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The need for online anonymity

* Internet users are at odds with pervasive tracking and online surveillance
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« Onion routing aims to provide online anonymity by sending users’ network
traffic through multiple relays
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Can we deanonymize Tor traffic?
Should we”?
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+ Protect activists, whistleblowers, etc.
+ Catch (cyber)criminals
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Deanonymizing clients” accesses via lor ()
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How can one deanonymize lor traffic
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webmd.com

s there another way”?

xyz onion

Website Fingerprinting
(local adversary)
+ Can tell the website/.onion a client connects to

- Requires a pre-built database
- Cannot find a .onion’s IP address 7



Deanonymizing clients’ accesses via lTor (/)
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How can one deanonymize lor traffic
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XyZ.0Nnion

Website Fingerprinting
(local adversary)
+ Can tell the website/.onion a client connects to

- Requires a pre-built database
- Cannot find a .onion’s IP address

webmd.com

X.Com

Flow Correlation
(global adversary)

+ Can tell what website a client connects to
+ No need for a database
- What about onion services? 9



Challenges for onion service flow correlation ()

« Onion services connect to the Tor network very much like a client
* A naive correlation method may try to match flow pairs that are surely uncorrelated
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Challenges for onion service flow correlation (ll)

« Onion services connect to the Tor network very much like a client
* A naive correlation method may try to match flow pairs that are surely uncorrelated

* ldentify and discard client requests towards the clearweb

webmd.com
- Feasible pairs:
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Challenges for onion service flow correlation ()

« Onion services connect to the Tor network very much like a client
* A naive correlation method may try to match flow pairs that are surely uncorrelated

* ldentify and discard client requests towards the clearweb
« Untangle concurrent client requests/responses at the onion service guard
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 Introduce SUMo, a novel classification pipeline that enables efficient and
accurate flow correlation for Tor onion service sessions

» Collect a large dataset for evaluating flow correlation on Tor, encompassing
accesses both to clearnet and onion service websites

* Provide an implementation and evaluation of SUMo
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The SUMo Pipeline
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The SUMO
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VMatch clients with onion services
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How did we evaluate SUMo?
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—xperimental testbed

* Developed a framework to generate network traces (> 80,000 pcaps
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SUMo can effectively correlate flow-pairs
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SUMO’s pipeline is efficient

Stage Training time Inference Time
(full data) (per flow)

Filtering Source separation 4.3s 44.7ms
Target separation 1.7s 35.0ms
Matching Session correlation - 32.6ms
Trains fast Filters fast Correlates fast
Filtering classifiers Filtering classifiers Sliding subset sum is fast to match
are fast to train are fast to predict (100x faster than SOTA correlation)
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Trattic correlation on Tor is a realistic threat

« We verified client and onion service guard locations
 for 40,000 random 6-hop circuits between our clients and Oses
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lakeaways

« Onion services are instrumental for anonymity online

* The threat of traffic correlation on Tor is getting increasingly realistic
 colluding entities can intercept a large fraction of Tor traffic
 correlation algorithms are increasingly efficient and effective

« Countermeasures:
» Increase guard node’s geographical diversity
» Pluggable transports (e.g. Brik [CONEXT’23])
» Client concurrency (e.g., fake client traffic)
» Concurrent “multi-tab” requests

Diogo Barradas
diogo.barradas@uwaterloo. ca

ou
'Y‘(\a“\( Y 24



