Adding Support of Persian/
Arabic Languages to vi.iv

CS 846 Course Project

Amir Seyhani, July 2024

VLIV

 Vi.lv IS a bi-directional revision of Vi

* Currently, Vim is the standard, fuII -Screen editor available
on UNIX systems

* Vim is the improved version of Vi

Vim

History of Vi: ed

a

 ed was one of the first three S L o] s RO
key elements of the Unix This is Line number two.
(assembler, shell) e

° Developed by Ken ésis the standard Unix text

editor$

Thompson in 1969 s

This is line number two.$
w €s846.txt

e Text can be edited by using o two/threa/
commands >

ed is the standard Unix text
editor$

$
4 This is line number three.$
w €s846.txt

64

q

History of Vi: ex

* Bill Joy improved the ed to be less
demanding on the processor, 1978

* Providing a more user-friendly
interface

e |tis similar to Vi's command mode

11

ed is the standard Unix text
editor

:3

This is line number three.
:1,3

ed 1s the standard Unix text
editor

This is line number three.
a
Here 1s the new line!

11,4
ed 1s the standard Unix text
editor

This is line number three.
Here is the new line!

: 3d

Here is the new line!

:1,3

ed 1s the standard Unix text
editor

Here is the new line!

History of Vi

» Bill Joy added visual mode to ex
 Releasing it as Viin 1979

e The name Vi is derived from the ex command for visual
mode

Vim

Vim: Vi Improved

Released in 1991

It used the original source code of the ed, not Vi

Features:
* syntax highlighting

* mouse support

e graphical versions

» large amount of extension in the area of ex commands

14

VLIV

* A need for a full complement of tools for bi-directional text processing

There already exist two batch-oriented bi-directional formatters:
* ditroff/ffortid
« TEX/XET

A terminal-independent, full-screen bi-directional editor was needed

* Originally developed to support Hebrew

8

vi.iv Goals

* Ability to work with bi-drectional files

« The extension Iinto bi-directional be as orthogonal as
possible

« Be language independent: works unchanged with any
reasonable terminal for any right-to-left language

« Can be built as a slight modification to an existing
implementation of Vi

9

Time Order vs Visual Order

 RL should be displayed from right to left and LR should
be displayed from left to right

« Human being would prefer to enter all text in what is
called time order

He said “D19w” to me. He said "sL." to me.
10

Time Order vs Visual Order

o Streak: a maximal length string of text within
a single line all of whose characters are iIn
languages of the same direction

e There are three streaks

It iIs the job of the displaying software to
construct the visual ordering of a file from its
time ordering

11

He said *
e

”t0 me.

Layout Algorithm

* The process of converting text from visual to time order is
called

for each line 1n the file do
if the current document direction 1s L-R then
reverse each contiguous sequence of RL characters in the line
else (the current document direction 1s R-L)
reverse the whole line about;
reverse each contiguous sequence of LR characters in the line

od

12

Layout Algorithm

 The process of converting text from visual to time order is called

* For lines longer than the physical line length, time-ordered line is
folded into pieces that fit the physical line length

 Then, each piece is subjected to layout as if each were a line itself

 Pieces are interpreted in the same document direction as the
original line

13

Layout Algorithm

 When layout should be performed?
* As the text is entered
* As the text is printed

« Drawback of first option: appearance is a function of the line
length

 Need to reconstruct the original input to calculate the new
apperance

14

Layout while Printing

* |Layout-while-printing and storing the files in the input order
IS more general

 Drawback: the time spent to lay the file out each time the
file Is printed

e The cost wasn’t considered burdensome back then!

» Layout-while-printing is more general and is not too much
more expensive

15

Encoding Characters

* Need to distinguish between LR and RL letters
* Using the proper binary code for each letter

e |n fact, at least Latin, Arabic, Farsi, and Hebrew have standard 7-
bit codes

* Using the eight-bit to distinguish LR and RL letters

 The eighth-bit method of distinguishing alphabets is satisfactory
when two languages with small alphabets are involved

16

Vi Structure

edited
file

editing
command
processor

old
screen
1mage

termcap

keyboard

new
screen
image

SCree€n manager

17

SCreen

Project Goals

* Properly showing the connected letter forms of Persian/
Arabic

 Add support for standalone mode

* Add support for timeorder mode

18

Vi Code Challenges

« ~25k lines of code!

* Code was written in C

» Spaghetti due to the high orthogonality of vi commands!
 Communication is done using global variables!

 No proper documention, some comments exists

19

Layout Function In vi.iv

* 1. Break the line into pieces according to line width
e 2. Apply the layout algorithm to each line
* The function name is “changseclan”

» After each change to a line this function is called

20

Properly Showing Connected Letters

e Position identification

* Printing the proper form based on position

Non-Letter | Standalone | Non-Letter

Non-Letter Initial Letter
Letter Medial Letter
Letter Final Non-Letter

21

Properly Showing Connected Letters

e Position identification

* Printing the proper form based on position

Non-Letter Standalone Non-Letter

Non-Letter Initial Letter
Letter Medial Letter
Letter Final Non-Letter

22

eeeeeeeeeeeeeeeeeeeeee

EEEEEEEEEEEE

FFFFFFFFFFFF

666666666666

QQQQQQQQQQQQ

EEEEEEEEEEEE

Layout Function In vi.iv

* 1. Break the line into pieces according to line width

e 2. Apply the layout algorithm to each line

* The function name was “changseclan”

* After each line this function is called

* Alternative option: format the letter inside put char functions

 We need to look at the previous and next characters
23

ASCII to Unicode

* Use the contextual form unicode table for that language

* Use the proper unicode based on the position

General | Contextual forms

i Name
Unicode | |solated | Final (End) | Medial (Middle) | Initial (Beginning)
0627 FE8D FESE
| | (‘alif
E8F
ba’
< < - A
FE95
ta’
O fal e A

Supporting Timeorder Mode

:set timeorderfl :set visualorderfl

25

Supporting Standalone Mode

260

Orthogonal Options

Standalone Connected

Time Order
Visual Order
27

Summary of Code Changes/Additions

* changseclan function

e Change char to wchar_t
e format_char_with_pos
* lookup_unicode

e Code changes required for adding the timeorder, visualorder, standalone, and
connected options

* If conditions to skip RL functions in timeorder mode
 If conditions to skip connected formatting functions in standalone mode

28

