DeepSE-WF Unified Security Estimation for Website Fingerprinting Defenses Alexander Veicht, Cedric Renggli, Diogo Barradas Privacy Enhancing Technologies Symposium Lausanne, Switzerland 11 July, 2023 ### Encrypted Connections Leak Metadata ## Website Fingerprinting (WF) ### Defenses against Website Fingerprinting How can we tell how good a defense is? #### WF Defenses' Evaluation Lifecycle Highly dependent on new attacks (or classifiers) #### Attack-independent Defense Evaluation Bayes Error Rate - BER (WFES, Cherubin, PoPETs'17) - Estimate smallest achievable error - Uses error of 1-NN classifier as a proxy to estimate a lower bound for the error of any classifier on predefined features Mutual Information - MI (WeFDE, Li et al., CCS'18) - Estimate information leakage - Uses adaptive KDE to model the probability density function of features - Computes features' mutual information Both approaches focus on the analysis of manually-engineered features ## Pitfalls of WF Defenses' Security Evaluation Main issue: Mismatch of features used in attacks, defenses, and estimators Features used in security estimation methods are less expressive and thus less informative #### Main Contributions - **DeepSE-WF**: a new security estimation framework that leverages learned latent feature spaces to jointly estimate the BER and MI of WF defenses - Implementation and evaluation of DeepSE-WF - experiments conducted on defended Tor traffic ## DeepSE-WF – Overview ### Estimation Methodology – BER Based on 1-NN (Cover and Hart, '67) $$\min_{f} (\widehat{R_{f(X)}})_{n,1} = \min_{f} \left(\frac{(R_{f(X)})_{n,1}}{1 + \sqrt{1 - \frac{C(R_{f(X)})_{n,1}}{C-1}}} \right)$$ Transformations can only increase the BER (Rimanic et al.'20) DeepSE-WF keeps theoretical guarantees on any possible feature transformation (take min over all possible f) #### where: f: each of the learned feature representations $(R_{f(X)})_{n,1}:$ 1-NN accuracy using f C: number of classes ### Estimation Methodology – MI #### Based on k-NN (Ross, '14) $$\max_{f} \hat{I}(f(X); Y) = \max_{f} (\psi(N) - \langle \psi(N_x) \rangle + \psi(k) - \langle \psi(m_f) \rangle)$$ ψ : digamma function N: # of samples N_{x} : # of samples/class averaged over all classes k: hyperparameter (usually small – we use k = 5) m : avg. # of samples in the radius defined by the k nearest samples of the same class for every data point Transformations can only decrease MI (proof in the paper) DeepSE-WF keeps these guarantees on any possible feature transformation (take max over all possible f) #### BER – Comparison with WFES (using the DF/Tik-Tok DNN architecture) DeepSE-WF produces tighter BER estimates (and scales to a larger number of samples) #### MI – Comparison with WeFDE (using the DF/Tik-Tok DNN architecture) Tamaraw is a strong defense DeepSE-WF provides more reasonable results than WeFDE when estimating the leakage caused by all features #### Takeaways - Current security estimators do not provide tight bounds for the protection offered by existing WF defenses - We proposed DeepSE-WF, a novel WF security estimator - Based on k-NN BER and MI estimators on latent feature spaces - Computes tighter security bounds, more efficiently - However, DeepSE-WF estimates are not: - Attack-agnostic - Able to provide interpretable information about features - Geared towards the open-world setting Thank you! # Impact of DNNs in the BER Estimates (backup slide) Different learned representations lead to different BER estimates (and tighter bounds for some defenses) # Convergence behavior (backup slide) ## Laboratory Testbed (backup slide) #### Assumptions: - Closed-world setting accesses to monitored websites equally likely - Attacker perfectly separates website traces #### Datasets: - Rimmer et al. '17 (AWF) 100 websites * 4500 traces - Gong and Wang '20 (DS19) 100 websites * 100 traces #### Testbed: - MacBook Pro M1 Pro CPU, 32GB of RAM - Server 40 Intel Xeon E5-262 CPU cores, NVIDIA TITAN X GPU, 256GB RAM ## How Scalable is DeepSE-WF? (backup slide) DeepSE-WF is substantially more lightweight than WFES and WeFDE # DeepSE-WF BER vs. Attacks' Error (backup slide) | Attacks & Estimators | NoDef | WTF-PAD | Front_T1 | Front_T2 | CS-BuFLO | Tamaraw | |--------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------|----------------------------------| | k-FP | 04.1 ± 0.0 | 33.0 ± 0.0 | 41.2 ± 0.2 | 46.3 ± 0.1 | 80.9 ± 0.1 | 93.2 ± 0.1 | | AWF-CNN | 03.5 ± 0.1 | 37.5 ± 0.9 | 51.0 ± 0.5 | 60.7 ± 0.4 | 84.6 ± 0.5 | 94.9 ± 0.1 | | DF | 00.7 ± 0.0 | 07.4 ± 0.1 | 15.8 ± 0.1 | 22.9 ± 0.1 | 83.0 ± 0.1 | 94.8 ± 0.1 | | TF (L2 loss) | 02.9 ± 0.4 | 45.4 ± 2.0 | 42.6 ± 2.1 | 52.2 ± 4.8 | 90.0 ± 0.1 | 97.3 ± 0.3 | | Var-CNN | 00.7 ± 0.1 | 03.3 ± 0.1 | 06.4 ± 0.2 | 11.1 ± 1.3 | 83.0 ± 0.0 | 96.0 ± 2.0 | | Tik-Tok | 01.0 ± 0.1 | 06.5 ± 0.2 | 15.9 ± 0.6 | 22.3 ± 0.2 | 82.8 ± 0.1 | 94.8 ± 0.1 | | DeepSE-WF (AWF-CNN) | 01.3 ± 0.1 | 19.9 ± 0.2 | 39.9 ± 0.2 | 47.8 ± 0.5 | 67.3 ± 0.1 | 86.3 ± 1.1 | | DeepSE-WF (DF) | $\textbf{00.4} \pm \textbf{0.0}$ | 04.2 ± 0.2 | 09.9 ± 0.2 | 14.8 ± 0.2 | 67.2 ± 0.1 | $\textbf{85.4} \pm \textbf{1.1}$ | | DeepSE-WF (TF - L2 loss) | 01.5 ± 0.2 | 25.9 ± 1.3 | 24.3 ± 1.4 | 31.0 ± 3.7 | 69.1 ± 0.2 | 86.1 ± 1.2 | | DeepSE-WF (Var-CNN) | $\textbf{00.4} \pm \textbf{0.0}$ | $\textbf{02.2} \pm \textbf{0.1}$ | $\textbf{04.2} \pm \textbf{0.1}$ | $\textbf{07.1} \pm \textbf{0.2}$ | 68.6 ± 0.5 | 86.3 ± 1.1 | **AWF**100x4500 ### Comparison with WFES More results in the paper! (using the Tik-Tok DNN architecture) DeepSE-WF produces tighter BER estimates (and scales better for a larger number of samples)