
Text Formatting (ms 984)

by

Daniel M. Berry

ABSTRACT

Text formatting is described in terms of algorithms that
are used and their effects on the appearance of the printed
document. Multilingual and multidirectional documents are
considered. The interactions of the basic line-by-line for-
matting and more advanced paragraph formatting algo-
rithms with text size; line length; justification; hyphenation;
and figure, table, and footnote placement are considered.
Both compiling and WYSIWYG formatters are described
in terms of these algorithms and considerations.

Keywords: algorithms, compiling, direct-manipulation,
document, figure, footnote, formatter, formatting, hyphena-
tion, justification, markup, multidirectional, multilingual,
point size, table, text, WYSIWYG

INTRODUCTION

The text formatting problem, to be solved by software
residing on a computer, is to take a sequence of words
stored in an input file and arrange them in the same order
on as many pages as are needed, subject to the user’s com-
mands and his choices on a variety of constraints and
options. The pages can be printed on paper at any time, and
usually the user is able to see on the computer’s screen
approximately how the pages will appear when printed.
The approximation is usually accurate to the resolution of
the computer’s screen.

The results the user gets depend on the commands he
gives and on value of the choice he makes for each con-
straint or option. These commands are given and choices
are made by directly or indirectly (See the later discussion
on direct manipulation.) inserting additional characters,
often called markup, at appropriate points in the input file.
Later in the article, the commands are summarized and a
full list of constraints and options is given. In the mean
time, the constraints and options are collectively referred to
as “choices”. Telling a formatter to apply a particular
option is called turning the option on and telling the for-
matter not to apply a particular option is called turning the
option off.

For concreteness, the text that you are now reading was
formatted in lines that are 3.154 inches (80.1 millimeters)
wide, in the Sabon family of typefaces at the 10 point size
on lines spaced at 12 points. The text is strictly left to right
and is left and right justified with hyphenation turned on.
The commands issued were mainly for introducing the title,
introducing the author’s name, introducing sections, intro-
ducing paragraphs, giving numbered and labelled lists,
specifying footnotes, and including figures.

Each formatter worth its salt allows the user to give
commands and to set the value of all choices. Some do not
allow making some of these choices, e.g., one very popular
formatter in its academic, not professional version does not
allow installing automatic hyphenation.

The formatters that are considered in this article are MS
Word [14], FrameMaker [3], TEX with LATEX,1 ditroff
[16, 8], and the Mozilla browser [15]. These are both
representative and available, and are widespread in some
sense of the word. The online version of this article shows
the text of this article formatted by each of these for-
matters, both with and without hyphenation if possible, in a
two-column format that resembles as much as conveniently
possible the hard copy you are looking at right now.2

In this article, each formatter is classified by the choices
it makes for the user and what it allows the user to choose.

This article discusses each choice, i.e., constraint and
option, by briefly describing both the algorithmic issues
involved and the effect each choice has on the appearance
of a formatted document. Many of these choices interact
with each other.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 LATEX is TEX extended by macro-defined commands that
implement a collection of aesthetic designs for a variety of
document types used by computer scientists.

2 The IEEE two-column conference proceedings format
was readily available for all the listed formatters except
Mozilla. The author is not enough of an expert in all of
these formatters to be able to match the encyclopedia’s
format exactly; so this close match is used instead.

1



The plan for this article is:

1. to define some terms;
2. to describe properties of the text to be formatted;
3. to describe the basic formatting algorithms in

terms of their effects; and
4. to present each constraint and option, in terms of

its effect on the formatting algorithm and in terms
of its affect on the final appearance of a document.

The focus of this article is strictly on the formatting
issues. (Other articles in this encyclopedia deal
with details of typefaces (also called “fonts”),
markup language, and the linguistic aspects of
hyphenation.)

TERMS

Terms are defined by their being used in descriptive
sentences.

Document:

The text being formatted is called the document.

Input, Output, and Output Lines:

This article distinguishes between input and output. The
input is a sequence of characters some of which are space,
tab, newline, and endfile. The output is a collection of char-
acters each printed at a particular position on a page. A col-
lection of characters with the same horizontal position
forms an output line. If we consider the characters of one
output line listed in order of their vertical positions, then
we can talk about the sequence of characters in the output
line.

Character Bounding Box, Glyph, Side Bearings, Width,
Boundary, and Adjacency:

See Figure 1 for an output line consisting of the two
nonsense words “Hmg Hmg” printed at a very large size.
In this figure, various axes, distances, and properties of the
characters are identified, and these are the subject of the
following discussion.

In a modern printer that accepts PostScript as its page
description language, each character has a bounding box,
an imaginary rectangle that circumscribes the shape of the
character, known also as the character’s glyph. The bound-
ing box is shown explicitly for only the first “g”. If the
character is not to connect with its neighbors, as is the case
with nonscript versions of Latin letters, then to the left and

to the right of the bounding box are some regions in which
nothing is printed. The region to the left of the bounding
box is called the left side bearing and the region to the right
of the bounding box is called the right side bearing. In this
article, the left edge of the left side bearing is called the left
boundary of the character, and the right edge of the right
side bearing is called the right boundary of the character.
The distance from the left boundary to the right boundary
of a character is the character’s width. Characters within
one word, such as each “Hmg” in Figure 1, are normally
printed with their side boundaries touching each other. Two
characters with boundaries touching each other are called
adjacent.

All the characters on one output line are printed on a
single base line. The intersection of a character’s left boun-
dary and the base line is called the character’s origin. Thus
for a pair of adjacent characters, the origin of the right-
hand character coincides with the left-hand character’s
right boundary.

Figure 2 shows two Arabic characters that connect with
each other. For each, the side bearing on the connecting
side is zero. As a result, if the connecting pieces of two
adjacent connecting characters meet their boundaries over
the same range of y values, then when the character’s
boundaries touch, the characters end up connecting.

Blank:

A blank character in an input line is a space, a tab, a
newline, or an endfile character.

Word and Chunk:

A word in either kind of line is a sequence of adjacent
non-blank characters. These characters are typically mostly
letters and may occasionally include, especially at the end,
a punctuation character. However, from the point of view
of the formatting process, the nature of the characters is
somewhat irrelevant. Of course, the notion of hyphenation
is relevant only for words consisting only of letters and
possibly one punctuation symbol at the end.

In input to a formatter, words are separated by and
delimited by blank characters.

When hyphenation is turned on in a formatting, then,
occasionally, a word will be broken into two pieces.
Appended to the first piece will be a hyphen character.

2



The word chunk is used in this article to refer to a unit
of formatting. Each non-hyphenated word, each first piece
of a hyphenated word together with the appended hyphen,
and each second piece of a hyphenated word is called a
chunk.

Space Character:

Generally, the characters inside a chunk are printed
adjacent to each other. When two consecutive chunks are
printed on the same output line, the last character of the
first chunk is not adjacent to the first character of the
second. In Figure 1, the first “g” at the end of the first
“Hmg” is not adjacent to the second “H” at the beginning
of the second “Hmg”. The region of the output line
between two consecutive chunks, in which no character is
printed, is called the space between the chunks. The
minimum size of a space between chunks is usually about
the same as that of a narrow character such as “i”. This
minimum spacing between chunks is often called the space
character even though nothing is really printed.

More about Output Line:

An output line of a formatted document then consists of
consecutive chunks in a sequence with some non-printed
space in between them. At most the last chunk of a line is
the first piece of a hyphenated word together with its
appended hyphen. Generally, almost all lines of a docu-
ment are the same length; the first and last lines of any
paragraph may be shorter than this common length.

Output Page:

An output page of a formatted document consists of a
sequence of lines. Generally, the number of lines in almost
all pages in a document are the same; the first and last
pages of a chapter may have fewer lines than others.

Justification and Raggedness:

When all the lines of a page have text right up to a mar-
gin, either left or right, then the lines are said to be justified
to that margin. Conversely, if all the lines of a page do not
meet a margin, either left or right, leaving some space
between the chunk closest to the margin and the margin,
then the lines are said to be ragged at that margin. In most
documents, e.g., this article, lines are left and right
justified. In some Latin-alphabet documents, lines are left
justified and right ragged. Very rarely, mostly only in poe-
try, one finds portions of Latin-alphabet documents whose
lines are left ragged and right justified. One does find por-
tions of documents in which all lines are centered,

effectively making the lines left and right ragged.

Formatting:

To use the vocabulary just established, formatting can
be described as the process of arranging the words of an
input document into chunks laid out in output lines on out-
put pages according to commands, constraints, and options
provided and set by the user.

TEXT CHARACTERISTICS

The text of a document to be formatted can be in a mix-
ture of human languages, each with its own character set
(See the article on Unicode). Some languages, e.g.
English, French, German, and Russian, are written from
left to right with lines flowing from top to bottom. These
are called the LR languages. Other languages, e.g., Arabic,
Hebrew, and Persian, are written from right to left with
lines flowing from top to bottom. These are called the RL
languages. Still other languages, e.g., Chinese, Japanese,
and Korean, are written from top to bottom with lines
flowing from right to left. These are called the TB
languages.

To a formatting algorithm, the specific languages of a
document does not matter beyond the direction in which its
text is written. Two different languages that are written in
the same direction are equivalent from the formatter’s point
of view, even if they use different alphabets. The different
alphabets can be regarded as no more than different
typefaces. Therefore, this article talks only about the three
directions of text, LR, RL, and TB, and not the actual
languages in which the text is written. Of course, the rules
for hyphenation do depend on the language of the text.

A document, or more properly, a section of a document,
has a document direction. For example, a book in English
about the Arabic Koran is a left-to-right (LR) document
even though it contains quotations in Arabic. A book in
Hebrew about Shakespeare is a right-to-left (RL) document
even though it contains quotations in English. A book in
Chinese about the Hebrew Bible is a top-to-bottom (TB)
document even though it contains quotations in Hebrew.
The document direction establishes the general flow of
lines. It establishes also the side on which various format-
ting commands are obeyed. For example, if paragraphing
means indenting the first line of the paragraph, then in a RL
document, that indentation is from the right margin.

3



Document direction can be changed in the interior of a
document. Therefore, there is the notion of the current
document direction at any point. If a quotation in a
language of a different direction is lengthy and is stretching
over several paragraphs, it might be convenient to change
the document direction for the duration of the quotation, so
that the quotation’s paragraphs are indented from its
correct side.

To be direction independent, this article uses the terms
start and end to designate the sides of a page in which a
line starts and ends. Thus, in an LR document, the right
margin is called “the end margin”, while in an RL docu-
ment, the right margin is called “the start margin”.

Text in which each language is printed in its own direc-
tion is said to be in visual order. While different languages
may be written in different directions, all languages are
spoken in the same direction, namely forward. Therefore,
for ease in input, the convention is that the characters of a
mixed-language document are stored in an input file in the
order that they are spoken when a knowledgeable reader is
reading aloud the visually-ordered text of the mixed-
language document; this reader knows the rules about read-
ing visually-ordered multidirectional text. This stored order
of characters is called time order. That text is stored in time
order means that the characters may be keyed in in the
order that they are spoken. It is the job of the formatter to
arrange the output so that the text is written in visual order,
so that the time ordering is recreated when a person who
knows the rules about reading multidirectional text reads
the visually-ordered output.

Here is an example of a line containing left-to-right
English and right-to-left Arabic and Hebrew text displayed
in the visual order that is used in the Middle east:

Dana said, “ , �¹�BN gÜy” to
Daniel.

Since this line is in a left-to-right document (this article), it
is read in an overall left-to-right direction. Any embedded
right-to-left text is read in its left-to-right turn, but from
right to left. Thus, this line is read:

1. Dana said, “ [from left to right ]
2. , �¹�BN gÜy [from right to left ]

(salaam danyal, shalom danyel)
3. ” to Daniel. [from left to right ]

Here is the same line in time order, giving each character in
the order it is pronounced when a knowledgeable reader
reads aloud the visually-ordered line above:

Dana said, “yÜg NB�¹� , ” to
Daniel.

Even if you cannot read the Arabic and Hebrew phrases in
between the pairs of English quotation marks, you should
be able to see that in the two lines, the directions of their
characters are reversed. Note that in the visually-ordered
line, some of the Arabic characters connect to each other,
but none of the Hebrew and Latin characters connect to any
other.

BASIC FORMATTING ALGORITHMS

A formatting algorithm is described as occurring over
time. Thus, there is always the notion of current, past, and
future. There is the currently read and processed charac-
ter or chunk of the input. There is a current output line
being constructed; there are the characters or chunks
already inserted into the line. There is a current page being
constructed; there are the lines already inserted into the
page. The article talks about output lines being built
character-by-character or chunk-by-chunk from left to
right and about output pages being built line-by-line from
top to bottom. If part of the text flows in a different direc-
tion, then the formatter is regarded as having to reorder the
characters of this part before inserting them into the lines
and the pages, so that when a user reads the constructed
lines and pages, the text appears to flow in the proper direc-
tion.

The reality is that a page to be printed is described in a
page description language such as PostScript [1] or PDF
[2]. A page to be printed is not necessarily built in this
strict left-to-right, top-to-bottom order. However, the
results are always equivalent to having been built in this
strict order.

A formatting algorithm is classified by the number of
passes it makes over the input. If an algorithm reads the
input only once, it is called a one-pass algorithm, etc. An
algorithm must have at least two passes if information it
needs to format the beginning of of the input cannot be
known until it has seen the end of the input. Sometimes, a
formatter, e.g., TEX, can simulate an additional pass for a
specific purpose by saving in an external file the informa-
tion that is needed earlier than it is found. This external file
is read on the next run of the formatter on the same input.

Describing a formatter requires describing both format-
ting algorithms and options. Describing each requires
understanding the other. To break this vicious cycle, this

4



article describes first vanilla formatting that depends on
standard settings of options. Then, an option can be
described in detail by describing the effects the option has
on vanilla formatting. In the description of vanilla format-
ting, there are references to some ideas that are described
more completely later.

Vanilla formatting deals with ordinary word-by-word
unidirectional text that occurs in the interiors of para-
graphs. Most any formatter provides ways to achieve spe-
cial effects, e.g., chapter and section headers; paragraph
breaks; centering; indentation; bulleted, enumerated, or
labelled lists; footnotes; formulae; tables; etc. Each such
feature involves local changes that are quite straightfor-
ward to achieve. However, even in these features there are
snippets of ordinary text that must be handled by the gen-
eral formatting algorithms described below.

The simplest formatting algorithm operates on a line-
by-line basis. That is, each output line is filled with as
many words from the input as is possible given the current
typeface size and an adequate minimum spacing between
each pair of words. There is a last full word that fits in the
output line, and there is its successor word in the input that
does not fit in its entirety in the output line. If hyphenation
is turned on, this successor word is examined to see if it
can be broken into two pieces according to the currently
invoked hyphenation rules, such that the first piece together
with an appended hyphen fit into the output line being built.
If so, the chunk formed by that first piece plus an appended
hyphen is added to the output line being built. If there is no
suitable way to divide that next word, the output line is
ended with the last inserted full word.

Now, if the formatter does not end justify output lines,
the output line is finished, leaving the output with a ragged
end margin. If the formatter does end justify output lines,
then the chunks in the output line being built are spread
apart with additional space as much as is necessary so that
the distance between the start of the first chunk and the end
of the last chunk is the line length. Generally, the spreading
is done so that the sizes of the spaces between all pairs of
chunks are the same.

Line-by-line formatting is used by ditroff, and it
appears3 to be that used by MS Word, FrameMaker, and

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
3 To the author’s expert eyes, the output of each of these
formatters appears to be formatted line by line, because of
the variability of spacing from one line to the next. The
manuals or help systems do not discuss this this issue, and

the Mozilla4 browser.

An enhancement to this simple and any formatting algo-
rithm is to make the space following punctuation a bit
longer than that after no punctuation. An enhancement of
this enhancement is to make the space following a
sentence-ending symbol (e.g., a period) a bit longer than
that following a clause-ending symbol (e.g., a semicolon),
which in turn, is a bit longer than that following a phrase-
ending symbol (e.g., a comma). TEX uses these enhance-
ments and FrameMaker appears to use these enhancements.

The main problem with this simple formatting algorithm
is the large variation in the interword spacing from line to
line or in the distance from the end chunk to the end mar-
gin. When there is end justification, the interword spacing
on each line is computed independently of the interword
spacing on all other lines. Thus, there can be large varia-
tions between the interword spacing on adjacent lines.
Some believe that this variation is ugly. Some find it
annoying, and some find it tiring to read, as the mind can-
not get used to any one spacing for very long. When there
is no end justification, the space between chunks is uni-
formly equal to that of the space character. However, there
can be large variations in the space after the end word on
each line, giving rise to a very ragged end edge of the text.

Turning hyphenation off exacerbates these variations
because on average, each line has fewer words and more
space to distribute between the words or after the end
word. This exacerbation is a problem with formatters with
no automatic hyphenation, such as Mozilla and some

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

the author does not have access to any of the source code.
In the cases of ditroff and TEX, the author has access to the
proprietary and open source code, respectively. Thus, he is
able to be certain about the behavior of the algorithms of
ditroff and TEX. This footnote applies to all claims of
appearance of the behavior of an algorithm.

4 You may be surprised to learn that HTML [18], the
language of the input to Web browsers, such as Mozilla,
allows specification of end justification on a paragraph
basis. In the “<p>” markup defining the beginning of a
paragraph, if one says “<p ALIGN="JUSTIFY">”, the
paragraph at hand is end justified when displayed by a
browser. Mozilla does a reasonable job of justification on a
line-by-line basis. However, Netscape forces end
justification for some, but not all, last lines of paragraphs,
creating very large gaps between words in last lines that are
less than about 7/8 full.

5



versions of MS Word. Automatic hyphenation is not even
available in some versions of MS Word 2000.5 Moreover,
based on the appearance of many Word-typeset documents,
it appears that many users do not bother to turn automatic
hyphenation on.

When the line length is short compared to the typeface
size, such as in newspaper columns, the variation in inter-
chunk spacing is even more pronounced. When there is end
justification, the result is what is called rivers of white
space, with large gaps of space between very few words on
a line. Sometimes, only one word can be fit on a line, forc-
ing either a ragged edge in the middle of start- and end-
justified text or space between the characters of the one
word.

Perhaps the best variation of the basic formatting algo-
rithm is to format a whole collection of output lines, e.g.,
those of one paragraph, together. This variation is the
approach of TEX and thus of LATEX. TEX’s algorithm uses
dynamic programming to find the choice of line breaks that
yields the least variation in spaces between the chunks in
the presence of double justification and the least ragged-
ness of the end margin when end justification is turned off
[9]. Thus, a line may not be as full as it can be. If under the
simple line-by-line algorithm, one line has significantly
larger spacing between the words than the previous line, it
is possible that moving the last word of the first of these
lines to the second line will result in interchunk spacing
that is more uniform over the two lines. For example, com-
pare the spacing in the two lines:

11 22 33 44 55
66666 77777

with that in the two lines of the same length:

11 22 33 44
55 66666 77777

Even though the “55” fits into the first line, spacing is more
uniform in the two lines when the “55” is put into the
second line. In this manner, TEX’s algorithm tries to find
the best assignment of chunks to lines of a paragraph,
which results in the most uniform sized spaces in the lines

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
5 An attempt to turn on automatic hyphenation in the
educational version of Word 2000 that this author has fails.
Word asks that the user install hyphenation. When the
Educational Office 2000 CD is inserted, the user is told that
the Professional version must be inserted.

of the paragraph. The result is that TEX’s interchunk spac-
ing is the most uniform and pleasing of all formatters.

FORMATTER OPERATION

There are two basic flavors of formatters:

1. WYSIWYG (what you see is what you get), direct
manipulation and

2. compiled from mark up.

MS Word and FrameMaker are examples of the former.
TEX, LATEX, ditroff, and the Mozilla browser are examples
of the latter.

A WYSIWYG, direct-manipulation formatter presents
to the user a window containing an approximation of part
of one page of the output of the document. The user
operates a pointer (e.g., a mouse) to indicate directly where
in the page a command is to be obeyed. When a user types
characters to be inserted at the pointed-to spot, the charac-
ters seem to be inserted one by one directly into a growing
line. The result is that when characters are inserted into a
new document, the document appears to grow on the
screen the same way a typewritten document would grow
on paper if the same characters were typed. Of course, the
analogy with the typewriter falters when the user back-
spaces to remove characters or when characters are
inserted in the midst of an already full page.

At any time, what the user sees on the screen is a close
approximation of what would show up on paper if the
document were printed at that time. The approximation is
supposed to be as good as the screen resolution allows. The
user makes changes to the document by what appears to be
directly manipulating the document at the places of the
changes.

A formatter that compiles from markup translates an
input file into page description language commands that
print the formatted pages. The input file contains the time-
ordered text of the document with commands inserted at
the proper places. Each command is applied at the spot it
appears to the text that immediately precedes and follows
it. These commands are often called markup. Figure 3
shows parts of the inputs of this article to the ditroff, LATEX,
and Mozilla formatters. The part shown for each is of the
same part of the document, the first paragraph of this sec-
tion. You see the markup for beginning a section, for
beginning a paragraph, for a numbered list, for italicizing
text, and, in some cases, for referencing macros to typeset
the words “TEX” and “LATEX” in their fancy ways.

6



Some of the compiled-from-markup formatters have
WYSIWYG, direct-manipulation front ends or WYSIWYG
previewers that allow at least previewing what will be
printed if not direct manipulation. However, the user must
remember that what is manipulated is the marked up time-
ordered input file.

The reality for a WYSIWYG formatter is that the inter-
nal representation has the text with markup, this markup
being inserted into the internal representation as a result of
the user’s direct manipulation on the screen image of the
document. In other words, if a user indicates that some
selected sequence of characters should be italicized, then
internally, there is some indication in the internal represen-
tation of the selected characters that says they are now itali-
cized; that indication is effectively markup.

The algorithms given in this article are used in each
kind of formatter, albeit in a different way. In a compiled-
from-markup formatter, these algorithms are used as part
of the translation process exactly as described. In a
WYSIWYG, direct-manipulation formatter, these algo-
rithms appear to be applied by the formatter on an incre-
mental basis in order to update the appearance of what the
user sees on the screen to what it should be after each
change to the document. Optimizations are used to try to
compute rapidly the change to what is visible to the user
without having to format the whole document after each
tiny change. The changes appear to be propagated to the
rest of the document during idle periods, when the user’s
input has slowed down a bit.

CONSTRAINTS AND OPTIONS

A constraint is a physical attribute of formatting that has
continuous scale of values. An option is feature which may
or may not be turned on at any given point of any given
formatting. Sometimes a collection of options may be
mutually exclusive; only one of them can be turned on at
any given time.

Constraints

The main constraints of formatting are the size of the
typeface, the spacing of the lines, and the dimensions of the
printing area.

The size of a typeface is measured in points, each of
which is approximately 1/72 inch or .352778 millimeter.
The concept comes from the days in which typesetting was
done by assembling metal pieces of type, one for each

character to be printed, into rows, one for each line to be
printed. On the face of each such piece is embossed one
reversed character. When ink was spread on the faces of
the assembled metal pieces and paper was pressed to the
faces, the characters appeared on the paper oriented
correctly. (See articles on typefaces for more
details on this issue.) The size of a typeface was the
common height of these pieces of metal type on which
characters were embossed. This height would be a bit
bigger than the distance from the bottom of the lowest des-
cender, e.g., the bottom of the “q”, to the top of the highest
ascender, e.g., the top of any upper case letter. This dis-
tance is called called the point size of the typeface. The
most common point size used in books and newspapers is
10. Generally, one does not find smaller than 6 point type,
because humans have problems reading text even as small
as that. Display type and headlines may be up in the 36 or
72 point range or even higher.

Also the spacing of the lines of the text is measured in
points. It is measured by the distance between the baselines
of two consecutive lines of the text. Normally, the line
spacing is 120% of the current point size; this spacing
yields a comfortable single spacing. Thus, for 10 point
type, the usual spacing is 12 points. Smaller than that, e.g.,
at 110% of the point size, looks rather tight. If the spacing
is equal to the point size, then a descender on one line may
come very close to touching an ascender on the next line.
Spacing that is 180% of the point size is called 1.5 spacing
and spacing that is 240% of the point size is called double
spacing.

The spacing between lines used to be implemented by
strips of lead 1 or 2 points wide placed between the assem-
bled rows of pieces of metal. Hence, the difference
between the line spacing and the typeface point size is
called leading. Thus, 10 point type with 12 point spacing
has leading of 2 points.

The dimensions of the printing area is usually measured
in picas, each of which is 12 points, about 1/6 inch or
4.2333 millimeters. When one is printing single-spaced 10
point text on letter-sized paper, a typical line length is 39
picas or 6.5 inches. At 12 point spacing, a typical number
of lines is 51, covering 51 picas or 8.5 inches. On A4
paper, a typical line length might be 38 picas or about 16
centimeters, and a typical number of lines might be 52,
covering 52 picas or about 22 centimeters.

Clearly, the larger the printing area, the smaller the line
spacing and the point size, the more text can be printed per

7



page. Moreover, the longer the line width and the smaller
the point size, the more uniform is the spacing between the
chunks on a line, because more chunks can be put into a
line. With very short line lengths or large point sizes, one
may be put in a situation in which only one or two chunks
can be put on a line, and the spacing between chunks in
lines varies radically.

The longer the line width and the smaller the text size,
the less necessary is hyphenation to reduce the variability
of the spaces between chunks on a line.

(See articles on typefaces, etc. for more
details on these and related issues, such as liga-
turing).

Options

The main options concern directionality; hyphenation;
justification; pagination; and figure, table, and footnote
placement.

Directionality

The typical document is unidirectional. That is, all of its
text is written in one direction. For example, if a document
is an English document, then all of its text is written from
left to right. That is, the start of an output line is on the left
side of a column of lines and the end of a line is on the
right side of the same column of lines. In the vanilla for-
matting algorithm, filling an output line starts at the left
margin, and it ends when adding another word would leave
its right end sticking out past the right margin. End
justification causes the last chunk on the right end of an
output line to end at precisely the right margin of the line.

Conversely, if a document is an Arabic or Hebrew
document, then nearly all6 of its text is written from right to
left. That is, the start of an output line is on the right side of
a column of lines and the end of a line is on the left side of
the same column of lines. If the vanilla formatting algo-
rithm is applied in the right-to-left direction, filling an out-
put line begins at the right margin, and it ends when adding
another word would leave its left end sticking out past the
left margin. End justification causes the last chunk on the
left end of an output line to end at precisely the left margin
of the line.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
6 In Arabic and Hebrew, numerals are written from left to
right, i.e., a phone number is written with the first dialed
digit on the left side. Users of Arabic and Hebrew
typewriters have learned to enter numerals backwards.

There is also the possibility of top-to-bottom writing of
text, e.g., for Chinese. In traditional Chinese printing, a line
is written from the top of the page to the bottom, with lines
laid out from right to left. The details of the vanilla format-
ting algorithm can easily be adjusted to deal with such top-
to-bottom text. Indeed, as is shown in Figure 4 with two
layouts of a famous two-line poem by Li Bai, a top-to-
bottom layout is identical to a left-to-right layout with the
characters rotated 90 degrees counter clockwise.

Alternatively, a document may be multidirectional. The
most common multidirectional document is bidirectional,
e.g. for a mixture say of English with Arabic and Hebrew.
Indeed, because of the presence of left-to-right numerals, a
plain Arabic or Hebrew document can be considered
bidirectional. When formatting a bidirectional document,
the assumption is that the entire input is stored in time
order.

The basic bidirectional formatting algorithm assumes
this time ordered input and needs to know at any time, the
current document direction and the current text direction.
The current document direction is as described in the sub-
section titled “Text Characteristics”.

At any time, the current text direction is the direction of
the language of the currently considered character. A Latin
character is generally left-to-right (a user can declare other-
wise for special effects, e.g., to mimic Da Vinci’s writing)
and an Arabic or Hebrew character is generally right-to-
left. A seemingly neutral character, e.g., a period, must be
regarded as having the direction of its language; thus, there
is a left-to-right period and a right-to-left period.

The basic bidirectional algorithm [6, 11, 17, 5, 7] has a
standard unidirectional formatting algorithm first break the
time-ordered input into lines, taking into account point size,
line length, hyphenation, and justification, as if all the text
in the document were left to right. Then on a line-by-line
basis, the text of each output line is reordered:

for each output line in the document do
if the current document direction is LR then

reverse each contiguous sequence of RL
characters in the line

else (the current document direction is RL)
reverse the whole line;
reverse each contiguous sequence of LR

characters in the line
end if

end do

8



You should verify that applying this algorithm to the time-
ordered Arabic, English, and Hebrew line:

Dana said, “yÜg NB�¹� , ” to
Daniel.

yields the visually-ordered line:

Dana said, “ , �¹�BN gÜy” to
Daniel.

Less common among the multidirectional documents is
the tridirectional document. There is an algorithm assuming
all input in time order that lets a unidirectional formatter
format the time-ordered input file, and then, it reorganizes
the characters of the output so that left-to-right text is writ-
ten from left to right, right-to-left text is written from right
to left, and top-to-bottom text is written from top to bottom
[4]. It deals with the two horizontal directions as does the
bidirectional formatting algorithm. There is an algorithm
for doing the reorganization of the top-to-bottom text after
bidirectional formatting is done. This algorithm takes
advantage of the fact that all characters in Chinese,
Japanese, and Korean have bounding boxes that are
squares of the same size; thus, any character fits in the
bounding box of another. Figure 5 shows a visually-
ordered tridirectional English, Hebrew, Japanese, and
Chinese document; The English text is printed from left to
right from the left margin on one line; the Hebrew text is
printed from right to left from the right margin on the next
line; the Katakana Japanese text is printed from left to right
from the left margin on the next line; and finally the Hira-
gana Japanese text and the Chinese text is printed from top
to bottom at the right margin. Figure 6 shows a stylized
time-ordered input for the output of Figure 5; each printed
character is shown in its output form, and among this input,
there is HTML-like markup defining the language of the
text and the applicable document directions. Space con-
straints do not permit giving the details of the algorithm
here.

Justification

The most common choice for justification is whether or
not there is end justification. Some formatters offer also
the option of end justification without start justification. For
example, in a left-to-right document, this justification
regime is right justification and ragged left. Each line is
filled with as many chunks as possible and then all the text
is shifted to the right so that the last chunk is flush with the
right margin. In terms of the variability of the spacing
between words and of the space from the start margin to

the start chunk of a line, this justification regime, called
start ragged, is equivalent to end ragged.

Hyphenation

There are two basic choices concerning hyphenation,
turning it on or off. If hyphenation is on, the formatter usu-
ally uses a hyphenation algorithm that implements basic
English hyphenation rules combined with a dictionary,
perhaps the same one that is used for spelling checking.
Some formatters offer the possibility of overriding the
automatic hyphenation decisions with explicit indications
of possible hyphenation points in a word, including that
there are none. This indication may be directly in the words
in the input file or in a separate file providing the user’s
hyphenation dictionary. When a formatter offers the feature
of overriding automatic hyphenation rules, the feature can
be used to cause hyphenation according to the rules of a
language other than English. Either a pre-pass goes through
the document inserting explicit hyphenation points in every
word according to the other language’s hyphenation rules,
or the pre-pass builds a user’s dictionary for the words in
the document, again according to the other language’s
hyphenation rules. TEX has a table-driven hyphenation
algorithm that is provided with a default table for English.
Tables describing the rules for another language can be
installed in any formatting run.

Most formatters offer the choice of turning hyphenation
on or off. As mentioned, some versions of MS Word 2000
have it, but some do not. In practice, MS Word documents
are not hyphenated. TEX, ditroff, and FrameMaker have
hyphenation, and it is easy to turn on in each. The Mozilla
browser has no automatic hyphenation.

Pagination

The pagination problem is that of determining when the
current page is filled with lines. In the absence of stylistic
considerations, the problem is almost identical to that of
determining when a line is filled with words. Basically, if
the next line would end up below the bottom margin on a
page, the current page is ended; an optional page footer,
including an optional page number is issued; a new page is
begun; an optional page header, including an optional page
number is issued, and then the postponed line is inserted as
the first line on the new page. Some complexity comes
when for stylistic reasons, we do not want to create orphan
or widow lines. A orphan line is a section header or first
line of a paragraph as the last line on a page. An widow
line is a last line of a paragraph as the first line of a page.
Neither a orphan nor an widow looks good sitting there all

9



by itself.

It is fairly easy to avoid orphan lines. The formatter can
examine any section header or any first line of a paragraph
and determine if it would be the last line on a page, that is,
there is not enough room to print at least two7 more lines
after the section header or at least one more line after the
first line of a paragraph. If there is not enough additional
space on the page, the section header or first line of a para-
graph goes on the next page.

Avoiding widows is more complex, as it requires having
determined one line before the last line of a paragraph, that
the next line, i.e., the last line of the paragraph, will end up
on the next page. If this determination can be made, then a
solution is to terminate the page one line sooner and to put
both the next to the last line and the last line of the para-
graph on the next page. This determination requires either
look ahead or that page breaking be done in a two-pass
algorithm. For many formatters, which operate strictly with
one formatting pass, the only solution is for the user to
notice the widow in one formatting of the document and to
then to issue in the next formatting of the document an
explicit page break instruction at the right point. The user
thus implements a two-pass algorithm manually; that is,
after the user’s observing the widow and fixing the input,
the next run of the formatter is effectively the second pass.
When a formatter has a look ahead or a two-pass algo-
rithm, there is a complexity that shows up only when foot-
notes, figures, and tables have to be placed automatically,
as is discussed in the next subsection.

This article is printed in double-column pages. To a for-
matting algorithm, each column is a page, albeit a narrow
one. The formatter does have to be a bit careful not to give
each column its own page number and other header and
footer items. Also, it is considered good style to make sure
that the lengths of all columns sharing a physical page are
the same length.

Placement of Figures, Tables, and Footnotes

The general problem is that each figure, table, or foot-
note may be printed in a place different from that in which
it is referenced. A figure or table should appear in its
entirety no earlier than the beginning of the page in which
it is first referenced. The preference is that a footnote

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
7 At least two more lines are needed after a section header
to prevent the first line of the section’s first paragraph from
being an orphan in its own right.

should appear, in its entirety, at the bottom of the page on
which it is referenced. However, that may not be possible;
there may not be enough room between the footnote refer-
ence and the bottom of the page for the entire footnote. In
this case, the footnote has to be split over a page boundary.
A figure may not be split at a page boundary. A footnote
may be split at a page boundary. Tables are a special case;
each may be split or not split, depending on the user’s taste.
Many prefer not to split a table that has vertical lines, and
many consider a table with no vertical lines to be splittable.
Thus, a figure or nonsplittable table must be printed in its
entirety within the margins on one page. Each figure, table,
or footnote is what is called a floater; that is, it is floated to
where it can be printed according to the constraints
described below. A figure or nonsplittable table is indivisi-
ble and must be printed in its entirety on one page. A foot-
note or a splittable table may be split at page boundaries.

This article has figures and footnotes, but no tables. The
definitions of each of these figures and footnotes were sup-
plied just after their first references. However, you see
them elsewhere. Therefore, these items were floated.

It is assumed that the full figure, table, or footnote is
input just after the first reference to it. This way, the for-
matter is able to read the figure, table, or footnote immedi-
ately after encountering the first reference to it. The for-
matter thus knows how big the footnote, table, or footnote
is; and it knows whether the table is splittable. It is
assumed also that any captions are part of the figure or
table.

There are two basic algorithms for placement of figures,
tables, and footnotes:

1. one pass greedy and
2. multipass, optimizing in some sense.

In a one-pass, greedy algorithm, after seeing a footnote
reference and its footnote, the formatter first reads enough
of the text after the footnote to fill out the output line con-
taining the reference. Then, the formatter notes whether
there is sufficient room on the current page for the entire
footnote. If not, the formatter splits the footnote into two
pieces, the part that fits on the current page and the rest.
Then it prints the first piece, ends the current page, and
arranges for the rest to be printed on the next page as the
first footnote. Note that there may be recursion here as the
rest may have to be split over the next page and the pages
after that.

10



In a one-pass greedy algorithm, after seeing a figure
reference and its figure, the formatter first reads enough of
the text after the figure to fill out the output line containing
the reference. Then, the formatter notes whether there is
sufficient room on the current page for the entire figure. If
so, the formatter prints the figure on the current page and
continues normal formatting after the bottom of the figure.
If not, the formatter arranges to print the figure on the top
of the next page and to move, or to bubble up, the text that
follows the figure to fill in the space at the bottom of the
page that was not big enough for the figure. If the figure is
simply too large for any page, then the user must arrange to
shrink the picture to fit.

A nonsplittable table is treated as a figure.

The steps of a one-pass greedy algorithm are illustrated
by some of the parts of Figure 7 that is used to describe
several different formatter’s algorithms. Each part, (a)
through (e), shows a page on top and the next page in the
bottom. An upside down “T” represents a reference to the
figure or table that follows it. Each of parts (a) and (b)
represents a situation in which a figure or non-splittable
table fits on the current page. Parts (c), (d), and (e)
represent three steps in the treatment of a one-pass greedy
algorithm on a figure that is too big to fit on the current
page. Part (c) shows the algorithm discovering that the
figure or table does not fit on the current page. Part (d)
shows the algorithm floating the figure to the top of the
next page. Finally, Part (e) shows the algorithm bubbling
the text that logically follows the figure or table to the
space on the first page vacated by the figure or table that
was floated.

In a one-pass greedy algorithm, after seeing a reference
to a splittable table and the table itself, the formatter first
reads enough of the text after the table to fill out the output
line containing the reference. Then, the formatter notes
whether there is sufficient room on the current page for the
entire table. If so, the formatter prints the table on the
current page and continues normal formatting after the bot-
tom of the table. If not, the formatter prints what it can of
the table on the current page, ends the current page, and
prints the rest of the table on the top of the next page.

Note that the formatter may have to deal with several
floaters at once. Doing so is no real problem, as floaters or
their pieces can be merged. There is a slight complexity
introduced by having to deal with orphan lines in the pres-
ence of floats. It may be necessary to avoid a orphan before
a figure, table, or footnote appearing at the bottom of a

page.

In a multipass, optimized-in-some-sense algorithm, the
algorithm uses the first pass to note all the floaters as well
as potential orphans and widows and uses some dynamic
programming technique to try to place a floater no earlier
than the top of the of the output page in which it is refer-
enced and to balance page lengths while avoiding orphans
and widows. Sometimes there can be no optimal solution
meeting all the constraints, and a figure or table may float
to a page before it is referenced or blank lines not in the
input are inserted into the output.

Ditroff uses a one-pass greedy algorithm. TEX and
LATEX use a multipass algorithm. Since Mozilla has an
unbounded page length, it does not have to float any figure
or table. A figure or table is placed where it occurs. Foot-
notes have to be manually placed either where they are
referenced as parenthetical remarks, or as end notes,
deferred to the end of the page at hand. Word and
FrameMaker appear to use a one-pass algorithm, but there
is more discussed below, arising from their WYSIWYG,
direct-manipulation nature.

The disadvantage of a greedy algorithm is that it some-
times ends up having to put a floater long after its reference
because of an overbooking of floaters all referenced very
near to each other. Also, sometimes manual intervention is
required to deal with widows and to achieve better place-
ment of floaters by putting some floaters before they are
referenced. With a multipass algorithm, these manual inter-
ventions should not be necessary.

However, the disadvantage of the multipass algorithm is
that a figure or table may end up on a page before it is
referenced. Also the floater placement and page breaks are
very unstable. It occasionally happens that inserting new
text after a figure causes that figure to move up, changing
floater placement completely. If one has been working hard
to get floaters placed in a pleasing manner, and has done so
in all previous pages, one can find a change on the current
page causing a reorganization of previous pages.

A one-pass greedy algorithm is very stable in the sense
that no change can affect the output of the text lying before
the change. Thus, while manual intervention is required to
achieve optimal placement and widow avoidance, one is
assured that once he has achieved the desired formatting of
pages up to the current one, no change to what follows can
affect this formatting. The user can proceed safely through
the document page-by-page, getting each page right before

11



going on to the next page with assurances of the immutabil-
ity of what has already been gotten right.

Particularly messy is the placement in multiple-column
text of figures and tables that are wider than the column
width. The placement of a figure or table in one column
can have a true side effect on a neighboring column whose
text must flow around the too-large figure or table that
extends into its territory.

Clearly these algorithms and their variants can be used
by WYSIWYG, direct manipulation formatters.

FrameMaker seems to provide the full functionality
afforded by a one-pass greedy algorithm. A figure or table
that must not or should not be split is put into a frame. One
may anchor a frame to a particular point in the text, usually
chosen by the user to be the point in the text that references
the contents of the frame. The three options for frame
placement is that it appears

1. at the top of the page containing the anchor,
2. just below the full line containing the anchor, or
3. at the bottom of the page containing the anchor.

A frame positioned, according to choices 1 or 3, at the top
or bottom of the page containing the anchor, moves only
when the anchor moves to another page, taking the frame
with it to the top or bottom of the new page. A frame posi-
tioned, according to choice 2, just below the full line con-
taining the anchor is put there below the anchor if there is
sufficient room on the current page for the frame. If there is
not sufficient room on the current page for the frame, the
frame is moved to the first subsequent page that has room
at the top for the frame. The room at the top of a page may
be reduced by another frame that is already there by virtue
of its being positioned at the top of its page. If in addition,
the frame has been designated as floating, the text that logi-
cally follows the frame is bubbled up to fill the space on the
current page that was vacated by moving the frame to the
next page.

The parts of Figure 7 show 5 steps in the life of a frame
containing a figure or table as text is added above its
anchor. In each part, the anchor for the frame is the upside
down “T”. Note that in Step (a), in which the frame fits
well within the first page, the text before the frame is all
“x” and the text below the frame is all “y”. In Step (b),
three lines containing all “s” have been added before the
frame, pushing the three all “y” lines to the next page, and
the frame still fits within the dotted-line printing margin. In
Step (c), one more line, containing all “c”, has been added

before the frame, pushing the bottom of the frame to out-
side the printing margin. Step (d) shows FrameMaker hav-
ing moved the frame to the top of the next page, and Step
(d) shows FrameMaker having bubbled the all “y” lines to
after the anchor in the space on the first page vacated by
the moved frame.

In FrameMaker, independently of the above, one can
specify that text wrap around a frame that is not as wide as
the page in which it sits to make use of the space on either
side of the frame.

Microsoft Word seems not to be as flexible as
FrameMaker. Also in Word, a figure or table that must not
or should not be split is put into a frame. A frame can be
anchored to a point on a specific page or to a point in a
specific paragraph. A frame anchored to a point on a
specific page does not move as the text before it grows or
shrinks. Rather the text flows around the frame. That is,
lines are moved from before or after the frame to after or
before the frame as the text before the frame grows or
shrinks.

A frame anchored to a point in a paragraph will be put
after that point if there is enough room for the frame on the
current page. Unfortunately, the text after the frame is not
automatically bubbled up to fill the space vacated by the
moved frame. Moreover, there seems to be no way to force
this bubbling to occur automatically. One way to achieve
this bubbling is for the user to manually move the text after
the frame to the space vacated by the moved frame.
Another way to achieve the effect of bubbling is to anchor
the frame to the page to which it will be moved. When the
frame is so anchored, the text automatically flows around
the frame. The drawback of this simulation of the desired
behavior is that if the text that would have been the anchor
is moved to another page, the figure is not moved. It’s
anchored to an absolute position. Under this circumstance,
the user must move the figure manually to be anchored in
the page that contains the text that would have been the
anchor.

Recall the steps that FrameMaker follows through the
parts of Figure 7. Basically, for a frame anchored to a point
in a paragraph, Word does only Steps (a) through (d), leav-
ing the space vacated by the moved frame to be dealt with
manually.

In both FrameMaker and Word, independently of the
anchoring of frames and whether or not bubbling is
automatic, the user can specify that the text wrap around a

12



frame to fill in the empty space to the side of the frame.
When in addition, automatic bubbling occurs, it occurs
through the wrapping text.

FURTHER INFORMATION

More information about formatting algorithms can be
found in Knuth’s books about TEX [10, 12].

REFERENCES

[1] POSTSCRIPT Language Reference Manual, Second
Edition, Adobe Systems Incorporated, Addison
Wesley, Reading, MA, 1992.

[2] PDF Reference: Version 1.4, Third Edition, Adobe
Systems Incorporated, Addison Wesley, Reading,
MA, 2001.

[3] Adobe, FrameMaker 6.0 User Guide, Adobe Sys-
tems, Inc., San Jose, CA, 2000.

[4] Becker, Z. and Berry, D.M., “triroff, an Adaptation
of the Device-Independent troff for Formatting Tri-
Directional Text”, Electronic Publishing 2(3), pp.
119–142, October 1990.

[5] Berry, D.M., “Stretching letter and slanted-baseline
formatting for Arabic, Hebrew, and Persian with
ditroff/ffortid and Dynamic POSTSCRIPT Fonts”,
Software—Practice and Experience 29(15), pp.
1417–1457, 1999.

[6] Buchman, C., Berry, D.M., and Gonczarowski, J.,
“DITROFF/FFORTID, An Adaptation of the UNIX
DITROFF for Formatting Bi-Directional Text”,
ACM Transactions on Office Information Systems
3(4), pp. 380–397, October 1985.

[7] Habusha, U. and Berry, D.M., “vi.iv, a Bi-
Directional Version of the vi Full-Screen Editor”,
Electronic Publishing 3(2), pp. 3–29, 1990.

[8] Kernighan, B.W., “A Typesetter-independent
TROFF”, Computing Science Technical Report No.
97, Bell Laboratories, Murray Hill, NJ, March
1982.

[9] Knuth, D.E. and Plass, M.F., “Breaking Paragraphs
into Lines”, Software—Practice and Experience 11,
pp. 1119–1184, 1981.

[10] Knuth, D.E., Computers & Typesetting, Volume B:
TEX: The Program, Addison Wesley, Reading, MA,
1986.

[11] Knuth, D.E. and MacKay, P., “Mixing Right-to-left
Texts with Left-to-right Texts”, TUGboat 8(1), pp.
14–25, 1987.

[12] Knuth, D.E., The TEXbook, Addison Wesley, Read-
ing, MA, 1988.

[13] Lamport, L., LATEX: A Document Preparation Sys-
tem, Second Edition, Addison Wesley, Reading,
MA, 1994.

[14] Microsoft, Word, as documented by online Help,
Microsoft, Inc., Redmond, WA, 2000.

[15] Mozilla, “Mozilla Firefox Web Browser”, 2004,
http://www.mozilla.org/.

[16] Ossana, J.F., “NROFF/TROFF User’s Manual”,
Technical Report, Bell Laboratories, Murray Hill,
NJ, October 11 1976.

[17] Srouji, J. and Berry, D.M., “Arabic Formatting with
ditroff/ffortid”, Electronic Publishing 5(4), pp.
163–208, December 1992.

[18] W3C, “HTML 4.01 Specification”, W3C Recom-
mendation, W3C, 24 December 1999,
http://www.w3.org/TR/REC-html40/.

13


