature
Randomization

Scalable Signature
in PostScript

Path Creation

newpath
0 0 moveto
1 1 2 -4 3 0 curveto
3.5 5 3 -1 6 0 curveto
stroke

P0

P1 P2

P3

P4

P5

P6

3

Important Design Choices

• Goal: Use as much PostScript as possible

• PostScript is very powerful to display graphics, so let’s make use of that

• By using PostScript we unsure that our signature is infinitely scalable

• I program in Python everyday, so let’s use this chance to learn a new
language :)

• Thus, we are only using Python to run algorithms that turn the strokes into
bezier splines

4

Drawing the boundary
Python and PostScript

Input Strokes Drawing Tool
(GUI)

Stroke
Simplification

Bezier Spline
Fitting

Path Creation Signature
Randomization

Scalable Signature
in PostScript

Python PostScript

newpath
0 0 moveto
1 1 2 -4 3 0 curveto
3.5 5 3 -1 6 0 curveto
stroke

P0

P1 P2

P3

P4

P5

P6

5

• Simple tool using Tkinter (Python library for Tk GUI tool)

• Record strokes (x, y) positions

• Allows basic control (undo, clear, save)

• Shows preview of next steps (simplification and splines)

Drawing Tool
Collecting User Input

{(200,400), (203,398), . . . , (422,230)}

x

y

6

Stroke Simplification
Removing Noise from Input

• Input strokes can be very noise, specially when inputing with a mouse

• To make the signature smoother we apply a downsampling algorithm to each
stroke

• Remove points while keeping general shape

• Strokes coordinates are normalized to the [0,1] interval

7

Stroke Simplification
Ramer–Douglas–Peucker algorithm

• The Ramer–Douglas–Peucker algorithm is used to simplify the stroke

• It is an iterative algorithm that eliminates nodes if they fall within the range
between other two nodes

Animation from RDP Wikipedia page

8

Bézier Spline Fitting
Quick Bézier curves recap

• Bézier curves allows us to create smooth curves by defining control points

• PostScript supports Cubic Bézier curves, which have 4 control points

P0

P1
P2

P3

• Mathematically the curve is described by

B(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3

9

Bézier Spline Fitting
Chaining curves to get spline

• We can connect the end of one curve to the start of next one to create a Bézier spline

• A cubic Bézier splines with N curves has 3N+1 control points

• The control points that connect two curves are also called knots

P0

P1
P2

P3

P4 P5

P6

Bi(t) = (1 − t)3P3i + 3(1 − t)2tP3i+1 + 3(1 − t)t2P3i+2 + t3P3i+3
10

Bézier Spline Fitting
Defining the control points

• Our goal then is to connect our smoothed stroke points using a cubic Bézier
points

• The knots are defined by the stroke, but how about the other control points?

P0

P1
P2

P3

P4 P5

P6 P0

P1

P2

P3

P4
P5

P6

Same knots but different control points
11

Bézier Spline Fitting
Control Points

• We have 2 unknown control points per segments, that is, 2N unknowns

• We want to find points that create smooth transition between segments:

• Now we can just work out the math and arrive at a linear system of equations
with 2N equations and 2N unknowns.

{B′￼i(1) = B′￼i+1(0)
B′￼′￼i (1) = B′￼′￼i+1(0) {B′￼′￼0(0) = 0

B′￼′￼N−1(1) = 0

12

Bézier Spline Fitting
Summing it all up

• For each (simplified) stroke we fit a cubic Bézier spline by solving a linear
system of equations

• The output of this step is a list of lists of control points for each stroke that
is written saved when the user is done

• Concretely, lines like the following are inserted into a PostScript file:

/signature [
 [[0.12 0.78] [0.15 0.73] [0.18 0.67] [0.19 0.62] [0.21 0.58] [0.2 0.55] [0.17 0.54]]
 [[0.36 0.6] [0.38 0.59] [0.4 0.59] [0.43 0.6]]
 [[0.41 0.84] [0.41 0.82] [0.41 0.8] [0.42 0.78] [0.43 0.76] [0.44 0.75]]
] def

This code is creating an array in PostScript and saving it in a variable called signature :)
13

Path Creation
Drawing Bézier Splines in PostScript

• Before thinking about your control points let’s see how to create Bézier
splines in PostScript

5 setlinewidth % Making line thicker

newpath % Initializing empty path
0 150 moveto % Moving to P0
170 230 300 280 370 130 curveto % Defining P1, P2, P3
400 50 450 80 600 150 curveto % Defining P5, P6, P7
stroke % Drawing the path

showpage % Creating page

14

Path Creation
Drawing Strokes

• It was implemented a PostScript
procedure that creates a bezier spline
given all its control points as a list

• With a generic procedure we have
higher control on how each stroke is
generated

/bezierspline {
 /cpoints exch def % Getting argument from the stack

 /nsegs cpoints length 1 sub 3 div def % Number of segments

 % Getting first point in the spline
 /pstart cpoints 0 get def
 /pstartx pstart 0 get def
 /pstarty pstart 1 get def

 % Creating a new path
 newpath

 % Starting from the first point
 pstartx pstarty moveto

 % For each segment we draw it
 0 1 nsegs 1 sub {
 /i exch def % Loop variable
 /idx i 3 mul def % Index of current segment

 /p1 cpoints idx 1 add get def % p1 = cpoints[idx][1]
 /p1x p1 0 get def % p1x = p1[0]
 /p1y p1 1 get def % p1y = p1[1]

 /p2 cpoints idx 2 add get def % p2 = cpoints[idx][2]ß
 /p2x p2 0 get def % p2x = p2[0]
 /p2y p2 1 get def % p2y = p2[1]

 /p3 cpoints idx 3 add get def % p3 = cpoints[idx][3]
 /p3x p3 0 get def % p3x = p3[0]
 /p3y p3 1 get def % p3y = p3[1]

 p1x p1y p2x p2y p3x p3y curveto % Creates segment
 } for
} def

15

Signature Randomization
Creating different versions of the signature

• Ideally we would like to change the location of the stroke points, which allows
lots of flexibility

• Changing the knots would require us to solve the linear system again

• Which is not as simple now that we are in PostScript :(

• But we can still generate random variations using two components of
PostScript:

• Random numbers

• Changes in the coordinate system
16

Signature Randomization
Randomness in Postscript

• Postscript has 3 operators to deal with randomness:

• rand - generates a random integer in

• srand - sets the random seed

• rrand - returns the random seed

• So we can use rand to generate random numbers and srand to control our
results while we are testing the system

17

Signature Randomization
Randomness in Postscript

• Usually we want variations to follow a normal
distribution

• Probability drops with higher magnitude

• But PostScript samples uniformly

• We can create a procedure that transforms
uniform samples into normal

x

p(x)

x

p(x)

Box-Muller

Transform

% Sample from a normal distribution using
% Box-Muller transform
% Z = sqrt(-2 * ln(U1)) * cos(2 * pi * U2)
% sample = mu + sigma * Z
/randomnormal {
 /sigma exch def
 /mu exch def

 % Two samples from U(0,1)
 /u1 rand 2147483647 div def
 /u2 rand 2147483647 div def

 /t1 u1 ln -2 mul sqrt def % sqrt(-2ln(u1))
 /t2 2 3.14159265 mul u2 mul cos def % cos(2 * pi * u2)

 /z t1 t2 mul def

 z sigma mul mu add
} def

18

Signature Randomization
Modifying Coordinate System

• PostScript has operators that allow us to modify the coordinate system that
can be used to determine position, orientation and scale of drawings

scale translate rotate

19

Signature Randomization
Randomly Changing Coordinates

• Combining both ideas we can randomly
change the coordinate system before
drawing each stroke

• To help us PostScript has operators to
save and restore the coordinate system

/drawsignature {
 /strokeslist exch def % Getting arg from the stack

 /nstrokes strokeslist length def % Number of strokes

 0 1 nstrokes 1 sub {
 /i exch def % Loop variable

 % Sampling random transformations
 /xoffset 0 0.01 randomnormal def
 /yoffset 0 0.01 randomnormal def
 /theta 0 5 randomnormal def
 /newscale 1 0.01 randomnormal def

 % Saving the current coordinate system on the stack
 gsave

 % Applying transformations
 xoffset yoffset translate
 theta rotate
 newscale newscale scale

 % Drawing the stroke
 strokeslist i get bezierspline stroke

 % Recovering the "clean" coordinate system
 grestore
 } for
} def

20

Drawing Scalable Signature
On the home stretch

• Using the method presented up to here we are ready to generate infinitely
scalable signatures

% Recall that’s what our Python program created
/signature [
 [[0.12 0.78] … [0.17 0.54]]
 [[0.36 0.6]…[0.43 0.6]]
 [[0.41 0.84]…[0.44 0.75]]
] def

% This procedure does everything for us
signature drawsignature

21

Demo

22

Thank you!

23

