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The need for online anonymity
• Internet users are at odds with pervasive tracking and online surveillance
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• Onion routing aims to provide online anonymity by sending users’ network 
traffic through multiple relays
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Preserving online anonymity with Tor
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Can we deanonymize Tor traffic?
Should we?
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+ Catch (cyber)criminals
+ Protect activists, whistleblowers, etc.



Encrypted Tor connections leak metadata
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Deanonymizing clients’ accesses via Tor (I)
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How can one deanonymize Tor traffic?

Website Fingerprinting
(local adversary)

+ Can tell the website/.onion a client connects to
- Requires a pre-built database

- Cannot find a .onion’s IP address

xyz.onion
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Is there another way?



Deanonymizing clients’ accesses via Tor (II)
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How can one deanonymize Tor traffic?

Flow Correlation
(global adversary)

+ Can tell what website a client connects to
+ No need for a database

- What about onion services?
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(local adversary)

+ Can tell the website/.onion a client connects to
- Requires a pre-built database

- Cannot find a .onion’s IP address



Challenges for onion service flow correlation (I)
• Onion services connect to the Tor network very much like a client

• A naïve correlation method may try to match flow pairs that are surely uncorrelated
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• Onion services connect to the Tor network very much like a client
• A naïve correlation method may try to match flow pairs that are surely uncorrelated

• Identify and discard client requests towards the clearweb
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Challenges for onion service flow correlation (II)
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• Onion services connect to the Tor network very much like a client
• A naïve correlation method may try to match flow pairs that are surely uncorrelated

• Identify and discard client requests towards the clearweb
• Untangle concurrent client requests/responses at the onion service guard
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Our recent efforts
• Introduce SUMo, a novel classification pipeline that enables efficient and 

accurate flow correlation for Tor onion service sessions

• Collect a large dataset for evaluating flow correlation on Tor, encompassing 
accesses both to clearnet and onion service websites

• Provide an implementation and evaluation of SUMo
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[shameless advertising spot]

14



The SUMo Pipeline
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Filtering Phase (on local probes)
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The SUMo Pipeline
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Match clients with onion services

Matching Phase (on correlator)
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Find matches 
between the 
number of 
packets received 
by the client and 
the packets sent 
by the server in 
the same window



How did we evaluate SUMo?
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Experimental testbed
• Developed a framework to generate network traces (> 80,000 pcaps)

• Geographical distribution of live nodes (clients and servers)

• Hosted a set of webpages scraped from actual onion services

• Modeled client requests’ concurrency to .onions and Tranco top 150 sites

• Emulated typical browsing behaviour to collect browsing sessions
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SUMo can effectively correlate flow-pairs

• Sessions of any duration
• 99.5% precision 
• 89.6% recall

• Sessions > 6 minutes
• 99.8% precision 
• 92.1% recall
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SUMo’s pipeline is efficient
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Traffic correlation on Tor is a realistic threat
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Probability of both guard nodes 
being under the same jurisdiction
Guard node distribution is heavily skewed

Visibility over guard nodes 
under country collusion

Chances of deanonymization increase 

• We verified client and onion service guard locations
• for 40,000 random 6-hop circuits between our clients and Oses



Takeaways
• Onion services are instrumental for anonymity online
• The threat of traffic correlation on Tor is getting increasingly realistic

• colluding entities can intercept a large fraction of Tor traffic
• correlation algorithms are increasingly efficient and effective
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• Countermeasures:
• Increase guard node’s geographical diversity
• Pluggable transports (e.g. Brik [CoNEXT’23])
• Client concurrency (e.g., fake client traffic)
• Concurrent “multi-tab” requests

Diogo Barradas
diogo.barradas@uwaterloo.ca

Thank you!


