Towards a Scalable Censorship-Resistant Overlay Network based on WebRTC Covert Channels

Diogo Barradas

Nuno Santos

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Internet Censorship is Widespread

Bypassing Censorship with Decoy Routing

e.g., TapDance [PETS'20]

Bypassing Censorship with Multimedia Covert Channels

e.g. DeltaShaper[PETS'17]

Bypassing Censorship with WebRTC

Limitations of Protozoa

- Does not provide a mechanism for finding proxies
- Prone to censor attacks:
 - Does not protect against long-term user profiling
 - Does not protect users against censor-controlled WebRTC services
 - Does not provide a defense mechanism against Sybil nodes

CRON: Censorship-Resistant Overlay Network

CRON Leverages Social Circles for Finding Proxies

Attack Vector #1 - Long-Term Profiling of Users

Adversaries may build user profiles to identify uncommon behavior

- (S1) Simultaneous video calls (relay nodes)
- (S₂) Uncommon call parties
- o (S₃) Uncommon call times, frequency, and duration

Prevent the Identification of Users due to Long-Term Profiling

Passive Mode

- Monitor user call patterns
- Explore windows of opportunity
 - e.g., weekly video meeting

Active Mode

- Take advantage of the inherent variability in user patterns
- Introduce bounded variability
 - call times, frequency, duration

Attack Vector #2 - Censor-controlled WebRTC Services

- Adversary-controlled WebRTC services are prone to MITM attacks
 - Hijack user identity during call signalling / establishment phase
 - Force calls through WebRTC gateways
 - Allow an adversary to decrypt / inspect media content

Prevent Adversarial WebRTC Apps from Detecting Covert Channels

- New flavor of CRON circuits: Stego circuits
 - Embed covert data in video frames using video steganography techniques
 - Protect steganographic content with public key exchanged out-of-band

Attack Vector #3 - Identifying CRON Users using Sybils

- Adversaries can infiltrate state-controlled agents into the network
 - Issue **fake client requests** to track down legitimate CRON proxy nodes
 - Offer fake proxying or relaying services

Prevent Users from Being Identified by Sybil Nodes

- Avoid indeliberate trust in every CRON node
 - Discretionary trust system
- Trust establishment is centred in each user, in two rings of trust
 - o **lst degree trustees:** Nodes in a user's direct social circle
 - **2nd degree trustees:** Nodes that are "friends-of-a-friend"
- Circuits are only established if all involved nodes are mutually trusted
 - Circuit creation is not an unilateral decision
 - 2nd degree trustees can still be used for establishing N-hop circuits

Envisioned CRON Architecture

User Interface:

Set functioning mode (client / proxy)
Assign levels of trust

Circuit Layer:

Manage regular / stego circuits Mitigate profiling attacks

Security Monitor:

Check whether nodes are trusted Check location of proxies Content whitelisting

CRON / SOCKS API:

Support distributed applications

Conclusions

- We presented **CRON** (Censorship-Resistant Overlay Network)
 - Distributed system of nodes interlinked by WebRTC video channels
 - o **Goal:** Tackle multiple limitations of proxy-based multimedia covert channels
- Exposes an API for building censorship-resistant distributed applications
 - CDNs, distributed file systems, key-value stores, etc.

Discussion:

- How can we accurately profile WebRTC users across sessions?
- Will the performance impact of stego circuits disable some CRON apps?
- Can we detect Sybil nodes and make them accountable? https://web.ist.utl.pt/diogo.barradas

Thank You!

Limitations of Protozoa

- Does not provide a mechanism for finding trusted peers
 - Users with no connections abroad are prevented from using the system
- Does not provide a defense mechanism against Sybil nodes
 - A censor can enumerate clients and proxies
- Does not protect users against censor-controlled WebRTC services
 - Opens the possibility for inspection of unencrypted covert traffic
- Does not protect against long-term user profiling
 - Adversaries can try to spot unusual client behavior

