Diogo Barradas Nuno Santos Luís Rodrig

Fernando Ramos André Madeira

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Salvatore Signorello

LASIGE, Faculdade de Ciências, Universidade de Lisboa

FlowLens: Enabling Efficient Traffic Analysis for Security Applications Using Programmable Switches

Performance Breakthroughs with Programmable Switches

- Line-speed packet processing at Tbps
- Fully programmable in the P4 language
- Recent focus of HW manufacturers

New opportunities for network security

Securing High-Speed Networks

Programmable switches are used to:

- Obfuscate Network Topologies [NetHide, SEC'18]
- Filter spoofed IP traffic [NetHCF, ICNP'19]
- Mitigate DDoS attacks [Poseidon, NDSS'20]
- Thwart network covert channels [NetWarden, SEC'20]

Line-speed packet processing Highly efficient

Fine-tuned for specific application domain

There are Other Prominent ML-based Security Applications

Website Fingerprinting

IoT Behavioral Analysis

Detection of Covert Channels

Packet lengths

Packets inter-arrival time

ML-based classifier

Generic approach towards detecting multiple attacks

Collecting Packet Distributions in Programmable Switches is Hard

- Stateful memory is severely limited
 - ~100 MB SRAM
 - No memory for storing many flows
- Packets must be processed at line speed (< a few tens of ns)
 - Limited number of operations
 - Reduced [domain-specific] instruction set

It does not seem feasible to obtain packet distributions in programmable switches at scale

Research Question

 Can we collect packet distributions within programmable switches?

Efficient

Generic

Solutions for Collecting Packet Distributions Have a Few Drawbacks

Large Bandwidth Costs

Netwarden, USENIX SEC'20

Efficient

Application-tailored

Contributions

FlowLens: a flow classification system for generic ML-based security applications

- Flow markers: Compact representation of packet distributions in prog. switches
- Flow marker accumulator: Implementation of flow marker collection in switching hardware
- Automatic profiling: Application-tailored configuration of flow markers
- Evaluation: Tested in 3 different security tasks

Efficient

Generic

FlowLens Architecture

- Scale # of measured flows
- Ensure network visibility

Coordinated Operation

Multiple ML applications

How can we Compress Packet Distributions Efficiently?

- Produce flow markers with two operators
 - Quantization
 - Truncation

How to Automatically Choose Quant/Trunc Parameters?

- Large configuration space
 - Quantization x Truncation
- Leverage Bayesian Optimization
- Automatic Profiler with three criteria
 - Smaller marker for target accuracy
 - Best accuracy given a size constraint
 - Compromise between marker size and accuracy

Saves many hours of testing sub-optimal configurations

How are Flow Markers Collected in the Switch?

- Programmable packet parsing
- Leverage match-action tables
 - Arranged in stages
 - Match some packet field
 - Change packet headers or metadata

How are Flow Markers Collected in the Switch?

Flow Marker Accumulator

- Simple per-stage operations
- Offload complex operations (control plane) 0

Evaluation

- Scalability in three use cases
 - Covert Channel Detection
 - Website Fingerprinting
 - Botnet Detection
- Performance of FlowLens's profiler
- Resources consumption
 - CPU usage (control plane)
 - ASIC usage (data plane)

Scalability Gains Overview

- Scalability in three use cases
 - Covert Channel Detection

- Website Fingerprinting
- Botnet Detection

Use Case	Scaling (# flows)	Performance Loss
Covert Channels	150x	-3% accuracy
Website Fingerprinting	32x	-2% accuracy
Botnet Detection	34x	-3% recall -2% precision

Check the paper for our comprehensive evaluation!

FlowLens Scales the Amount of Inspected Flows and Retains Acc.

- Covert Channel Detection [Barradas et al.]
 - Legitimate / Modified Skype flows
 - Packet lengths + XGBoost

16x increase in measured flows

Full information = 3000B

Detection: 96% accuracy

Quant (QL=4) = **188B Detection: 92% accuracy**

FlowLens Scales the Amount of Inspected Flows and Retains Acc.

- Covert Channel Detection [Barradas et al.]
 - Legitimate / Modified Skype flows
 - Packet lengths + XGBoost

150x increase in measured flows

Full information = 3000B

Detection: 96% accuracy

Quant (QL=4) + Trunc (top-10) = **20B Detection: 93% accuracy**

FlowLens' Profiler Finds Good Quant. / Trunc. Parameters

- Automatic profiling (Covert Channel):
 - 48 valid parameter combinations
 - Set max exploration of 10 combinations

Rank (accuracy-wise)	Combination
#1	(QL = 2, Top-n = all) = 0.960
#2	(QL = 3, Top-n = 50) = 0.951
#3	(QL = 0, Top-n = 30) = 0.947
Output	(QL = 3, Top-n = 10) = 0.944

Optimize for a reasonable Size vs Accuracy trade-off

FlowLens Imposes a Small Overhead on the Switch

CPU usage (ML component):

- Botnet detection (our largest model)
- 140MB out of 32GB RAM
- 5.6MB storage
- ~200 μs per prediction

ASIC usage (Flow Marker Accumulator):

Computational		Memory		
eMatch xBar	Gateway	VLIW	ТСАМ	SRAM
8.46%	5.21%	3.39%	0.00%	38.54%

Supports flow classification in the control plane

Supports the concurrent execution of other forwarding behaviors

Conclusions

- FlowLens: First traffic analysis system for generic
 ML-based security applications in prog. switches
- Collects compressed packet distributions, ensuring:
 - Classification accuracy
 - Small memory footprint
- Classifies flows directly on the switch
 - Saves communication, compute, and storage costs

Our code is available!

https://github.com/dmbb/flowlens

https://web.ist.utl.pt/diogo.barradas

