
Amir Seyhani, July 2024

Adding Support of Persian/
Arabic Languages to vi.iv
CS 846 Course Project

1

vi.iv

• vi.iv is a bi-directional revision of Vi

• Currently, Vim is the standard, full-screen editor available
on UNIX systems

• Vim is the improved version of Vi

2

Vim

3

History of Vi: ed

• ed was one of the first three
key elements of the Unix
(assembler, shell)

• D e v e l o p e d b y K e n
Thompson in 1969

• Text can be edited by using
commands

a
ed is the standard Unix text
editor
This is line number two.
.
2i

.
,l
ed is the standard Unix text
editor$
$
This is line number two.$
w cs846.txt
62
3s/two/three/
,l
ed is the standard Unix text
editor$
$
This is line number three.$
w cs846.txt
64
q

4

History of Vi: ex

• Bill Joy improved the ed to be less
demanding on the processor, 1978

• Providing a more user-friendly
interface

• It is similar to Vi’s command mode

:1
ed is the standard Unix text
editor
:3
This is line number three.
:1,3
ed is the standard Unix text
editor

This is line number three.
:a
Here is the new line!

:1,4
ed is the standard Unix text
editor

This is line number three.
Here is the new line!
:3d
Here is the new line!
:1,3
ed is the standard Unix text
editor

Here is the new line!

5

History of Vi

• Bill Joy added visual mode to ex

• Releasing it as Vi in 1979

• The name Vi is derived from the ex command for visual
mode

6

Vim

• Vim: Vi Improved

• Released in 1991

• It used the original source code of the ed, not Vi

• Features:

• syntax highlighting

• mouse support

• graphical versions

• large amount of extension in the area of ex commands

7

vi.iv

• A need for a full complement of tools for bi-directional text processing

• There already exist two batch-oriented bi-directional formatters:

• ditroff/ffortid

• TEX/XET

• A terminal-independent, full-screen bi-directional editor was needed

• Originally developed to support Hebrew

8

vi.iv Goals

• Ability to work with bi-drectional files

• The extension into bi-directional be as orthogonal as
possible

• Be language independent: works unchanged with any
reasonable terminal for any right-to-left language

• Can be built as a slight modification to an existing
implementation of Vi

9

Time Order vs Visual Order

• RL should be displayed from right to left and LR should
be displayed from left to right

• Human being would prefer to enter all text in what is
called time order

He said “שלום” to me. He said “سلام” to me.
10

Time Order vs Visual Order

• Streak: a maximal length string of text within
a single line all of whose characters are in
languages of the same direction

• There are three streaks

• It is the job of the displaying software to
construct the visual ordering of a file from its
time ordering

He said “

 سلام

” to me.

11

Layout Algorithm

• The process of converting text from visual to time order is
called layout

12

Layout Algorithm

• The process of converting text from visual to time order is called
layout

• For lines longer than the physical line length, time-ordered line is
folded into pieces that fit the physical line length

• Then, each piece is subjected to layout as if each were a line itself

• Pieces are interpreted in the same document direction as the
original line

13

Layout Algorithm

• When layout should be performed?

• As the text is entered

• As the text is printed

• Drawback of first option: appearance is a function of the line
length

• Need to reconstruct the original input to calculate the new
apperance

14

Layout while Printing

• Layout-while-printing and storing the files in the input order
is more general

• Drawback: the time spent to lay the file out each time the
file is printed

• The cost wasn’t considered burdensome back then!

• Layout-while-printing is more general and is not too much
more expensive

15

Encoding Characters

• Need to distinguish between LR and RL letters

• Using the proper binary code for each letter

• In fact, at least Latin, Arabic, Farsi, and Hebrew have standard 7-
bit codes

• Using the eight-bit to distinguish LR and RL letters

• The eighth-bit method of distinguishing alphabets is satisfactory
when two languages with small alphabets are involved

16

Vi Structure

17

Project Goals

• Properly showing the connected letter forms of Persian/
Arabic

• Add support for standalone mode

• Add support for timeorder mode

18

Vi Code Challenges

• ~25k lines of code!

• Code was written in C

• Spaghetti due to the high orthogonality of vi commands!

• Communication is done using global variables!

• No proper documention, some comments exists

19

Layout Function in vi.iv

• 1. Break the line into pieces according to line width

• 2. Apply the layout algorithm to each line

• The function name is “changseclan”

• After each change to a line this function is called

20

Properly Showing Connected Letters

• Position identification

• Printing the proper form based on position

Non-Letter Standalone Non-Letter

Non-Letter Initial Letter

Letter Medial Letter

Letter Final Non-Letter

21

Properly Showing Connected Letters

• Position identification

• Printing the proper form based on position

22

Non-Letter Standalone Non-Letter

Non-Letter Initial Letter

Letter Medial Letter

Letter Final Non-Letter

Layout Function in vi.iv

• 1. Break the line into pieces according to line width

• 2. Apply the layout algorithm to each line

• The function name was “changseclan”

• After each line this function is called

• Alternative option: format the letter inside put char functions

• We need to look at the previous and next characters
23

ASCII to Unicode

• Use the contextual form unicode table for that language

• Use the proper unicode based on the position

24

Supporting Timeorder Mode

25

Supporting Standalone Mode

26

Orthogonal Options

27

Standalone Connected

Time Order

Visual Order

Summary of Code Changes/Additions

• changseclan function

• Change char to wchar_t

• format_char_with_pos

• lookup_unicode

• Code changes required for adding the timeorder, visualorder, standalone, and
connected options

• If conditions to skip RL functions in timeorder mode

• If conditions to skip connected formatting functions in standalone mode

28

