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Introduction
<+ Importance of Al in Typography

> Enhanced Creativity: Al enables designers to create complex and visually appealing text styles that were previously

difficult to achieve.
> Efficiency: Automates time-consuming tasks such as font synthesis and style transfer.

> Consistency and Quality: Ensures high-quality output that maintains consistent style and aesthetics.
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Introduction

<+ Objective of the Presentation

> Methodology: Techniques and algorithms developed for Al-driven Typography.

> Application: Practical uses of these methodologies for different types of design.
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Presentation Overview

< Methodology
< Artistic and Dynamic Style Transfer: Text Style Transfer, Font Style Transfer, and Font Style Interpolation
<+ Semantic Typography
< User-Driven Typography
< Applications
<+ Graphic and Visual Design: Text Generation with AI, Logo Design, and Poster Design

<+ Scene Text Generation and Manipulation
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Methodology
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*
Artistic and Dynamic Style Transfer

Changes the Style of a piece of Text based on the given Style.

<+ Examples include adding textures, patterns, and other stylistic
modifications to plain text to make it more visually engaging.

<+ Text Style Transfer
< Applying artistic effects and decorative elements to text.

(a) input  (b) stylistic degree of glyph (C) stren th (d) stroke size
<+ Font Style Transfer e b

o . J\ Font Library with 266 Chinese characters RORTMRE-ER3, RBFREILO
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(a) Input (b) Preprocessing (c¢) Font Generation (d) Text Rendering

Yang et al. “Controllable Artistic Text Style Transfer via Shape-Matching GAN”, ICCV 2019 UNIVERSITY OF
Lian et al. “EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts”, ACM Transactions on Graphic 2018 W FACULTY OF
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*
Artistic and Dynamic Style Transfer

< Font Style Interpolation
< Combines different font styles to create a smooth transition between them

< Useful for creating hybrid fonts that merge characteristics of multiple styles,
providing flexibility and variety in font design.

A+A = A
b+ A=A
ke

Kondo et al. “Font Style Interpolation with Diffusion Models”, arXiv 2024 W UNIVERSITY OF FACULTY OF

PAGE 7 @ WATE R LOO MATHEMATICS

&

generated



Text Style Transfer - Paper Overview

<+ Key Contributions
> Novel Shape-Matching GAN Framework

= Bidirectional shape matching to map styles to glyphs at various
deformation levels.

= Real-time control of stylistic degree via an adjustable parameter.
> Scale-Controllable Module

= Continuous adjustment of glyph deformation.

= Empowers the network to learn multi-scale shape features from style

. input  (b) stylistic d f glyph trength (d) stroke si
images and transfer them to target text. Wenpe:  Q)espuiniegmatiieh (aiilivkasie

> Real-Time Performance
= Achieves high-quality, diversified artistic text generation in real-
time.

Yang et al. “Controllable Artistic Text Style Transfer via Shape-Matching GAN”, ICCV 2019
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Text Style Transfer - Paper Overview
Methodology:

> Backward Structure Transfer: Simplifies the style image to various coarse levels, providing robust multi-scale shape mapping for data-
driven learning.

> Forward Structure Transfer: Transfers shape features from the style image to the target text, achieving scale-controllable style transfer.

> Texture Transfer Network: Renders the texture in the style image onto the target text, completing the artistic text stylization process.

Stage I: Input Preprocessing (Backward Structure Transfer)
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Figure 4: Overview of our bidirectional shape matching framework.

Yang et al. “Controllable Artistic Text Style Transfer via Shape-Matching GAN”, ICCV 2019 (a) Input style  (b) Target text (h) Ours W UNIVERSITY OF FACULTY OF
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Font Style Transfer - Paper Overview

Methodology:
% Stroke Extraction

> Utilizes a non-rigid point set registration approach to extract stroke

trajectories from user-written samples. : earning - Feed-back -

» Constructs a font skeleton manifold for reference.

<+ Handwriting Style Learning

Train NNs

L Reference Difference
> Uses Artificial Neural Networks (ANNS) to learn stroke Shape and B st e sentcsuninasaaus
layout styles. : G ting B
y y : enera Ing :
> Recovers handwriting details, such as stroke connectivity and contour ; - e i
shapes. ‘ o o :
L ‘ k]
+ Handwriting Synthesis : ’ 5
& dyn ' Reference Apply NNs Difference v
> Generates new characters by applying learned style to reference data. ; :
: Add Handwriting !

> Combines human-written samples with machine-generated characters
for better visual quality.

Lian et al. “EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts”, ACM Transactions on Graphic 2018 W UNIVERSITY OF FACULTY OF
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Font Style Transfer - Paper Overview

Dataset Statistics:
< Training Data:

> Small set of carefully-selected samples (as few as 1%
of the total characters) written by an ordinary person.

> Includes multiple styles and variations to capture the
full range of handwriting characteristics.

% Character Set:

> Chinese characters: GB18030-2000 standard with
27,533 characters.

> Adaptable to other writing systems with large
character sets.

Lian et al. “EasyFont: A Style Learning-Based System to Easily Build Your Large-Scale Handwriting Fonts”, ACM Transactions on Graphic 2018 W UNIVERSITY OF FACULTY OF
7N
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Font Style Transfer - Paper Overview

How it works:

X/
°oe

Lian et al.
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Font Library with 266 Chinese characters

Direct
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(Existing 7 " ‘
__Methods) | .

(b) Preprocessing

Font Library with 27.533 Chinese characters

(¢) Font Generation

PAGE 12

Text Segmentation: Obtain individual character images by segmenting rectified text pictures.
Stroke Extraction: Extract the writing trajectory of each stroke for every character image.

Overall Style Learning: Employ ANNs to learn the user’s overall handwriting style.

Font Generation: Vectorize images of human-written samples and synthesis results for other characters.

ROYEFHRNECZER3, RRFREICD
LieedifR, WRELK, MBI, K
FHIZ, EAWT N30 3, RMILGTBEM,
TR A SCER LR, DM AR, & Wik
Fififfied 5 &, X RRHEE, #AHK- FIRE.
EWR,F Lol F U@, R RRAA 2R!IT

ROAREKTFBRLL_ERI, R|FERETR
Lt H, WEAR, MBI, RFHELKL
43, ELBTRATOHO 3, RAKDEBM,
TERBEAFAFEOR, DAMASI K, BB
RAOLE O A RRAY TRMAFORTRD,
REW “FRLOU, TEHRB BERRBAIR!™

(d) Text Rendering

Details Modeling: Analyze and describe the connectivity of all sequential stroke pairs and details on the contour for each type of stroke.

Handwriting Synthesis: Create trajectory for each character by adding the learned style on reference data and recovering handwriting details.

UNIVERSITY OF FACULTY OF
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Font Style Interpolation - Paper Overview

Methodology:
< Conditional Diffusion Model
> Uses a U-Net architecture for denoising, conditioned on character class and style vector.

> Generates character images by iteratively denoising from random noise.

<+ Interpolation Approaches _ A
s — r
€p 1
> Image-Blending X1 ’@ > Xt-1 A i’@*’*’
X; I‘Z A noise
= Blends two character images using pixel-wise operations. Denoising process (a) Image blending
= Generates a realistic image from the blended input during denoising. Al s: <
Al e
> Condition-Blendin , : >
8 Al s, ?%é ’<;> > All »sa- +[::::::::+> 'y
= Blends style feature vectors from two reference images. " : : , |
Y urev W 1mag (b) Condition blending (c) Noise blending
= Generates intermediate styles by interpolating style condition vectors.
> Noise-Blending
= Blends estimated noise images for two styles during the denoising process.
= Affects the final generated image by merging styles at the noise level.
Kondo et al. “Font Style Interpolation with Diffusion Models”, arXiv 2024 W UNIVERSITY OF FACULTY OF
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Font Style Interpolation - Paper Overview

Dataset Statistics:

> MyFonts Dataset:
= 17,412 fonts split into 13,938 training fonts, 1,734 validation fonts, and 1,740 test fonts.
= Diverse styles including standard and decorative fonts.
> GoogleFonts Dataset:
= Additional test set with less style diversity.
= 2,545 fonts categorized into Serif, Sans-serif, Handwriting, and Display.

= Includes font families with different weights (e.g., light, medium, bold).

Kondo et al. “Font Style Interpolation with Diffusion Models”, arXiv 2024 W UNIVERSITY OF FACULTY OF
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Font Style Interpolation - Paper Overview

Font Interpolation Examples

n ABCDABCDABCDABCD

r ABCODHBLDGBCOVABECD
@magedendnys S BCDABCDABSCDABECD
) condiionvending d B CD ABCDADBDCDABCTM®
@Nosebending A B CD A B C D ABRC)IPABEGD
et 4 BCDABCDABCDABCOCD

Random pair1 Random pair2 Random pair3 Random pair4

Kondo et al. “Font Style Interpolation with Diffusion Models”, arXiv 2024 W UNIVERSITY OF FACULTY OF
' WATERLOOQO | matHemaTics
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Semantic Typography

What is it?
« Definition:

- Semantic Typography integrates semantic understanding with typography design, allowing text to reflect
its meaning and context visually.

- Purpose:

- Enhance the expressiveness and functionality of text through intelligent and context-aware design.

UNIC, ORN WANE (gAFE LAMP VASG
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Tanveer et al. “DS-Fusion: Artistic Typography via Discriminated and Stylized Diffusion”, ICCV 2023 W QNIVERSITY OF
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Semantic Typography - Paper Overview

Methodology:

% Latent Diffusion Model

> Utilizes a denoising generator to construct the latent space of
given styles.

Style Prompt (- Data Flow ‘I
. o “cat” + “cute” Condition Vector | @ Pre-trained and Frozen |
> Encoder-decoder architecture conditioned on text prompts. I Vo T -
Latent Q‘Q _ Denoising ~ Infer Decod
> Gaussian noise applied to style images, denoised to produce Dﬁ‘;‘l";" - E“""d‘z T ZgT T T Zg G(%lzﬂggr —~ 7, -~ e;—* '
the stylized glyph. J% T | Output
Style Images [’di ff .
o . o Glyph Image(s /&\ €
%+ CNN-Based Discriminator /P maels)
C —— > Encoder — 7 g » Discriminator — [ ;.
> Distinguishes between real and fake glyphs. 4(C) -
> Ensures the stylized output retains the structure of the original
font.
> Loss Function: Combines diffusion loss and discriminator loss.
Tanveer et al. “DS-Fusion: Artistic Typography via Discriminated and Stylized Diffusion”, ICCV 2023 W VUVN AV_IEESéTI\_( OOFO :lﬁ'zIETNTAg::c .
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Semantic Typography - Paper Overview

Dataset Statistics:

<+ Font Datasets
> Variety of fonts collected from online repositories.
> Includes serif, sans-serif, script, and decorative fonts.
> Total of 50,000 font styles with diverse design characteristics.
<+ Style Images
> Thousands of style images sourced from digital art databases.
> Includes textures, patterns, and artistic elements.

DRAGON PLANT OCTOPUS USER STUDY

. fﬁ*\ fi % J ,‘
~ R QB NI C SL
RRR NNNLCCC
Ours
\ \ [ /

) _ o o _ S W UNIVERSITY OF FACULTY OF
Tanveer et al. “DS-Fusion: Artistic Typography via Discriminated and Stylized Diffusion”, ICCV 2023 @ WATERLOO | mathemarics
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Semantic Typography

Impact on Typography
<+ Enhanced Creativity
> Artistic Expression:
= Enables designers to explore new creative horizons.
= Facilitates the generation of unique and visually appealing typographic styles.
> Customization: Allows for personalized font creation, catering to specific aesthetic preferences and branding needs.
<+ Improved Readability and Semantics
> Legibility: Balances artistic stylization with readability, ensuring text remains clear and comprehensible.
> Semantic Relevance: Incorporates semantic understanding to align visual style with the meaning and context of the text.
< Broad Applicability
> Advertising and Branding: Provides tools for creating eye-catching and memorable typographic designs.

> Digital Art and Media: Enhances the visual impact of digital art, posters, and multimedia content.

PAGE 19 W UNIVERSITY OF FACULTY OF
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User-Driven Typography

Characteristics:

Pipeline Designer

Pipeline Designer
< Active User Participation: Styls/ Purpose/Emotion...

G &

> Users are directly involved in decision-making processes.

Instruction:
> They contribute ideas, preferences, and feedback throughout the L
design lifecycle. S
prompt
 text="World Peace , prompt=PROMPTE
glyph=GLYPH®@ , prompt=PROMPT1

h'q.* P_pip:[ <Prompt : "

He et al. “MetaDesigner: Advancing Artistic Typography through AI-Driven, User-Centric, and Multilingual WordArt Synthesis”, arXiv 2024 W UNIVERSITY OF EACULTY OF
7N
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N
User-Driven Typography

Characteristics:

Pipeline Designer

Pipeline Designer

G &

Instruction:
Instruction Form User
. ° oy @ prompt
< Customizability: 1 - 6LYPHO
text="World Peace ',prompt=PROMFTO
> Design outcomes are highly customizable based on individual user DRDART
inputs glyph=GLYPH®, prompt=PROMPT1
k'ﬁﬁ P_pip:[ <Prompt : "
. oo . . .
> Users have significant control over the final product or service features. |
He et al. “MetaDesigner: Advancing Artistic Typography through AI-Driven, User-Centric, and Multilingual WordArt Synthesis”, arXiv 2024 W UNIVERSITY OF EACULTY OF
7N
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N
User-Driven Typography

Characteristics:

Pipeline Designer

Pipeline Designer

G &

Instruction:
Instruction Form User
prompt
text="World Peace ',prompt=PROMPT®
glyph=GLYPH®, prompt=PROMPT1

h'q.* P_pip:[ <Prompt : "

R
<+ Dynamic Interaction:
» Continuous interaction between designers and users.
> Frequent iterations based on user feedback to refine the design.
He et al. “MetaDesigner: Advancing Artistic Typography through AI-Driven, User-Centric, and Multilingual WordArt Synthesis”, arXiv 2024 W UNIVERSITY OF FACULTY OF
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User-Driven Typography
Methodology Framework:

.
°w

Pipeline Designer:

> Transforms user prompts into structured tasks for the Glyph and
Texture Designers.

> Uses GPT-4 for prompt extension and feedback integration.

K2
o

Glyph Designer:

> Generates diverse glyph types (Normal, Traditional, Semantic) based
on user inputs.

> Ensures readability and context-appropriateness of the glyphs.

.
°

Texture Designer:

> Enhances glyphs with various texture styles using a Tree-of-Thought
(ToT) model selection framework.

> Integrates user feedback to refine texture designs.

K2
o

Q&A Evaluation Agent:
> Iteratively refines the output based on multimodal and user feedback.

> Adjusts hyperparameters to align with user-defined stylistic and
thematic preferences.

He et al. “MetaDesigner: Advancing Artistic Typography through AI-Driven, User-Centric, and
PAGE 23

Pipeline Designer

y
Glyph Designer

'

Texture Designer

Pipeline Designer Glyph Designer Texture Designer
tg@ ), Style/Purpess/Emotion.... Mﬂwfuﬁf»‘;‘ Raaf/sDChinass/Patnting
Pe s o) @ O ©60 £
6 & o = d
Instruction: Instruction:
Instruction:
Instruction Form User Instruction Form pipeline designer Instruction Form pipeline designer
- N Tag: ‘Chinese Style’
; v Tag “Normal”™
prompt= Wor i % 3& s mal {Painting
PHE Semantic ‘raditional "'*'
O S vy O
text ,prompt=PROMPTO Y &8
WORDART=TE - BaseModels H ControlNet
glyph=GLYPHE, prospt=PH Chain:of: Tree-of-Thought Model Selection
‘/\ gos i Thought Tag: ‘Funny’
P_pip:[ <Prompt : = P_gly : [<Font: “Semantic”>, <promt: “branch, % p_tex: [<prompt: “leaves, l%.sne
> ] leaves..”>... ] branches, sun ...">, i -

QA'EvaI : User & Multimodal Model Feedback Evaluation

User

°E =)

e

FS LLavA
tf’ycfcrun(c]: * cartoon is preferred * r 5
Score: 3 [Object1]: branch | —<desc: branch and leaves...> %
[Object2]: leaves |—<desc: green leaves ...> A
@ [Object3]: |— <desc: sun around...> ... St
User Final Reason: The image contains : branch, leaves, and

n; ocean is absent
Consistency Score: 7

[Consistency] :7 ; [Quality]:
Final Score: 7

In-Consistency Objs: [“Peace Dove”....

[<Cons|s(cngy> 7; <Quality>:7; <Glyph>:8; <>.. f 5

8.0

Reward: {User-preference: “cartoon is preferred ”;

ga : Prompt Engineering @

], Quality : 7 ...}

@ : Language Model : Image Synthesis ¢% :Tunable Hyper Parameter

UNIVERSITY OF

Multilingual WordArt Synthesis”, arXiv 2024 /@\ WATERLOO
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User-Driven Typography

Examples

1 O ral u* ”n 1] Y KN \ "
“World Peace* tt 5770 14 82 & “EhuvAnb

“World Peace” in Chinese “World Peace” in Korean and Japanese

He et al. “MetaDesigner: Advancing Artistic Typography through AI-Driven, User-Centric, and Multilingual WordArt Synthesis”, arXiv 2024 W UNIVERSITY OF
EAS FACULTY OF
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Applications
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Graphic and Visual Design

Objective: Enhance graphic and visual design by leveraging AI-driven
typography techniques.

>
>

e

Significance: Enables the creation of visually appealing and personalized Sl 4.-a
. 2| EaluE
' Men KQ
o E ) o
Key Applications:
<+ Logo Design: Creating Semantic Typographic Logos M a0 /\ B B sk
AN A
c| B i ﬂ N
> Uses Al to generate logos that convey the semantic meaning of the brand or | e =
message. E1 =
Xiao et al. “TypeDance: Creating Semantic Typographic Logos from Image through Personalized Generation”, CHI 2024 W UNIVERSITY OF EACULTY OF
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*
Graphic and Visual Design

Objective: Enhance graphic and visual design by leveraging AI-driven
typography techniques.

a
Ll

Consistency

e
Significance: Enables the creation of visually appealing and personalized

1ong Kn@

Key Applications: M S5 . G
. Y. ﬂ AN #]

<+ Logo Design: Creating Semantic Typographic Logos

Diversity

E1
> Uses Al to generate logos that convey the semantic meaning of the brand or
message. 4
s LAR R 1E
<+ Poster Design: Multimodal Text Image Generation \«ﬂ = |
> Integrates visual harmony and text comprehension to create visually appealing %
posters. \/
“IARBR1 &

Xiao et al. “TypeDance: Creating Semantic Typographic Logos from Image through Personalized Generation”, CHI 2024 UNIVERSITY OF
Gao et al. “TextPainter: Multimodal Text Image Generation with Visual-harmony and Text-comprehension for Poster Design”, MM 2023 W WATERLOO

@
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Graphic and Visual Design

< Visual Text Generation: Enhancing Text Rendering

- Leverages language models to render text with enhanced visual
appeal and context.

< Applications

> Branding and Advertising: Custom logos and
advertisements that stand out and effectively communicate
the brand’s message.

> Digital Media and Art: Creating posters, digital art, and
multimedia content with visually integrated and stylistically
rich text.

Chen et al. “TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering”, arXiv 2023

W UNIVERSITY OF FACULTY OF
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Logo Design

Model and Generation Process:

< Architecture Drag-Select )
Flower
> Utilizes a diffusion model that combines fg /0§°
image-to-image translation with text g o /f L
eneration. ® _
g Click /f Typeface
. . . 2 @
> Integrates semantic understanding to align T ’
typeface with imagery. :sz @ “likeapainting” P Diffusion 5 Ty o User
Model 5 prompt  max f(8)
5 8
< Components rag e Semantc s @ e
CLIP Interrogator Flower Imagery
> Encoder-Decoder Network: Encodes the m 3 o)
input image and decodes it into typographic 2 Color o g- =
elements. § Click 2.. Clustering . g “
¢ v\ : : W 3
> StyleGAN: Applies stylistic transformations 2 e ! e ! t 1 ' |JC
to blend text and image elements. & o sl
> AttentiOn Mechanism: Ensures the teXt [ S Selection ........... ' s eecemseacaacassssassasssssssssssasssssassasssaraanaanan Generation ................................................................... "
integrates naturally with the image
background.
Xiao et al. “TypeDance: Creating Semantic Typographic Logos from Image through Personalized Generation”, CHI 2024 W UNIVERSITY OF FACULTY OF
N
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Poster Design

% Model
> Architecture

= Based on StyleGAN, incorporates glyph
and style encoders.

> Components o s cenerator )\ AR
p gidd o s Skip connection eneraror lAal‘Elg e R :L> fAﬁlFﬁlg
S I 4 adv \
= Glyph Encoder: Encodes text glyph e i Lrec 1 8 “
features. Glyph MR » —
— A XBR1E Encoder et | (R elocks Ekﬁzml g Lore ‘ ‘
_Jx ; '
= Color Style Encoder: Extracts local and TextGyph | O Loss Boster
lobal color styles from the poster i =
ackground. g g ' I;b [ Cross-attention |
__ Fusion -]
= CLIP Text Encoder: Encodes text ( & f (! = Upsample | | WRGHN
semantics at sentence and word levels. , Color Style ! = Conv R overet]
B © =l «— CLIP Text ‘ y
Encoder =='H | AdalN @@
‘ / t i} Encoder o T T
. 3 . : - = | s Xavi RGB sy
Fusion Module: Merges visual and o o PN ek Zy . e IO

semantic features.

= Generator: Generates text images that
harmonize with the poster background.

Gao et al. “TextPainter: Multimodal Text Image Generation with Visual-harmony and Text-comprehension for Poster Design”, MM 2023 W UNIVERSITY OF EACULTY OF
7N
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Poster Design

% Generation Process

> Input

= User provides the poster background image,
text content, and text position.

> Local and Global Color Harmony

IANRIE

= Color style encoder extracts style information
from the poster background.

> Visual and Textual Fusion /

» CLIP text encoder extracts semantic features (
from the text.

= Fusion module integrates these features with
visual elements. -
ulAleé\ “lkamlé” “IARBEIIS” “IARBEISH

(“only one for one person”) (“only one for one person™)  (“only one for one person”)  (“only one for one person”)

> Text Image Generation

= Generator produces the final text image,
ensuring visual harmony and semantic
relevance.

Gao et al. “TextPainter: Multimodal Text Image Generation with Visual-harmony and Text-comprehension for Poster Design”, MM 2023 W UNIVERSITY OF FACULTY OF
7N
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W [FREATH OF THE | ’
o A
WILD ‘

A . Diffusion Model

& A stamp of Breath of the Wild <eos> & :
Language g : Dty Language
—> U-Net
Model M; 39] [x108] [y96 <son> Model M, K
Layout Planning ppartcpacshac Layout Encoding

Prompt and Language-format Layout

[prompt] Visualize -

Visual Text Generation

% Model:

» Architecture

= Combines a fine-tuned large language model (LLM) with a diffusion
model.

> Components
= Layout Planning: LLM plans text.

= Layout Encoding: LLM encodes text position and content at the
line level within the diffusion model.

% Generation Process

> Input: User provides a text prompt and optionally keywords. ' IS AN
The handwritten words Hello World A logo of Winter in artistic font,

> Layout Planning: LLM infers or uses provided keywords to determine e on s wall e £ rieoe light etiect Tade HyantsRtiake

text layout.

> Layout Encoding: LLM encodes text layout into a format suitable for the
diffusion model.

> Image Generation: Diffusion model generates the final image with
integrated text based on the encoded layout.

Chen et al. “TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering”, arXiv 2023 UNIVERSITY OF
W FACULTY OF

N WATERLOOQO | matHemaTics
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Scene Text Generation and Manipulation

< Definition: Creating and modifying text within images to appear naturally integrated into various backgrounds.

< Application: Digital media, advertising, augmented reality, and multilingual text rendering.

“A welcome sign reads ‘[...] AAAI 2024’ of an international conference.”
— =
XRBEE] neXxanesaro 8

AMAY 2024
Generation
'RE . cag® 08 8
[Welcome (o] 1Bk ] [Jlo6po noscanoears 6] [Budisionsug]
“FOOD” — “SAFE” “HELP” _ “HOLY” “DELL” — “DALE” “STOP” _ “PASS”
HOME MADE HOME MADE
Manipulation SAFE
CASK l'()\l)”rll\ilzrll (';:‘h CONDITIONED
ALES ALES
GARDEN GARDEN
Santoso et al. “On Manipulating Scene Text in the Wild with Diffusion Models”, WACV 2024 W UNIVERSITY OF FACULTY OF
Zhang et al. “Brush Your Text: Synthesize Any Scene Text on Images via Diffusion Model”, AAAI 2024 /@\ WATERLOO | matHemaTICS
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Scene Text Generation and Manipulation

One-shot Text
MethOdOIOgy: A text that 9 A style A text that ﬂ recognition
reads \JUSY Text ] adaptation reads \TACE! Text guidance
ceads S [ encoder — cade DK ) encoder — etgt
‘:‘ Il’lpllt PI‘ 0 ) CeSSing Source prompt ﬂ Target prompt ﬂ *
> Text is rendered into a sketch image and edge map. TR T~ “-- Wi
A Pretrained — 0 5 One-shot
o 4. . el:::l Tt e C—{  biffusion model l{::' A AN Y =1  Difiusion model
> Textual description of the scene is encoded as a prompt. | [} l g 'L l V¥ ! y o
. . Input image Noise /\ Reconstructed | | Input image Noise Reconstructed
X lefllSlon MOdel Gradient flow with Gradient flow with
€ == Loconstruction loss <-- cross-entropy loss

> Uses a Latent Diffusion Model (LDM) for denoising and image generation.
< One-Shot Style Adaptation

> Fine-tunes the diffusion model to maintain the source style on the edited text.
<+ Text Recognition Guidance

> Uses a text recognition model to guide the diffusion process, ensuring accuracy and readability.

Santoso et al. “On Manipulating Scene Text in the Wild with Diffusion Models”, WACV 2024
FACULTY OF
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Scene Text Generation and Manipulation

Input Read as: DBEST (Ours)
Examples b
CVPR
ICML IC ML
>
- ‘
“GOLDEN" “PYTHON" “MOMENT" i I
M M M - . M l _ DnmALE
ICCV ‘ ‘
Santoso et al. “On Manipulating Scene Text in the Wild with Diffusion Models”, WACV 2024 r W UNIVERSITY OF FACULTY OF
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Conclusion

Key Insights
<+ Advancements in AI-Driven Typography
> Al models, such as diffusion models and GANSs, significantly improve the creativity and functionality of text and font generation.

> Integration of user inputs and preferences enhances personalization and engagement in design processes.

< Impact on Visual Communication
> Al-driven techniques facilitate the creation of visually appealing and contextually relevant designs.

> Applications span across branding, digital media, advertising, and educational content, offering versatile tools for designers.

< Future Directions

> Continued development in AI and machine learning will further refine and expand the capabilities of typography and visual
design tools.

> Potential for more interactive and user-friendly design platforms, leveraging real-time feedback and advanced semantic
understanding.

W UNIVERSITY OF FACULTY OF
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Thank youl!

Any Questions?

Amin Bigdeli abigdeli@uwaterloo.ca
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