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Website Fingerprinting (WF)
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Defenses against Website Fingerprinting
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How can we tell how good a defense is?
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high

WF Defenses’ Evaluation Lifecycle

New attack Design new 
defense

Check attack’s 
accuracy

New defense

low

Highly dependent on new attacks (or classifiers)



Attack-independent Defense Evaluation
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Bayes Error Rate - BER 
(WFES, Cherubin, PoPETs’17)

Mutual Information - MI
(WeFDE, Li et al., CCS’18)

- Estimate smallest achievable error
- Uses error of 1-NN classifier as a proxy 

to estimate a lower bound for the error 
of any classifier on predefined features

- Estimate information leakage
- Uses adaptive KDE to model the 

probability density function of features
- Computes features’ mutual information

Both approaches focus on the analysis 
of manually-engineered features
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Pitfalls of WF Defenses’ Security Evaluation 

Main issue: Mismatch of features used in attacks, defenses, and estimators

Features used in security estimation methods 
are less expressive and thus less informative

Raw representation
(packet capture)

Trace representation
(packet sequences)

Engineered Features 
(manually-crafted)

Latent Features 
(learned through DL)

Full information Less information



Main Contributions

- DeepSE-WF: a new security estimation framework that leverages learned 
latent feature spaces to jointly estimate the BER and MI of WF defenses

- Implementation and evaluation of DeepSE-WF 
- experiments conducted on defended Tor traffic
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DeepSE-WF – Overview
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Generate defended traces
(via defense simulators)

Learn latent features
(for different DL architectures)

Estimate BER/MI
(take min & max)



Estimation Methodology – BER
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Based on 1-NN 
(Cover and Hart, ‘67)

where:

        : each of the learned feature representations

               : 1-NN accuracy using 

        : number of classes

 

DeepSE-WF keeps theoretical guarantees 
on any possible feature transformation 

(take min over all possible     ) 

Transformations can only
 increase the BER (Rimanic et al.’20)



Estimation Methodology – MI

11/14

Based on k-NN 
(Ross, ‘14)

where:
       : digamma function
       : # of samples
       : # of samples/class averaged over all classes
       : hyperparameter (usually small – we use k = 5)
       : avg. # of samples in the radius defined by the   
nearest samples of the same class for every data point

DeepSE-WF keeps these guarantees on 
any possible feature transformation 

(take max over all possible     ) 

Transformations can only decrease MI
(proof in the paper)



BER – Comparison with WFES 
(using the DF/Tik-Tok DNN architecture)
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AWF100x90

DeepSE-WF produces tighter BER estimates
(and scales to a larger number of samples)

WFES is close (but optimistic)

For AWF100x4500:
    DeepSE-WF = 0.10
    Tik-Tok Error = 0.16

WFES is OOM for larger # of traces



MI – Comparison with WeFDE
(using the DF/Tik-Tok DNN architecture)
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AWF100x500

Tamaraw is a strong defense

DeepSE-WF provides more reasonable results than WeFDE 
when estimating the leakage caused by all features

(Many) more 
results in 
the paper!



Takeaways
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- Current security estimators do not provide tight bounds for the protection 
offered by existing WF defenses

- We proposed DeepSE-WF, a novel WF security estimator 
- Based on k-NN BER and MI estimators on latent feature spaces
- Computes tighter security bounds, more efficiently

- However, DeepSE-WF estimates are not:
- Attack-agnostic
- Able to provide interpretable information about features
- Geared towards the open-world setting

Thank you!



Impact of DNNs in the BER Estimates
(backup slide)
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AWF100x4500

Different learned representations lead to different BER estimates 
(and tighter bounds for some defenses)



Convergence behavior
(backup slide)
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Laboratory Testbed
(backup slide) 
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Assumptions:
- Closed-world setting – accesses to monitored websites equally likely
- Attacker perfectly separates website traces

Datasets:
- Rimmer et al. ‘17 (AWF) – 100 websites * 4500 traces
- Gong and Wang ‘20 (DS19) – 100 websites * 100 traces

Testbed:
- MacBook Pro – M1 Pro CPU, 32GB of RAM
- Server – 40 Intel Xeon E5-262 CPU cores, NVIDIA TITAN X GPU, 256GB RAM



How Scalable is DeepSE-WF?
(backup slide)
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8h30m for WeFDE MI

4h for BER/MI with DeepSE-WF

9h30m for WFES BER 

DeepSE-WF is substantially more lightweight than WFES and WeFDE



DeepSE-WF BER vs. Attacks’ Error
(backup slide)
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AWF100x4500



Comparison with WFES 
(using the Tik-Tok DNN architecture)

20/15

AWF100x90

DeepSE-WF produces tighter BER estimates
(and scales better for a larger number of samples)

WFES is reasonably close 
(but optimistic)

AWF100x4500

WFES is OOM for many traces

More 
results in 
the paper!


