
RevealNet: Distributed Traffic Correlation for

Attack Attribution on Programmable Networks

Gurjot Singh, Alim Dhanani, and Diogo Barradas

David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

{gurjot.singh1,alim.dhanani,dbarrada}@uwaterloo.ca

Abstract—Network attackers have increasingly resorted to
proxy chains, VPNs, and anonymity networks to conceal their
activities. To tackle this issue, past research has explored the
use of traffic correlation techniques to perform attack attribution,
i.e., to identify an attacker’s true network location. However,
current traffic correlation approaches rely on well-provisioned
and centralized systems that ingest flows from multiple network
probes to compute correlation scores. Unfortunately, this makes
correlation efforts scale poorly for large high-speed networks.

In this paper, we propose RevealNet, a decentralized frame-
work for attack attribution that orchestrates a fleet of P4-
programmable switches to perform traffic correlation. We build
on top of a set of correlation primitives inspired by prior work on
computing and comparing flow sketches—compact summaries of
flows’ characteristics—to enable efficient, distributed, in-network
traffic correlation. Our evaluation suggests that RevealNet

achieves comparable accuracy to centralized attack attribution
systems while significantly reducing the computational complex-
ity and bandwidth overheads imposed by correlation tasks.

Index Terms—Attack attribution, P4 switches, Sketches, Traffic
correlation.

I. INTRODUCTION

In recent years, network attackers have increasingly relied

on proxies, VPNs, and anonymity networks, to conceal their

identities while engaging in malicious network activities.

These anonymization tools route traffic through multiple inter-

mediary servers, thereby obscuring an attacker’s original IP ad-

dress (i.e., a so-called stepping-stone attack [1]). Consequently,

traditional approaches to identify the source of an attack, such

as analyzing a flow’s 5-tuple data, fail to trace malicious traffic

effectively. This makes it challenging for network operators

to perform attack attribution (i.e., to locate the true source

of attacks), preventing coordinated response efforts (e.g., via

information sharing between ISPs), legal action, or better

insights into attackers’ tactics [2].

To uncover the sources behind malicious and anonymized

traffic [3], researchers have increasingly relied on traffic

correlation techniques. These techniques aim to deanonymize

malicious sources of traffic by analyzing and matching their

traffic patterns (such as a flow’s packets’ timing and direction,

and/or communication volume) as observed by multiple probe

nodes spread across the network [4], [5]. Previous stud-

ies developed statistical [6], [7] and machine learning-based

methods [4], [8] to improve correlation accuracy. However,

these methods require transmitting flows’ features (as observed

by the probes) to a central correlator node, responsible for

processing such features, thus leading to substantial network

bandwidth and computational overheads. While decentralized

approaches have been discussed [7], [9], they mostly involve

the partitioning of correlation tasks among multiple correlator

nodes and still require probes to exchange flow features in bulk

towards special-purpose servers, hence only partially mitigat-

ing scalability concerns (in particular, that of computation).

Addressing the scalability issues of existing attack attribu-

tion frameworks has proven particularly challenging in high-

speed and large-traffic volume infrastructures (e.g., software-

defined and programmable networks, such as those found in

5G deployments), where the volume of telemetry data grows

rapidly with link speeds and which require rapid processing

capabilities to uphold performance standards [10]. To address

constraints on data storage and the bandwidth overheads

imposed by telemetry data offloading in the context of attack

attribution, researchers have investigated the use of feature

aggregation [5] and compression techniques that produce flow

sketches [9], [11], i.e., compact representations of flows’

characteristics which can be used for correlation. While a

significant step forward, we argue that sketches alone do not

fully address the fundamental scalability limitations of attack

attribution workloads.

This paper introduces RevealNet, a framework for attack

attribution that operates via the decentralized correlation of

attacking flows. RevealNet eschews the need for special-

purpose correlation nodes and minimizes data exchanges dur-

ing correlation tasks. At the core of our approach is the

realization that, while flow correlation capabilities remain

largely unexplored in P4-programmable switches (e.g., Intel

Tofino, AMD Pensando), these devices are gaining traction

in high-performance networks due to their ability to perform

complex network security operations with low computational

overhead [12]. This raises the question of whether P4 switches

can also leverage efficient correlation-focused flow feature

extraction primitives—such as flow sketches—to operate as

decentralized probe/correlation nodes, without incurring the

additional costs of middlebox infrastructures [13] or of of-

floading feature processing to dedicated servers [14].

Our evaluation suggests that RevealNet matches the effec-

tiveness of centralized attack attribution systems while offering

significant efficiency gains by decentralizing flow correlation.

RevealNet allows P4 switches to track more flows and cut

communication overheads—saving up to 96% bandwidth in

a decentralized setup consisting of 20 networks, each with a

RevealNet-enabled switch.

Diogo Barradas
© 2025 IEEE. Manuscript accepted to the 23rd IEEE International Symposium on Network Computing and Applications (NCA). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Contributions. We summarize our contributions as follows:

• We design RevealNet, a decentralized attack attri-

bution framework based on the orchestration of P4-

programmable switches for enabling flow correlation.

• We implement RevealNet in bmv2, the reference P4

switch, and adapt prominent flow sketching schemes to

fit the programming constraints of P4 switches.

• We evaluate RevealNet’s correlation accuracy as well

as its computational and bandwidth overheads when

identifying the source of malicious flows.

II. BACKGROUND AND RELATED WORK

A. Traffic Correlation

Traffic correlation techniques can be used to analyze traffic

patterns and link together flows which are observed at the

entry and exit nodes of proxy chains. While some correlation

schemes helped gauge the privacy provided by anonymity [6]

and mix networks [15], others were developed with the intent

to trace stepping-stone attackers [11], [16]. Below, we describe

two main classes of prominent passive flow correlation tech-

niques: a) those that use fine-grained per-packet data for higher

accuracy at the cost of increased storage, and; b) those that

rely on coarse-grained per-flow data, which are more storage-

efficient but are typically less precise.

Flow correlation with fine-grained information. Most stud-

ied traffic correlation techniques rely on fine-grained, per-

packet information. Zhu et al. [17] leverage per-packet timing

information to compute the average traffic rate of flows at

different intervals, while Palmieri [7] used wavelet-based

analysis to capture timing, size, and rate variations across

flows. Recently, researchers adopted deep learning to improve

flow correlation, pushing accuracy over that of statistical meth-

ods. DeepCorr [4] and DeepCoFFEA [8] progressively im-

prove accuracy—DeepCorr uses convolutional neural networks

(CNNs) to learn correlation functions, and DeepCoFFEA

introduces novel feature embedding and voting mechanisms.

While the above approaches yield high accuracy, they rely

on the collection, communication, and processing of fine-

grained information (direction, size, and timing) about packets

in a trace, making them costly to deploy at scale (§III, [9]).

Flow correlation with coarse-grained information. Collect-

ing and storing fine-grained traffic features for flow correlation

at choke points (e.g., ISP border routers) is increasingly

challenging due to the high volume and speed of traffic, which

strain storage and processing resources. To overcome this,

Coskun et al. [11] used linear projections to reduce a flow’s

packets’ timing patterns into succinct representations that can

be efficiently collected, stored, and compared. Nasr et al. [9]

introduced compressive traffic analysis, a paradigm which

leverages compressed sensing to compress the traffic features

used in correlation, stipulating that flow correlation can be

performed directly on compressed traffic features instead of

on raw traffic features. Lopes et al. [5] correlate flows based

on the similarity of feature vectors (akin to traffic aggregation

matrices [18]) whose cells contain the number of packets

observed within a small time frame.

In Nasr et al. [9] and Lopes et al. [5], however, flows’

succinct representations are only generated after the initial

collection of per-packet information. Still, these compact struc-

tures may reveal useful for correlation efforts in the scope of

stepping-stone detection, should one be able to compute these

representations on-the-fly, eschewing the need to store per-

packet data. Inspired by these works, we conjecture that these

techniques can help reduce memory use at traffic collection

nodes and correlate flows using limited flow data (§IV-D).

B. P4 Switches as a Platform for Traffic Analysis

This section discusses how programmable switches acceler-

ate traffic analysis in high-speed networks and describes how

they have been used for realizing ML-enabled cybersecurity

workloads—including network-wide data correlations.

Primer on P4-programmable switches. P4 switches cleanly

separate the responsibilities of the network’s data and control

planes. The data plane is optimized for line-rate packet for-

warding and allows for programmable, per-packet operations

that enable feature extraction without compromising through-

put. In turn, the control plane manages rule installation and

updates, supporting adaptive responses to changing traffic pat-

terns. P4 switches, such as the Intel Tofino or AMD Pensando

devices, move packets through a multi-stage pipeline before

forwarding them. Ingress and egress pipelines employ match-

action units to handle packet forwarding and programmable

logic. After incoming packets are parsed, their headers and

metadata can match a given table, whose entry will map to an

action unit. Actions can alter packet header fields and modify

stateful memory (e.g., increment register counters). Although

matching tables and other P4 objects are instantiated inside

match-action units, they are populated by the control plane at

and throughout run-time.

Despite their benefits, P4 switches bring limitations that

restrict programmability, including the lack of dynamic data

structures, no support for floating-point arithmetic, limited

memory capacity (∼256MBs SRAM), and tight computational

constraints that allow only simple operations per pipeline

stage. These constraints pose implementation challenges to

P4 programs that require complex flow feature processing and

storage, which are typically implemented via clever “hacks”

and workarounds [19]–[21]. In our proposed design (§IV), we

leverage similar approaches to make an efficient use of the

limited memory and computation primitives in P4 switches to

compute and store flow features.

Traffic analysis on P4 switches. P4 switches have been

increasingly employed for traffic analysis tasks [22], including

traffic classification [20], covert channel detection [19], and

DDoS mitigation [23]. Seminal systems in this space focused

on extracting fine-grained traffic features within the data plane,

and then offloading them to the switches’ control plane to

support a range of security-focused tasks. For enhancing

traffic analysis capabilities, researchers designed efficient data

structures and scalable storage management mechanisms for

handling many concurrent flows [24], as well as making

significant strides for running classifiers in the data plane [21].

computed and stored within each switch’s data plane. Still,

previous prototypes for ML-based flow analysis schemes for

P4 switches side-step the problem of unique flow identifica-

tion, assuming that some process is in place to perform it

(e.g., [20]), or forcing the initial packet of a new connection

to move through the control plane for further processing and

mapping (e.g., [19]), thus causing delays upon connection

establishment in high-speed networks with low latency re-

quirements. Thus, while apparently straightforward, producing

a 1-to-1 match between new flows and a memory region that

can accommodate for a flow’s compact feature representation

is non-trivial should one wish to avoid delays in packet

processing and/or feature corruption, e.g., caused by hash-

based indexing methods that may lead to collisions [28].

RevealNet’s flow identification pipeline. We now detail how

RevealNet tackles flow identification, relying on Figure 3.

• Packet parsing. The first step on the packet processing

pipeline involves a parsing operation that extracts the

packet’s 5-tuple (step 1).

• Flow table lookup. We introduce a dedicated flow table

that stores reference indices pointing to row entries in

another data plane feature table. The latter logically or-

ganizes registers’ memory in rows, where each row stores

a given flow’s feature vector. After parsing, a packet’s 5-

tuple is checked against the flow table (step 2). We must

install a new rule for each newly observed flow.

• Packet cloning and rule installation. To install a rule

for a new flow, the first packet is cloned: the original

is forwarded without delay, while the clone is sent to the

control plane for rule creation. The rule is installed in

the data plane’s flow table through a remote procedure

call (step 3), and will point to a cell in the feature

table for keeping track of packets pertaining to the new

flow. Note that a flow’s initial packet(s) triggering a

rule installation will not be included in a flow’s feature

vector, since the index to write on the data plane is

not yet available. In this case, multiple packets from the

same flow may be temporarily queued before the rule is

installed; accordingly, only the first packet triggers rule

installation, while subsequent packets are ignored.

• Feature vector updates and packet forwarding. After rule

installation, the feature vector is updated as subsequent

packets from the flow pass through the switch (step 4).

Once a packet is fully processed, it is forwarded to

the appropriate port as dictated by the switch’s IPv4

forwarding table (step 5).

D. Compact Flow Features’ Representation and Correlation

Traffic correlation techniques target a set of features that

are commonly derived from per-packet information and which

remain invariant over time. Examples include packet times-

tamps, sizes, and overall communication volume. Storing a

flow’s per-packet information on a programmable switch’s data

plane, however, would occupy a significant memory footprint,

impacting the total amount of concurrent flows that could be

correlated by RevealNet at any given time.

To minimize the amount of data that must be kept by a

switch for each active flow, we explore existing methods of

generating compact feature vectors. These have been found to

be applicable to traffic correlation workloads as well as other

ML-based security tasks focused on flow analysis.

Traffic aggregation matrix. We first adopt a methodology

(for generating feature vectors) which builds a traffic aggrega-

tion matrix (TAM) [18]. This matrix records metadata about

packets transmitted per flow across multiple bins of t seconds

each, for a maximum of T seconds, thereby storing a flow-

level feature vector in a fixed-size data structure, consuming

significantly less memory when compared to storing individual

packet features. Like Lopes et al. [5], we generate a single-

row TAM per flow, where each TAM bin tracks the number of

packets transmitted by a flow within that bin’s time interval.

While storing complete TAM feature vectors in a switch’s

data plane might be feasible, their memory footprint may com-

promise the concurrent storage of many flows simultaneously

crossing the switch (see TAMs’ trade-offs in §V-C).

Flow sketching. To further compress TAM feature vectors

while retaining flows’ characteristics, we use sketching tech-

niques based on vector projection methods [9], [11]. Briefly,

let the TAM feature vector for a flow be f = [f1, f2, . . . , fn].
Sketching algorithms transform f into a lower-dimensional

vector fc = [fc1, fc2, . . . , fcm], where m ≪ n. The param-

eterization of such sketches enables us to trade-off the usage

of switch memory (and thus, the number of concurrent flows

that can be measured) with correlation accuracy.

We integrate these constructs into RevealNet’s data plane

processing logic, contrasting the use of two prominent sketch-

ing algorithms, proposed in the traffic correlation literature

(§II-A), as the main driver of RevealNet’s attack attribution

mechanisms. We describe them below, and detail how flows’

sketches can be compared towards realizing flow correlation.

Coskun et al. [11] propose an online sketching method that

first bins packets into discrete time slots (i.e., a packet count-

based TAM vector) and then leverages linear transformations

to generate a compact integer-array sketch representation of

a flow. Sketches are computed on-the-fly without the need

for temporarily storing the complete TAM feature vector.

As the basis for these transformations, we use a random

projection matrix whose entries are independently drawn from

a Bernoulli distribution (i.e., each entry is either +1 or -1 with

equal probability). This projection preserves the structure of

the packet-count vector and produces a sketch that contains

only integer values, offering low per-packet overhead and

robustness to network perturbations. The sketches can be

binarized to save space and enable more efficient comparisons.

Nasr et al. [9] propose the aggregation of raw traffic features

into a feature vector, which is then compressed using a sensing

matrix Φ ∈ R
m×n into a lower-dimensional sketch. Φ satisfies

the restricted isometry property, allowing Euclidean distances

between features to be preserved in the compressed domain.

In our implementation, we conducted two adaptations to

Nasr et al.’s [9] original approach. First, since this scheme

TABLE I: Storage requirements in terms of f (number of flows), n (TAM length), and m (sketch length). Integers are 32 bits.

Method / Storage Proj. Matrix Flows Total (bits) Total (bits) w/ heur. (§IV-E)

Nasr et al. (integer sketch) n×m (integers) f ×m (integers) 32 (n×m+ f ×m) 32 (n×m+ f ×m+ f) + 48× f
Coskun et al. (integer sketch) n×m (integers) f ×m (integers) 32 (n×m+ f ×m) 32 (n×m+ f ×m+ f) + 48× f
Coskun et al. (binary sketch) n×m (integers) f ×m (bits) 32 (n×m) + f ×m 32 (n×m+ f) + f ×m+48× f

TAM feature vector – f × n (integers) 32 (f × n) 32 (f × n+ f) + 48× f

originally compresses the full feature vector, we implement

a continuous update of a flow’s feature sketch every time a

packet is processed, thus replicating the online sketching na-

ture of Coskun et al. [11]. Second, since sensing matrices Φ are

instantiated as random Gaussian matrices with std. dev. σ = 1,

these contain floating-point entries which are not supported by

P4 switches (§II-B). To address this issue, we scale the matrix

Φ by a constant factor—10 000, in our implementation—to

convert its entries to integer values without losing significant

precision. Sketching is then performed on the P4 switch using

this scaled matrix, enabling integer-only arithmetic.

Table I depicts the storage requirements for holding a TAM

for a single flow, when contrasted to the storage required to

hold the sketches we consider [9], [11].

Correlation. The final step in RevealNet’ pipeline involves

correlating feature vectors to identify whether two flows

collected at different vantage points originate from the same

source. In RevealNet, correlation is based on computing a

statistical distance or similarity between the sketches. Different

sketching methods use disparate metrics for enacting said

comparisons. Coskun et al. [11] use the Hamming distance

to compare sketches while Nasr et al. [9] employ cosine

similarity. Our implementation relies on the same metrics.

E. Heuristic Optimizations for Attack Attribution

While the above correlation methods provide a starting point

for RevealNet’s attack attribution, probe nodes in cooperating

networks observe a large volume of unrelated flows. These

unrelated flows increase correlation complexity and the risk

of false positives, as noted in prior work [9], [11]. To address

this, we adopt two optimizations [29] that reduce the flow

search space at each correlator node.

Creation time heuristic. Since correlation targets flows that

occurred within a small interval relative to the attacking flow,

we exclude flows whose start times fall outside a temporal

window defined w.r.t. the start time of the attacking flow (as

tracked at the attacked network). Thus, we only consider flows

with initial timestamps within Tmin and Tmax, offset from the

attacking flow’s start time.

Packet count heuristic. Flows with packet counts akin to that

of the malicious flow are more likely to be true matches. By

bounding the acceptable packet count range using thresholds

Pmin and Pmax, derived from the target malicious flow, we

restrict correlation to flows with comparable traffic volumes.

We apply the heuristics one after the other. This two-

step strategy reduces correlation complexity from the baseline

O(|F| × C)—where |F| is the total number of outgoing

flows observed in N \ {Ni} (see §III) and C the cost of

a single comparison between two flows’ feature vectors—to

O (log(|F|) + |ft|+ |ft+p| × C). Here, ft and fp+t represent

the reduced flow sets after the cumulative timestamp and

packet count filtering, respectively. Since flows are pre-sorted

by timestamp, identifying ft requires only O(log(|F|)) via

binary search. Filtering by packet count is linear in ft, yielding

ft+p in O(|ft|). We then perform flows’ feature vector com-

parisons only on this set, which incurs a cost of O(|ft+p|×C).
To implement the heuristics, the data plane of each switch

maintains two separate tables with a number of rows equal

to the number of flows. Each entry stores auxiliary metadata:

48 bits for a flow’s creation timestamp and 32 bits for that

flow’s total packet count. This results in a storage overhead

of 32 × f + 48 × f , where f denotes the number of flows

observed by a switch (see Table I).

F. Implementation

We built a prototype of RevealNet using bmv2, the refer-

ence P4 software switch. The data plane logic, including flow

identification and sketching operations (for either sketch), was

implemented in ∼500 lines of P416 code. In turn, RevealNet’s

control plane logic was written in ∼300 lines of Python code.

This includes the installation of tables and rules supporting

flow identification and sketching operations in the data plane,

as well as fetching flows’ feature vectors via reads to data

plane registers for enabling the correlation backbone.

V. EVALUATION

A. Evaluation Goals and Metrics

We assess RevealNet’s practicality along three facets:

Effectiveness. We evaluate RevealNet’s attack attribution

capability by measuring its correlation accuracy on malicious

flows, using metrics aimed to capture the trade-off between

successful correlations and incorrectly matched flows [4].

The true positive rate (TPR) measures the fraction of

attacking flows that are correctly correlated by the system. Let

fs
m denote the number of malicious flows originated within a

network with border switch s, and TP s the number of those

that are correctly matched to the malicious flows detected

within a cooperating network under attack. Across all switches

S , TPR =
∑

s∈S
TP s

/
∑

s
fs
m.

The false positive rate (FPR) captures incorrect correla-

tions. Let fs denote the total number of flows originated

within a network with border switch s, and FP s the num-

ber of such flows that are incorrectly matched to malicious

flows fm detected within an attacked network. Then FPR =
∑

s∈S
FP s

/
∑

s
fmfs, where the denominator reflects all

potential false-positive pairs across all switches.

Efficiency. We quantify the computational cost linked to flow

correlation via the number of pairwise comparisons between

detected malicious flows and the outgoing flows observed

by cooperating networks. The computational effort across all

switches S is expressed as the sum of the pairwise compar-

isons for each switch:
∑

s∈S
fm × fs, where fm represents

the number of malicious flows detected and fs represents the

number of outgoing flows observed by switch s.

Scalability. We evaluate RevealNet’ scalability by analyzing

two key factors: a) the number of flows that can be con-

currently stored and processed, and; b) the communication

overhead required during attack attribution. Let fs denote the

number of outgoing flows observed by a cooperating network’s

switch, and let Cs represent the total communication cost (in

bits) for transmitting these flows’ features’. If each flow is

represented by a feature vector of size m bits, then transmitting

all flows fs incurs a communication cost of Cs = fs ×m.

B. Evaluation Methodology

We now describe the datasets used in our evaluation, and the

configuration of RevealNet’s data structures and heuristics.

Datasets used for attack attribution. We use six labelled

network traffic datasets, released by Fu et al. [30], as a target of

RevealNet’ attack attribution capabilities. These datasets were

compiled from a combination of Fu et al.’s own experimental

data and traffic traces from the WIDE MAWI project in

Tokyo, Japan. For exercising RevealNet’s generalizability, we

selected each dataset from six different categories of attacks

collected by Fu et al. (see Table II for a description). Each

dataset contains a different type of network attack along with

background benign traffic. Fu et al.’s data details per-packet

five-tuples in .csv files, along with packets’ timestamps and

labels (benign/malicious), allowing us to carve out individual

flows identified by these 5-tuples. Each dataset accounts for

more than 100k flows, and the ratio of benign to malicious

traffic is at least 39:1 (Dridex) and at most 1312:1 (Oracle).

For simplicity, we assume that the network IDS deployed

within each RevealNet-enabled network acts as an oracle that

can perfectly distinguish between benign and malicious flows.

While this assumption is already aligned with the capabilities

of state-of-the-art IDSes for the datasets we considered [30],

we recall that our goal is not to perform accurate malware

classification, but rather to act on IDSes’ alerts (§III). In prac-

tice, false positives would increase the number of correlation

tasks to be performed, while false negatives would prevent the

attribution of some attacks, since those malicious flows would

never be sent to the correlation manager.

Simulating vantage points and network conditions. Since

the above datasets were collected at a single network vantage

point and do not include raw packet traces that can be

transparently replayed across some network topology (real or

emulated) by special-purpose software such as tcpreplay,

they cannot be directly used for correlation experiments across

different networks, as required by RevealNet.

To tackle this issue, akin to [11], we simulate the acquisition

of two separate observations for each flow at different vantage

points within RevealNet-enabled networks: a) at the border

router of a cooperating network where hosts originate be-

nign/malicious traffic, and; b) at the border router of a network

which is targeted by some attack. We also assume that all

TABLE II: Network traffic datasets used in our experiments.

Dataset Category Description Flows Span (s)

Benign Malicious

Snojan Botware PPI malware downloading. 206 723 1 607 45.64
Dridex Ransomware Victim locations uploading. 125 424 3 202 54.75
Adload Adware Resources for PPI adware. 125 417 602 54.80
Oracle Web TLS padding Oracle. 294 110 224 64.14
Penetho Spyware Wifi cracking APK spyware. 293 808 1 006 55.64
Bitcoinminer Miner Abnormal encrypted channels. 125 418 202 61.01

flows in each dataset originate from a cooperating network

and traverse (or target devices within) the attacked network.

To facilitate this setup, we implemented a simulator that

models WAN traffic relayed via a proxy node. We used the

simulator to augment the traffic traces of Fu et al. [30],

reproducing the observation of flows across two vantage points

to mimic distributed monitoring. The resulting traces, which

we use throughout our evaluation, capture traffic across the

WAN where packets incur an average latency increase of

∼200ms between any two vantage points; this falls within the

range of end-to-end latencies between geo-distributed client-

proxy-server nodes in stepping-stone scenarios that consider

wide-area paths [31]. The simulator also supports the injection

of packet losses for us to assess the robustness of flow

correlation under network perturbations.

Parameterization of RevealNet’s sketches. Each dataset

from Fu et al. [30] spans 45–65s of traffic. To explore the

impact of temporal granularity in flow feature collection, we

generated TAM time bins (t) of 0.1s, 0.5s, and 1s. We per-

formed preliminary experiments using different sketch lengths

(m = 5, 10, 15), keeping m = 10 as a baseline. A sketch

length of 5 slightly improved TPR by up to +1.52% but at

the cost of a substantial increase in FPR, reaching +114.84%.

Conversely, using m = 15 provided no consistent TPR gains

and resulted in mixed FPR outcomes (ranging from –20.4% to

+92.65%), along with added storage overhead. Overall, for all

datasets we considered, m = 10 strikes a favourable balance

between accuracy and efficiency (§V-C). Still, this parameter

may need to be tuned for flows with different traits [11].

We follow the original methodology of each sketch to

compute correlation scores. For Coskun et al.’s sketch, we use

Hamming distance and consider a match to be a true positive

only when the distance between sketches is 0. For Nasr et

al.’s sketch, we use cosine similarity, requiring a score of 1

for an exact match. We evaluate TAMs with both Hamming

distance and cosine similarity, applying the same thresholds to

define true positives. We adopt these thresholds to reflect high-

confidence matches in attack attribution, where false associa-

tions can be harmful to benign users. Indeed, we experimented

with relaxed correlation thresholds across various time bins

t, but found that these looser criteria offered only marginal

improvements in TPR while significantly increasing FPR. For

instance, for Nasr et al.’s sketches, a cosine similarity threshold

of 0.9 yielded modest increases in TPR (up to 2.54%) but

significantly higher FPR (up to 373.04%).

Configuration of RevealNet’s heuristics. Network topology

and flows’ characteristics can influence RevealNet’s heuris-

tics’ configurations [29]. However, since the datasets we con-

TABLE V: Communication overhead (in bits) for centralized and distributed correlation, evaluated per sketch (with heuristics)

in the bitcoinminer dataset. The last column shows the overhead reduction under RevealNet’s distributed setup.

Method Centralized Distributed (RevealNet) OH Red. (%)

Swc → CS Swa → CS Total Swa → CM CM → Swc Swc → CM Total

Coskun et al. (bin.) 1 193 390 2 020 1 195 410 2 020 38 380 736 896 777 296 35.0%
Coskun et al. (int.) 38 188 480 64 640 38 253 120 64 640 1 227 680 736 896 2 029 216 94.7%
Nasr et al. (int.) 38 188 480 64 640 38 253 120 64 640 1 227 680 736 896 2 029 216 94.7%

TAM 229 085 280 387 840 229 473 120 387 840 7 368 960 736 896 8 493 696 96.3%

Sketches allow for storing more flows concurrently. Ta-

ble IV presents the approximated number of flows that can

be stored in a Tofino v1 P4 switch equipped with ∼256 MB

of SRAM, for the various feature extraction methods under

analysis. All sketches are configured with a length of m = 10.

For Coskun et al. and Nasr et al., the sketching process requires

storing a projection matrix of size n × m (§IV-D), which

introduces a storage overhead of 24 400B, 4 920B, and 2 480B

for TAMs based on 0.1s, 0.5s, and 1s bins (t), respectively.

Though sketches require this fixed overhead, they dramati-

cally improve storage capacity. Coskun et al.’s binary sketch

stores up to 204.8×106 flows, compared to just 1.05×105 with

TAM at t = 0.1s granularity—our most memory-intensive set-

ting. Other sketches show similar scalability, reinforcing that

sketch-based correlation is well-suited for memory-constrained

P4 switches that must handle large flow volumes.

Distributed correlation saves bandwidth. Attack attribution

spans multiple P4 switches distributed across different coop-

erating networks. Thus, correlation scales in an “embarrass-

ingly parallel” fashion: each switch handles its local traffic

and performs correlation independently. We now gauge the

communication overheads imposed by RevealNet, comparing

them to those of centralized attack attribution deployments.

Recall that RevealNet reverses the traditional data-sharing

model of centralized systems, which require all probe nodes

(Swc) to send full flow feature vectors to a central server (CS),

resulting in high bandwidth overhead. Instead, RevealNet

transmits only the feature vectors of attacking flows–collected

at the attacked network’s switch (Swa)–to a central correlation

manager (CM), which then relays them to RevealNet-enabled

switches (Swc) for localized correlation.

To gauge the communication overhead of centralized vs.

distributed correlation, we simulate a topology with 20 Re-

vealNet switches: 19 monitoring outgoing flows at cooper-

ating networks (Swc), and one observing incoming flows at

an attacked network (Swa). Assuming an even distribution of

flows sourced from bitcoinminer (where all flows originate

in cooperating networks and traverse the attacked network),

each Swc sees 6 281 outgoing flows, while Swa sees a total of

119 339 incoming flows, out of which 202 are malicious. In

a centralized setup, each Sw sends all observed flows’ feature

vectors to a CS, while the Swa sends its 202 feature vectors.

In RevealNet, Swa sends the 202 feature vectors to the CM,

which relays them to all Swc. Each Swc performs correlation

locally and returns 202 matched flow tuples (192 bits each) to

the CM. Table V shows the communication involved in both

scenarios. RevealNet’s distributed design reduces bandwidth

usage by 35%–94.7%, depending on the sketch.

VI. CONCLUSION

We introduced RevealNet, a practical framework for dis-

tributed attack attribution across cooperating networks. By

using compact sketch-based data structures and the orchestra-

tion of programmable network elements, RevealNet is able

to accurately correlate malicious flows while maintaining low

computational and communication overheads. Our evaluation

suggests that flow correlation can be effectively pushed into the

network fabric, paving the way for scalable attack attribution.

REFERENCES

[1] Y. Zhang and V. Paxson, “Detecting stepping stones.” in Proc. of

USENIX Security, vol. 171, 2000.
[2] D. D. Clark and S. Landau, “Untangling attribution,” Harv. Nat’l Sec.

J., vol. 2, 2011.
[3] X. Wang, D. S. Reeves, and S. F. Wu, “Inter-packet delay based

correlation for tracing encrypted connections through stepping stones,”
in Proc. of ESORICS, 2002.

[4] M. Nasr, A. Bahramali, and A. Houmansadr, “Deepcorr: Strong flow
correlation attacks on tor using deep learning,” in Proc. of ACM CCS,
2018.

[5] D. Lopes, J.-D. Dong, P. Medeiros, D. Castro, D. Barradas, B. Portela,
J. Vinagre, B. Ferreira, N. Christin, and N. Santos, “Flow correlation
attacks on tor onion service sessions with sliding subset sum,” in Proc.

of NDSS, 2024.
[6] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in

Proc. of IEEE S&P, 2005.
[7] F. Palmieri, “A distributed flow correlation attack to anonymizing overlay

networks based on wavelet multi-resolution analysis,” IEEE TDSC,
vol. 18, no. 5, 2019.

[8] S. E. Oh, T. Yang, N. Mathews, J. K. Holland, M. S. Rahman, N. Hopper,
and M. Wright, “Deepcoffea: Improved flow correlation attacks on tor
via metric learning and amplification,” in Proc. of IEEE S&P, 2022.

[9] M. Nasr, A. Houmansadr, and A. Mazumdar, “Compressive traffic
analysis: A new paradigm for scalable traffic analysis,” in Proc. of ACM

CCS, 2017.
[10] Z. Ling, J. Luo, D. Xu, M. Yang, and X. Fu, “Novel and practical

sdn-based traceback technique for malicious traffic over anonymous
networks,” in Proc. of IEEE INFOCOM, 2019.

[11] B. Coskun and N. Memon, “Online sketching of network flows for real-
time stepping-stone detection,” in Proc. of ACSAC, 2009.

[12] C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, and N. Zil-
berman, “In-network machine learning using programmable network
devices: A survey,” IEEE Commun. Surv. Tutor., vol. 26, no. 2, 2023.

[13] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the V out of {NFV},” in Proc. of USENIX OSDI,
2016.

[14] J. Sonchack, O. Michel, A. Aviv, E. Keller, and J. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with *flow,” in Proc. of USENIX ATC, 2018.

[15] L. Oldenburg, M. Juarez, E. A. Rúa, and C. Diaz, “Mixmatch: Flow
matching for mixnet traffic,” PoPETs, vol. 2024, no. 2, 2024.

[16] S. Staniford-Chen and L. Heberlein, “Holding intruders accountable on
the internet,” in Proc. of IEEE S&P, 1995.

[17] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “Correlation-based
traffic analysis attacks on anonymity networks,” IEEE TPDS, vol. 21,
no. 7, 2009.

[18] M. Shen, K. Ji, Z. Gao, Q. Li, L. Zhu, and K. Xu, “Subverting website
fingerprinting defenses with robust traffic representation,” in Proc. of

USENIX Security, 2023.

