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VLIV

 Vi.lv IS a bi-directional revision of Vi

* Currently, Vim is the standard, fuII -Screen editor available
on UNIX systems

* Vim is the improved version of Vi
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History of Vi: ed
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History of Vi: ex

* Bill Joy improved the ed to be less
demanding on the processor, 1978

* Providing a more user-friendly
interface

e |tis similar to Vi's command mode
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editor
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History of Vi

» Bill Joy added visual mode to ex
 Releasing it as Viin 1979

e The name Vi is derived from the ex command for visual
mode



Vim

Vim: Vi Improved

Released in 1991

It used the original source code of the ed, not Vi

Features:
* syntax highlighting

* mouse support

e graphical versions

» large amount of extension in the area of ex commands
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VLIV

* A need for a full complement of tools for bi-directional text processing

There already exist two batch-oriented bi-directional formatters:
* ditroff/ffortid
« TEX/XET

A terminal-independent, full-screen bi-directional editor was needed

* Originally developed to support Hebrew
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vi.iv Goals

* Ability to work with bi-drectional files

« The extension Iinto bi-directional be as orthogonal as
possible

« Be language independent: works unchanged with any
reasonable terminal for any right-to-left language

« Can be built as a slight modification to an existing
implementation of Vi
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Time Order vs Visual Order

 RL should be displayed from right to left and LR should
be displayed from left to right

« Human being would prefer to enter all text in what is
called time order

He said “D19w” to me. He said "sL." to me.
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Time Order vs Visual Order

o Streak: a maximal length string of text within
a single line all of whose characters are iIn
languages of the same direction

e There are three streaks

It iIs the job of the displaying software to
construct the visual ordering of a file from its
time ordering
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Layout Algorithm

* The process of converting text from visual to time order is
called

for each line 1n the file do
if the current document direction 1s L-R then
reverse each contiguous sequence of RL characters in the line
else (the current document direction 1s R-L)
reverse the whole line about;
reverse each contiguous sequence of LR characters in the line

od
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Layout Algorithm

 The process of converting text from visual to time order is called

* For lines longer than the physical line length, time-ordered line is
folded into pieces that fit the physical line length

 Then, each piece is subjected to layout as if each were a line itself

 Pieces are interpreted in the same document direction as the
original line
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Layout Algorithm

 When layout should be performed?
* As the text is entered
* As the text is printed

« Drawback of first option: appearance is a function of the line
length

 Need to reconstruct the original input to calculate the new
apperance
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Layout while Printing

* |Layout-while-printing and storing the files in the input order
IS more general

 Drawback: the time spent to lay the file out each time the
file Is printed

e The cost wasn’t considered burdensome back then!

» Layout-while-printing is more general and is not too much
more expensive
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Encoding Characters

* Need to distinguish between LR and RL letters
* Using the proper binary code for each letter

e |n fact, at least Latin, Arabic, Farsi, and Hebrew have standard 7-
bit codes

* Using the eight-bit to distinguish LR and RL letters

 The eighth-bit method of distinguishing alphabets is satisfactory
when two languages with small alphabets are involved
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Vi Structure
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Project Goals

* Properly showing the connected letter forms of Persian/
Arabic

 Add support for standalone mode

* Add support for timeorder mode
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Vi Code Challenges

« ~25k lines of code!

* Code was written in C

» Spaghetti due to the high orthogonality of vi commands!
 Communication is done using global variables!

 No proper documention, some comments exists
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Layout Function In vi.iv

* 1. Break the line into pieces according to line width
e 2. Apply the layout algorithm to each line
* The function name is “changseclan”

» After each change to a line this function is called
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Properly Showing Connected Letters

e Position identification

* Printing the proper form based on position

Non-Letter | Standalone | Non-Letter

Non-Letter Initial Letter
Letter Medial Letter
Letter Final Non-Letter
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Properly Showing Connected Letters

e Position identification

* Printing the proper form based on position

Non-Letter Standalone  Non-Letter

Non-Letter Initial Letter
Letter Medial Letter
Letter Final Non-Letter
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Layout Function In vi.iv

* 1. Break the line into pieces according to line width

e 2. Apply the layout algorithm to each line

* The function name was “changseclan”

* After each line this function is called

* Alternative option: format the letter inside put char functions

 We need to look at the previous and next characters
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ASCII to Unicode

* Use the contextual form unicode table for that language

* Use the proper unicode based on the position

General | Contextual forms

i Name
Unicode | |solated | Final (End) | Medial (Middle) | Initial (Beginning)
0627 FE8D FESE
| | ( ‘alif
E8F
ba’
< < - A
FE95
ta’
O fal e A



Supporting Timeorder Mode

:set timeorderfl :set visualorderfl
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Supporting Standalone Mode

260



Orthogonal Options

Standalone Connected

Time Order
Visual Order
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Summary of Code Changes/Additions

* changseclan function

e Change char to wchar_t
e format_char_with_pos
* lookup_unicode

e Code changes required for adding the timeorder, visualorder, standalone, and
connected options

* If conditions to skip RL functions in timeorder mode
 If conditions to skip connected formatting functions in standalone mode
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