
SE463 Term Project

Bidirectional Formatting

Authors:
Daniel M. Berry ¢¹q �¹�BN

Dana Mohaplova Daoa Mowaפmoca

1



Brief Arabic and Hebrew Reading Lesson

(1V)Dana said, “ , �¹�BN gÜy” to Daniel.

The label “(1V)” is not part of the line.

(2T) Dana said, “SaLaaM DANYAL, ShaLOM DaNYEL”
to Daniel.

AHPU characters are read from right to left. However,
since the line is embedded in an LR document, the gen-
eral flow of the line is from left to right.

2



LR Document

A chunk is a maximal length subsequence of characters
all of the same direction. Thus, Line 1V can be regarded
as having three chunks.

1. Dana said, “ (LR)

2. , �¹�BN gÜy (RL)

3. ” to Daniel. (LR)

3



The rule for reading a line of mixed text:

The line is broken into its chunks.
If the document is an LR document, then the chunks are
read from left to right. Thus, the Line 1V chunks are read
in numerical order.

Each chunk is then read in its own direction.

4



Therefore, in Line 1V,

1. chunk 1, an LR chunk, is read from left to right,

2. chunk 2, an RL chunk, is read from right to left, and

3. chunk 3, an LR chunk, is read from left to right.

5



As a result of this reading rule, the order in which the
characters are read is:

(1T) Dana said, “yÜg NB�¹� , ” to Daniel.

Line 1T is said to be in time order, while Line 1V is said
to be in visual order.

In the time-ordered rendition, each character is laid out
from left to right in the order that one hears them spoken
as someone is reading the visual order rendition according
to the reading rule.

6



Consider now Line 1T formatted to a shorter line length.

(1v) Dana said, “ , �¹�BN gÜy
” to Daniel.

These are the desired visual ordered outputs.

The line to be put into visual order is the time-ordered:

(1T) Dana said, “yÜg NB�¹� , ” to Daniel.

7



If we format this time-ordered line into the desired line

length, we get:

(1t) Dana said, “yÜg NB�¹� ,
” to Daniel.

reproducing 1v here:

(1v) Dana said, “ , �¹�BN gÜy
” to Daniel.

8

dberry
Line

dberry
Line

dberry
Line

dberry
Line

dberry
Line

dberry
Line

dberry
Line

dberry
Line



For any line number n, line n of the formatted visual-

ordered lines has exactly the same characters as line n of

the formatted time-ordered lines, albeit in a different

order!

Permuting the characters on a line does not change the

width of the line, because the sums of the widths of the

characters in different permutations of the characters are

the same.

9



Within each line, the way to get from the time-ordered

line to the visual-ordered line is to take each RL chunk in

the line and reverse the order of its characters while

preserving the order of the chunks.

This particular trick of reversing the contents of the RL

chunks works because the lines in question form an LR

document.

10



RL Document

Suppose we had an RL document. Consider

Hello Daniel, bonjour
. �¹�BN Daniel

(3v)

These lines are right justified because they are an RL
document.

11



The time-ordered input for these lines is

(3T) Hello Daniel, bonjour Daniel
NB�¹� .

This input formatted to the same line length as the
visual-ordered output above is

(3t) Hello Daniel, bonjour
Daniel NB�¹� .

12



For any line number n, line n of the formatted visual-
ordered lines has exactly the same characters as line n of
the formatted time-ordered lines, albeit in a different
order.

Within each line, the way to get from the time-ordered
line to the visual-ordered line is to first reverse all the
characters in the line.

13



Then, in the reversed line, take each LR chunk in the line
and reverse the order of its characters while preserving
the order of the chunks.

Given the time-ordered input formatted to the short line
length in Lines 3t, reversing all the characters in each line
yields:

(3t) ruojnob ,leinaD olleH
. �¹�BN leinaD

14



(3t) ruojnob ,leinaD olleH
. �¹�BN leinaD

Reversing each LR chunk in the line in its place yields the
Lines 3v.

Hello Daniel, bonjour
. �¹�BN Daniel

(3v)

15



Why Convert During Output

For flexibility for varying line lengths!

Observe the strange effect of differing line lengths. We
have seen Line 1T formatted to one line length.

(1v) Dana said, “ , �¹�BN gÜy
” to Daniel.

16



Here are the same lines formatted to a slightly longer line
length.

(1V) Dana said, “ , �¹�BN gÜy” to
Daniel.

Compare Lines 1v and 1V.

(1v) Dana said, “ , �¹�BN gÜy
” to Daniel.

17



When the line length grew long enough to accommodate
the entire RL chunk the word moved from the begin-
ning, relative to the document’s LR direction, of the
second line to the end, relative to the RL chunk’s RL
direction, of the RL chunk in the first line, and that end of
the RL chunk is at the left hand side of the chunk.

18



This seemingly counter-intuitive move makes perfect
sense when one considers the reading rule; that word
is the last word of the RL AHPU chunk.

Now suppose the lines were stored in visual order.

It must be in visual order at some line length, because
visual order depends on having lines of some length
within which to permute the characters.

19



In order to move text to its proper place when the output
line length changes, it is effectively necessary to recon-
struct the time ordering of the text in order to construct
the correct visual ordering at the new line length.

Time order is independent of line length, because we
know that the beginning character of time-ordered Line
n+1 immediately follows the last character of time-
ordered Line n in the time ordering.

20



Therefore, we store all time-ordered input in time order
and convert to visual order only during output.

Another advantage of storing all text in time order is that
it makes sorting easier.

Regardless of the characters’ visual order directions, the
most significant character of each line with respect to the
sort is at the same end of the line.

The sorting algorithm does not have to take into account
character directions, and it does not have to reverse text
before comparing.

21



Thus, in conclusion, input is in time order, text is stored
in files in time order, and conversion to visual order
occurs during output.

22



Basic Algorithm

The algorithm needs to know the current document
direction, LR or RL.

The algorithm needs to know the direction of each charac-
ter, LR or RL.

23



for each line in the file do
if the current document direction is LR then

reverse each contiguous sequence of RL
characters in the line

else (the current document direction is RL)
reverse the whole line;
reverse each contiguous sequence of LR

characters in the line
fi

od

24



This simple algorithm falls flat on its face when presented
with an embedded LR numeral inside RL text inside an
LR document, e.g., inside an English document, an
AHPU address containing a Latin house number.

To be concrete, with this simple algorithm, the time-
ordered input

25



(5T) Daniel lives at yÜg 4915 in a beautiful
house.

appears as

(5I) Daniel lives at gÜy 4915 in a beautiful
house.

instead of the correct

(5V)Daniel lives at 4915 gÜy in a beautiful
house.

26



The logical ordering of the house number is “4-9-1-5”,
and that this number must come after the name of the
street, gÜy and before the the name of the city in
the RL flow of the AHPU text that is embedded in an
English sentence in an LR document.

In the incorrect version, the LR number in the midst of
the RL address has the effect in an LR document of caus-
ing the address not to be treated as a single RL unit, but to
be treated as two RL chunks embedded inside an LR
document and to be printed in LR order with the first RL
chunk, gÜy or MaaLaS, to the left of the second RL
chunk, or MOLahS.

27



This effect is exacerbated if inside the LR numeral is
some RL text, e.g., as to give an address number, a build-
ing name, and an apartment number.

28



(7T) Daniel lives at yÜg 49 15 in a beautiful
house.

appears as

(7I) Daniel lives at gÜy 49 15 in a beautiful
house.

instead of the correct

(7V)Daniel lives at 15 49 gÜy in a beautiful
house.

29



The logical ordering of the address number, building
name, and apartment number is “4-9-alef-bet-1-5”. It
must be printed as 15 49 because it is part of an AHPU
address whose flow is right to left.

Furthermore, this address number, building name, and
apartment number must come after the name of the street,
gÜy and before the the name of the city in the RL
flow of the AHPU text that is embedded in an English
sentence in an LR document.

30



In the incorrect printing, the fact that 49 and 15 are two
LR chunks embedded within three RL chunks in an LR
document causes the 49 and 15 to be printed in LR order
instead of the correct RL order.

31



This anomaly is prevented by applying the algorithm
recursively on the RL text.

A naive solution to this anomaly is to treat each LR
numeral embedded within RL text differently, that is, put
it into LR order, but consider it after setting its printing
order as RL text. However, this naive solution cannot
handle situations in which the embedding is multilevel. A
more general multilevel, recursive algorithm is described
by the Unicode Standard.

32


