Anix

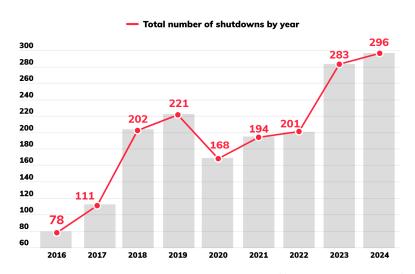
Anonymous Blackout-Resistant Microblogging with Message Endorsing

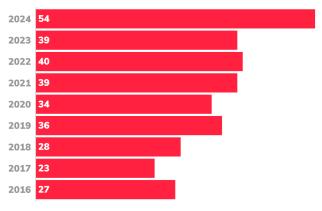
Sina Kamali sinakamali@uwaterloo.ca University of Waterloo Diogo Barradas diogo.barradas@uwaterloo.ca University of Waterloo

IEEE S&P

San Francisco, CA, U.S.A. May 13th, 2025

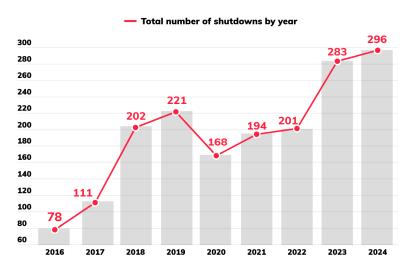
Internet Shutdowns (a.k.a. blackouts)

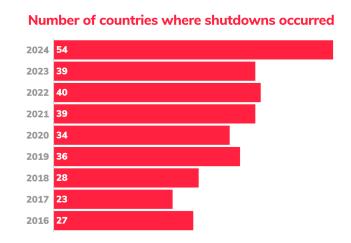

- Repressive governments often aim to control/restrict the flow of information
 - Network-level interference
 - · Social media monitoring
 - Messaging filters
- Today, censors are choosing to instate region/country-wide Internet shutdowns
 - Lasting up to weeks in a row


Kashmiri journalists protest against internet blockade put by India's government in Srinagar on October 12, 2019. TAUSEEF MUSTAFA/AFP/AFP via Getty Images

https://www.cnn.com/2019/12/21/asia/internet-shutdowns-china-india-censorship-intl-hnk/index.html

Shutdowns are on the Rise




Number of countries where shutdowns occurred

https://www.accessnow.org/internet-shutdowns-2024/

Shutdowns are on the Rise

https://www.accessnow.org/internet-shutdowns-2024/

"How can we tackle these shutdowns?"

Blackout-resistant Messaging via Mobile Mesh Networks

- Allow for communication without Internet or cellular access
 - Rely on wireless capabilities (Bluetooth, WiFi Direct) of modern smartphones
 - Messages hop from phone to phone

FireChat - the messaging app that's powering the Hong Kong protests

The internet is vulnerable to state intervention, but demonstrators have found a way around it

Pro-democracy supporters checking their phones during the protests in Hong Kong. Photograph: Anthony Kwan/Getty Images Photograph: Anthony Kwan/Getty Images

https://www.theguardian.com/world/2014/sep/29/firec hat-messaging-app-powering-hong-kong-protests

Hong Kong protesters using Bluetooth Bridgefy app

Pro-democracy protesters in Hong Kong have been turning to a new app to communicate - one that does not use the internet and is therefore harder for the Chinese authorities to trace.

https://www.bbc.com/news/technology-49565587

Offline message app downloaded over million times after Myanmar coup

https://www.reuters.com/article/technology/offline-message-app-downloaded-over-million-times-after-myanmar-coup-idUSKBN2A22H0/

4/13

Desirable Properties for Mesh Messaging Apps

Flexible Communication Models

- One to one
- Some to some
- One to many (broadcast)

User Anonymity

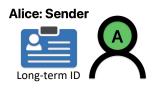
- Sender and receiver
- Forward anonymity
- Post-compromise anonymity

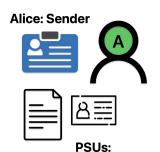
Trust Systems

- Direct Trust
- Direct Trust Mediation
- Transitive Trust

Identity Revocation

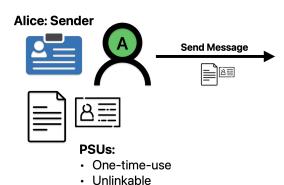
- Soft revocation
- Hard revocation

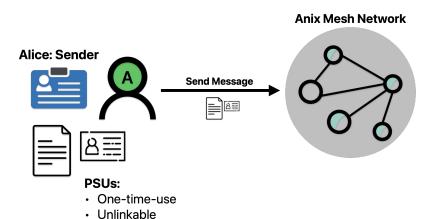

The Mesh Messaging Apps Landscape

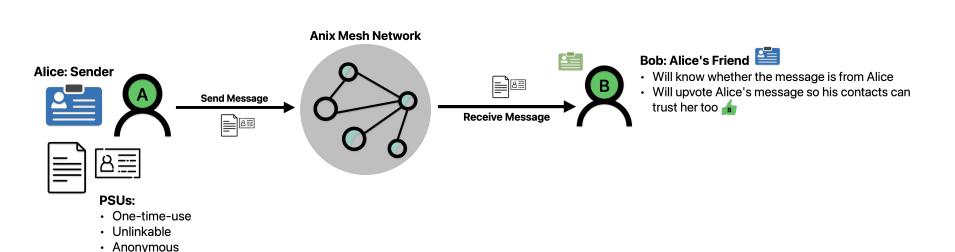

Application	Communication		Anonymity		Trust System		Revocable IDs				
	020	S2S	O2M	SRA	FA	PCA	DT	DTM	TT	SR	HR
Firechat [9]	✓	√	✓	X	Х	Х	X	X	Х	X	Х
Bridgefy [11]	✓	\checkmark	\checkmark	X	X	X	✓	X	X	X	X
Briar [10]	✓	\checkmark	×	X	X	X	✓	\checkmark	X	X	×
1am [25]	✓	√	Х	X	X	X	✓	X	X	X	Х
Moby [22]	✓	X	X	\checkmark	\checkmark	X	✓	X	X	X	X
Perry et. al. [26]	✓	\checkmark	X	\checkmark	X	X	✓	\checkmark	X	X	X
ASMesh [23]	✓	X	X	\checkmark	\checkmark	\checkmark	✓	X	X	X	X
Rangzen [7]	✓	×	\checkmark	\checkmark	\checkmark	X	✓	X	\checkmark	X	X
Anix	✓	√	✓	√	✓	✓	✓	₩	√	√	✓

Existing apps lack desirable properties

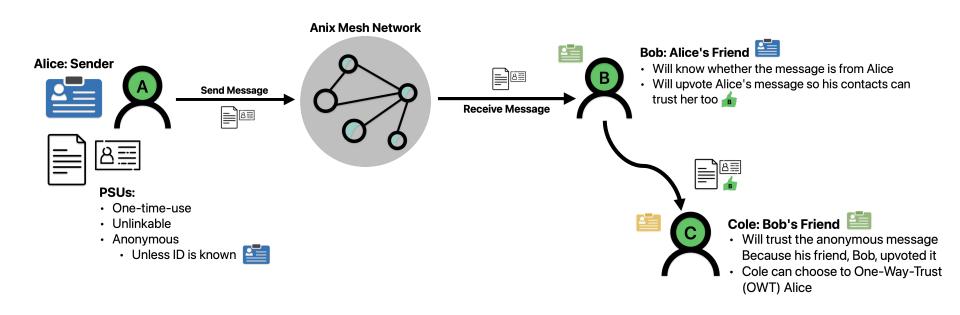
Our Contributions

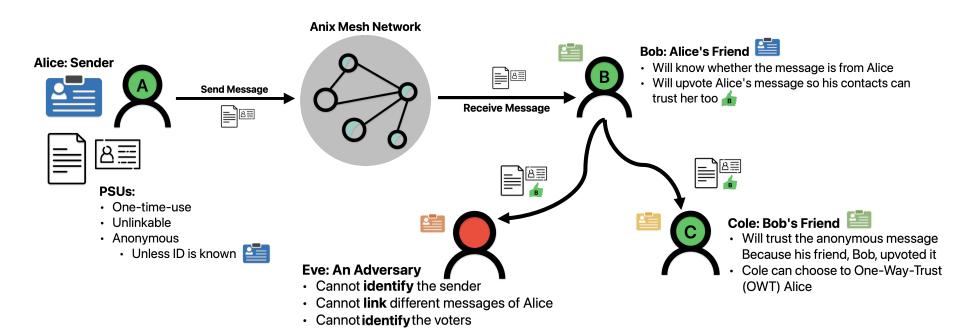

- Systematization of existing blackout-resistant mesh-messaging apps:
 - Threat models
 - Design features
- Anix: An anonymous blackout-resistant mesh messaging platform:
 - Based on selectively linkable one-time-use pseudonyms (PSUs)
 - Able to establish & manage trust relationships across the mesh
 - Able to prioritize microblogging-style messages vouched by trusted contacts via an anonymous message endorsing scheme


- · One-time-use
- Unlinkable
- Anonymous
 - Unless ID is known 🛅


• Unless ID is known

Anonymous

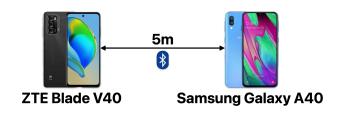



Anonymous

• Unless ID is known

• Unless ID is known

One-time-use Pseudonyms (PSUs)

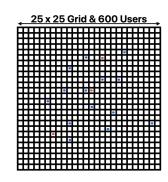

- Each user holds two sets of key pairs:
 - Long term ID keys (kept secret)
 - One-time-use (OTU) keys
- These keys are used to generate PSUs and allow selective linking of a user's messages/votes by trusted contacts:

$$PSU = Pub_{OTU} || bSig(Priv_{ID}, Pub_{OTU})$$

, where bSig is a public key-blinded signature scheme

Evaluation: Performance Micro-Benchmarks

- Implemented Anix on Android
- Avg. data exchange time: 11.58s
 - 100 messages * 10,000 votes (each)
- Avg. battery consumption: 1.5%/h


Computation time (in ms) for Anix operations

Op./Device	Gen. PSU	Create Msg.	Create Vote	Verify Sig.	BVer (Alg. 3)
Samsung A40	$ \begin{vmatrix} 175.06 \pm 1.05 \\ 64.95 \pm 0.29 \end{vmatrix} $	46.30 ± 0.01	84.61 ± 1.14	61.33 ± 0.21	67.68 ± 0.21
ZTE Blade V40		19.75 ± 0.01	38.76 ± 0.32	43.29 ± 0.28	47.30 ± 0.48

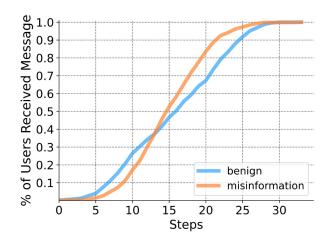
Evaluation: Simulation Testbed

- Simulated a scaled-down city environment with 600 users
- Blackout duration of 5 days (120 simulation steps)
- Most users are benign (98%), but a fraction are malicious (2%):
- 8

- Drop benign messages
- Attempt to gain the trust of benign users
- Spread misinformation

Evaluation: Simulation Testbed

- Simulated a scaled-down city environment with 600 users
- Blackout duration of 5 days (120 simulation steps)
- Most users are benign (98%), but a fraction are malicious (2%):


- Drop benign messages
- Attempt to gain the trust of benign users
- Spread misinformation

Check the paper for results under multiple settings!

Parameter / Category	Description	Value
A and B m N β K	Dimensions of the simulation world ($A \times B$ grid) Maximum distance that a user can move in a simulation step Total number of users Connectivity of the network given by the Watts-Strogatz model Average social graph degree in the Watts-Strogatz model	25×25 2 600 0.5 15
T	Total steps of the simulation (1 step = 1 hour)	120
Adv	Fraction of adversarial nodes amongst all users	2% - 25%
S	Maximum device storage space allotted to the Anix app	3 GB
P_{inter} C_m	Probability of a given user interacting with the Anix app at any step Probability for a user to send out a message in a given step	0.15 0.05
$egin{array}{c} OWT_{ud} \ U_{ud} \ R \ UV \ UM \ UN \ tp_m \end{array}$	Required ratio of a message's known upvotes/downvotes to OWT the author Required ratio of a message's known upvotes/downvotes to upvote it Ratio of an adversary's friends to benign user's friends Probability of a user who has no information about a message to vote on it Probability that a user upvotes a message containing misinformation Probability that a user upvotes a benign message Persistence time of a message on a user's device	0.66 0.55 0.1 - 0.9 0.01 - 0.2 0.1 - 0.5 0.5 - 0.8 24h

Coverage and Resilience to Misinformation

Benign messages take ~1 day to reach >90% of users

Messages up/downvoted by the majority of users

Samaria (Ada — 0.02)	Misinformation			
Scenario $(Adv = 0.02)$	Upvoted	Downvoted		
Very naive	204	1164		
Naive	40	1301		
Default	25	1320		
Aware	15	1314		
Very Aware	5	1297		

Anix users can weed out misinformation

Takeaways

- Internet shutdowns are becoming prevalent, and existing blackout-resistant mesh networking apps cannot sufficiently address users' needs
- We presented Anix, an anonymous mesh-based microblogging platform
 - Enables trusted users to exchange data while remaining anonymous to untrusted users
 - Resilient to adversaries aiming to spread misinformation
- Future work:
 - Strengthen forward anonymity; Automate identity revocation; Optimize vote exchange

Takeaways

- Internet shutdowns are becoming prevalent, and existing blackout-resistant mesh networking apps cannot sufficiently address users' needs
- We presented Anix, an anonymous mesh-based microblogging platform
 - Enables trusted users to exchange data while remaining anonymous to untrusted users
 - Resilient to adversaries aiming to spread misinformation
- Future work:
 - Strengthen forward anonymity; Automate identity revocation; Optimize vote exchange

Diogo Barradas diogo.barradas@uwaterloo.ca

