Are we safe in the "Internet from Space"?

Diogo Barradas

David R. Cheriton School of Computer Science
University of Waterloo

What is satellite Internet and how does it work?

- Internet access provided through communication satellites in space
- Clients use a dish antenna to send and receive information from a satellite
 - No need for fiber or cabled connections
- Able to connect rural, remote, or indigenous communities in a cost-effective way
 - Helps bridge the digital divide

Do all satellite broadband connections work the same?

GEO satellite Internet

(bent-pipe)

GEO satellite (~35,000Km)

High latency:

600 to 1200 milliseconds

Low bandwidth:

50Mbps download / 6Mbps upload

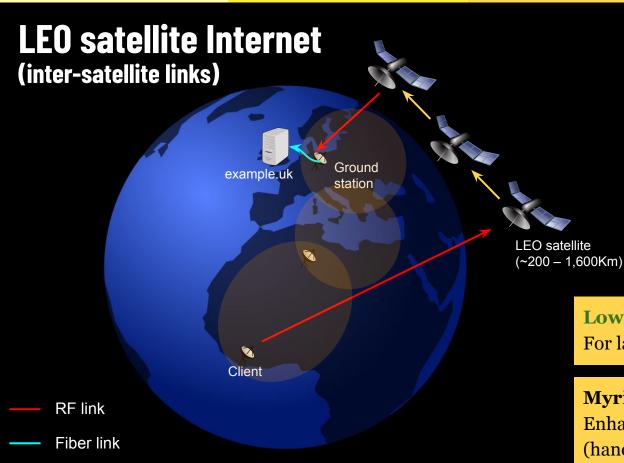
--- RF link

— Fiber link

Ground station

example.pt

Client


LEO satellite (~200 – 1,600Km)

Low latency:

~10s to 100 milliseconds

High throughput:

~100s Mbit to Gbps speeds

PAGE 5

Laser link

Lower latency than fiber:

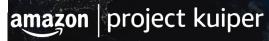
For large terrestrial routes

Myriad opportunities:

Enhanced routing, other optimizations (hand-off, service placement, etc.)

"Right, but this sounds a bit like science fiction"

However, it is very much real!


- Many companies are launching their own constellations
 - Low-cost satellite launches & COTS components
- Opportunities for new services and applications
 - Civilian & military usage (e.g., DARPA Blackjack)
 - Also fostering new research avenues

Imagination is the limit

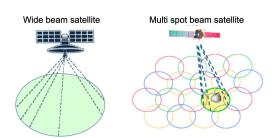
- High-speed satellite Internet
 - no more sluggish connections
- Geospatial data analysis
 - AI-powered data analytics for tracking and monitoring
- Edge computing & micro datacenters
 - offload data and analytics, minimize bandwidth requirements

SpaceX hits a milestone as Starlink arrives in Antarctica, high-speed internet now available on all seven continents

The Starlink dish can withstand extreme temperatures as low as -22 degrees Fahrenheit.

Data Centers in Orbit? Space-Based Edge Computing Gets a Boost

Y RICH MILLER - AUGUST 17, 2022 — LEAVE A COMMENT

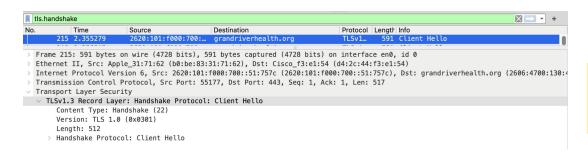


This all sounds pretty cool! But how safe is my data?

There are three important **security concerns**:

- Large beaming radius
- Easy to intercept
- (Often) no encryption

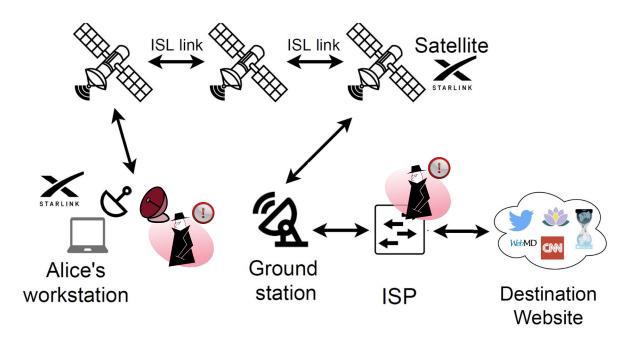
How can we secure our satellite Internet links?



[Whispers Among the Stars, James Pavur, Oxford University, BlackHat 2020]

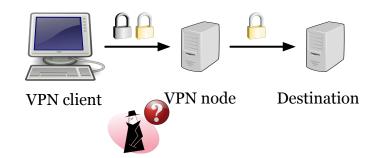
Satellite Internet is still the Internet

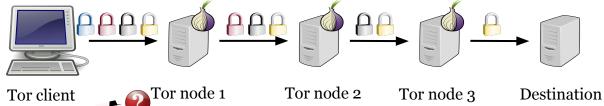
- Transport Layer Security (TLS) can be used to encrypt the content of communications
 - Widely adopted
 - Your browser can even do it for you



TLS does not hide everything!
e.g., destination, connection duration

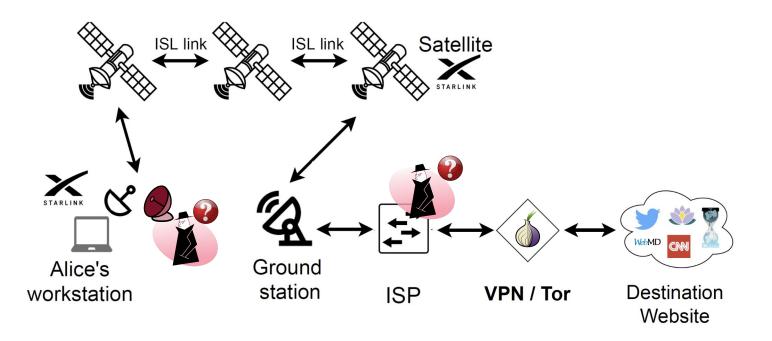
Where is the adversary?

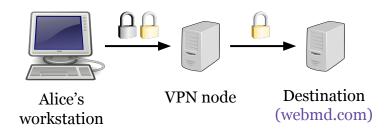


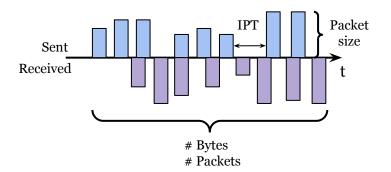

So what can I do to protect this information?

Key idea: Hop around!

Virtual Private Networks


Anonymity networks e.g., Tor


Satellite Internet users can also apply these mechanisms


Game over for eavesdroppers, right?

There's actually more than meets the eye...

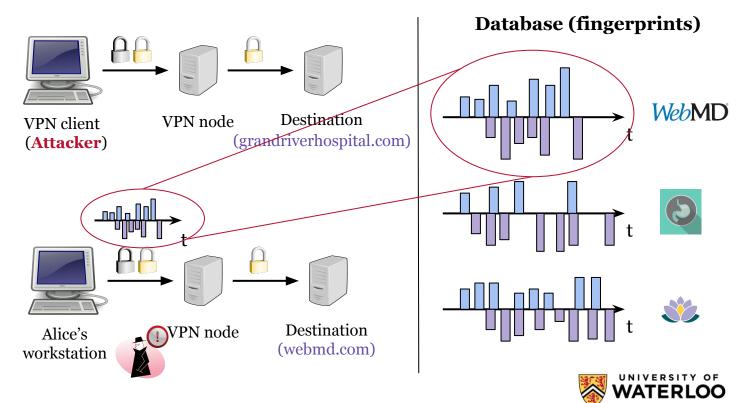
Packet flow:

Observation:

VPNs and Tor **leak metadata** like the volume, direction, and timing information that characterize a given website

Website Fingerprinting attack:

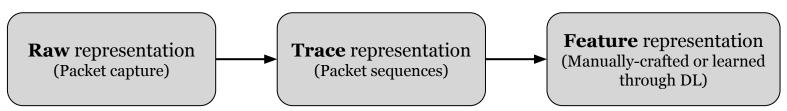
Create a database of website traces and try to match Alice's traffic patterns


How does website fingerprinting work?

Step 1:

Build database

Step 2:


Match Alice's traffic

In practice, matching fingerprints is more difficult than that...

- No two website accesses are the same!
 - Users have different machines, browser configurations, etc.
 - Network conditions are not static
- This causes uncertainty when matching fingerprints

How do adversaries reduce this uncertainty? Machine learning-assisted website fingerprinting pipeline:

Defences against website fingerprinting

(and prototyped over Tor)

Constant-rate padding CS-BuFLO, Tamaraw

Supersequence Glove, Walkie-Talkie

Adaptive Padding WTF-PAD

Application-layer LLaMA, ALPaCA

Traffic splitting HyWF, TrafficSliver

Trace noise/merge FRONT/Glue

Adversarial defences Mockingbird, BLANKET

> Synthetic traffic Surakav

Some are impractical

Some are inefficient

None evaluated in satellite links

Challenges and Opportunities

- How difficult is it to fingerprint traffic over satellite links?
 - Different link properties than terrestrial links
 - Added latency, jitter, packet drops
 - Different transport protocol behaviour
- Can we lower bound an adversary's capabilities?
 - Different interception settings
 - At the backhaul, antenna placed close to clients, downlink only
- Can we build enhanced defences?
 - Existing WF defences impose severe performance overheads
 - A big issue assuming limited traffic plans

Takeaways

- We are facing a rise in the adoption of satellite Internet solutions
 - And a wealth of networked space-based services being designed
- Satellite Internet links are susceptible to traffic analysis
 - Just like the regular/terrestrial Internet
- We are working towards assessing the security of satellite Internet users
 - Against the analysis of communication metadata

