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Members of the Committee:
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Abstract

Totalitarian states are known to deploy large-scale surveillance and censorship mechanisms
in order to deter citizens from accessing or publishing information on the Internet. Still, even
the most oppressive regimes cannot afford to always block all channels with the outside world,
and usually allow the operation of widely used services such as video-conferencing applications.
This has given rise to the development of censorship-resistant communication tools that rely
on the establishment of covert channels in the Internet by encoding covert data within popular
multimedia protocols that use encrypted communication, e.g., Skype.

A recent approach for the design of such tools, named multimedia protocol tunneling,
modulates covert data into the audio and/or video feeds provided to multimedia applications.
However, depending on the techniques used to embed covert data, and on the amount of
information to embed, multimedia protocol tunneling tools may generate network flows that
differ subtly from legitimate flows that do not carry covert channels. Notably, such differences
can be uncovered using strictly passive methods (e.g., by observing the length or inter-arrival
time of network packets). Incidentally, one of the major challenges faced by the above tools
is that of achieving a proper balance between traffic analysis resistance and performance (e.g.,
achieve sufficient throughput for enabling web browsing activities).

This thesis focuses on the study of the efficacy of multimedia protocol tunneling tools
to evade the censorship apparatus deployed by network adversaries, while providing sufficient
performance for enabling common Internet activities (e.g., web browsing). First, we show
that the covert channels generated by existing tools are prone to detection. Specifically, we
developed a new machine learning (ML)-based traffic analysis framework which has broken
the security assumptions of recent multimedia protocol tunneling tools. Second, we show that
network adversaries currently possess the means to perform sophisticated ML-based network
flow classification tasks at line-speed. To this end, we worked towards the efficient deployment of
multiple ML-based traffic analysis frameworks (including our own) in programmable switches.
Third, we devised a new technique for creating traffic analysis resistant covert channels over
multimedia streams. Our approach, based on the careful modification of the video encoding
pipeline of the WebRTC framework, allows for the creation of high-speed covert channels over
multimedia flows whose traffic patterns closely resemble those of legitimate flows.

Organization of the document: The dissertation is divided in two parts. The first part
provides the motivation and background for my work, identifies the main contributions of the
thesis, offers an overview of the results achieved, and proposes directions for future work. The
second part consists of a collection of the main papers that resulted from my work. This part
reflects the content of the published papers, with minor formatting adjustments to fit the layout
of the dissertation.





Resumo

Nos dias de hoje, vários regimes repressivos empregam mecanismos de censura na Internet
com o intuito de impedir o acesso ou publicação de conteúdo considerado senśıvel, por parte dos
cidadãos. Apesar disto, a maioria destes regimes permite a operação de serviços considerados
essenciais, tais como aplicações de videoconferência. Este facto motivou o desenvolvimento de
ferramentas de comunicação resistentes à censura, que dependem da ocultação de dados senśıveis
em protocolos multimédia, como o Skype, que usam canais de comunicação cifrados.

Uma abordagem promissora, seguida na concepção destas ferramentas, é baseada na mod-
ulação de dados ocultos nas tramas de v́ıdeo fornecidas às aplicações multimédia. No entanto,
dependendo da função moduladora e da quantidade de dados a codificar, a utilização das ferra-
mentas geradoras de túneis em protocolos multimédia (FGTPM) pode originar fluxos de rede que
diferem de fluxos leǵıtimos que não transportam dados ocultos. É de frisar que estas diferenças
podem ser identificadas através de métodos estritamente passivos (por exemplo, através da ob-
servação do comprimento dos pacotes dos fluxos). Assim, um dos principais desafios enfrentados
pelas FGTPM consiste em alcançar um equiĺıbrio entre o grau de resistência a análise de tráfego
e o desempenho oferecido (e.g., atingir débito suficiente para permitir a navegação na Internet).

Esta tese visa o estudo das possibilidades oferecidas pelas FGTPM no que diz respeito à
geração de canais encobertos que oferecem simultaneamente alto débito e resistência a análise de
tráfego. Em primeiro lugar, mostramos que as FGTPM existentes são facilmente detectáveis.
Especificamente, desenvolvemos uma nova metodologia de análise de tráfego baseada em apren-
dizagem automática (AA) capaz de detectar as FGTPM recentes com elevada precisão. Em
segundo lugar, mostramos que um censor contemporâneo possui os meios para executar a classi-
ficação de fluxos de rede, baseada em AA, em tempo real. Nomeadamente, estudámos a utilização
de técnicas de análise de tráfego baseadas em AA em comutadores programáveis. Por último,
introduzimos uma nova técnica para gerar canais encobertos em fluxos multimédia, resistentes
à análise de tráfego. A nossa abordagem, baseada na instrumentação da codificação de v́ıdeo
da plataforma WebRTC, permite a criação de canais encobertos com débito elevado através de
fluxos multimédia cujos padrões de tráfego se assemelham aos de fluxos leǵıtimos.

Organização do documento: Esta dissertação encontra-se dividida em duas partes. A primeira
parte apresenta a motivação e o trabalho relacionado, identifica as contribuições principais da
tese, oferece uma panorâmica sobre os resultados atingidos, e propõe direcções para trabalho
futuro. A segunda parte consiste numa selecção das principais publicações que resultaram do
meu trabalho. O conteúdo desta parte espelha o conteúdo dos artigos tal como foram publicados,
salvo alterações de pormenor para acomodar a formatação usada na dissertação.
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1
Overview

Totalitarian states are known to deploy large-scale surveillance and censorship mechanisms
in order to deter citizens from accessing or publishing information on the Internet [167]. However,
not even the most oppressive regimes can afford to block all channels with the outside world, as
these may be instrumental to preserve the sustainability of the regime itself and the reputation of
the state before its international peers [58]. In particular, there is evidence that several countries
do restrict access to information but maintain operational multiple communication services that
are widely used by the population [82, 105]. This fact has given rise to the development of
censorship-resistant communication tools that rely on the establishment of covert channels on
the Internet by encoding covert data within popular encrypted protocols [29, 60, 71, 82, 129].

The primary goal of network covert channels is to conceal the existence of selected information
flows between any two communicating parties from an adversary capable of monitoring traffic
flows [226]. Due to the wide variety and increasing bandwidth of existing application layer
protocols, these have become a prime target for the deployment of covert channels. Lately, tools
able to generate network covert channels leverage the widespread use of encryption for developing
data hiding mechanisms resorting to carrier applications like Skype [129]. A state-of-the-art
approach for the design of such tools, named multimedia protocol tunneling, embeds concealed
data into the application layer of multimedia protocols by modulating the audio or video feeds
provided to the application [82, 97, 105, 121]. For instance, FreeWave [82] allows users located
within censored regions to exchange network traffic with proxies outside the censored region
by encoding traffic into acoustic signals sent over Skype calls. In short, multimedia protocol
tunneling tools take advantage of two fundamental properties for hindering an adversary’s efforts
aimed at unveiling the presence of covert channels: i) they prevent an adversary from inspecting
the contents of transmissions in plaintext; ii) they force an adversary to distinguish between a
protocol’s legitimate and covert executions through the analysis of traffic patterns alone.

However, depending on the techniques used to embed covert data, and on the amount of
information to embed, multimedia protocol tunneling tools may generate network flows that
subtly differ from legitimate flows that do not carry covert channels [66]. Such differences can
be uncovered using strictly passive methods (e.g., by observing the length or inter-arrival delay
of transmitted network packets) or by analyzing the protocol’s behavior in response to active
network manipulations (e.g., the loss or reorder of packets). Thus, an important property that
all multimedia protocol tunneling tools strive to achieve is unobservability. A covert channel
is deemed unobservable if an adversary is unable to distinguish network flows that carry a
covert channel from those that do not [66]. In practice, tools that provide a high degree of
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unobservability can prevent an adversary from flagging a large fraction of covert flows unless
they risk to erroneously flag a large amount of regular traffic as covert flows.

The major challenge faced during the development of multimedia protocol tunneling tools
is that of achieving a proper balance between unobservability and performance. While the
throughput of the covert channel can be increased by growing the amount of covert data
embedded within the carrier protocol, the embedding of additional data may cause the traffic
patterns generated by the carrier protocol to deviate from the typical patterns generated when
transmitting legitimate data. Ergo, we face conflicting requirements when designing protocol
tunneling tools that simultaneously feature high-throughput and unobservability. On the one
hand, the traffic generated by these tools should be able to resist against the detection efforts of
sophisticated network adversaries. If not, it is likely that citizens trusting the unobservability
properties of these channels will end up being prosecuted. On the other hand, it is desirable that
the covert channels generated by such tools achieve a sufficient throughput for accommodating
typical tasks, e.g. web browsing. This thesis aims to study the balance between the unobservability
and performance achieved by multimedia protocol tunneling tools, a subject of important practical
implications which has not been thoroughly addressed in the past.

The remainder of this chapter is organized as follows. Section 1.1 describes the necessary back-
ground on the evolution of network covert channels for the purpose of censorship-circumvention,
and describes encrypted traffic analysis techniques that may be applied to the detection of such
covert channels. Section 1.2 details the contributions of this thesis. Lastly, Section 1.3 presents
our conclusions and discusses directions for future work.

1.1 Background

In this section, we provide the necessary background to understand and discuss the challenges
of building unobservable covert channels for evading Internet censorship. First, Section 1.1.1
describes the way network covert channels can be used to bypass typical Internet censorship
mechanisms enforced by state-level actors. Then, Section 1.1.2 covers the background on state-of-
the-art approaches for the creation of network covert channels, and Section 1.1.3 provides a deeper
look at the properties of the protocol tunneling approach. Section 1.1.4 details our previous
efforts on the design and implementation of a multimedia protocol tunneling system capable of
transmitting Internet traffic through videoconferencing streams. Lastly, Section 1.1.5 details
current traffic analysis techniques and shows how these can be re-purposed for the identification
of obfuscated covert traffic in computer networks.

1.1.1 Network Covert Channels for Internet Censorship Circumvention

Network covert channels allow for the stealthy transmission of sensitive data through an
apparently innocuous carrier medium [226]. In the context of Internet censorship circumvention,
covert channels have become a fundamental building block of the design of multiple censorship-
resistant communication tools that enable users to freely access and share information on the
Internet [91, 192]. The general communication model of a censorship-resistant communication
tool based on network covert channels is illustrated in Figure 1.1. Below, we describe this model
in light of a typical Internet censorship apparatus operated by state-level actors and present a
set of techniques that may be used by adversaries attempting the detection of covert channels.
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Figure 1.1: General model of a covert channel tool for censorship-resistant Internet browsing.

Censorship scenario: A state-level Internet censorship scenario typically considers two network
regions: (i) the censored region, and (ii) the free region. The censored region is controlled by a
state-level adversary which is able to observe, store, interfere with, and analyze all the network
flows within its jurisdiction, and block the access to remote Internet services, such as CNN or
Twitter, by the residents in the censored region. Censorship policies can be based on the IP
address or the domain name of the target destination, the blacklisting of content (e.g., through
keyword and image filtering), or the protocol used in the communication (e.g., BitTorrent or
Tor). The free region consists of the Internet portion that is considered not to be under the
control of the adversary or any other entity that aims to block Internet communications.

Covert channel-based evasion mechanism: Covert channels aim at enabling clients located
within a censored region (e.g., Alice) to bypass the Internet communication constraints enforced
by the adversary by leveraging the cooperation of a proxy located in the free region (Bob), and a
carrier application featuring an encrypted communication protocol (e.g., Skype) whose traffic the
adversary authorizes to cross the boundaries of the censored region. Note that, considering how
instrumental many applications (e.g., media streaming services) are for the tissue of economic
and social interactions within censored regions, the costs of blocking popular applications can
produce overwhelming collateral damage to the country’s own sustainability [58]. To create a
covert tunnel through the data stream generated by the carrier application, Alice and Bob must
run a special software on their local computers. This software will be responsible for embedding
covert data within the seemingly legitimate data stream (e.g., by encoding covert data in images
sent through a Skype video call [10]). This tunnel will allow Alice to contact remote hosts on
the open Internet, for instance, by tunneling the traffic generated by her web browser.

Identifying and thwarting covert channels: To detect the operation of a covert channel
tool, the adversary can make use of deep packet inspection for pinpointing traffic indicators that
lead to the identification of a covert channel. To increase its chances of detection, the adversary
may also apply statistical traffic analysis techniques over the collected network traces. The
adversary may also launch indiscriminate active network attacks aimed at perturbing the correct
behavior of covert channels lurking under seemingly legitimate carrier streams while ensuring
that legitimate streams maintain a reasonable quality.

With regards to Internet censorship circumvention, the purpose of network covert channels
is twofold: (i) to enable a client located within a censored region to communicate with services
located in the free Internet while (ii) ensuring that the existence of such communication cannot
be easily detected by an adversary. In other words, the main goal of network covert channels
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is to ensure unobservability, that is, an adversary able to inspect any number of network flows
should be unable to accurately identify those that carry a covert channel. In the next section, we
describe several advancements in the creation of network covert channels whose design is tailored
for the purpose of Internet censorship circumvention.

1.1.2 The Evolution of Censorship-Resistant Network Covert Channels

Over time, multiple research efforts have been conducted with the aim of designing covert
channels on the Internet. Traditional techniques for the generation of network covert channels
hold on the encoding of data in the inter-arrival timing patterns of packets, or on concealing
data within reserved/unused packet header fields [205]. However, such methods have been
progressively defeated by countermeasures based on traffic normalization mechanisms. Briefly,
traffic normalizers are composed of network gateways that are able to modify forwarded traffic by,
for instance, clearing bits of network protocols’ headers or arbitrarily delaying the transmission of
packets. Such mechanisms have thus been found to successfully prevent the correct behavior of a
wide range of covert channels [226]. Additionally, and due to the reduced amount of covert data
that can be embedded in these covert channels, these generally achieve a rather low throughput.

Recent literature describes several novel approaches for the creation of covert channels for
circumventing censorship [91, 192]. The majority of such approaches stem from the need to create
high-bandwidth communication channels that allow users to perform common Internet tasks
such as web browsing or bulk data downloads. Next, we describe a range of proposals for the
creation of unobservable network covert channels which exhibit different degrees of complexity.

Protocol randomization: This technique holds on to the manipulation of covert traffic so as
to make it seem random and fool an adversary’s protocol blacklist. For instance, Obfsproxy [46]
and ScrambleSuit [208] respectively encrypt and randomize Tor’s [47] network traffic patterns
in order to evade an adversary’s firewall that targets unmodified Tor traffic. Yet, entropy tests
have been successfully used for distinguishing regular TLS traffic from Obfsproxy encrypted
traffic [200]. Moreover, by transforming a given application-level protocol’s traffic into some
unknown protocol, this approach fails to evade an adversary that performs protocol whitelisting.
This fact has sparked the development of improved traffic shaping approaches that aim to mimic
the traffic patterns of known protocols allowed to cross censors’ firewalls.

Protocol imitation: The key idea underlying protocol imitation tools is that of shaping covert
traffic to mimic the behavior of a popular network protocol that is not blocked by censors. For
instance, StegoTorus [204] steganographically conceals chops of Tor traffic on the messages of a
cover protocol, while SkypeMorph [129] and CensorSpoofer [201] mimic the statistical properties
of video and VoIP calls, respectively. In its turn, Format-Transforming Encryption (FTE) [51]
produces ciphertexts that match the content definition of some target protocol. However, due to
the difficulties of mimicking all aspects of a protocol, the former tools are vulnerable to several
attacks [66, 80] while FTE can be detected through the use of entropy tests [200]. Marionette [52]
employs automata composition to control fine-grained aspects of mimicry. Still, candidates for
imitation may be proprietary software, demanding its reverse engineering in order to build a
model for imitation. This is a tedious effort which must be repeated for each software release.
To raise the difficulty of detection by a censor, an updated branch of tools has been proposed to
bridge the drawbacks of protocol imitation. Namely, protocol tunneling tools avoid the need to
faithfully mimic a popular cover protocol by effectively using it to piggyback covert data.
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Figure 1.2: Overview of the protocol tunneling approach for the creation of covert channels.

Protocol tunneling: In this approach, the traffic produced by a covert channel is tunneled
through a given protocol’s application layer, i.e., covert traffic is encapsulated within a given
cover protocol, e.g., Skype [226]. Such a technique enables protocol tunneling tools to directly
deal with several cover protocol’s intricacies which can be difficult to mimic. In multimedia
protocol tunneling [82, 97, 105, 121], covert data is modulated into video and/or audio and is
transmitted through the application layer of encrypted multimedia streaming applications such as
Skype or YouTube live streams. Differently, SWEET [233] relays covert traffic through encrypted
or steganography-protected email messages. CloudTransport [29] adopts a similar principle but
makes use of public cloud storage services for covert message forwarding instead. meek [60]
leverages domain fronting, the use of different domain names at different communication layers, to
tunnel covert traffic to a given website over HTTPS connections while appearing to communicate
with a different website. Refraction networking [81, 90] systems like Slitheen [23] are based on
the deployment of special routers in the network path between a user and an allowed destination.
These routers replace the leaf resources requested from overt websites with censored material
while keeping covert traffic appear indistinguishable from allowed, uncensored traffic. Castle [71]
and Rook [198] provide an alternative approach to exchange covert messages over Real-Time
Strategy (RTS) games, by encoding covert data in valid game commands.

Next, we deliver a more detailed characterization of protocol tunneling and describe the
rationale for the creation of unobservable network covert channels while leveraging this technique.

1.1.3 A Closer Look at Protocol Tunneling

As described in the previous section, protocol tunneling aims to create unobservable covert
channels by embedding secret data through the application layer of encrypted protocols. Figure 1.2
depicts an overview of the protocol tunneling approach. The left-hand side of the figure shows
the generation of a legitimate network traffic stream. We have that a legitimate data stream
(e.g., a chat video stream) is transmitted over the network by a given data exchange protocol
(e.g., a multimedia streaming protocol such as Skype) in a given network environment with a
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particular set of characteristics (e.g., bandwidth, packet loss rate). The protocol generates a
legitimate network traffic stream (OL) according to the present network conditions and video
input. Conversely, the right-hand side of the figure shows the generation of a network traffic
stream that embeds a covert channel in a protocol with the same characteristics as the one
previously described. Here, covert data (e.g., a text file) is modulated in order to match the
expected content of the cover protocol’s application layer (e.g., video content), and is combined
with a legitimate chat video. Such an embedding may be accomplished, for instance, by overlaying
a portion of each frame pertaining to a legitimate chat video with an image that encodes covert
data. The protocol then generates a covert network traffic stream (OC).

For ensuring the unobservability of covert channels, the designer of protocol tunneling tools
must embed covert data into legitimate streams in such a way that the characteristics of a covert
network stream (OC) are similar to those of a model representing the expected distribution of
legitimate traffic (OL). Since these tools admit that the application protocols used as cover
encrypt data in transit, the observation of network packets’ payload does not convey any useful
information for an adversary. Thus, both OL and OC are essentially comprised of a pair of
timeseries: a timeseries of packet lengths and a timeseries of packet arrival times. For attempting
the identification of a covert stream, an adversary may proceed as follows. First, the adversary
must be able to understand which characteristics define legitimate traffic. A possible method for
representing the characteristics of a wide range of legitimate traffic is to build a model based
on the frequency distribution of packet lengths of multiple legitimate streams (OL). Then, the
adversary must decide whether a particular stream matches the model for legitimate traffic. Such
a decision can be performed by employing, for instance, a similarity metric computed through
the Kolmogorov-Smirnov test [117], to quantify the distance between the packet length frequency
distribution of a given traffic sample and the reference legitimate traffic model.

While protocol tunneling is a conceptually simple approach, the successful implementation
of this technique is far from trivial. Specifically, it has been shown that blindly tunneling
covert data through the application layer of a cover protocol does not suffice to resist detection
against an adversary able to inspect the characteristics of the cover application protocols’ traffic.
A particular example consists in the detection of FreeWave [82], where the transmission of
audio-modulated data through Skype VoIP calls can be distinguished from the transmission of
actual human speech [66]. Incidentally, multimedia protocol tunneling schemes have recently
received renewed attention due to the introduction of multiple approaches for data modulation
aimed at raising the difficulty for adversaries to identify covert transmissions [97, 105, 121].

Next, we describe our past efforts on developing DeltaShaper, a multimedia protocol tun-
neling tool that leverages Skype video calls to embed covert Internet traffic, and that can be
parameterized to provide different levels of resistance against traffic analysis.

1.1.4 Tunneling TCP/IP Traffic over Videoconferencing Streams

In the past, our analysis over the existing multimedia protocol tunneling landscape led up
to the development of DeltaShaper [10], a censorship-resistant tool that supports bi-directional
TCP/IP tunneling over videoconferencing Skype streams.

Figure 1.3 illustrates the operation of DeltaShaper. On the sending side, the transmitter
receives the payload and encodes it into colored matrices (payload frames) that are overlayed on
top of a video stream that is fed to Skype using a virtual camera interface. Skype transmits
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Figure 1.3: Architecture of DeltaShaper.

this video to the remote Skype instance and the received stream is captured from the Skype
video buffer. A decoder then extracts the payload from the video stream and delivers it to the
application. The same procedure is applied at both endpoints of a Skype call. To make the
system as general as possible, the architecture exposes a data-link level protocol to the upper
layers, such that an IP packet can be accepted, encoded, decoded, and delivered remotely. As a
result, DeltaShaper allows for the execution of traditional TCP/IP applications that can tolerate
low throughput and high latency links, and which can be used to cover different needs exhibited
by users actively evading censorship. Some practical examples include fetching simple webpages,
establishing remote SSH tunnels, or exchanging e-mail messages.

DeltaShaper features two major distinguishing aspects. First, DeltaShaper is able to trade-off
unobservability and performance in a controlled fashion. Experimentally, we verified that by
carefully tuning the composition of the payload frames (e.g., by changing their size or the rate at
which they are rotated to convey new data), it was possible to produce network traffic akin to that
generated when placing legitimate Skype calls. Moreover, we geared the composition of payload
frames to maximize the achievable throughput while ensuring unobservability. This analysis was
performed by comparing DeltaShaper streams with legitimate Skype streams with the help of a
similarity metric computed over the packet sizes and inter-packet delays distributions of both
types of streams. Second, DeltaShaper is able to automatically adjust the composition of the
payload frame in face of multiple network conditions. As per our evaluation, placing DeltaShaper
calls in adverse network conditions could demand an adjustment of the payload configuration to
maintain unobservability, e.g., reducing the payload frame rate in reduced bandwidth scenarios.
To do this, DeltaShaper periodically selects payload frame parameters according to pre-recorded
traffic signatures collected in different network conditions.

Our experience during the development of DeltaShaper showed that the comprehensive
evaluation of unobservability has important practical consequences for the users of censorship-
circumvention tools. In particular, since multimedia protocol tunneling implementations (like
our own) carefully calibrate a number of parameters to meet a given traffic analysis resistance
threshold, the evaluation of unobservability is by itself a fundamental component for the successful
deployment of circumvention tools. Until then, the unobservability evaluation of protocol
tunneling tools had only been performed in an ad hoc fashion, resorting to classifiers based
on different similarity metrics. This fact is of particular relevance since the unobservability
guarantees of a tool can turn out to be rather optimistic if the evaluation is conducted using a
classifier that achieves only a mediocre performance in detecting covert channels. In practice,
this means that a tool is prone to be detected by an adversary that can employ a better classifier.

In the next section, we provide an overview of emerging traffic analysis techniques that have
been instrumental for enabling different network security-focused applications, and which may
also be used for disclosing the activity of increasingly sophisticated protocol tunneling tools.
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1.1.5 Traffic Analysis for Network Security Applications

The process of encrypting data in the network has become widespread so as to provide an
answer to multiple privacy concerns. However, the use of encryption has also reduced the ability
of network operators to monitor their network infrastructure due to the inability to read packet
contents. Nevertheless, encrypted network traffic can still leak interesting information to an
observer in the network [211]. In fact, the ability to infer information from encrypted flows
is of interest in multiple network security-focused tasks [54, 196], ranging from the detection
of malware [3, 100, 122] to intrusion detection [30, 128] and the identification of potentially
vulnerable applications [189]. Unfortunately, traffic analysis also allows ill-intended network
eavesdroppers to breach the security of privacy-sensitive applications. Some examples include
the ability to derive approximate transcripts of encrypted VoIP conversations [206] or the
identification of websites visited through anonymity networks [74, 150, 165].

Traffic analysis workflow: The literature is rich in a variety of techniques to infer useful
information from encrypted traffic flows. A prominent approach for classifying flows according
to their traffic patterns relies on the use of statistical traffic analysis methodologies [145, 196]. A
typical statistical traffic analysis workflow consists of four main steps:

1. Data acquisition: Traces of flows of interest must be acquired in network vantage points.
These traces may correspond both to raw packet data, or to summarized data resulting from the
pre-processing of network flows. Traffic samples may be collected in a controlled fashion so as
to ensure their correct categorical labelling, e.g., as benign or malicious traffic samples, or kept
unlabeled for later analysis.

2. Feature extraction: To infer details about the content of a particular network flow, we must
identify a number of characteristics (or features) of traffic that can better describe the flow.
Due to the use of encryption, these features typically correspond to the summarization of the
sequences of packet lengths or packet inter-arrival times of a flow into a reduced set of features
(e.g., descriptive statistics). However, it is also possible to extract meaningful information from
the observation of the encrypted payload itself, or from the observation of ancillary information
such as protocol handshakes, ACK traffic, and unencrypted packet header values.

3. Model training: Upon finding a set of features that can properly describe a particular kind
of network flows, it is then possible to build traffic classifiers, i.e., predictive models for some
classes of traffic. While these models can be based on simple statistical tests like Kolmogorov-
Smirnov [10, 129], recent traffic analysis approaches have made extensive use of Machine Learning
(ML) algorithms for building increasingly accurate traffic classifiers [131, 145, 196]. In general,
ML algorithms can be split into two different realms: supervised and unsupervised [73]. In
supervised learning, models are trained using labeled data and aim to find a function that can
predict the associated class label of a given sample. Examples of such algorithms comprise
decision trees, support vector machines (SVM), and neural networks. In contrast, unsupervised
learning algorithms analyze unlabeled input data to infer patterns in such data. In particular,
these algorithms group a set of samples into multiple clusters so that samples within the same
cluster have high similarity, but are very dissimilar to samples in other clusters. Examples
of unsupervised ML algorithms include k-Means and DBSCAN. In addition, outlier detection
algorithms attempt to build a model that is trained only on data labeled as “normal”, and
can then be used to find anomalies, i.e., samples which do not correspond to the definition of
“normal”. Examples of such algorithms are one-class SVM and autoencoders.
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4. Flow classification: Once the statistical model has been trained, newly observed flows can be
classified or clustered according to the chosen model.

In the context of this thesis, we can observe that the traffic analysis tooling presented above
is also available to network adversaries interested in detecting obfuscated Internet traffic. We
now describe past attempts for the identification of Internet covert channels for censorship
circumvention through the use of increasingly sophisticated statistical traffic analysis techniques.

Identification of obfuscated covert traffic: As described in Section 1.1.3, protocol tunneling
aims to generate unobservable covert channels on the Internet by embedding secret data through
the application layer of encrypted protocols. While this approach raises the difficulty of an
adversary to identify network flows carrying covert data, it was still not well understood how
the unobservability of state-of-the-art protocol tunneling tools holds against recent statistical
traffic analysis techniques. In fact, we may find in the literature two previous efforts which have
succeeded at detecting the presence of obfuscated traffic generated by such tools:

Detection via statistical tests: Geddes et al. [66] were the first to analyze the unobservability
properties of FreeWave [82], a multimedia protocol tunneling tool that modulates covert data
into the audio of Skype VoIP calls. In their study, Geddes et al. analyzed the distribution of
packet lengths generated by Skype when used to carry covert data. First, the study corroborated
the claims of FreeWave’s authors by verifying that the tool could not be accurately detected by
the inspection of basic traffic features such as the minimum/average/maximum values of packet
lengths. Second, and posing a more pressing concern, the study revealed that a closer look into
alternative statistics computed from packet lengths was sufficient for the detection of covert
traffic generated by FreeWave. Indeed, a simple threshold-based classifier based on the standard
deviation of packet lengths allowed a passive adversary to efficiently detect FreeWave flows.

Detection via machine learning: Wang et al. [200] introduced the application of ML techniques
to the problem of detecting covert Tor traffic tunneled over HTTPS requests, a technique
implemented by meek [60]. Wang et al. observed that meek ’s TCP ACK traffic is distinct from
that of regular TLS connections. Then, they manually crafted a feature set from three tailored
batches of traffic characteristics expected to maximize the success in identifying meek ’s flows.
The first batch comprises entropy-based characteristics, where the Shannon entropy of packets
in each direction of a flow are used as features. The second batch of features is comprised of
timing characteristics based on the interval between TCP ACK packets (in the same direction)
of a given flow. The third batch is based on packet-header features. Finally, Wang et al. have
conducted experiments resorting to the k-Nearest Neighbors, Näıve Bayes and CART decision
tree classifiers and found out the latter to provide the best accuracy in identifying covert flows.

Apart from the two aforementioned studies, a number of authors have proposed multiple
protocol tunneling designs and evaluated their resistance against traffic analysis. However,
the existing evaluation approaches reported in the literature had so far been confined to the
inspection of limited feature sets using a narrow scope of supervised classification techniques.
For instance, the unobservability assessment of systems such as Facet [105], CovertCast [121], or
DeltaShaper [10] solely relies on statistical tests based on the frequency distribution of packets
lengths and/or inter-packet delays. These assessments ignore the latest advances in ML-based
traffic analysis, performing an evaluation relying on rather simplistic and outdated classifiers.
This fact casts doubt on whether the current procedures took forth to gauge the unobservability
properties of protocol tunneling systems are robust against current traffic analysis techniques.
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1.2 Contributions

This thesis focuses on the development of tools that allow Internet users to retain the
security and privacy of their communications while evading the tight Internet control apparatus
maintained by powerful network adversaries. In particular, it concentrates on the study and
design of tools that surreptitiously encode information within popular multimedia exchange
protocols so as to provide users with a secure medium for unrestricted access to information online.
To evaluate the security of these tools, we switch hats to play the part of an adversary aimed at
detecting or subverting the operation of such tools. Motivated by the above considerations, we
address the following questions in this thesis:

• Q1: Can network adversaries detect existing multimedia protocol tunneling tools by making
use of ML-based traffic analysis techniques?

• Q2: Can network adversaries employ ML-based traffic analysis techniques to identify the
presence of covert channels in large-scale high speed networks in an efficient fashion?

• Q3: Is it possible to build network covert channels over multimedia streams that can both
resist against ML-based traffic analysis techniques and achieve a high throughput?

Next, we detail the main contributions of this thesis. Our exposition is based on the
description of the main results of a set of three representative publications, where each publication
tackled a specific research question among the ones presented above.

1.2.1 (Q1) Effective ML-based Detection of Multimedia Protocol Tunneling

In the past, the unobservability evaluation of multimedia protocol tunneling tools resorted to
ad-hoc similarity-based classifiers. To better understand whether these tools are robust against
traffic analysis, we conducted the first extensive experimental study over the unobservability
properties of three state-of-the-art multimedia protocol tunneling tools: Facet [105], Covert-
Cast [121], and DeltaShaper [10]. In this study, we started by comparing the performance of
three different similarity-based classifiers which had been proposed earlier for the unobservability
evaluation of the aforementioned tools. Further, we tested the unobservability of the same
covert channels against a number of sophisticated traffic analysis techniques based on machine
learning. In particular, we made use of three different kinds of machine learning algorithms: a)
supervised (CART, Random Forest, and XGBoost); b) unsupervised (Isolation Forest), and; c)
outlier detection (One-class SVM and Autoencoder Neural Networks).

We highlight three main findings of our study. First, we found that ad-hoc similarity-based
classifiers were not generally able to detect covert channels with high accuracy. For instance,
the better performing of such classifiers, based on the χ2 test, would mistakenly flag 45% of
legitimate network flows when attempting to flag 90% of all Facet covert channels. An exception
was CovertCast, whose flows were accurately detected when resorting to existing similarity-based
classifiers. Second, we found that decision tree-based classifiers are extremely effective at detecting
traffic generated by existing multimedia protocol tunneling tools. For instance, we found that
XGBoost is able to flag 90% of all Facet covert channels while mistakenly flagging only 2%
legitimate network flows. Third, our findings suggested that the use of unsupervised learning
and outlier detection techniques lead to a significant deterioration of classification accuracy when
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compared to supervised approaches, suggesting that the existence of manually labeled samples is
a requirement for the successful detection of multimedia protocol tunneling tools.

Our study showed that multimedia protocol tunneling tools can be detected with high
accuracy by passively monitoring and analyzing traffic patterns resorting to ML algorithms. If
the deployment of such traffic analysis mechanisms becomes affordable and widespread across the
large-scale networks managed by state-level adversaries, it is possible to conjecture that censors
will get the lead on the censorship arms race.

The results of our study were published at the USENIX Security 2018 conference [12]. This
publication is included as Chapter 2 of this thesis.

1.2.2 (Q2) Efficient Flow Classification for ML-based Network Security Tasks

Determined state-level censors are expected to deploy increasingly sophisticated traffic analy-
sis mechanisms to uncover the presence of covert traffic in the network. However, due to the sheer
volume of traffic, collecting and analyzing live network flows can be quite challenging in high
speed multi-gigabit networks. An emerging trend in network security consists in the adoption of
programmable switches for performing various security tasks in large-scale, high speed networks,
with the goal of decreasing reaction times to threats and reducing costs associated with equivalent
centralized server-based infrastructures. However, existing solutions cannot accommodate ML
tasks that perform targeted flow classification based on packet size or inter-packet frequency
distributions without imposing considerable overheads in storage, communication, and computa-
tion. In particular, existing approaches [102, 215] cannot accommodate ML tasks like the one
described in the previous section for detecting multimedia protocol tunneling tools.

To understand whether adversaries can deploy ML-based traffic analysis machinery at scale,
we investigated the capabilities of modern programmable switches to efficiently process and
analyze packet distributions. Our research efforts culminated with the development of FlowLens,
a system that leverages programmable switches to collect packet distributions at line speed and
that supports the efficient machine learning-based classification of flows on the switches. To cope
with the resource constraints of programmable switches, FlowLens computes a memory-efficient
representation of each flow’s relevant features, named flow marker, which contains enough
information to perform accurate flow classification. Through an automatic profiler, FlowLens
is able to generate flow markers that are specifically tailored for a given ML task, ensuring a
reasonable balance between the size of the flow marker and the accuracy of flow classification.
FlowLens also implements a data structure, named flow marker accumulator, which is responsible
for collecting flow markers as flows cross a programmable switch. Periodically, flow markers are
used to classify flows directly on the switching device.

Our experiments on a programmable Barefoot Tofino switch have shown that FlowLens
achieves considerable savings in storage and communication in contrast with typical traffic analysis
infrastructures. In particular, FlowLens was able to increase the amount of simultaneously
measured flows by an order of magnitude when detecting botnet traffic or performing website
fingerprinting. Additionally, FlowLens achieves an increase of two orders of magnitude in
monitoring capacity when accurately detecting the traffic generated by multimedia protocol
tunneling tools. These results suggest that scaling current ML-based traffic analysis machinery
is in the reach of contemporary network adversaries and that there is a pressing need for the
design of protocol tunneling tools that can better mix with legitimate traffic, ideally with a very
limited effect over the packet distributions of network flows.
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The results of our work were accepted for publication at the NDSS 2021 conference [15]. This
publication is included as Chapter 3 of this thesis.

1.2.3 (Q3) Evading Censorship by Parasitizing on WebRTC

The increasing sophistication of ML-based traffic analysis systems such as FlowLens has
set a bleak scenario for the ability of multimedia protocol tunneling tools to successfully breach
through state-level firewalls. While the design of these tools encompasses different mechanisms
for embedding covert data within media streams, they fail to generate covert channels that
simultaneously provide a high-throughput and strong unobservability guarantees. One possible
explanation for this fact is that they were exclusively developed over proprietary software such
as Skype. By having no access to the source code of media streaming applications, these carrier
applications are generally treated as a black-box. On the one hand, multimedia protocol tools
modulate covert data as an audio or video signal, in a trial-and-error fashion, towards making the
traffic generated by the carrier application resemble legitimate traffic when transmitting covert
content. Besides, the lossy compression performed by multimedia encoders forces modulation
approaches to introduce redundancy to enable the correct decoding of covert data at the receiver’s
endpoint.

The above insight prompted us to search for other popular carrier multimedia streaming
applications whose source code was available for modification, and which could allow us to
develop a new efficient and traffic analysis-resistant covert data encoding technique. During our
search, we came across WebRTC, a W3C standardization initiative for protocols and APIs for
enabling secure real-time communication between web browsers. As of today, all major browsers
include built-in WebRTC implementations. This has sparked the adoption of WebRTC across
numerous services that integrate real-time communication capabilities, providing a range of
potential carrier applications for performing covert data transmissions. It is worth noting that
placing a WebRTC call is similar to placing a video call on a typical web streaming application.
Additionally, WebRTC traffic is typically encrypted in transit between any two communicating
endpoints, in a peer-to-peer fashion. These properties make WebRTC an attractive target for
building improved network covert channels that can be made widely available.

Our analysis of WebRTC led to the design of Protozoa, a new censorship-resistant tool that
instruments the video pipeline of WebRTC-enabled browsers to replace the contents of encoded
video frames with covert data. Differently from existing protocol tunneling tools, we propose a
covert data embedding procedure within the video encoding pipeline which sits immediately after
the compression of an original video signal. Specifically, Protozoa replaces the bits that result
from compressing legitimate video frames with bits of the covert payload. The resulting frames
are then encrypted and transmitted over the network. Afterward, the receiver can decrypt the
frames and extract the covert payload. Additionally, Protozoa injects valid pre-recorded encoded
frames at the receiver’s WebRTC media decoder to avoid decoding errors and the triggering of
congestion control mechanisms that could reveal the presence of a covert channel.

Protozoa’s encoding scheme brings several advantages. First, the throughput of the covert
channel grows considerably, to the order of 1Mbps. This allows, as an example, for the covert
transmission of YouTube video streams. This performance gain occurs because all bits of the
compressed video frames can be used to encode covert data, thereby increasing the capacity
of the channel. Second, we experimented Protozoa in the wild and observed that it allows for
the evasion of censorship filters in multiple regions of the world which are known to experience
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Internet censorship. Interestingly, we verified that the profusion of different WebRTC services
makes Protozoa able to evade censorship, even when particular WebRTC services are blocked (for
instance, appr.tc was blocked within China, but whereby.com was not). Third, the video streams
generated by Protozoa are able to preserve the traffic characteristics of a legitimate transmission
because the covert payload bits are replaced in the same amount as the number of bits in the
original compressed video frame. This undermines the effectiveness of modern traffic analysis
techniques [12]. By taking the above advantages combined, we showed that Protozoa is able to
generate fast and unobservable covert channels over WebRTC multimedia streams.

Our results were published at the CCS 2020 conference [14]. This publication is included as
Chapter 4 of this thesis.

1.2.4 Ramifications and Other Collaborations

In addition to the main contributions presented in this document, our research on the
application of network covert channels to evade Internet censorship led us to collaborate in other
related dimensions of the same problem. Specifically, we studied the effectiveness of the keyword
filtering mechanisms employed by the Great Firewall of China.

The Great Firewall of China (GFW) is a set of technologies that prevents Chinese citizens
from accessing online content deemed objectionable by the Chinese government. While the
technical capabilities of the GFW have matured over the last decades, one of its main mechanisms
for enforcing censorship rests on the search for forbidden keywords in unencrypted packet streams.
When the GFW detects such keywords, it terminates the offending stream and blocks traffic
between the same two hosts involved in communication for a few minutes.

We studied the effectiveness of the GFW to filter keywords included in HTTP requests,
resorting to different lists of potentially blocked terms, curated between 2014 and 2020. We
found that over 86% of the keywords targeted by the GFW were replaced since 2014, and that
the GFW continuously updates its blocking list to include terms related to recent sensitive topics,
such as the coronavirus outbreak. Additionally, we asserted that the GFW targets different
sets of keywords when inspecting hostnames, page names, and search queries. Finer-grained
experiments further revealed a number of instances where forbidden keywords do not trigger the
GFW blocking mechanisms, e.g., the content of some HTTP headers is ignored.

A manuscript describing the work developed in the context of this collaboration was accepted
for publication at the WebConf 2021 conference [159].

1.2.5 Summary of Contributions

In summary, the primary contributions of this thesis are the following:

• The finding that existing multimedia protocol tunneling tools can be detected by network
adversaries that make use of ML-based traffic analysis techniques.

• The design of a packet frequency distribution compression and processing scheme within
programmable switches. This set off the design of FlowLens, a system capable of conducting
multiple ML-based traffic analysis tasks in high speed large-scale networks. FlowLens is
able to detect the activity of multimedia protocol tunneling tools in such networks.
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• The design of a network covert channel based on the instrumentation of WebRTC’s video
encoding pipeline. This culminated in the design of Protozoa, a tool that creates high
speed covert channels which can evade current ML-based traffic analysis techniques.

1.2.6 Summary of Results

Considering the above contributions, the main results of this thesis are the following:

• An implementation [13] of a framework for the assessment of unobservability which can be
used to guide the development and security analysis of novel network covert channels.

• An implementation [16] of a system that uses programmable switches to efficiently support
multi-purpose ML-based security applications in high speed networks, and its evaluation
on different scenarios, including the detection of multimedia protocol tunneling tools.

• An implementation [8] of a tool that allows for censorship-resistant Internet communications
by embedding covert data on WebRTC media streams, and its performance evaluation
through an experimental testbed that emulates realistic usage scenarios and workloads.

1.3 Conclusions and Future Work

In this thesis, we focus on the balance between the unobservability and performance achieved
by multimedia protocol tunneling, a technique that has given birth to a set of tools that allow
Internet users to retain the security and privacy of their communications while evading the
tight Internet surveillance and control apparatus maintained by powerful network adversaries.
Despite the reported advances in improving and scaling the deployment of detection machinery,
we conclude that it is possible to build network covert channels over multimedia streams that
simultaneously offer high-throughput and strong resistance to traffic analysis. Before reaching this
conclusion, we worked in two complementary directions: (i) towards devising novel frameworks
and deploying new systems aimed at detecting the activity of multimedia protocol tunneling
tools (Chapters 2 and 3), and (ii) towards developing and scaling new tools that surreptitiously
encode information within popular multimedia exchange protocols (Chapter 4). Next, we draw
conclusions on three major outcomes of this thesis and point to future directions.

First, we show that a category of classifiers typically used for performing the unobservability
assessment of multimedia protocol tunneling tools provides optimistic security guarantees. As
detailed in our experimental study [12], the accuracy obtained by machine learning-based
techniques largely surpasses that obtained by similarity-based classifiers in the task of detecting
multimedia protocol tunneling tools. However, while the classifiers proposed in our unobservability
assessment framework perform the most comprehensive analysis of flow features for the purpose
of multimedia protocol tunneling detection to date, it is unknown whether the use of increasingly
sophisticated classifiers can significantly challenge the unobservability claims of current tools.
An interesting direction for future work is that of measuring information leakage in the traffic
produced by protocol tunneling tools, grounded in theoretical schemes like WeFDE [103] or
F-BLEAU [41], towards developing a classifier-agnostic unobservability evaluation framework.
However, one particular challenge involved in using such approaches for estimating information
leakage is that the estimation process is tightly coupled with the set of features being used to
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describe the different classes of network traffic [164]. This suggests that feature engineering
efforts and the exploration of alternative feature spaces may be required to conduct a better
estimation of the security of multimedia protocol tunneling tools.

Second, we ascertain that knowledgeable network adversaries possess the technical means to
efficiently carry out a range of security-focused tasks based on machine learning at the core of
their network infrastructure. In particular, our work on FlowLens [15] showed that programmable
switches can be used to facilitate the deployment of traffic classifiers that are able to perform
the accurate detection of covert channels generated by multimedia protocol tunneling tools.
One possible direction for future work is that of exploring ways to enrich FlowLens’ analysis of
packet frequency distributions with other properties derived from packet contents, such as the
estimation of Shannon entropy or the ability to keep track of specific packet headers. This would
not only enable the application of FlowLens to other ML-based tasks comprising the detection of
network covert channels [200], but also to other ML-based tasks aimed at enhancing the QoS of
business-level applications [196].

Thirdly, our research efforts on Protozoa [14] show that having control over the innards of the
multimedia coding pipelines used by carrier applications opens the possibility for the development
of more elaborate covert data embedding mechanisms, e.g., allowing for increased covert channel
bandwidth while minimizing side-effects on the traffic patterns generated by the application
when tunneling covert data. A possible direction for further increasing the throughput offered
by Protozoa is to establish covert channels over high-definition video streams which can offer a
larger amount of covert data bandwidth. Additionally, our ongoing work [9] aims to augment the
scalability of Protozoa by introducing a new system design that will allow isolated users to reach
out to remote proxies through a multi-hop chain of trusted nodes through the establishment
of end-to-end covert channels. Future work should also consider the deployment of WebRTC
gateways, application-controlled middleboxes which may intercept and enforce the validation of
video data, possibly thwarting Protozoa’s ability to transfer covert data. It will be interesting to
explore whether Protozoa can be used to establish covert channels when faced with the operation
of such interception devices, e.g., by making use of steganography techniques [214].

The work developed during this thesis also enables us to envision future work in interrelated
directions. So far, the evaluation of proxy-based censorship-resistant tools, including protocol
tunneling approaches, is performed on a per-flow basis. While the network characteristics of
a single flow may not be sufficient to reveal the presence of a covert data transmission, it is
possible that an adversary can profile the traffic patterns of users over long periods of time
and find deviations that enable it to pinpoint potential users of censorship-circumvention tools.
Specifically, deviations from a user’s profile can take multiple forms, including the existence
of uncommon connection times, frequency, and duration, or the establishment of connections
towards atypical communication endpoints. Although this threat to proxy-based circumvention
tools is well-known [9, 14], its viability is yet to be fully understood. In addition, we have seen
that protocol tunneling tools inject covert data within the communication channels of popular
applications like video-conferencing services. Oftentimes, the applications and protocols used for
surreptitiously transmitting data are proprietary, leverage the network infrastructure of third-
party companies to some extent, or are bound by Terms & Conditions which are largely ignored
by the developers of circumvention tools. One other possible direction for future work is that of
revisiting earlier protocol mimicking approaches and explore the use of generative adversarial
networks to build improved circumvention approaches that generate network traffic akin to that
of popular Internet services, without interacting with such services’ resources themselves.
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Abstract

Multimedia protocol tunneling enables the creation of covert channels by modulating data
into the input of popular multimedia applications such as Skype. To be effective, protocol
tunneling must be unobservable, i.e., an adversary should not be able to distinguish the streams
that carry a covert channel from those that do not. However, existing multimedia protocol
tunneling systems have been evaluated using ad hoc methods, which casts doubts on whether
such systems are indeed secure, for instance, for censorship-resistant communication.

In this paper, we conduct an experimental study of the unobservability properties of three
state of the art systems: Facet, CovertCast, and DeltaShaper. Our work unveils that previous
claims regarding the unobservability of the covert channels produced by those tools were flawed
and that existing machine learning techniques, namely those based on decision trees, can uncover
the vast majority of those channels while incurring in comparatively lower false positive rates.
We also explore the application of semi-supervised and unsupervised machine learning techniques.
Our findings suggest that the existence of manually labeled samples is a requirement for the
successful detection of covert channels.

The reproduction of this publication was slightly adapted to adhere to formatting requirements. The original
version of this publication can be found at: https://www.usenix.org/system/files/conference/usenixsecurity18/
sec18-barradas.pdf.
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2.1 Introduction

Multimedia protocol tunneling has emerged as a potentially effective technique to create
covert channels which are difficult to identify. In a nutshell, this technique consists of encoding
covert data into the video (and/or audio) channel of popular encrypted streaming applications
such as Skype without requiring any changes to the carrier application. Systems such as
Facet [105], CovertCast [121], and DeltaShaper [10] implement this technique, and introduce
different approaches for data modulation that aim at raising the difficulty of an adversary to
identify covert data transmissions.

An important property that all these systems strive to achieve is unobservability. A covert
channel is deemed unobservable if an adversary that is able to scan any number of streams is
not able to distinguish those that carry a covert channel from those that do not [66, 80]. Thus,
an adversary aims at correctly detecting all streams that carry covert channels, among a set of
genuine streams, as effectively as possible. In practice, a multimedia protocol tunneling system
that provides a high degree of unobservability prevents an adversary from flagging a large fraction
of covert flows (i.e., from attaining a high true positive rate) while flagging a low amount of
regular traffic (i.e., while attaining a low false positive rate).

In spite of the efforts to build unobservable systems, the methodology currently employed
for their evaluation raises concerns. To assess the unobservability of a system such as Facet,
experiments are mounted in order to play regular traffic along with covert traffic, collect the
resulting traces, and employ similarity-based classifiers (e.g., relying in the χ2 similarity function)
to determine whether covert traffic can be detected with a low number of false positives [105].
However, each system has been evaluated with a different classifier, making results hard to
compare. Furthermore, those studies use just one among the many machine learning (ML)
techniques available today. Yet, providing a common ground for assessing the unobservability
of multimedia protocol tunneling systems is a relevant problem which, nevertheless, has been
overlooked in the literature. Considering that such systems emerged from the need to circumvent
Internet censorship, flawed systems may pose life-threatening risks to end-users, e.g., journalists
that report news in extreme conditions may be prosecuted, imprisoned, or even murdered if
covert channels are detected.

To fill this gap, our goal is to systematically assess the unobservability of existing systems
against powerful adversaries making use of traffic analysis techniques based on ML. We aim at
understanding which ML techniques are better suited for the purpose of detecting covert channels
in multimedia streams and what are the limitations of such techniques. In particular, we seek to
explore ML techniques which have yielded successful results when applied in other domains (e.g.,
Tor hidden services fingerprinting [74]), but have not yet been studied in the context of covert
traffic detection.

In this paper, we present the first experimental study of the unobservability of covert channels
produced by state-of-the-art multimedia protocol tunneling systems. We test three systems –
Facet, CovertCast, and Deltashaper – using the original code provided by their maintainers.
For our study, we take a systematic approach by investigating a spectrum of anomaly detection
techniques, ranging from supervised, to semi-supervised and unsupervised, where for each category
we explore different classifiers, and investigate the trade-offs involved in the ability to flag a large
amount of covert channels while minimizing false positives. From our study, we highlight the
following three main contributions.
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First, our analysis reveals that some state-of-the-art systems are flawed. In particular,
CovertCast flows can be detected with few false positives by an adversary, even when resorting
to existing similarity-based classifiers. While the remaining systems exhibit different degrees of
unobservability according to their parameterization, we show that none of the currently employed
similarity-based classifiers can detect such channels without incurring in large numbers of false
positives. We also conclude that one of the existing similarity-based classifiers – using χ2 distance
– consistently outperforms all others in the task of detecting covert channels.

Second, we show that ML techniques based on decision trees and some of their variants are
extremely effective at detecting covert traffic with reduced false positive rates. For example, an
adversary employing XGBoost would be able to flag 90% of all Facet traffic while erroneously
flagging only 2% of legitimate connections. Moreover, the performance of such techniques is very
high, meaning that the adversary is able to classify traffic in a few seconds, with a relatively low
number of samples per training set, and taking a low memory footprint. Additionally, the use of
decision tree-based techniques allows us to understand which traffic features are most important
for detecting particular multimedia protocol tunneling systems. These findings suggest that,
apart from their performance, decision tree-based techniques can provide meaningful insight into
the inner workings of these systems and we propose that they should be used for assessing the
unobservability of multimedia protocol tunneling systems in the future.

Third, we explore alternative ML approaches for the detection of covert channels when the
adversary is assumed to be partially or totally deprived of labeled data. Our findings suggest
that unsupervised learning techniques provide no advantage for the classification of multimedia
protocol tunneling covert channels, while the application of semi-supervised learning techniques
yields a significant fraction of false positives. However, we note that the performance of semi-
supervised techniques can be significantly improved through the optimization of parameters or by
providing algorithms with extra training data. The study of semi-supervised anomaly detection
techniques with an ability to self-tune parameters can be a promising future direction of research
which would enable adversaries to detect covert traffic while avoiding the burden of generating
and manually label data.

We note that we synthesize legitimate and covert traffic samples in laboratory settings for
creating our datasets. While this is a common approach for generating datasets for the type of
unobservability assessment we conduct in this paper, it is possible that adversaries possessing a
privileged position in the network can build a more accurate representation of traffic.

The remainder of our paper is organized as follows. Section 2.2 presents the methodology
of our study. Section 2.3 presents the main findings of our study regarding the comparison of
similarity-based classifiers. Section 2.4 presents the results obtained when assessing unobserv-
ability resorting to decision tree-based classifiers. Section 2.5 presents our first insights on using
semi-supervised and unsupervised anomaly detection techniques for the identification of covert
traffic. In Section 2.6, we discuss obtained results and we present the related work in Section 2.7.
Lastly, we conclude our work in Section 2.8.

2.2 Methodology

This section introduces the systems we analyzed, our adversary model, and the experimental
setup of our study.
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2.2.1 Systems Under Analysis

Below, we describe three state-of-the-art approaches at multimedia protocol tunneling which
serve as a basis for our study. We selected these systems because all of them encode data into
video streams, and their code is publicly available for open testing. We note that although these
systems have been conceived for the purpose of censorship circumvention, in practice, they may
be used for other purposes, such as concealing criminal activity.

Facet [105] allows clients to watch arbitrary videos by replacing the audio and video feeds
of Skype videocalls. To watch a video, clients contact a Facet server by sending it a message
containing the desired video URL. Afterwards, the Facet server downloads the requested video
and feeds its content to microphone and camera emulators. Then, the server places a videocall
to the client transmitting the selected video and audio instead. Thus, clients are not required to
install any software in order to use the system. For approximating the traffic patterns of regular
videocalls, Facet re-samples the audio frequency and overlays the desired video in a fraction of
each frame while the remaining frame area is filled up by a video resembling a typical videocall.
Decreasing the area occupied by the concealed video translates into increased resistance against
traffic analysis.

CovertCast [121] scrapes and modulates the content of web pages into images which are
distributed via live-streaming platforms such as YouTube. Multiple clients can consume the
data being transmitted in a particular live stream simultaneously. CovertCast modulates web
content by encoding it into colored matrix images. A colored matrix is parameterized by a cell
size (adjacent pixels with a given color), the number of bits encoded in each cell (represented
with a color), and the rate at which a matrix containing new data is loaded. Clients scrape and
demodulate the images served through the live stream extracting the desired web content.

DeltaShaper [10] differentiates itself from the previous systems in that it allows for tunneling
arbitrary TCP/IP traffic. This is achieved by modulating covert data into images which are
transmitted through a bi-directional Skype videocall. DeltaShaper follows a similar data encoding
mechanism to that of CovertCast. However, and similarly to Facet, a colored matrix is overlayed
in a fraction of the call screen, on top of a typical chat video running in the background. This
overlay, named payload frame, can be carefully parameterized to provide different levels of
resistance against traffic analysis. On call start, DeltaShaper undergoes a calibration phase
for adjusting its encoding parameters according to the current network conditions in order to
preserve unobservability.

2.2.2 Adversary Model

To study the unobservability properties of the aforementioned systems, we emulate a state-
level adversary which will attempt to detect the traffic of multimedia protocol tunneling tools
while resorting to different anomaly detection techniques. The providers of encrypted multimedia
applications which are used as carriers for covert channels are not assumed to collude with the
adversary. Thus, the adversary cannot simply demand application providers to decipher and
disclose raw multimedia content which could be easily screened for the presence of covert data.
The adversary is also assumed to be unable to control the software installed in the computers of
end-users. However, domestic ISPs are assumed to cooperate with the adversary, enabling it to
monitor, store and inspect all traffic flows crossing its borders.
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An adversary faces an inherent trade-off between the ability to correctly detect a large
amount of covert channels and to erroneously flag legitimate flows. Flagging legitimate flows as
covert channels is something that the adversary wants to avoid in most practical settings. For
example, a censor that aims at blocking flows containing covert channels may not be willing to
block large fractions of legitimate calls, that are used daily by companies and business, as these
calls may be key for the economy of the censor’s regime [58]. Also, law-enforcement agencies
may not be willing to risk to falsely flag legitimate actions of citizens as criminal activity.

2.2.3 Performance Metrics

In face of the previous observations, when comparing the different techniques we mainly
use the following metrics: true positive rate, false positive rate, accuracy, and the area under
the ROC curve. The True Positive Rate (TPR) measures the fraction of positive samples that
are correctly identified as such, while the False Positive Rate (FPR) measures the proportion of
negative samples erroneously classified as positive. Thus, adversaries will attempt to obtain a
high TPR and a low FPR when performing covert traffic classification. Accuracy captures the
fraction of correct labels output by the classifier among all predictions, and can be used as a
summary of the classification performance since high accuracy implies a high true positive rate
and a low false positive rate. The ROC curve plots the TPR against the FPR for the different
possible cutout points for classifiers possessing adjustable internal thresholds. The area under the
ROC curve (ROC AUC) [56] summarizes this trade-off. While a classifier outputting a random
guess has an AUC=0.5, a perfect classifier would achieve an AUC=1, where the optimal point
on the ROC curve is FPR=0 and TPR=1.

2.2.4 Experimental Setup

For conducting our study, we were required to analyze a number of network traces produced
by the systems described in Section 2.2.1. For our testbed, we used two 64-bit Ubuntu 14.04.5
LTS virtual machines (VMs) provisioned with a 2.40GHz Intel Core2 Duo CPU and 8GB of RAM
configured in a LAN setting. We used the v4l2loopback camera emulator and the pulseaudio
sound server to feed video and audio to the carrier multimedia applications. The prototypes of
the considered systems were obtained from their respective websites [11, 104, 120]. Due to the
deprecation of Skype v4.3 and the incompatibility of v4l2loopback with the latest Skype v8.x
desktop version, we have resorted to Skype for Web. For gathering the traffic samples generated
by each system, we captured the network packets produced by the carrier multimedia streams for
a duration of 60 seconds after a given covert channel has been established. The methodology we
followed for gathering traffic samples has been commonly used in the literature since it allows for
the unobservability analysis of covert channels while executing in steady-state. Next, we describe
the methodology we followed for generating our covert and legitimate traffic datasets.

Facet: For building our covert video dataset, we collected 1000 YouTube videos from the
YouTube-curated Top Shared and Liked playlist. The legitimate Skype video dataset consists of
1000 recorded live chat videos available on YouTube. We adapted the Facet prototype to sample
three types of Facet transmissions, corresponding to scaling the covert videos on top of legitimate
videos by a factor of 50%, 25% and 12.5% – the available prototype represents a proof-of-concept
only capable of a (unmorphed) 100% scaling. Then, we gathered 1000 traffic samples for each
scaling factor by combining a pair of legitimate and covert videos while following the audio and
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video morphing techniques detailed in Facet’s original description. To emulate legitimate Skype
calls, we streamed the media comprising our legitimate Skype video dataset. The resolution
of the camera emulator was set to 320x240. For gathering traffic samples, we used each of the
available VMs as a Skype peer.

CovertCast: For building our legitimate live-streaming dataset, we crawled 200 live-streams
included in the Live YouTube-curated list. Then, we generated 200 CovertCast live-streams
by broadcasting several news websites already included in the available CovertCast prototype.
The server component, responsible for scraping websites, was executed in one of our VMs and
streamed modulated video frames to YouTube. We used a Windows laptop running Google
Chrome as a CovertCast client. Each video was streamed with a 1280x720 resolution.

DeltaShaper: We emulated 300 legitimate bi-directional Skype calls by streaming a subset of
our legitimate Skype video dataset. We gathered DeltaShaper traffic samples by establishing
a DeltaShaper connection between the Skype endpoints installed in both VMs. We gathered
data for two DeltaShaper configurations, found to provide traffic analysis resistance guarantees,
and which respected the tuple (payload frame area, cell size, number of bits, framerate). These
were comprised by the 〈320× 240, 8× 8, 6, 1〉 and 〈160× 120, 4× 4, 6, 1〉 tuples. Each video was
streamed in a 640x480 resolution.

2.3 Similarity-based Classification

For the purpose of unobservability assessment, multiple similarity functions have been used to
feed similarity-based classifiers. This section details the rationale behind each of these functions
and how they have been used for the construction of similarity-based classifiers and applied to
different multimedia protocol tunneling systems. Then, we conduct a comparative analysis of
the performance of each of these classifiers.

2.3.1 Currently Used Similarity Functions

Next, we introduce the three similarity-based classifiers which have been previously used for
evaluating the unobservability of Facet, CovertCast, and DeltaShaper.

In similarity-based classification [40], labeling is performed by taking into account the pairwise-
similarities between the test sample and a set of labeled training samples (or a representative
model based on these). In the context of traffic analysis, similarity scores are often obtained from
the comparison of the frequency distribution of packet lengths or inter-arrival times of traffic
samples.

Pearson’s Chi-squared Test (χ2) [154] tells us whether the distributions of two categorical
variables differ significantly from each other, by comparing the observed and expected frequencies
of each category. The χ2 test is used in a classifier adapted for distinguishing Facet traffic [105, 209].
The classifier starts by building two models for legitimate and Facet traffic, respectively, using
labeled samples. These models are based upon a selection of the bi-gram distribution of packet
lengths, where bi-grams expected to hurt classification performance are identified and discarded.
Test samples are compared to each of the models using the χ2 test. A simpler version of this
classifier labels a sample according to the minimum distance obtained when compared against
each model. A more sophisticated version of the classifier labels samples according to whether
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the ratio between the distance to each model surpasses a threshold. An adversary can adjust
this threshold for balancing the classifier’s true positive and false positive rates.

Kullback-Leibler Divergence (KL) [98] is a measure of relative entropy between two target
distributions which is obtained by computing the information lost when trying to approximate
one distribution with the other. The KL divergence is used for building a classifier for CovertCast
traffic. The classifier aims at distinguishing a set of YouTube videos carrying modulated data from
a set of regular YouTube videos through the comparison of the quantized frequency distribution
of packet lengths. For each sample in a given set, the classifier computes its KL divergence from
every other member in the same set and every member in the other set. Then, the classifier
computes a success metric, corresponding to the number of times the KL divergence between a
member of one set is more similar to another member of the same set, divided by the total KL
divergences that were computed.

Earth Movers’s Distance (EMD) [171] measures the dissimilarity between two distributions,
where the distance between single features can be defined in a distance matrix. Informally, this
dissimilarity represents the necessary amount of work to turn one probability distribution into
the other, where the cost of this transformation translates to the amount of observations moved
times the distance defined in the distance matrix. The EMD (provided with a unitary distance
matrix) is used for comparing the quantized frequency distribution of packet lengths of traffic
samples, and is used as basis for building a classifier for DeltaShaper traffic. First, the classifier
computes the pairwise EMD between each sample in the dataset and each legitimate sample,
recording its average. The intuition is that legitimate samples will exhibit a smaller average
EMD. A threshold adjusts the trade-off between the true positive and false positive rates of the
classifier. For labeling a new sample, the classifier computes the pairwise distance of this sample
to each legitimate sample and verifies whether its average EMD surpasses the threshold.

2.3.2 Main Findings

We now present the main findings of our analysis after assessing the unobservability of each
system with all the similarity-based classifiers described above.

1. The claims on the unobservability guarantees of multimedia protocol tunneling
systems are intimately tied to the classifier employed in their evaluation. This finding
can be illustrated by the numbers in Table 2.1, which shows the accuracy, true positive and
true negative rates obtained by the classifiers described in Section 2.3.1. For example, when
detecting Facet s=50% traffic, we can see that the χ2 performs relatively well, with an accuracy
of 74.3%. Contrastingly, the KL and EMD classifiers attain an accuracy close to random guessing,
providing an optimistic estimate on the unobservability of Facet s=50%. The values in Table 2.1
suggest a similar trend when detecting DeltaShaper and CovertCast traffic. The consistently
higher accuracy values provided by χ2 also suggest that this classifier outperforms all other
similarity-based classifiers proposed for the assessment of unobservability.

2. χ2 produces large false positive rates when classifying Facet and DeltaShaper
traffic. Figure 2.1 depicts the ROC curve of the χ2 and EMD classifiers when detecting Facet
and DeltaShaper traffic. Figure 2.1a shows that for correctly identifying 90% of all Facet traffic
(TPR=90%), with s=50%, an adversary would tag 45% of legitimate connections (45% FPR)
as covert traffic, while employing the χ2 classifier. For identifying 90% of all DeltaShaper
〈320× 240, 8× 8, 6, 1〉 traffic, the adversary would face an FPR=51%. Thus, even the deployment
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Multimedia Protocol Tunneling System

χ2 Classifier KL Classifier EMD Classifier
ACC TPR TNR ACC TPR TNR ACC TPR TNR

Facet (s=50%) 0.743 0.797 0.689 0.575 0.675 0.476 0.575 0.578 0.572

Facet (s=25%) 0.713 0.795 0.630 0.558 0.615 0.500 0.535 0.827 0.242

Facet (s=12.5%) 0.772 0.793 0.750 0.551 0.596 0.506 0.530 0.793 0.267

DeltaShaper 〈320× 240, 8× 8, 6, 1〉 0.690 0.716 0.663 0.546 0.628 0.464 0.567 0.500 0.633

DeltaShaper 〈160× 120, 4× 4, 6, 1〉 0.540 0.437 0.650 0.515 0.531 0.500 0.528 0.223 0.833

CovertCast 0.990 1.000 0.980 0.923 0.999 0.846 0.830 0.965 0.695

Table 2.1: Accuracy, true positive, and true negative rates when detecting covert channels on
different multimedia protocol tunneling systems. For the EMD classifier, the threshold value was
chosen to be the one providing the highest accuracy, irrespective of the trade-off between the
true positive and true negative rates of the classifier.
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(b) DeltaShaper 〈320× 240, 8× 8, 6, 1〉.

Figure 2.1: ROC curve for the χ2 and EMD classifiers when identifying Facet and DeltaShaper.

of the best performing similarity-based classifier results in a large number of misclassifications
for legitimate traffic. Misclassifications are further aggravated should an adversary resort to the
EMD classifier. Figure 2.1 confirms that χ2 performs only fairly in distinguishing covert channels
(e.g., AUC=0.83 for Facet s=50%, AUC=0.74 for DeltaShaper 〈320× 240, 8× 8, 6, 1〉). We do
not show a ROC curve for KL as the classifier is not adjustable by an internal threshold.

3. CovertCast fails to provide unobservability. The results in Table 2.1 show that the χ2

classifier can correctly identify all of CovertCast streams while incurring only in a 2% false positive
rate. Additionally, the numbers show that the remaining classifiers can correctly identify >96.5%
of CovertCast streams, albeit incurring in a larger false positive rate (e.g., EMD: TPR=0.965,
FPR=0.305). We conjecture two explanations that may justify the differences beween our
results and those published in the original CovertCast paper. Firstly, our results may stem from
the use of a dataset which is one order of magnitude larger than the one used for CovertCast
evaluation. Our dataset may more accurately represent the patterns generated by legitimate
YouTube streams’ traffic and reveal CovertCast activity. Secondly, implementation changes
in YouTube may have impacted the unobservability properties provided by hardcoded data
modulation parameters, which may in turn be no longer adequate to ensure unobservability.
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2.4 Decision Tree-based Classification

In this section, we depart from the use of similarity-based classifiers for detecting the presence
of covert traffic. As it is unpractical to explore all possible machine learning algorithms, we
focus our experiments in a subset of algorithms based on decision trees. We have chosen these
algorithms due to their ability of handling data in a non-linear fashion, their ability to perform
feature selection, and the ease of interpretation of the resulting models. Our results show that
this approach is highly effective at detecting covert traffic in the systems under study.

2.4.1 Selected Classifiers

We present a description of the decision-tree based algorithms we have chosen for conducting
our experiments:

Decision Trees [157] build a model in the form of a tree structure, where each tree node is
either a decision or leaf node, representing a branch or a label, respectively. Decision nodes
split the current branch by an attribute. A splitting attribute is commonly chosen according
to its expected information gain, i.e. the expected reduction in entropy caused by choosing the
attribute for a split. The importance of each particular attribute can be assessed by analyzing
the tree structure, where nodes closer to the root have a higher importance than those down the
tree. Despite its simple interpretation, decision trees can result in complex models unable to
generalize well or can build unstable models due to the presence of large numbers of correlated
features. A popular way to mitigate such disadvantages is to use decision tree ensembles.

Random Forests [27] are an ensemble learning method, where a label is predicted by performing
a majority vote over the output of multiple decisions trees. To prevent overfitting, Random
Forests introduce variance in the model through bootstrap aggregation, i.e. each tree is trained
using a random sample (with replacement) of the training set. Additionally, Random Forests
select random attributes of the feature set when building each tree, a technique named feature
bagging. One method for assessing the importance of an attribute is to average its information
gain across all trees in the ensemble.

eXtreme Gradient Boosting (XGBoost) [39] is another technique for building a model
based on an ensemble of decision trees; it relies on a technique known as gradient tree boosting.
XGBoost starts by building a shallow decision tree (i.e., a weak learner). In each step, XGBoost
creates a new tree which optimizes the predictions performed by trees in earlier stages. XGBoost
benefits from a regularized model formalization to control overfitting. The importance of
individual attributes can be computed in a similar fashion to that of Random Forests. We
find the use of XGBoost to be promising among a large pool of classification algorithms. In
fact, XGBoost has played a central role on multiple winning solutions for recent data mining
competitions, spawning multiple domains, such as the KDD Cup 2016 [48, 172]

The next sections detail our experiments for evaluating the unobservability of Facet and
DeltaShaper with the decision tree-based classifiers enumerated above. In our experiments we
have used two distinct sets of features: summary statistics and quantized packet lengths. We
omit a discussion over CovertCast, as we have found that all of these techniques can identify its
covert traffic with a negligible false positive rate.
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(a) Decision Tree – Facet.
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(b) Random Forest – Facet.
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(c) XGBoost – Facet.
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(d) Decision Tree – DeltaShaper.
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(e) Random Forest – DeltaShaper.
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(f) XGBoost – DeltaShaper.

Figure 2.2: ROC curves for decision tree-based classifiers when classifying Facet and DeltaShaper
traffic using Feature Set 1 (summary statistics).

2.4.2 Feature Set 1: Summary Statistics

The collection of encrypted traffic provides an adversary with two main sources of data
for extracting features necessary for the detection of covert channels: a timeseries of packet
lengths, and a timeseries of packet inter-arrival times. Our first set of features comprises a
collection of summary statistics computed over the network traces of legitimate and covert
traffic. This is a prevalent approach at generating features for the problem of encrypted traffic
fingerprinting [74, 143, 202]. Such set of features has not been previously applied in the detection
of covert channels generated by multimedia protocol tunneling.

As for the choice of summary statistics, we compute multiple descriptive statistics for the
ingress/ egress packet flows of a connection as a whole, as well as for ingress/ egress traffic
individually. This feature set includes simple descriptive statistics over the packet length and
inter-arrival time timeseries – such as maximum, minimum, mean, and percentiles – as well
as higher-order statistics like the skew or kurtosis of these timeseries. We also consider burst
behavior [2], where a burst is a sequence of consecutive packets transmitted along the same
direction of a given connection. A total of 166 features are used for training our classifiers.

Next, we present our main findings after attempting to detect covert channels using the
decision-tree based classifiers we have described, while feeding them with our collection of
summary statistics. We report the performance of each classifier over 10-fold cross-validation.

1. The use of Random Forest/ XGBoost, used in tandem with summary statistics,
largely undermines the unobservability claims of state-of-the-art multimedia proto-
col tunneling systems. Figure 2.2 shows the ROC curve for our decision tree-based classifiers
when detecting Facet and DeltaShaper traffic resorting to summary statistic features (ST).
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Random Forest – ST exhibits a minimum AUC=0.95 when classifying all configurations of Facet
traffic, while XGBoost – ST exhibits a minimum AUC=0.97. When compared to XGBoost –
ST, the χ2 classifier attains a maximum AUC=0.85. For DeltaShaper traffic, XGBoost – ST
attains an AUC which is 0.22 larger for both DeltaShaper configurations, when compared to
that obtained by the χ2 classifier.

2. It is possible to flag a vast majority of covert channels with a very small number
of false positives. An adversary that aims at flagging at least 90% of all Facet s=50%
connections incurs in a 14.1% FPR when resorting to Random Forest – ST, and a FPR as
short as 7.1% when resorting to XGBoost – ST. To flag at least 70% of the same kind of traffic,
XGBoost – ST incurs in a FPR of only 1%. In comparison, Figure 2.1a shows that for correctly
identifying just 70% of Facet s=50% traffic when resorting to the χ2 classifier, an adversary
would face an alarming 21.5% FPR. The situation is similar for an adversary wishing to flag 90%
of DeltaShaper 〈320× 240, 8× 8, 6, 1〉 traffic. For flagging 90% of this kind of traffic, Random
Forest – ST incurs in a 30.3% FPR and XGBoost – ST incurs in a 12.1% FPR. To flag 70% of
the same kind of traffic, XGBoost – ST incurs in a FPR of 4%. Flagging just 70% of this kind of
traffic with the χ2 classifier would amount to a 32.2% FPR.

2.4.3 Feature Set 2: Quantized PLs

An alternative feature set is comprised of the quantized frequency distribution of packet
lengths, where each K size bin acts as an individual feature. While this feature set is akin to
that previously used in KL and EMD similarity-based classifiers, we process these features in
a fundamentally different way. In particular, the similarity-based classifiers output a distance
score based on the overall difference of the packet lengths frequency distribution, while failing to
adjust this score according to the importance of relevant regions of the feature space. Informally,
they risk to dilute the greater discriminating power of a given feature among that of possibly
irrelevant features [126]. We aim at exploiting the different relevance of particular ranges of the
feature space by feeding this feature set to decision tree-based classifiers.

For Facet, we take as features the quantized frequency distribution of packet lengths for the
flow carrying covert data. We use K=5 as we have experimentally verified that the classification
performance of our decision tree-based algorithms benefit from a fine-grained quantization. As for
DeltaShaper, and due to the system’s bidirectionality, we use the quantized frequency distribution
of packet sizes flowing in both directions. Here, we also apply a quantization with K=5. Note
that the evaluation performed with the similarity-based classifiers described in Section 2.3 also
considers the same selection on the direction of traffic flows to analyze.

Next, we describe our findings after attempting to identify covert traffic with such feature
sets. Figure 2.3 shows the ROC curve for our decision tree-based classifiers when detecting Facet
and DeltaShaper traffic resorting to quantized packet lengths as features (PL).

1. Quantized packet lengths outperform the use of summary statistics. In general,
the AUC obtained by our decision-tree based classifiers is comparable or superior to the AUC
obtained by the same classifiers when making use of summary statistics. Both Random Forest -
PL and XGBoost - PL obtain an AUC=0.99 when identifying Facet traffic. This represents a
maximum improvement of 0.04 over Random Forest – ST and 0.02 over XGBoost – ST. While
Decision Tree - PL attains a maximum AUC=0.91, it is still short of the maximum AUC attained
by Random Forest – ST. This trend is similar in the classification of DeltaShaper traffic, where
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(a) Decision Tree – Facet.
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(b) Random Forest – Facet.
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(c) XGBoost – Facet.
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(d) Decision Tree – DeltaShaper.
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(e) Random Forest – DeltaShaper.
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(f) XGBoost – DeltaShaper.

Figure 2.3: ROC curves for decision tree-based classifiers when classifying Facet and DeltaShaper
traffic using Feature Set 2 (quantized frequency distribution of packet lengths).

the AUC obtained by Decision Tree - PL is also inferior to that of tree ensembles. The detection
of 〈160 × 120, 4 × 4, 6, 1〉 DeltaShaper traffic benefits the most from packet length features,
where XGBoost - PL attains an AUC=0.85, 0.08 larger than that obtained by XGBoost – ST.
Interestingly, the detection of 〈320× 240, 8× 8, 6, 1〉 DeltaShaper traffic is better performed by
XGBoost – ST, albeit by a slight improvement of 0.01 over the AUC of XGBoost - PL.

2.4.4 Feature Importance

The above set of experiments allowed us to implicitly identify which features are more
important to distinguish between two classes of traffic. Figure 2.4a shows the top 20 most
important summary statistics for detecting Facet traffic s=50%, as reported by the XGBoost
algorithm. Figure 2.4b summarizes the 20 most important quantized ranges of packet lengths. The
features annotated with “Out” correspond to those generated by the packet flow directed towards
the client (carrying the covert payload), while the features annotated with “In” correspond to
the packet flow directed towards the Facet server.

Figure 2.4c depicts the top 20 most important summary statistics for detecting DeltaShaper
〈320× 240, 8× 8, 6, 1〉 traffic, as reported by XGBoost. Similarly, Figure 2.4d depicts the most
important quantized ranges of packet lengths for detecting the same kind of traffic. Each feature
is annotated with “Out” or “In”, depending on the particular Skype peer originating covert
traffic. We note that both peers generate covert traffic simultaneously due to DeltaShaper’s
bidirectionality. Below, we discuss the main findings of our analysis.

1. Facet is more vulnerable to analysis based on packet lengths and burst behavior.
Figure 2.4a shows that Facet detection is driven by features related to the packet lengths and
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Figure 2.4: Top 20 most important features when classifying Facet s=50% and DeltaShaper
〈320 × 240, 8 × 8, 6, 1〉 traffic, as calculated by XGBoost. We report the mean score of each
feature across all 10 cross-validation folds.

the burst behavior of the connection, whereas packet timing does not contribute as much. An
interesting observation is that the majority of packet bursts features considered important for
classification are those included in the flow directed towards the Facet server, which carries no
covert data. This fact suggests that Skype flows exhibit some degree of co-dependency and
that both flows provide useful information for distinguishing between legitimate and covert
transmissions. Features included in the top 10, and that directly concern the length of packets,
index summary statistics from the flow carrying covert data. This suggests that the flow carrying
covert data is the prime target for inspection when analyzing packet lengths. Additionally, packet
lengths comprehended between the 10th and 40th percentiles, amounting to packets with a mean
length comprehended between 138 and 213 bytes, have a superior discriminating power among
other packet sizes. XGBoost ranks 123 of the 166 features with a non-zero importance score.

2. DeltaShaper is more vulnerable to analysis based packet lengths. Figure 2.4c
shows that 10 of the most important features for detecting DeltaShaper regard descriptive
statistics of packet lengths. In particular, 7 out of the top 10 most important features for
identifying DeltaShaper traffic are related to the length of transmitted packets. Contrary to
Facet, these features include a mixture of traffic originating in different peers, which is expected
according to the bidirectionality of the covert channel. We find the most influential packet
lengths to be within the range of the 40th and 80th percentiles, amounting to packets with a
mean length comprehended between 1026-1180 bytes. XGBoost ranks 132 of the 166 features
with an importance score larger than zero.

3. Facet covert channels can be spotted by looking for packets with a length com-
prehended between 115-195 bytes. Figure 2.4b not only shows that the most important
bin corresponds to that by the packets which length is close to 150, but also that the top 10
features are dominated by packets which lengths are in the range of 115 to 195 bytes. This result
concurs with our previous observation, where the most important percentiles of packet lengths
focused packets with a mean length between 137 and 200 bytes. This observation is also true
when detecting Facet s={12.5%,25%} traffic. This finding suggests that the major factor leading
to the distinguishing of Facet traffic concerns the packets carrying audio, which are typically
located in the range between 100 and 200 bytes [130]. Additionally, we can observe that some of
the least important features included in the top 20 for identifying Facet s = 50% flows include
packets with a length between 945-985 bytes. This result hints that larger areas dedicated to
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video payload translate into packet-level modifications in a higher range of the feature space.
Additionally, XGBoost ranks only 175 out of 300 features with a non-zero importance score,
suggesting that only approximately half of the quantized packet length bins contribute for the
discrimination of Facet traffic.

4. DeltaShaper covert channels can be spotted by looking for packets with a length
between 85-100 and 1105-1205 bytes. Figure 2.4d shows that the two most important
features for identifying DeltaShaper 〈320× 240, 8× 8, 6, 1〉 traffic correspond to the packets which
size is close to 100 bytes (flowing in both directions). The top 20 features are dominated by packet
length bins in the range from 85-100 and 1105-1205 bytes, suggesting that DeltaShaper data
modulation markedly affects two distinct regions of the feature space. The region including larger
packets roughly overlaps the mean length of the packets included in the most important percentiles
of our analysis of summary statistics. Considering that DeltaShaper’s covert data embedding
procedure targets the video layer of Skype calls, this finding suggests that such modulation
affects larger packets of the connection. When classifying DeltaShaper 〈320× 240, 8× 8, 6, 1〉
traffic, XGBoost ranks 253 out of 600 features with a non-zero importance score.

The most important features for detecting DeltaShaper 〈160× 120, 4× 4, 6, 1〉 traffic largely
overlap the two feature set regions already reported. However, we verify that the region including
larger packet lengths was significantly expanded, including bins representing packets with a size
within the range of 885-1200 bytes.

2.4.5 Alternative Dataset Evaluation

We have constructed and handled our dataset by following the same methodology adopted by
previous works under study. However, this methodology may raise a few concerns. In particular,
the covert streams (positive class) have been produced using the available legitimate videos
(negative class), which may introduce some form of correlation among classes. Furthermore, this
methodology generates a 1:1 ratio of positive to negative classes, which may be unrealistic if
covert streams are a minority among the traffic found in the wild. Thus, one may wonder how
accurate is our classifier if: i) the positive class is no longer correlated with the negative class
during testing; ii) the positive-to-negative sample ratio is low during testing. To validate the
effectiveness of our approach, we performed two additional experiments.

First, we performed an experiment which removed the correlations between the positive and
negative classes. We split our legitimate traffic dataset in half, using only one half as legitimate
samples. Then, for creating our covert video dataset, we selected those covert videos which
embed modulated data in the legitimate videos out of our reduced legitimate traffic dataset. We
then used XGBoost to build a model through 10-fold cross-validation. To prevent the fitting of
results to a particular choice of the initial legitimate samples, we repeated the process 10 times
while randomly choosing such samples.

Second, we performed an experiment where we keep the positive-to-negative sample ratio low
during testing. We split our data in training / testing sets in a 70 / 30 proportion, and where we
kept the training set ratio as 1:1, and keep the positive to negative ratio of the testing set to
1:100. To prevent the fitting of results to a particular split of the data, we randomly choose each
set 10 times.

The results of our additional experiments suggest that possible correlations among training
and testing data, as well as sample ratios, do not limit the accuracy of our approach. For our
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System Feature Set Memory (kB) Storage (kB)

Facet Summary Statistics (ST) 1.3 1.8
Packet Lengths (PL) 2.4 1.0

DeltaShaper Summary Statistics (ST) 1.3 1.9
Packet Lengths (PL) 4.8 2.0

Table 2.2: Memory and storage requirements for a single Facet record using different feature sets.
We report storage requirements for holding data in raw ASCII text.

first experiment, XGBoost obtained an AUC=0.94 for DeltaShaper 〈320× 240, 8× 8, 6, 1〉 traffic
(only 0.01 less than the results reported in Section 2.4.3), and an AUC=0.99 for traffic pertaining
to Facet s=50% configuration. As for the second experiment, XGBoost was able to correctly
identify 90% of Facet s=50% traffic with an FPR of only 2%, while it was able to identify 90%
of DeltaShaper 〈320× 240, 8× 8, 6, 1〉 traffic with an FPR of 18% (only 4% larger).

2.4.6 Practical Considerations

This section details several practical considerations which may be useful to an adversary
considering the use of decision tree classifiers for the detection of covert channels. The following
results reflect processing time in a VM configuration akin to that described in Section 2.2.4.

Feature extraction. The extraction of quantized packet length bins from a 60 second Facet
network trace amounts to an average of 0.33s per sample. Generating summary statistics
describing the same type of traffic flow amounts to an average of 0.44s per sample. This result
indicates that an adversary can quickly generate feature vectors for conducting subsequent
classification.

Memory and storage requirements. Table 2.2 depicts the memory and storage requirements
for holding a single Facet or DeltaShaper sample. In our Python implementation, a NumPy [199]
array storing the quantized packet lengths describing a Facet sample (300 attributes) occupies
2.4kB of memory per sample. In comparison, an array containing the bi-grams required by the χ2

classifier occupy a total of 45kB per sample. The numbers in Table 2.2 suggest that an adversary
can efficiently store and process large datasets. As an example, storing 1 million Facet quantized
packet lengths feature vectors in a raw ASCII text file would only occupy approximately 1GB of
disk space. Storing summary statistics in raw ASCII text would occupy nearly twofold the space
due to the characters required to represent floating-point precision.

Model building and classification speed. Table 2.3 depicts the average training time of
our classifiers, as well as the average time to output a prediction. Building a Decision Tree -
PL for identifying Facet traffic takes an average of 0.27s. For an ensemble composed of 100
trees, Random Forest - PL and XGBoost – PL models are built in 1.45s and 0.41s, respectively.
Moreover, the average classification time for an individual sample is 180µs for XGBoost – PL.
XGBoost is not only more accurate but also trains faster and exhibits a faster classification speed
than Random Forest. This relation is also present when classifying DeltaShaper traffic. These
results stress the fact that an adversary would benefit from using XGBoost to detect multimedia
protocol tunneling covert channels.

Generalization ability of the classifiers. A classifier with good generalization ability is able
to perform correct predictions for previously unseen data. Albeit the AUC obtained by our
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System Classifier Model Building (s) Prediction (µs)

Facet Decision Tree 0.27 40
Random Forest 1.45 15000
XGBoost 0.41 180

DeltaShaper Decision Tree 0.13 90
Random Forest 0.86 16000
XGBoost 0.38 350

Table 2.3: Model building time and time for individual predictions for Facet s=50% and
DeltaShaper 〈320× 240, 8× 8, 6, 1〉 traffic, using quantized packet lengths (PL). Model building
time is the average of 10 folds.

System 1s 5s 10s 30s 60s

Facet 0.81 0.92 0.96 0.99 0.99

DeltaShaper 0.75 0.88 0.93 0.95 0.95

Table 2.4: AUC of XGBoost – PL when classifying Facet s=50% and DeltaShaper 〈320× 240, 8×
8, 6, 1〉 traffic for varying traffic collection time windows.

decision tree-based classifiers suggests that these can generalize well, we further assess their
classification performance when training data is severely limited. We split our data in two 10 / 90
training and testing sets, and report the mean AUC obtained by the classifier after repeating this
process 10 times while randomly choosing the samples making part of each set. In this setting,
when classifying Facet s=50%, XGBoost - PL attains an AUC=0.98, only 0.01 short of that
obtained after 10x cross-validation. For DeltaShaper 〈160× 120, 4× 4, 6, 1〉 traffic, XGBoost - PL
attains an AUC 0.1 smaller than their 10x cross-validation counterpart. These results suggest
that an adversary can build accurate decision tree-based classifiers for detecting covert traffic
while resorting to a small sample of data.

Impact of network traces collection time. Table 2.4 depicts the AUC obtained by XGBoost
– PL when detecting different types of covert traffic for varying time-spans of traffic flows
collection. Results show that capturing traffic by 30s is enough for attaining the same classification
performance achieved in our initial experiments, which admitted 60s traffic captures. The numbers
in Table 2.4 also show that classification performance decreases monotonically for traffic collections
fewer than 30s, suggesting that the inspection of at least 30s of video traffic provides the adversary
with sufficient data for identifying covert traffic flows with low false positives.

2.5 Beyond Supervised Anomaly Detection

While decision tree-based classifiers show promising results for the detection of multimedia
protocol tunneling covert channels, they require the adversary to obtain a labeled dataset,
including both legitimate and covert traffic. This usually requires the adversary to have a
unlimited access to a particular multimedia protocol tunneling tool with which it may generate
covert traffic samples. However, even if an adversary, for instance a censor, would have an
expedite access to these tools [61], it is interesting to understand if detection is possible without
this knowledge. Note that covert channels may also be used by organized criminals that can
succeed in delaying the dissemination of such tools. Secondly, albeit the adversary is assumed to
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possess a given tool, it is expected to spend a non-negligible time in synthesizing covert data
samples for building a model. Overcoming such challenges opens a timeframe where the covert
traffic generated by a given system would remain undetected.

This section explores alternative approaches at covert traffic detection in the absence of a
fully labeled dataset.

2.5.1 Selected Anomaly Detection Methods

This section starts by describing several anomaly detection techniques which could be of
interest for an adversary aiming at detecting covert traffic when it is deprived of labeled anomalies.
First, we describe OCSVMs and autoencoders, two well-known approaches for anomaly detection,
which are based on representational models of legitimate data and thus disregard the need
of labeled anomaly data [207]. Then, we explore Isolation Forest, a competitive approach at
unsupervised anomaly detection which does not require labeled data [21, 31, 89].

One-class SVMs [173] define a decision boundary between normal samples and anomalies
by fitting a function around normal samples during training. OCSVMs attempt to find the
maximal margin hyperplane which separates the normal data from the origin, which is treated
as the single member of a second class. If data cannot be easily separated by a linear function,
OCSVMs project the original feature space into a new feature space through the use of kernel
functions, introducing non-linearity in the model. New data samples falling outside the decision
boundary are considered anomalies.

Autoencoders [116] are a type of artificial neural networks which can approximate the
identity function through a compressed representation of its inputs, forcing the algorithm to
learn underlying structures in data. The ability to reconstruct inputs allows us to have a
generative model of the training data. An autoencoder can be repurposed for anomaly detection
by comparing the reconstruction error of training inputs with normal and anomalous data, where
the latter is assumed to be larger.

Isolation Forest [109] performs outlier detection by isolating anomalous samples. To
isolate a sample, the algorithm starts by selecting a random feature and selects a split between its
minimum and maximum values. This process continues recursively until the considered sample is
isolated. Recursive partitioning is represented by a tree, where the number of partitions required
to isolate a sample corresponds to the length of the path traversed from the root node to a leaf.
The Isolation Forest is built by combining isolation trees split on different attributes. Anomalies
are expected to exhibit a smaller average path length than that of normal samples.

Hyperparameters. The classification performance of the above algorithms depends upon the
choice of hyperparameters, i.e., parameters whose value must be set prior to the execution of
the algorithm. The optimality of such parameters is intrinsically dependent on the dataset and
tipically requires cross-validation with labeled anomalous data [231]. However, we are interested
in assessing the average classification performance that an adversary would be able to achieve
using such algorithms – albeit the adversary would be unable to find the optimal hyperparameter
configuration for an algorithm, sub-optimal parameterizations may still provide the adversary
with accurate traffic classifiers. To this end, we conduct a search over a space of parameters for
the above algorithms and collect the maximum and average AUC obtained.

For OCSVM, we perform a grid search on the space of ν and γ. We also build a shallow
autoencoder containing one hidden layer between the input and its compressed representation,
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Multimedia Protocol Tunneling System
OCSVM Autoencoder Isolation Forest

Max AUC Avg AUC Max AUC Avg AUC Max AUC Avg AUC

Facet (s=50%) 0.631 0.576 0.702 0.638 0.561 0.551

Facet (s=25%) 0.629 0.580 0.700 0.650 0.528 0.519

Facet (s=12.5%) 0.639 0.584 0.706 0.647 0.536 0.520

DeltaShaper 〈320× 240, 8× 8, 6, 1〉 0.567 0.531 0.662 0.574 0.580 0.557

DeltaShaper 〈160× 120, 4× 4, 6, 1〉 0.548 0.518 0.576 0.544 0.553 0.532

Table 2.5: Maximum and average AUC of OCSVM, Autoencoder and Isolation Forest when clas-
sifying Facet and DeltaShaper traffic. Search (min, max, step): OCSVM (ν(0.1, 1, +0.1), γ(0.01,
1, +0.01)); Autoencoder (hidden layers(4,512,*2), compressed representation(4,512,*2), learn-
ing rate[0.001,0.01], epochs[1000]); Isolation Forest (n trees(50,200,*2), n samples(64,512,*2))

and between the compressed representation and the output layer. We conduct a grid search over
the number of units populating each of these layers. As for Isolation Forest, we conduct a search
over the number of trees composing the ensemble, as well as the number of samples for training
each individual tree.

Experimental settings. For OCSVM and autoencoder, we use 90% of all labeled legitimate
samples to learn the models. The remaining 10% legitimate samples are combined with 10% of a
given covert traffic configuration’s samples for creating a balanced testing set. For evaluating the
model’s performance, we compare each label output by the model with the ground truth. To
prevent the fitting of results to a particular split of the data, we repeat this process 10 times while
randomly choosing the samples making part of the training / testing sets. For Isolation Forest,
we create balanced training and testing sets in a 90 / 10 proportion. The model’s performance is
evaluated following the same above procedure.

Our results reflect the use of the feature set based on the frequency distribution of packet
lengths, with K = 5, as it was the one found to provide the highest AUC.

2.5.2 Main Findings

Table 2.5 depicts the maximum and average AUC obtained when identifying Facet and
DeltaShaper traffic when using OCSVM, our autoencoder, and Isolation Forest. Next, we present
our main findings.

1. OCSVMs possess a limited capability for correctly identifying covert traffic. This
finding is supported by the fact that OCSVM attains an average AUC between 0.576 and 0.584
when detecting Facet traffic, and between 0.518 and 0.531 when detecting DeltaShaper traffic.
Moreover, OCSVM achieves a maximum AUC=0.639 when classifying Facet s=12.5% traffic.
This suggests that OCSVM achieves a poor classification performance, even after a search for
optimal hyperparameters. Thus, from an adversary’s point of view, a semi-supervised model
based on OCSVMs shows little promise for performing the triage of covert traffic.

2. Autoencoders show promising results for the identification of covert traffic. The
numbers in Table 2.5 show that our autoencoder achieves, in average, a higher or comparable
AUC than the maximum AUC obtained by OCSVM when classifying Facet or DeltaShaper
traffic. The choice of parameters for our autoencoder benefits its maximum AUC. For instance,
a better parameterization of the autoencoder translates into a maximum AUC=0.662 when
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classifying DeltaShaper traffic, approximately 0.1 higher than the average reported value for the
same configuration. While an adversary making use of a classifier which exhibits an AUC=0.662
would sustain a large amount of false positives when attempting to detect covert traffic, we note
that the obtained results have a wide margin of improvement. In particular, we use a rather
shallow autoencoder structure for investigating the classification performance of this algorithm.
For instance, it is possible that autoencoders with more sophisticated structures [127] may drive
further improvements in classification accuracy.

3. An adversary has no advantage in using Isolation Forest for detecting covert
traffic. The results in Table 2.5 show that the prediction output of Isolation Forest is close to
random guessing when attempting to identify covert traffic. For Facet traffic, Isolation Forest
obtains an average AUC between 0.519 and 0.551 across all steganography factors. When
classifying DeltaShaper traffic, the average AUC sits on 0.532 and 0.557 for different encoding
configurations. A closer observation of the confusion matrix reveals that Isolation Forest labels
few traffic samples as anomalies. Informally, this observation suggests that anomalies are able to
conceal their presence in the dataset in such a way that the number of partitions required to
isolate them is similar to the number of partitions needed to isolate legitimate samples.

2.6 Discussion

We now discuss several relevant findings from our study.

Multimedia protocol tunneling. The outcomes of the experimental study conducted in
Section 2.4 unveil that the unobservability claims of existing multimedia protocol tunneling
systems were flawed. However, it is worth noticing that the vulnerability of such systems to
supervised ML techniques, particularly decision tree-based algorithms, does not imply that
multimedia protocol tunneling, as an approach, is fundamentally inviable. Our findings suggest
that detecting covert channels built with conservative data modulation schemes (e.g., DeltaShaper
〈160 × 120, 4 × 4, 6, 1〉) while sustaining low FPR still represents a challenge for adversaries.
Additionally, we provide details about the network behavior of currently deployed multimedia
protocol tunneling tools which may be used for the construction of more robust implementations.

Legitimate traffic dataset. Adversaries face the non-trivial challenge of building a dataset
which faithfully represents legitimate traffic. A näıve solution for building such a dataset would
be for an adversary to take advantage of its privileged position in the network and collect all
data originated by a given multimedia protocol. However, the very existence of multimedia
protocol tunneling tools makes it hard for an adversary to know, before-hand, which data samples
correspond either to legitimate or covert traffic. It is possible that covert data samples pollute
the legitimate traffic model and bias the decisions of a classifier trained in such data [127]. A
different alternative is the approach followed in the literature (and in our work), where datasets
are synthesized by transmitting the media expected to be sent in such channels. However, such
an approximation may fail to capture the underlying distribution of data in the wild.

2.7 Related Work

Freewave [82] was the first system designed to embed covert data in multimedia protocols
through the modulation of audio signals sent through VoIP streams. However, a simple statistical
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analysis of traffic patterns conducted by Geddes et al. [66] showed that FreeWave could be trivially
detected by an adversary. Recent multimedia protocol tunneling systems such as Facet [105],
CovertCast [121], and DeltaShaper [10] introduced new techniques for modulating data while
striving to preserve the unobservability of the generated covert channels.

As noted earlier in the text, previous unobservability assessments performed on state-of-
the-art multimedia protocol tunneling systems which rely on traffic classification make use
of similarity-based classifiers. To the best of our knowledge, there is a limited body of work
employing other machine learning techniques for the detection of covert channels in the Internet.
Wang et al. [200] have resorted to decision tree-based classifiers to identify traffic flowing through
Tor bridges. Their results have shown that this approach was promising for the identification of
traffic obfuscated through domain fronting [60]. In our work, we perform the first systematic
study of the unobservability of state-of-the-art multimedia protocol tunneling systems and find
that such techniques are also effective for the detection of these covert channels.

Related to the problem of covert channel detection is the problem of creating fingerprints
for encrypted traffic. Particularly, the fingerprinting of websites accessed through Tor [47] is an
important research topic [2, 74, 151, 165, 202]. Multiple works dwell on creating fingerprints for
encrypted traffic using different combinations of features and classifiers, for instance, Schuster et
al. [175] have designed an attack which enables a passive observer to fingerprint YouTube video
streams. However, fingerprinting is fundamentally different from covert channel detection: we
do not aim to unequivocally fingerprint a given media according to its traffic pattern, but to
distinguish two broader classes of media which may or may not carry covert data. It is unclear
how fingerprinting techniques can be adapted to our purpose.

In this paper we have focused on covert channels based on multimedia protocol tunneling [10,
82, 105, 121], a popular approach at protocol tunneling. Other tunneling approaches have been
attempted, including SWEET [233], CloudTransport [29], Castle [71], and meek [60]. It is worth
mentioning that alternative approaches to build covert channels have been attempted in the
past, such as protocol obfuscation [211]. However, obfuscation based on randomizing traffic
fails in the presence of protocol whitelisting and is vulnerable to entropy analysis [200]. With
protocol imitation, covert traffic is manipulated to mimic the behavior of protocols allowed
across a censor’s border [51, 52, 129]. Alas, the faithful imitation of all behaviors of a protocol
behavior is a complex undertaking which lays protocol imitation systems prone to multiple
network attacks [66, 80].

Finally, we would like to stress that although censorship circumvention is one of the main
(and most noble) uses of covert channels, this type of channels can serve multiple purposes. Our
work concentrates on covert channel detection and not on censorship circumvention per se. In fact,
there are techniques to evade censorship, such as refraction networking [23, 53, 81, 90, 212, 213],
which incorporates censorship resistance mechanisms in the network, rather than at end-hosts,
that do not depend exclusively on the use of covert channels.

2.8 Conclusions

In this paper, we performed an extensive analysis over the unobservability evaluation of
multimedia protocol tunneling systems. We proposed a novel method for assessing the unobserv-
ability of these systems, based on decision trees, which largely defies previous unobservability
claims. Our work further explored the application of semi-supervised and unsupervised anomaly
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detection techniques in the same context. Our results indicate that an adversary is required to
possess labeled data for performing an effective detection of covert channels.
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Abstract

An emerging trend in network security consists of the adoption of programmable switches
for performing various security tasks in large-scale, high-speed networks. However, since existing
solutions are tailored to specific tasks, they cannot accommodate a growing variety of ML-based
security applications, i.e., security-focused tasks that perform targeted flow classification based on
packet size or inter-packet frequency distributions with the help of supervised machine learning
algorithms. We present FlowLens, a system that leverages programmable switches to efficiently
support multi-purpose ML-based security applications. FlowLens collects features of packet
distributions at line speed and classifies flows directly on the switches, enabling network operators
to re-purpose this measurement primitive at run-time to serve a different flow classification task.
To cope with the resource constraints of programmable switches, FlowLens computes for each flow
a memory-efficient representation of relevant features named “flow marker”. Despite its small
size, it contains enough information to perform accurate flow classification. Since flow markers
are highly customizable and application-dependent, FlowLens can automatically parameterize the
flow marker generation guided by a multi-objective optimization process that can balance their
size and accuracy. We evaluated our system in three usage scenarios: covert channel detection,
website fingerprinting, and botnet chatter detection. We find that very small markers enable
FlowLens to achieve a 150 fold increase in monitoring capacity for covert channel detection with
an accuracy drop of only 3% when compared to collecting full packet distributions.
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3.1 Introduction

Recently, several systems have been proposed for tackling security concerns in modern
high-speed networks [229, 87, 123, 215]. By leveraging the capabilities offered by programmable
switches, these systems can process packets at line speed directly on the switch hardware,
bringing relevant benefits for network security, such as decreased reaction times to attacks,
avoidance of network bottlenecks, and decreased costs associated to equivalent centralized
server-based infrastructures. So far, the proposed systems target very specific security-driven
tasks. These tasks include the ability to mitigate DDoS attacks [229], enforce context-aware
security policies [87], obfuscate network topologies [123], filter spoofed traffic [102], or detect
data exfiltration through timing covert channels [215].

However, besides the specific tasks tackled by the previous work, there is currently a lack
of support for a new range of security applications that resort to machine learning (ML) to
classify flows in real time [232, 70]. This brand of applications has become more relevant as
a result of a global trend towards encrypting all Internet traffic [43, 144], which has rendered
deep-packet inspection (DPI) increasingly ineffective. As an alternative to DPI, the use of
ML-based techniques has proved useful to classify flows with high accuracy for a wide range of
scenarios, such as multimedia covert channel detection [12], website fingerprinting [107], botnet
traffic identification [134], malware tracking [3], IoT device behavioral analysis [148, 191], or
detection of DRM-protected streaming [69, 176, 162].

Most of these ML-based applications rely on supervised machine learning algorithms [12,
107, 176, 134] that need to collect flow features such as packet length and/or inter-packet time
frequency distributions. However, both the set of features and ML algorithms used are highly
application-dependent. As such, a general service to enable the implementation of ML-based
security applications must be versatile enough to accommodate application-specific requirements
without impairing its ability to produce accurate classification results. In addition, it must
efficiently use the limited switch resources to maximize the number of flows that can be probed,
scale to large networks comprising numerous switches, introduce minimal switch downtime caused
by upgrades of switch programs, and require low maintenance effort.

We present FlowLens, a system that enables efficient flow classification for multi-purpose
ML-based security applications. At the heart of our system lies a set of software components that
run on the network switches’ data plane and control plane. These components are responsible
for collecting compact, but meaningful, features of the flows going past the data plane, and for
running the ML-based algorithms responsible for classifying the flows on the control plane in real
time. By performing both these tasks on the switches in a fully decentralized fashion, FlowLens
does not depend on a centralized service that could introduce bottlenecks for operations in the
critical path. To deliver the best performance, these software components must be fine-tuned for
each specific ML-based security application. FlowLens includes the mechanisms to generate (and
upload to the switches) application-dependent configurations that strike a good balance between
classification accuracy and switch resource utilization efficiency. Because these configurations
can be automatically generated, the maintenance effort of our system is greatly reduced.

A key challenge in fully offloading ML-based flow analysis onto the switches is tied to the
hardware and programming restrictions of modern programmable switches. Ideally, we would
like to collect the full packet length and inter-packet arrival time frequency distributions for
every flow traveling through the switches. This approach would allow us to collect full per-flow
information (on the data plane) which different applications could then process in order to
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Figure 3.1: Histograms of packet size distribution for a single flow. A flow consists of a stream
of packets identified by the same 5-tuple of TCP/IP header fields, at increasing degrees of
compactness: a) the raw packet size distribution; b) the quantized representation, where packet
sizes are aggregated into bins of size 24 bytes; c) the flow marker generated through truncation
of the quantized representation which comprises the most relevant 10 bins for the detection of
covert channels mounted through multimedia protocol tunneling.

extract relevant features and running specific ML classifiers (on the control plane). However,
given that the amount of stateful switch memory is very limited, an information-lossless scheme
for collecting flow data would considerably reduce the coverage of our system, i.e., the number
of simultaneous flows that could be probed. In alternative, one could employ a lossfull scheme
where the amount of dedicated memory allocated per flow is reduced thereby increasing flow
coverage. Such a scheme, however, must be such that (1) the collected information does not
deteriorate the accuracy of flow classification, (2) it can be implemented with a small set of
basic hardware instructions and within few compute cycles as imposed by the switch, and (3) it
precludes the need to frequently reprogram the switch as it would cause switch downtime in the
order of seconds.

To address this challenge, we make two core technical contributions. First, we devised a new
compact representation of packet length and inter-time packet arrival distributions which is small
yet provides enough information to perform accurate application-specific traffic classification.
We name such representations flow markers. We then developed a primitive named Flow Marker
Accumulator (FMA) which generates flow markers while depending on simple and efficient
operations that can be implemented on modern programmable switches. The FMA consists of a
parameterizable data structure deployed on the data plane pipeline such that, for each incoming
packet, it performs two simple operations, namely quantization and truncation, which adjust the
granularity of the flow’s frequency distribution intervals in bins (quantization), and select the
bins considered to be the most relevant features for flow classification (truncation). As shown in
Figure 3.1, the set of resulting bins for each flow constitutes the respective flow marker, which
will then be processed by the classification algorithm.

Second, we developed an automatic profiler to find adequate quantization and truncation
parameters of the FMA for a given application. Because there is a large space of configurations
that present different trade-offs between switch memory savings and flow classification accuracy,
manually setting up these parameters for each application would both be cumbersome and render
sub-optimal results. Our profiler relies on well-known Bayesian optimization techniques [62] for
finding suitable configurations by iteratively testing only a small subset of the possible FMA
configurations. It can be tuned to find parameterizations according to different criteria, including
(a) the maximization of a user-defined trade-off between space-efficiency and accuracy, (b) the
smallest marker able to achieve a classification accuracy above a given threshold, or (c) the
marker that maximizes the accuracy given some space constraint.
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We have implemented FlowLens on a Barefoot/Intel Tofino programmable switch and evalu-
ated our system in three use case applications: covert channel detection, website fingerprinting,
and botnet detection. When comparing the classification scores achieved by FlowLens against
those computed over raw packet length distributions, FlowLens offers similar accuracy scores
while using significantly less memory, e.g., covert channels can be detected with at most 3%
loss in accuracy using only a 20-byte memory footprint per flow. When compared with related
methods for capturing compressed packet frequency distributions [45, 137], FlowLens consistently
outperforms them in terms of the classification accuracy under similar memory restrictions.
FlowLens also achieves considerable bandwidth savings when compared to network telemetry
approaches [183] that rely on a server infrastructure responsible for flow analysis.

3.2 Motivation and Design Goals

This section motivates our work by characterizing a set of emerging ML-based security
applications and discussing the technical constraints of modern programmable switches. It then
provides an overview of FlowLens’s design goals.

3.2.1 ML-based Network Security Applications

In recent years, generalized interest has grown in detecting atypical network flows using ML
classification algorithms [144]. To deliver accurate flow classification results, these algorithms
depend on a range of features that require the collection of the packet length/inter-packet
timing frequency distributions. Below, we present three examples of applications in the realm of
network security that rely on the analysis of such distributions for performing traffic classification.
These examples are chosen to showcase the versatility of FlowLens in accommodating different
classification algorithms. We will further use them to validate the classifiers’ accuracy when
deployed on FlowLens.

Covert channel detection: Capturing packet distributions makes it possible to detect covert
channels, thereby providing a valuable asset for cyberforensic investigations. To achieve stealthy
data transmissions, advanced covert channel tools tend to obfuscate covert flows such that
their high-level features (e.g. packet lengths) resemble those of regular flows [210, 10, 105, 121].
However, recent work [12] has shown that these tools can be defeated or severely weakened due
to subtle differences in packet distributions which can be detected by ML techniques.

Website fingerprinting: Privacy-enhancing technologies like OpenSSL or OpenVPN allow
users to hide the destination address behind a proxy and the content of website visits from
external observers through the use of encryption. However, it may still be possible to identify
which sites they access by collecting the flows’ packet length distributions [107, 77] and feeding
them to ML classification algorithms for website fingerprinting purposes. This technique may
help authorities respond against individuals engaged in illegal activities.

Botnet chatter detection: Botnets [93] can jeopardize the security of multiple organizations,
emerging as a highly profitable activity for malicious actors [156]. Unfortunately, due to their
decentralized P2P architectures and stealthy communication patterns, botnets have become
incredibly resistant to takedown attempts. Nevertheless, state-of-the-art approaches to analyzing
botnet traffic are able to identify the presence of bots through the combined analysis of packet
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lengths and inter-packet timing distributions of network hosts [122, 134]. Being able to employ
these techniques can help network administrators prevent and mitigate botnet threats to an
organization’s network.

3.2.2 Design Goals

In this work, our goal is to use programmable switches to collect packet frequency distributions
and provide a multi-purpose flow classification platform for implementing a variety of ML-based
security applications. By using our solution, a network operator will be able to scan local traffic
in near real-time and look for specific flows that match a set of application-specific traffic patterns,
such as those presented in Section 3.2.1. In summary, we are driven by the following design goals:

Scalability: We aim at monitoring flows in very large and fast networks (at the Tbps scale),
comprised of many switches, while reducing the costs of the network telemetry infrastructure.
To this end, we aim to avoid relying either on edge-based solutions, which capture the traffic
through middleboxes [153], or solutions that collect packet features on the switches but offload
them for further processing and classification on dedicated servers [182, 183]. Reducing the
bandwidth consumed with the offloading of telemetry data is also a crucial point as the amount
of collected data grows with the increasingly high link speeds and becomes substantial for large
scale networks [224].

Accuracy: We aim at collecting a compact representation of packet distributions while retaining
enough information about flows to enable high accuracy on classification tasks. Achieving such
a representation requires the design of a flow compression scheme that is simple enough to be
efficiently implemented by the primitives available in current P4-programmable switches, but
which is able to retain meaningful features for classification purposes. Additionally, computing
compact representations of packet distributions should not consume the majority of resources in
the switch, enabling the system to co-exist with other typical applications, e.g. forwarding, or to
be used in tandem with complementary network telemetry solutions.

Availability: Re-purposing our system to different traffic analysis tasks should not involve the
deployment of a new P4 program. This is because deploying a new program involves a scheduled
downtime during which the switch will be unable to perform its basic functions.

3.2.3 Constraints of Modern Programmable Switches

To efficiently collect and process packet distributions, we explore the programming capabilities
of modern switches, such as Barefoot Tofino [6] and Broadcom Tomahawk II [28]. These switches
include two types of processors which operate in two different planes of the network architecture.
On the data plane, forwarding ASICs are able to quickly forward and perform simple computations
on packets at line-rate, thus enabling the analysis of billions of packets at the Tbps scale. On
the control plane, CPUs can be used for general-computing tasks such as controlling the packet
forwarding pipeline, or for exchanging data with the ASIC through DMA.

Switching ASICs can be programmed in a hardware-independent language, such as P4 [25].
Figure 3.2 illustrates the architecture of our targeted switching ASIC: the Protocol Independent
Switch Architecture (PISA) [35]. Packets arrive at the switch ingress interfaces and, after parsing,
are processed by two logical pipelines of match+action units (MAUs) arranged in stages. Packet
headers along with packet metadata may then match (M) a given table, triggering further
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Figure 3.2: Protocol Independent Switch Architecture (PISA).

processing by the action (A) unit associated with the matching table’s entry. These actions may
modify packet header fields and change persistent state (e.g., increment a counter in stateful
memory). Tables and other objects defined in a P4 program are instantiated inside MAUs and
populated by the control plane at run-time.

Memory constraints: Several constraints in the memory architecture of switching ASICs may
restrict the layout of the data structures that can be used by P4 programs. These ASICs are
equipped with two high-speed types of memory: (i) TCAM, which is a content addressable
memory suited for fast table lookups, such as for longest-prefix matching in routing tables [227],
and (ii) SRAM which enables P4 programs to persist state across packets (e.g., using register
arrays), and to hold exact-match tables. Unfortunately, switching ASICs contain a small amount
of stateful memory (in the order of 100MB SRAM [125]), and only a fraction of the total available
SRAM can be used to allocate register arrays. Moreover, accessing all available registers can be
a complex task since the registers in one stage cannot be accessed at different stages [42]; this
is because the SRAM is uniformly distributed amongst the different stages of the processing
pipeline (see Figure 3.2).

Processing constraints: The P4 programs installed on the switch must use very simple
instructions to process packets. To guarantee line-rate processing, packets must spend a fixed
amount of time in each pipeline stage (a few ns [179, 177]) which restricts the number and type
of operations allowed within each stage. Multiplications, divisions or floating-point operations,
and variable-length loops are not supported. Moreover, each table’s action can only perform
a restricted set operations, like additions, bit shifts, and memory accesses that can quickly be
performed while the packet is passing through an MAU without stalling the whole pipeline [180].

3.3 System Overview

This section describes FlowLens, a system for efficient flow classification that achieves the
aforementioned goals. Figure 3.3 shows the architecture of FlowLens, illustrating how it can be
used to monitor traffic on a single switch of a high-speed network. In general, it can be deployed
across multiple other switches in the network at the system operator’s discretion. FlowLens
consists of the following components: a P4 program and two software components (collector and
classifier) running on the switch, a standalone profiler server, and a software client that provides
an interface to the system operator.

The components running on the switch are responsible for analyzing traffic and classifying
flows as per ML-based security application. The P4 program runs on the data plane, and
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Figure 3.3: FlowLens architecture and components.

implements a tailor-made data structure named Flow Marker Accumulator (FMA). The FMA
is used to collect concise encodings of the packet length or inter-packet timing distributions of
flows named flow markers. Essentially, the FMA implements the necessary knobs for fine-tuning
the memory savings and the classification accuracy of the system. It can accommodate the
restrictions of the switch and generate flow markers at different compression levels by adjusting
a set of configuration parameters that control (i) the size of the memory footprint allocated
per-flow marker, and (ii) the loss of information in the flow markers due to compression.

Running on the local CPU of the switch, two additional FlowLens software components
implement several control plane functions. The collector is responsible for loading the P4
program, configuring the FMA data structures in the forwarding pipeline, initiating the flow
collection process, and collecting the resulting flow markers. The classifier runs the ML algorithms
responsible for classifying flows based on the collected markers. FlowLens can generally employ any
ML algorithm that can reason over flow markers, and whose memory and compute requirements
can be accommodated on the switch control plane. After the classification step, results can be
downloaded by the client and displayed to the system operator.

Since the classifier and the FMA configuration parameters depend on the application domain,
FlowLens uses a standalone profiler to pre-configure the classifier models and FMA parameters
(i.e., the application profile) onto the switch. The system workflow involves two phases: profiling
and flow classification.

1. Profiling: FlowLens needs to be pre-configured by the system operator for specific appli-
cations. This operation involves the profiler server, which can automatically create profiles by
using an application-specific classifier and a training set containing labeled flow samples provided
by the system operator. To this end, the profiler runs an optimization process that explores the
classification performance of different FMA quantization and truncation values, generating a
configuration according to a given user-defined criterion (see Section 3.5).

2. Flow classification: As soon as the P4 program has been loaded into the switch (which
happens only once when bootstrapping FlowLens), the collector takes the profile computed in
phase 1 for a specific application, e.g., website fingerprinting, and configures the FMA accordingly.
Afterward, the switch can start to process packets and compute flow markers. The collector then
fetches the resulting flow markers from the data plane and the classifier processes them based on
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the loaded model. The classifier results can be retrieved by the system operator, who can then
take targeted actions about particular flows such as dropping flagged flows or scheduling further
logging operations. The system operator can later reconfigure the system for other ML-based
application profiles without the need to re-deploy the P4 program.

In the following sections, we present the relevant design details of FlowLens, namely the
FMA data structure (Section 3.4) and the automatic profiling scheme aimed at choosing markers
with good accuracy/memory saving trade-offs (Section 3.5).

3.4 Flow Marker Accumulator

The Flow Marker Accumulator (FMA) is the data structure responsible for computing flow
markers on the switch data plane. Next, we present its internal operations by describing the FMA
design for capturing markers of packet length distributions, and presenting the main changes
when computing inter-packet arrival timing distributions. Then, we describe how the FMA is
used by the control plane, and discuss alternative FMA setups.

3.4.1 Collecting Packet Length Distributions

To generate flow markers, the FMA provides two basic operators that can be implemented
efficiently and be used to obtain a space-efficient encoding of a packet length distribution:
quantization and truncation. Quantization consists of counting packet lengths in coarse bins
that represent ranges of contiguous packet lengths. Truncation further trims the number of bins
that need to be reserved for a certain classification task. These operators allow us to selectively
collect the bin values which, in many cases, correspond to the most relevant features employed
by the ML engine to yield accurate classifications [220, 12].

To perform these operations, the FMA is composed of several data structures shown in
Figure 3.4. They consist of two match+action tables and one register array: the flow table, the
truncation table, and the register grid, respectively. The register grid is a matrix of memory
registers. Each line is used to store a flow marker. The index of each line (flow offset) is used to
address the flow marker. Internally, a flow marker consists of a number of cells in a register (the
grid’s columns). These cells play the role of bins for storing samples of the flow’s packet length
frequency distribution. The flow table maps the monitored flows against the respective flow
markers in the register grid. The truncation table identifies the bin that must be incremented
for every incoming packet.

Next, we describe in detail the procedure for updating the flow marker for a given incoming
packet. Consider the example shown in Figure 3.4, where an input packet arrives in the switch
from source IP 162.2.13.42, source port 41065, with length 1024 bytes. The FMA performs the
following four operations:

1. Lookup: First, the FMA’s flow table matches the incoming packet with the corresponding
flow ID, which is a 5-tuple of header fields 〈IPsrc,Portsrc, IPdst,Portdst,Proto〉 that is used as
lookup key to return its associated flow offset. To be efficiently performed, we leverage the
match+action units of the switch to accommodate specific rules for flow table indexing. Each
rule in the flow table assigns a unique flow offset to each flow ID. For instance, in the running
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Figure 3.4: FMA internals: Flow Table, Truncation Table, and Register Grid.

example, the input packet is matched against the rule 〈162.2.13.42, 41065, 146.3.18.71, 80, 6〉 → 0.
(Section 3.4.3 describes how the flow table is populated.)

2. Quantization: The flow offset determined above locates the packet’s flow marker in the
register grid. Next, the FMA must increment the correct bin in the flow marker which is a
function of the packet length. The first step to determine the right bin involves quantization,
which aggregates, and so counts, a range of contiguous packet lengths into the same bin. To
avoid complex instructions unsupported by the switch hardware (e.g., multiplications), the bin
indexed by a certain packet length PL is computed by bin(QL,PL) = length(PL) >> QL, where
QL denotes the quantization level and 0 ≤ QL < log2(PLmax). For efficient lookup of a packet
length’s bin, FMA uses power-of-two bin sizes; this allows for computing the packet bin by
right-shifting the packet length value by QL number of bits. In the shown example, applying
QL = 4 to the packet length (1024 bytes) yields quantization bin #64.

3. Truncation: Based on the obtained quantization bin, truncation leverages an auxiliary data
structure – the truncation table – which contains match+action rules exclusively for the bins that
should be accounted for in the flow marker. Each rule is keyed by the quantized bin length, i.e.,
bin(QL,PL), and indexes the flow marker’s bin (bin offset) where the packet length frequency
must be recorded. If no such rule exists for a given quantized bin, the packet is not counted. In
this example, the current packet is considered because a rule exists for the packet’s quantized
bin (#64). In contrast, packets whose quantized bin values fall, e.g., within the bin range 52-63,
will not be accounted for. This strategy allows for selectively filtering the most meaningful bins
for flow classification.

4. Increment: Lastly, by combining the flow offset and the bin offset, the register grid can be
indexed and the correct bin incremented. In our example, this entails incrementing bin 2 of the
flow marker pointed to by the flow offset 0. These steps are repeated for every incoming packet.
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3.4.2 Collecting Packet Timing Distributions

Gathering inter-packet timing distributions requires only minor modifications to the FMA
design. This task does not affect the main FMA data structures and operators, but it requires
additional resources in the switch processing pipeline.

To compute the arrival time difference between two consecutive packets of the same flow, the
FMA stores the timestamp of the last packet seen per each flow. That information is available to
the P4 program through device intrinsic metadata. With exception to the first packet of a flow,
FMA computes the difference between the current packet timestamp and the last timestamp
observed for that particular flow. That value can then be processed by the same quantization
and truncation operators described for packet lengths, which produce the corresponding bin to
be updated in the register grid.

3.4.3 Usage of the FMA by the Control Plane

To monitor flows on a switch, the FMA must be coordinated by the control plane’s collector
software. The collector predefines the FMA’s quantization and truncation parameters, and
determines: i) which amongst all flows traversing the switch at a given time will be monitored
by the FMA, and ii) for how long the packets of the monitored flows will be considered in the
respective flow markers. Next, we present the default FMA operational settings and then describe
alternative customization policies that can be enabled by the FlowLens operator.

Default FMA measurement operations: By default, the control plane sets up the FMA to
i) compute flow markers for all the flows on a first-come, first-served (FCFS) basis until they
exhaust the register grid capacity, and ii) measure the flows’ respective packets for a predefined
time interval that we refer to as collection window. The control plane starts by clearing all
registers of the FMA’s register grid, and setting a timer for the duration of the collection window.
Then, for every incoming packet for which a rule does not exist in the FMA’s flow table (i.e., the
packet belongs to a new flow), the control plane automatically installs one of two possible rules
for that flow. If there is free space in the register grid, then it will install a new rule that points
to a free flow marker, allowing the flow to be monitored by the FMA. Otherwise, if the register
grid is full, the control plane will install a single wildcard ignore rule (featuring a reserved offset
value) instructing the FMA to ignore that flow and all subsequent flows until the end of the
collection window. When the timer expires, the control plane reads in batch all the computed
flow markers. To prevent concurrent updates while reading, the control plane deletes the flow
rules prior to reading the registers. Once the registers have been read, a new collection window
round can then ensue. A side effect of this design is that FlowLens may skip the packets of a new
flow until the flow’s respective rule is installed in the switch. However, while this is a limitation
of our system, such loss does not impair FlowLens’s ability to trace most typical flows as they
tend to last longer than a few milliseconds.

Discretionary flow monitoring: Prior to the enforcement of the FCFS flow marker allocation
strategy, it is possible to filter which traffic should be monitored and therefore limit the amount
of flows to inspect. For instance, ML-based security applications are frequently focused on
traffic that can be identified by common target ports (e.g., HTTP). In other cases, the FlowLens
operator may be interested in monitoring flows based on IP or network address ranges. Such a
discretionary flow filtering stage can be implemented on the control plane by installing ignore
rules for all uninteresting flows based on allow / deny policies provided by the FlowLens operator.
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Ignore rules can be defined to target a single flow or to perform wildcard matching based on IP
and port ranges, specific protocol fields, etc.

Fine-tuning of the collection window: Flow markers should not linger for an arbitrarily
large amount of time inside FMA’s data structures, as this would prevent the flow marker’s
memory from being used for other flows. To increase the number of flows that can be monitored
at any given time, the collection window can be configured, based on three setups: i) the
definition of a fixed window duration (explained above); ii) the use of a specific flag set in FMA
data structures that enables the control plane to check for flow termination through a polling
procedure; iii) a hybrid of both approaches. While option i) is arguably the simplest alternative,
it may lead to memory waste since short-lived flows can occupy the FMA’s data structures longer
than necessary. In contrast, a polling approach allows FlowLens to pinpoint flows that will
receive no new packets (e.g., after detecting FIN packets in the data plane pipeline which signals
the termination of a TCP connection), but it may indefinitely keep flows which termination
is not explicit (e.g., UDP-based multimedia flows). Thus, a hybrid collection approach allows
us to proactively read and reset the FMA data structures in use by terminated flows while
preventing long-lived flows to be monitored indefinitely. In other words, this approach fully
refreshes the register grid every time the collection window is over and partially updates it
whenever a particular row is in condition to be evicted.

Flow marker eviction: A high rate of new flows may saturate the capacity of the FMA data
structures and prevent storing flow markers for all flows crossing the switch. In this case, as
explained above, the FMA’s default strategy is to not track new flows as long as existing flows
are still being tracked. As an alternative behavior, it is possible to evict flow markers from the
FMA according to an LRU policy. In this case, the control plane keeps track of the oldest flow
markers stored by the FMA, and replaces them as new incoming flows cross the switch. The
most suitable policy will greatly depend on the expected workload and topology of the network.

3.4.4 Distributed and Orchestrated FMA Operation

So far, we explained several design decisions of FlowLens when considering its operation to
be contained within a single switch. In this section, we describe how FlowLens can benefit from
a deployment in multiple vantage points.

Scaling the number of measured flows: Although the number of flows whose state can be
kept by a single switch is limited, it is possible to take advantage of multiple vantage points
in the network for monitoring a larger amount of flows. This is akin to the operation of other
measurement frameworks [111, 84] and may be accomplished, for instance, by splitting packets
coming from different IP address spaces between existing switches in the organization’s network.

Increasing collection coverage: In the case that our system operates with a maximum
collection window (see Section 3.4.3), reading and resetting FMA’s data structures requires a
non-negligible amount of time (a few seconds) [99]. This may prevent FlowLens from collecting
flow information while these operations take place. To ensure visibility over the network traffic
crossing an organization, FlowLens can be deployed in a cascade fashion across an additional
switch to intertwine the collection windows of the different switches.

Increasing application coverage: The design of FlowLens is tailored for enabling a single
profile to be loaded into a given FMA at any given time. However, a coordinated operation of
FlowLens across several switches can provide support to multiple ML-based security applications.
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For instance, when deployed across multiple switches, one FMA instance may be dedicated to
the detection of covert channels, while other is dedicated to the identification of botnet behavior.

3.5 Automatic Profiling

The flow markers generated by FMA depend on the parameters, i.e., the quantization
level and the truncation table, dictated by an application-specific profile which determines how
efficiently the switch SRAM will be used and how accurate the flow classification will be. In
general, finding the parameters that offer an optimal trade-off would require an exhaustive
search of the parameter space. Unfortunately, this is a cumbersome task that requires non-trivial
computational resources and time, e.g., automatically exploring the full space of configurations
for the botnet detection task (Section 3.7.6) took one day.

To search on the parameter space for a configuration that offers a good trade-off between
flow marker size and classification accuracy, the profiler implements optimization techniques that,
albeit may fail to yield the optimal result, usually find near-optimal solutions quickly. Next, we
describe the optimization criteria and algorithm employed in FlowLens. Note that FlowLens
is not tightly coupled to a specific implementation of the profiler and nothing prevents the use
of alternate optimization techniques [181, 18]. Investigating further optimization approaches is
outside the scope of this paper.

3.5.1 Optimization Criteria

We expect that a FlowLens’s operator will want to find a suitable FMA parameterization
for any given ML-based security application. Because there is a space/accuracy trade-off in the
FMA configuration, we are faced with a multi-criteria optimization problem that does not have a
single optimal solution but, instead, has a number of Pareto optimal solutions [142]. The current
version of the FlowLens’s profiler can approximate three different pre-set points in the Pareto
frontier, that can be selected by the system operator:

1. Smaller marker for target accuracy: In this mode, the system operator specifies a target
accuracy value to be attained, and the profiler automatically chooses the quantization and
truncation parameters that yield the smallest marker that is able to offer the target accuracy.
Note that the profiler will not return a configuration if the accuracy set by the user cannot be
achieved for the particular dataset under analysis.

2. Best accuracy given a size constraint: Here, the operator specifies the maximum size for
the flow marker and the system automatically picks the quantization and truncation parameters
that maximize the classification accuracy, among the configurations explored, without exceeding
the target marker size. This constraint also allows us to reduce the search space, since the marker
size generated by a set of quantization and truncation parameters is known beforehand.

3. Size vs. accuracy trade-off: Lastly, the profiler can work in a fully automated fashion. In
this case, the profiler attempts to maximize an accuracy vs marker size trade-off that is expressed
by the following reward function: reward = α ·accuracy+(1−α) 1

marker size . A smaller α attributes
less importance to the accuracy in favor of compactness, and vice-versa. Our prototype uses
α = 0.5, but the system operator can define the value of α as well as a different reward policy of
its choosing altogether.
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3.5.2 Optimization Algorithm

The search space is the product of the different quantization and truncation configurations;
on its own, the number of configurations that result from truncation is combinatorial with the
number of available bins. To guide the profiler’s search, we use an optimization algorithm that
consists of two phases. In the first phase, called search space reduction, we use domain knowledge
to narrow the search, by excluding configurations that are unlikely to offer acceptable results. In
the second phase, we resort to Bayesian optimization to find a suitable flow marker. We detail
these two steps in the next paragraphs.

1. Search space reduction: To reduce the search space, we discretize the domain of quan-
tization parameters, e.g., aggregate bins in powers of two. Then, we leverage a pre-training
step for narrowing the truncation space: we first generate a coarser representation of the packet
distributions of each sample in the training data according to a given quantization parameter,
then we use a classifier to build a model based on these representations. We leverage the fact
that most classifiers can output information regarding the top-N most relevant bins for accurate
classification. Thus, for each quantization, we constrain the exploration to points that include an
increasing number of features from the top-50 (i.e., the configuration that includes the top-10
bins, the top-20 bins, etc). When the classifier is unable to output the top-N features, we fall
back to a simpler strategy to narrow the search space: we sample the input space, exclude bins
that have not been observed in the sampled points, and feed the remaining ones to the optimizer.

2. Bayesian optimization: To reduce the manual labor required to explore a large space of
configurations, we rely on Bayesian optimization, a well-known method for optimizing black-box
functions and for finding near-optimal solutions with few function evaluations [62]. We optimize
the combination of quantization and truncation parameters using the Python Hyperopt [19]
software package. In each iteration, the profiler selects a parameterization, trains a classifier
using flow markers accordingly generated, and records the classifier accuracy alongside the size of
produced flow markers. The next parameterization to sample is selected by the optimizer which
we run for a fixed number of iterations. The whole process took us a few hours to complete.

3.6 Implementation

We built a prototype of the FlowLens system. Excepting the FMA, which was written in
P4, we implemented all other components in Python. The classification engine of the profiler
server uses Python’s scikit-learn [155] and the Weka [72] libraries. We implemented FlowLens’s
FMA [16] for a Barefoot Tofino ASIC [6] using about 500 lines of P416 code, which was compiled
with the P4 Studio Software Development Environment (SDE) [7]. While the FMA’s design
presented in Section 3.4.1 is generically compatible with PISA architecture, its implementation
required careful reasoning due to the specific intricacies of currently available switching hardware.

To implement the FMA code for a Tofino switch, we need to fit the FMA’s data structures
and operations into the specific pipeline and compute capabilities of the switch. To implement
flow marker updates, it would be desirable to compute the flow offset and the bin offset of the
target flow marker (see Figure 3.4) in a single pipeline stage to be able to use all the memory in
upcoming stages to store flow markers. However, this cannot be achieved on our target hardware
due to three major data dependencies: i) matching (i.e., indexing) the truncation table depends
on the quantized packet length, but quantization and truncation are too complex to be realized
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Figure 3.5: FMA implementation on Tofino switch. Each partition of the flow table (FTm)
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register grid partition of the upcoming stage (RGm). This packet is matched in FT2 and the
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values computed in each stage; the value in the blue box is loaded by the control plane.

together in a single stage; ii) indexing a flow marker’s bin requires the result of truncation,
but the truncation table and the flow table cannot be matched in the same physical stage; iii)
matching the flow table and updating the respective flow marker are also too complex to perform
in a single stage. Moreover, it is not possible to access all the switch memory from a single stage.

Laying out the FMA in hardware: To accommodate for the above requirements, we split
the functioning of FMA across different stages, as depicted in Figure 3.5. To resolve dependencies
i) and ii), we reserve the first and second stages of the pipeline to perform quantization and
truncation. Then, we partition the flow table and register grid along the remaining stages to use
up all the per-stage stateful registers across the processing pipeline. To overcome the inability
to calculate the bin offset and increment the corresponding register cell in the same stage –
dependency iii) – the flow table partitions and register grid partitions are placed in contiguous
stages. Each flow table partition is responsible for managing flow markers in its corresponding
register grid partition.

Figure 3.5 depicts in detail the operation of FMA when a packet for a new flow arrives.
Notation FTm and RGm denote partition m of the flow table and register grid, respectively. As-
sume that the collector has installed a rule for flow id 〈162.2.13.42, 6901, 147.6.54.129, 3478, 17〉
in FT2, and that the first incoming packet for this flow has a size of 512B. In stage 1, action
quantization act is triggered, quantizing the packet length using QL=5 and setting the resulting
quantized packet length (md.binIndex quant) to 16. The object md stores the metadata carried
over across the pipeline stages.

In the second stage, the truncation table matches against the quantized packet length (refer
to Figure 3.4) and triggers the truncation act action, which returns the bin offset md.bin offset

within the flow marker and sets a truncation flag md.trunc flag in order to inform the downstream
stages that this packet’s corresponding flow marker should be incremented. In case no match
exists in the truncation table, the truncation flag is not set, and the packet is not accounted for.

Next, since the flow matching rule is not installed in FT1, the packet is not matched until it
reaches stage 4, where FT2 is located. Upon matching the flow id and verifying that md.trunc -
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Listing 1 P4 code fragment that implements the actions performed per-packet by the FMA. The complexity of
the truncation operator and of the computation of flow marker offsets is offloaded to the control plane and the
resulting values are loaded through MAUs.

1 // triggered by the quantization table
2 // bin_width_shift depends on the Quantization Level (QL)
3 action quantization_act(bit<32> bin_width_shift){
4 md.binIndex_quant =
5 (bit<32>) (md.pkt_length >> bin_width_shift);
6 }
7 // triggered by the truncation table
8 action truncation_act(bit<32> new_index, bool flag) {
9 md.bin_offset = new_index;

10 md.trunc_flag = flag;
11 }
12 //triggered by the flow table (FT_2)
13 // compute the offset of the bin in the RG partition
14 action set_flow_data_act2(bit<32> flow_offset) {
15 md.rg_cell_offset = flow_offset + md.bin_offset;
16

17 //triggered after matching the flow table (FT_2)
18 action reg_grid_act2() {
19 bit<16> value;
20 reg_grid2.read(value, md.rg_cell_offset);
21 reg_grid2.write(md.rg_cell_offset, value+1);
22 }

flag is set, the set flow data act2 action is triggered. This action computes md.rg cell offset by
adding md.bin offset and flow offset loaded by the control plane into FT2. The resulting value
is used to index a cell in RG2 which is then incremented. To index the correct partition of the
register grid, we use control flow logic to test which flow table partition was matched, triggering
the respective reg grid act2 action that updates the flow marker on the corresponding register
grid partition in the next pipeline stage.

Optimizing per-packet computations: To reduce the complexity of the P4 program, we
leverage the capabilities offered by the control plane to offload the computation of complex
operations from the data plane. This results in a program sampled in Listing 1 which implements
four simple actions that can be performed within single stages of the pipeline. Specifically, we
offload two operations into the control plane:

a) Computing a flow offset within the register grid: The index of the register grid where a flow
marker is located can be easily calculated in the control plane. Since the FMA parameterization
is known prior to the loading of the P4 program on the switch, the control plane can compute
the number of bins used by a flow marker in a given configuration. Thus, when a new flow is
matched, the collector installs a rule where the flow offset is given by the number of flow rules
installed in a particular flow table partition times the number of bins composing a marker. Upon
matching, the flow offset is passed as an argument to action set flow data act2 (line 14).

b) Computing a bin offset within a flow marker: To index a bin within a flow marker two
values must be added: the flow offset, and the bin offset. While the former can be computed
as described in the previous paragraph, the latter is computed by the truncation operator.
The quantized packet length passed as an argument to the action responsible for performing
truncation (truncation act, line 8) is computed by action quantization act (line 3) using a simple
bit shift. Then, the translation between a quantized packet length and the corresponding bin
offset can also be computed offline once a specific FMA parameterization is known, and later
loaded by the control plane into the truncation table (refer to Section 3.4.1). Pre-computing
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these values in the control plane saves stateful memory and pipeline’s stages for either monitoring
more flows or executing other forwarding behaviors.

3.7 Evaluation

Here, we present our experimental evaluation of FlowLens aimed at analyzing the accuracy
of ML-based flow classification tasks and the efficiency of the switch resources usage.

3.7.1 Metrics and Methodology

Our experiments aim at identifying a particular class of flows denoted as the target class.
For instance, when using FlowLens for covert channel detection, the target class can be covert
traffic. We assess the quality of FlowLens using the following set of metrics: accuracy, i.e., the
percentage of flows that were correctly classified in their class, false positive rate (FPR), i.e.,
flows that do not belong to the target class but were erroneously classified as part of the target,
and false negative rate (FNR), i.e., flows of the target class that were flagged as not belonging to
the class. We also resort to related metrics such as precision – ratio of the number of relevant
flows retrieved to the total number of relevant and irrelevant flows retrieved – and recall – ratio
of the number of relevant flows retrieved to the total number of relevant flows.

We train our system to be able to identify specific target class flows within the context of
three usage scenarios:

Covert channel detection: We train our system to identify Skype flows carrying covert
channels encoded by two censorship resistance tools: Facet [105] and DeltaShaper [10]. We train
two independent FlowLens applications, for Facet and for DeltaShaper traffic, using a balanced
dataset including covert / legitimate samples of recorded flows. The traffic is classified using the
XGBoost [12] classifier, based on the packet length distribution of the sampled flows.

Website fingerprinting: We train a second FlowLens application to identify webpages browsed
through encrypted tunnels. We leverage the dataset made available by Herrman et al. [77]. This
dataset has been widely used for the evaluation of novel website fingerprinting techniques [234, 152],
and it contains traces of webpage accesses over OpenSSH. Websites are fingerprinted resorting to
the Multinomial Näıve-Bayes classifier [77], which leverages the packet length distribution of the
incoming and outgoing data in a connection as features. This classifier also allows us to illustrate
how FlowLens can accommodate alternative truncation schemes whenever a given classifier does
not return a ranking of feature importance (Section 3.7.5).

Botnet detection: Our last FlowLens application aims at detecting the presence of botnet
chatter. We use the dataset produced by Rahbarinia et al. [158], which comprises traffic flows
produced by four benign P2P applications (uTorrent, Vuze, Frostwire, and eMule), and two P2P
botnets (Waledac and Storm). Malicious flows can be identified by analyzing packet length and
inter-packet timing distributions resorting to a Random Forest classifier [158].

We simulate the classification of flows of a given target class in software based on a set
of application-specific flow samples. We also configured all the classifiers to use the same
hyperparameters suggested by the papers we drew our use-cases from. Throughout the evaluation,
we assess the performance of different FlowLens configurations while exposing the system to a
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Table 3.1: Scalability of FlowLens.

Use Case FMA Configuration Marker Raw Dist. Scaling

Covert Channels 〈QLPL=4, Top-N=10〉 20B 3000B 150×
Website Fgpt. 〈QLPL=5〉 94B 3000B 32×
Botnet Detection 〈QLPL=4, QLIPT=6〉 302B 10200B 34×

workload that, to the best of our abilities, mimics those described in the literature. However, we
highlight the adoption of a single holdout test instead of the cross-validation approach employed
in other representative works [12, 134]. The reason is that, when applying truncation (Section-IV),
FlowLens employs a pre-training step to obtain a feature ranking from the classifier. Then, it
uses the top-N most important ones to fill the Truncation Table (Figure-4). Since cross-validation
returns an average of the results obtained by multiple holdout models trained with different
splits of the dataset, the resulting top-N features would not directly translate to be the top-N
ones found in a particular model instance, namely in the model to be deployed on the switch for
classification. Further, we chose a 50/50 holdout to increase the amount of unseen (test) data
and better assess the generalization ability of the classifier.

3.7.2 Overall Performance

To give a general insight into the performance of FlowLens, Table 3.1 presents the scalability
gains of our system when it is used to classify flows for covert channel detection, website
fingerprinting, and botnet traffic detection while displaying an accuracy loss of at most 3% when
compared with the use of complete packet frequency distributions. For these experiments, we
generated the possible combinations of flow markers for the three considered use case scenarios,
and assessed whether they allow for accurate flow classification. Packet lengths (PL) vary from 1
to 1500 bytes (MTU), and each cell of a flow marker has a size of 2 bytes.

These results show that, when the quantization and truncation parameters are properly
fine-tuned (i.e., QL and truncation table), FlowLens can monitor at least 32 times more flows
when compared to the baseline setup without compression, i.e., QL=0 and truncation disabled.
Our system can also reach a 150 fold increase in its monitoring capacity when detecting covert
channels. This is achieved for QL=4 and by selecting the top-10 most relevant bins for truncation.
In this case, with a flow marker as small as 20 bytes, FlowLens manages to achieve a classification
accuracy of 93%, only 3% shorter than the result obtained using raw packet length distributions.
For website fingerprinting, the flow marker is larger (94 bytes) because we face a multi-class
classification problem – different websites are better classified resorting to different bins. Thus,
the truncation table is configured to map all quantized packet lengths. Lastly, for botnet chatter
detection, we combine the quantization of packet inter-arrival time distribution (IPT) with the
PL distribution. In this case, we achieve a marker size of 302 bytes which enables the bookkeeping
of >30× flows.

In general, the number of flows that FlowLens can handle depends on the switches’ available
SRAM. The NDA we have signed with Tofino prevents us from disclosing the amount of switch
memory but other sources [125] reveal that current switches feature hundreds of MBs of SRAM.
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Table 3.2: Hardware resource consumption.

Resources Computational Memory
eMatch xBar Gateway VLIW TCAM SRAM

Usage 8.46% 5.21% 3.39% 0.00% 38.54%

3.7.3 Hardware Resource Efficiency

To evaluate the efficiency of FlowLens’s hardware resource usage on the switch, we focus
independently on the data plane and on the control plane. As for the data plane, Table 3.2
shows the average hardware resource consumption of FlowLens across all stages of the switch.
The table shows that besides the SRAM required for the tables and register, the consumption of
other resources is negligible. Since our flow matching logic entirely relies on exact matching, the
FMA’s flow table does not consume any of the TCAM resources on the switch. In tandem with
the deployment of flow tables in SRAM, FlowLens leaves over 60% of SRAM available. Overall,
these results suggest that FlowLens makes enough room for the concurrent execution of many
other common forwarding behaviors, like access control, rate limiting or encapsulation, that do
not necessarily require an extensive use of the stateful memory in the switch pipeline.

On the control plane, the switch has sufficient resources to fit all models used by FlowLens
and to readily classify flows. In particular, the botnet chatter detection is our largest model,
occupying only 140MB of memory, and 5.6MB of storage when compressed. In contrast, the
model for covert channel detection uses only 64KB of memory and 24KB of storage. All these
models comfortably fit within the control plane hardware resources, which has 32GB available
RAM. Additionally, the flow classification step is very fast. For covert channel detection, once
the flow markers have been collected from the data plane, the median of the time it takes for the
classifier to output a label for a sample flow ranges approximately from 100 to 200 microseconds
on the switch’s Intel Broadwell 8-core general-purpose CPU operating at 2 GHz. These results
indicate that flow classification can be efficiently conducted on the switch control plane.

Next, we present a set of micro-benchmarks which allow us to assess the benefits of our flow
marker generation scheme. We will see that flow marker size (hence memory efficiency) tends
to be more sensitive than classification accuracy to small variations in the quantization. The
trend is the inverse for truncation, where accuracy is more sensitive to small variations than flow
marker size. Our optimizer helps to find sweet-spot setups on the Pareto curve (Section 3.7.8).

3.7.4 Effects of Quantization

To study the effects of FlowLens’s compression schemes, we first focus on the generation of
flow markers for packet length distributions and start by analyzing the trade-offs of quantization.
We present our main findings:

1. Multimedia covert channels can be detected with up to 92% accuracy using 188-
byte flow markers. We leverage XGBoost to classify covert channels [12]. Figure 3.6 shows
how the absolute values obtained for the accuracy, FPR, and FNR of the classifier vary when
identifying Facet and DeltaShaper covert channels for different quantization levels (QL). For
instance, for quantization level QL=4 FlowLens can correctly identify Facet and DeltaShaper
flows with less than 5% and 1% decrease in accuracy, respectively. Table 3.3 shows that, for
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Figure 3.6: Accuracy, FPR, and FNR for multimedia protocol tunneling detection when using quantized
packet length distributions.

Table 3.3: Flow marker size for different quantization levels.

Bins and Memory Quantization Level (QL)
len(1 bin) = 2 Bytes 0 2 3 4 5 6 7 8

Number of Bins 1500 375 188 94 47 24 12 6
Memory per Flow(B) 3000 750 376 188 94 48 24 12

QL=4, a flow marker can be represented in 94 bins instead of a full distribution composed of
1500 bins, amounting to an order of magnitude memory savings. While a single flow marker is
then represented using 188B instead of 3000B, DeltaShaper classification scores are maintained
with respect to those obtained when using full information (see Figure 3.6).

2. Accuracy of website fingerprinting is maintained when compressing flow markers
by two orders of magnitude. For assessing the quality of FlowLens on website fingerprinting,
we use the Multinomial Näıve-Bayes classifier [77]. We reproduced the multiclass closed-world
website fingerprinting task for different quantization levels. Figure 3.7 shows that FlowLens is
able to maintain the same classification accuracy up to a quantization level QL=3. Providing
that classification accuracy can be relaxed in favor of memory savings, quantization can be
further increased to QL=6, while still achieving over 90% accuracy and reducing a flow marker’s
memory footprint by two orders of magnitude.

3. Very coarse-grained flow markers are unsuitable for performing traffic differen-
tiation. Figure 3.7 shows that flow markers can only be compressed to a given factor before
causing a steep decrease in the quality of the models’ predictions. For instance, in Figure 3.6,
we see that for QL=7 the accuracy of the classifier is already over 20% and 10% away from
the result obtained with full information for Facet and DeltaShaper, respectively. Thus, it is
imperative to find the correct balance between memory savings and accuracy. FlowLens balances
this trade-off, for different use cases, through a parameterization during the profiling phase.
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Figure 3.8: Accuracy, FPR, and FNR for covert channel detection with an increasing number of
features for quantization level QL=4.

3.7.5 Effects of Truncation

The second mechanism to generate compact flow markers is that of truncating the flow
marker to a subset of bins which make up for the most relevant features leveraged by the classifier.
This is illustrated next, as we highlight our main findings after applying tailored truncation in
different use cases.

1. Accurate detection of covert channels can be achieved using a flow marker of just
20 bytes. We elaborated a tailored truncation approach based on the importance of features
computed by XGBoost. Figure 3.8 depicts the results obtained when performing quantization
with QL=4 and truncating to the top-N most important features. The accuracy, FPR, and
FNR rate of the classifier are practically identical when using the top-10 and top-50 features
to classify flows (e.g., a difference of only 1% in FNR for Facet flows), and very similar to the
results obtained when using full information (refer to QL=4 in Figure 3.6). Thus, truncation
can not only maintain high accuracy, but further reduce the flow marker footprint from 188B
(QL=4) to just 20B (QL=4, top-N=10).

2. 20-byte flow markers enable tracking 150× more flows. Covert flow markers can be
reduced to just 20B using truncation. This corresponds to a 150× space-saving when representing
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Figure 3.9: FPR and FNR for www.amazon.com at different quantization levels (QL). FNR shows
the probability of identifying www.amazon.com as some other website. FPR shows the probability
of some other website being classified as www.amazon.com. Truncation is applied at each QL.

Table 3.4: Number of bins used in www.amazon.com truncation.

Bins and Memory Quantization Level (QL)
len(1 bin) = 2 Bytes 0 2 3 4 5 6 7 8

Total Number of Bins 1500 375 188 94 47 24 12 6
Bins After Truncation 159 159 156 87 46 23 12 6

a flow (from 3000B to 20B). The space freed by compressing a single flow represents an increase
in FlowLens’s measurement capacity by two orders of magnitude.

3. Fingerprinting accesses to a website yields good results even when feature ranking
is unavailable. The truncation method employed for covert channel detection is only applicable
when considering classifiers able to output feature importance. To overcome the fact that
Herrmann et al.’s [77] classifier is unable to output a rank of feature importance, we perform
manual bin selection aimed at identifying a single website, e.g., www.amazon.com. Essentially, we
first take a collection of access traces performed over a period of time to that particular website.
Then, we simply discard the bins that correspond to packet lengths which have had zero counts
of the sampled flows. Based on this selection, we then train our classifier accordingly. We can
see in Figure 3.9 that the results obtained using this approach remain competitive. For instance,
with quantization level QL=4, flows can be correctly identified with a 0.016% FPR and 9.333%
FNR. As shown in Table 3.4, this flow marker footprint is not as small as with covert channel
detection. Yet, it is practical to fingerprint website accesses with QL=4, yielding flow markers
with a compression ratio of 1500:87, i.e., 17.2×.

3.7.6 Measuring Inter-Packet Timing

In this section, we concentrate on the ability of FlowLens to perform tasks that require both
the inspection of packets’ inter-arrival (IPT) and length (PL) distributions. To this end, we
evaluate FlowLens in detecting P2P botnet chatter. Since the network traffic produced by bots
tends to be stealthy and spread across time, packets sent in bot conversations are expected to
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Figure 3.10: Precision, recall, and FPR for malicious P2P traffic.

have a higher IPT than those of legitimate P2P conversations. A conversation consists of the
set of flows between any two hosts within a given time window, called flowgap. We resort to
the Random Forest classifier originally employed by Narang et al. in PeerShark [134], and follow
their recommendation to set flowgap to 3600s. Since the largest flowgap is set to 3600s, we vary
the quantization of inter-arrival time down to a minimum of 4 bins (QLIPT = 10).

Figure 3.10 depicts the precision, recall, and FPR obtained by the classifier when identifying
botnet chatter for different QL applied to both PL and IPT distributions. While QLPL ≤ 4
slightly degrades precision and recall, we observe a sharp drop in both metrics when QLPL > 4.
The FPR, however, is not significantly affected by increasing quantization levels. Our experiments
also reveal that precision and recall in the identification of legitimate P2P traffic are largely
unaffected by the effect of quantization, whereas FPR takes a sharp increase for QLPL ≥ 6 (20%
at QLPL = 6 up to 50% at QLPL = 8).

This figure also shows that it is possible to accurately identify botnet traffic with compact
flow markers. For instance, 〈QLPL = 4, QLIPT = 6〉 achieves a recall of 0.96, only 3% worse
when compared to the result obtained when using full information (0.99). This accounts for a
memory saving of 16× when storing a flow’s packet length distribution, as well as occupying just
57 buckets×2B = 114B to keep an inter-packet timing distribution. These results suggest that
FlowLens can offer different space-saving/accuracy trade-offs.

3.7.7 Performance of Automatic Profiling

To evaluate FlowLens’s automatic profiling mechanism, we explore the parameter search
space for each use case. For Facet and DeltaShaper, the search space includes the quantization
and truncation parameters studied above (48 configurations). For website fingerprinting, the
search space corresponds to 8 quantization configurations. For botnet detection, we consider
40 possible configurations based on packet length and IPT quantization, as we refrain from
considering those whose QLIPT = 0. We configure the optimizer to explore i=10 configurations
for covert channel and botnet detection, and i=4 for website fingerprinting. For simplicity, we
use no initial sampling for bootstrapping the optimizer, but techniques like Latin Hypercube
sampling [184] may be also plugged in.
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Table 3.5: Results of the profiling procedure, including the configuration output by the optimizer
and the top-3 explored configurations (listed by decreasing accuracy, except for the case of
Botnets which corresponds to malicious traffic recall).

Config. Rank Facet (i=10) DeltaShaper (i=10) Website Fingerprinting (i=4) Botnets (i=10)

#1 〈QL=2, Top-N=all〉 = 0.960 〈QL=5, Top-N=all〉 = 0.880 〈QL=0〉 = 0.970 〈QLPL=2, QLIPT=2〉 = 0.970
#2 〈QL=3, Top-N=50〉 = 0.951 〈QL=0, Top-N=all〉 = 0.873 〈QL=4〉 = 0.965 〈QLPL=0, QLIPT=6〉 = 0.969
#3 〈QL=0, Top-N=30〉 = 0.947 〈QL=0, Top-N=20〉 = 0.870 〈QL=5〉 = 0.948 〈QLPL=4, QLIPT=6〉 = 0.960

Output 〈QL=3, Top-N=10〉 = 0.944 〈QL=5, Top-N=10〉 = 0.840 〈QL=4〉 = 0.965 〈QLPL=3, QLIPT=1024〉 = 0.953

Fully automatic mode: Table 3.5 depicts the results obtained by our automatic profiler to
choose an FMA configuration. In all cases, the profiler chooses a configuration that, albeit not
the best accuracy wise, still provides a competitive accuracy while generating compact flow
markers. For instance, for Facet, the top-3 configurations exhibit a marker size of 375, 50, and
30 bins, respectively. Our profiler chooses a configuration that provides a marker size of 10
bins while achieving an accuracy only 1.6% worse than the configuration with the best-found
accuracy (and with a 37× smaller marker). Our reward policy leads the optimizer to perform
good decisions over the explored configurations. In website fingerprinting, the profiler outputs
the top-2 configuration rather than top-1 since the latter’s marker size is too big in comparison
(1500 vs 94 bins). The profiler also refrains from choosing top-3, a configuration whose marker is
2× smaller but less accurate. This trend can be observed for the remaining use cases.

Smaller marker for target accuracy: FlowLens can find a configuration that exceeds a
minimum accuracy threshold, and that provides the smallest marker. For instance, we set a target
accuracy of 0.85 for a DeltaShaper configuration. Among the 10 experimented configurations, the
optimizer has found 3 candidate configurations with an accuracy larger than the set threshold.
The system output 〈QL=4, Top-N=30〉 = 0.850, albeit finding 〈QL=5, Top-N=40〉 = 0.876 or
〈QL=0, Top-N=40〉 = 0.880, two other configurations which produced larger accuracy at the
expense of a larger marker.

Best accuracy given a size constraint: The system is also able to find configurations with
a larger accuracy value, given a maximum marker size. Additionally, and since the size of a
marker can be computed offline without first trying a configuration, we achieve a reduction in the
search space. In the case of DeltaShaper, setting a maximum marker size equal to 30 enables the
reduction of the search space from 48 to 21 possible configurations. In this case, the optimizer
outputs 〈QL=2, Top-N=30〉 = 0.890, albeit finding other smaller but less accurate alternatives
such as 〈QL=3, Top-N=20〉 = 0.850.

3.7.8 Comparison with Related Approaches

In this section, we compare FlowLens against two related approaches: i) techniques which
are able to produce compressed representations of packet distributions, and ii) techniques for
collection of traffic features resorting to programmable switches.

Alternative feature compression approaches: Online Sketching (OSK) [45] and Com-
pressive Traffic Analysis (CTA) [137] generate compressed packet length/inter-packet timing
distributions using linear transformations. However, both approaches depend on matrix mul-
tiplications and/or floating-point operations unsupported by current switching hardware. Yet,
we compare the classification accuracy of FlowLens against the accuracy obtained by OSK and
CTA when using each technique to compress flow representations.
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Figure 3.11: Pareto frontier for covert channel detection when using FlowLens, OSK, and CTA.
Dots show individual configurations.

For evaluating the quality of the solutions yielded by the different compression techniques,
we leverage the concept of Pareto optimality [142] which allows us to compare possible solutions
to multi-criteria optimization problems (flow marker size vs. accuracy, in our case). A solution is
said to be Pareto optimal if it cannot be improved in one of the objectives without adversely
affecting the other. By generating the set of all of the potentially optimal solutions (Pareto
frontier) for each approach, we can observe which approach delivers the best trade-offs between
classification accuracy and marker size.

Figure 3.11 depicts the accuracy obtained in the classification of covert channels when
using flow markers (with size up to 100 bins) generated by FlowLens, OSK, and CTA, while
using different compression ratios. FlowLens configurations are achieved by combining the
different quantization and truncation parameters. Solid lines represent the Pareto frontiers [113]
that capture the best configurations for the three approaches. Overall, FlowLens produces
flow markers that exhibit a better accuracy/memory trade-off and obtain the most accurate
compressed representations of flows. For instance, in DeltaShaper, most FlowLens configurations
achieve over 0.80 accuracy (and a maximum of 0.89 using a flow marker with a size of only 10
bins). In comparison, the most accurate OSK marker takes 16 bins and achieves an accuracy of
only 0.76. A similar trend occurs in the case of Facet detection.

Alternative feature collection approaches: Systems such as *Flow [183] are able to collect
fine-grained packet features at line rate from the switch and offload them to dedicated servers,
where the packet distributions can be computed and analyzed by other dedicated systems for
specific applications. FlowLens provides a complementary decentralized design where both
the collection of packet distribution features and the application-specific analysis (i.e., flow
classification) take place on the switches, thus achieving considerable savings in communication,
compute, and storage hardware resources.

To estimate the potential gains of our design, we analyze the communication costs of both
*Flow and FlowLens. Assuming the existence of 250k concurrent flows where each flow sends 15k
packets during a collection window of 30 seconds, *Flow offloads data structures named grouped
packet vectors (GPVs), each containing a flow key and a list of packet lengths, from a sequence
of packets in a flow, on an average of 640ms [183] which totals 47 evictions. Since each GPV
has a fixed header of 24 bytes, assuming 2 bytes to encode a packet length, *Flow must transfer
(24B×47 + 2B×15k)×250k = 7.78GB per collection window. This data would then need to be
processed on a dedicated server. In contrast, FlowLens only transfers the classification score of
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each flow at the end of the collection window which involves sending a fixed-size header per flow
(13B for flow ID plus a 4B score value) times 250k flows, i.e., ≈4.25MB. Thus, FlowLens exhibits
a communication footprint three orders of magnitude smaller than *Flow.

3.8 Security Analysis

We now analyze the security properties of FlowLens when functioning under an adversarial
model. The overarching goal of the adversary is to be able to generate flows of a target
application class without being detected by FlowLens. We consider three categories of increasingly
sophisticated adversaries considering their knowledge about FlowLens and the models employed
in ML-based security applications.

1. No knowledge about FlowLens nor the ML model: In the weakest threat model, the
attacker knows nothing about the presence of FlowLens in the network, nor the details of the
models being used by the ML-based security applications leveraging the capabilities of our system.
In such a case, as shown in the sections above, ML-based security applications making use of the
vanilla FlowLens setup can accurately identify different target classes of traffic.

2. FlowLens-aware adversary: In the second case, we consider an adversary that is aware of
the deployment of FlowLens in the network infrastructure, but who is unaware of the particular
machine learning models being used to filter the network for particular classes of traffic. In this
case, the adversary may attempt to launch two particular types of attacks:

Flow aggregation attacks: An adversary may attempt to evade FlowLens’s classifier by misusing
the truncation and quantization steps to make the aggregation of flows of a given class of
traffic indistinguishable from another class. In this sense, this type of attack is similar to our
covert channel scenario (Section 3.7.4) where the adversary’s goal is to mimic the distribution
of legitimate traffic and evade a classifier. Figure 3.6 and Figure 3.8 show that a finer-grained
aggregation of packet distributions does make it harder to evade the classifier. This suggests
that increasing flow marker granularity makes FlowLens more robust against flow aggregation.

Evading collection windows: When analyzing long-lived network flows, FlowLens collects flow
markers during a maximum pre-defined collection window. Once this window elapses, the FMA
located on a given switch stops monitoring flows while the flow markers are read and FMA
data structures are reset. An adversary may attempt to exploit this window of opportunity to
transmit a class of traffic targeted by FlowLens during this period. However, as mentioned in
Section 3.4.4, FlowLens can tolerate such attacks provided that multiple switches are used in
an interleaved fashion to ensure that at least one switch can collect traffic pertaining to flows
traversing the network.

DoS attacks: A FlowLens-aware adversary may also attempt to compromise the availability of
our system. For instance, it may try to mount a DoS attack based on the transmission of packets
with random IP addresses, forcing FlowLens to keep track of multiple dummy flows and waste
the switch memory. To mitigate such a threat, FlowLens can temporarily prevent the installation
of new rules in the FMA flow table when it detects unusual bursts of traffic, or reconfigure FMA
parameters on-the-fly to store smaller (yet less accurate) flow signatures so as to increase the
number of measured flows.

3. FlowLens and ML model-aware adversary: The third adversary we consider is cognizant
of the operation of FlowLens and knowledgeable about the ML model used by a given ML-based
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Figure 3.12: Features (PL bins) collected by the FMA for the 〈QL=4, top-N=10〉 configuration,
when considering different classifiers to identify Facet covert channels. Features in bold are
shared among at least two classifiers.

application. Apart from an adversary’s attempts to evade or compromise the availability of our
system, such an adversary aims to leverage adversarial ML techniques [4] to subvert the correct
behavior of the model. These attacks can be grouped in two main categories [4]: i) training-time,
where an attacker aims at manipulating the training set used by the ML model through the
insertion of specific samples that alter the decision boundaries of the classifier; ii) test-time,
where an attacker aims to evade classifiers by crafting traffic samples in such a way that these
fool the classifier during its operational phase.

In general, providing defenses to such attacks is orthogonal to FlowLens’s ability to collect
flow markers and it concerns the particular models used by the different ML-based security
applications. Nevertheless, FlowLens is compatible with various techniques aimed at increasing
the robustness of the models used for traffic analysis. For mitigating training-time attacks,
FlowLens’s profiling phase can incorporate mechanisms aimed at filtering out contaminated
instances upon training [114, 217, 68, 168]. Alternatively, FlowLens operators can leverage
recent models whose training is explicitly hardened against the introduction of adversarial
samples [33, 32, 190, 88]. For tackling execution-time attacks, FlowLens is compatible with
the use of several techniques that increase the difficulty of an adversary to successfully evade
network traffic classifiers. For instance, FlowLens can leverage classifier ensembles [1, 20, 110] or
randomize the classifiers deployed at test-time [124].

Hardening FlowLens against adversarial ML attacks: We performed a simple experiment to
understand whether FlowLens can leverage the above techniques to improve its robustness to
adversarial attacks, while still collecting flow markers of small size. To this end, we profiled three
different classifiers – XGBoost, Random Forest, and Decision Tree [12] – to identify Facet traffic
in a 〈QL=4, top-N=10〉 FMA configuration.

Figure 3.12 depicts the importance of the top 10 features selected by the different classifiers
after FlowLens’s profiling step. Recall that, for a QL=4, there is a total of 94 features (bins),
from which only the top-10 is considered. We draw two main observations from this figure. First,
since all three classifiers share several features (marked in bold), crafting the traffic to subvert
a given feature (e.g., feature 12), requires extra effort to collectively assess how it affects the
classification accuracy not just of a single, but of all three classifiers. Second, each classifier
selects a subset of features that are exclusive to it. Thus, while an adversary may shape a given
flow to respect the features analyzed by a particular classifier, there may be another classifier
that considers a different set of features. For instance, XGBoost leverages bins 59, 10, 54, and
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6 to better inform a prediction, while the Random Forest classifier ignores these features and
includes 61, 14, 15 in its top-10 instead.

To run multiple classifiers in execution-time, FlowLens must collect a superset of all mean-
ingful features required by each model. Thus, it is expected that flow markers will increase
their size. Figure 3.12 suggests that randomization, i.e., the random selection of one possible
classifier, can provide a good compromise between robustness to adversarial ML and flow marker
size. While a flow marker consists of 10 features for a given classifier (amounting to 20B), a
flow marker that enables FlowLens to choose from three different models to classify flows uses a
total of 18 distinct features, producing a flow marker amounting to just 36B. In a similar fashion,
FlowLens could use all three classifiers to produce an ensemble which will ultimately classify a
flow by majority voting [20].

Performance impact of the defense mechanisms: Although we have not empirically
assessed the performance overheads caused by the proposed defense mechanisms, we argue that
these mechanisms should not significantly impair the performance of FlowLens. Nevertheless, we
reckon that they may require additional resources. The impact on resource allocation could be
estimated, e.g., by measuring the memory consumed using ensembles, or by studying how many
switches would suffice to plummet the risks of window evasion attacks.

3.9 Related Work

There is a considerable body of work proposing approaches for building efficient network
telemetry systems for large scale networks [224]. Programmable switches can leverage TCAM-
based flow tables for keeping flow data [195, 185, 133] and wildcard rules [26] to record a few
statistics about a given flow [115]. The major drawback of this technique is tied to the limited
size of TCAM which prevents the bookkeeping of more than a few thousand flows [225]. While
multiple flows can be combined in the same table entry [230, 133], this aggregation jeopardizes
the accurate representation of a large number of flows [225].

Traffic sampling techniques enable the collection of statistics for a large set of flows by
recording a small number of packets of each flow [34, 141, 50]. Examples of general monitoring
systems implementing sampling are OpenSample [186] or Planck [161]. Canini et al. [34] introduced
a per-flow measurement technique that holds on the partial sampling of flows. However, the
accuracy of sampling techniques is usually reduced when one aims at obtaining a faithful
representation of a flow’s distribution [106]. Moreover, increasing the sample rate is at odds with
a larger memory footprint which can impact the overall performance of the network [83].

Probabilistic data structures known as sketches enable the error-bounded representation
of flows’ statistics within restrictive memory limits [225]. While multiple sketches allow for the
extraction of flow’s coarse-grained features [44, 222, 106, 111, 84, 221, 85], their strive for generality
prevents recording fine-grained information such as approximations of flows’ packet lengths and
timing distributions. NetWarden [215] uses sketches to record approximate distributions of
inter-packet timing distributions for a specific security task. In contrast, FlowLens can be
broadly applicable to a range of ML-based applications. Coskun et al. [45] and Nasr et al. [137]
explore additional ways to compress packet distributions based on the use of linear projections.
Unfortunately, such techniques cannot be implemented efficiently in current switching hardware.
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Recent systems relying on network query refinement [135], such as Turboflow [182] and
*Flow [183], allow the data plane to offload simple packet features to servers for aggregation
and processing. However, differently from FlowLens, such a strategy may increase the risks of
network congestion and introduce scalability bottlenecks in large networks [108, 224].

3.10 Conclusions

This work proposed FlowLens, the first traffic analysis system for ML-based security ap-
plications that collects and analyses compact representations of flows’ packet distributions –
flow markers – within programmable switches. We evaluated our system for three use cases
comprising the detection of network covert channels, website fingerprinting, and botnet chatter
detection. FlowLens can accurately predict these classes of traffic flows with the help of compact
flow markers, allowing for a reduction between one to two orders of magnitude of the memory
footprint to represent packet distributions.
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Abstract

Many censorship circumvention tools rely on trusted proxies that allow users within cen-
sored regions to access blocked Internet content by tunneling it through a covert channel (e.g,.
piggybacking on Skype video calls). However, building tools that can simultaneously (i) provide
good bandwidth capacity for accommodating the typical activities of Internet users, and (ii) be
secure against traffic analysis attacks has remained an open problem and a stumbling block to
the practical adoption of such tools for censorship evasion.

We present Protozoa, a censorship-resistant tunneling tool featuring both high-performing
covert channels and strong traffic analysis resistance. To create a covert channel, a user only
needs to make a video call with a trusted party located outside the censored region using a
popular WebRTC streaming service, e.g., Whereby. Protozoa can then covertly tunnel all IP
traffic from unmodified user applications (e.g., Firefox) through the WebRTC video stream. This
is achieved by hooking into the WebRTC stack and replacing the encoded video frame data with
IP packet payload, while ensuring that the payload of the WebRTC stream remains encrypted,
and the stream’s statistical properties remain in all identical to those of any common video
call. This technique allows for sustaining enough throughput to enable common-use Internet
applications, e.g., web browsing or bulk data transfer, and avoid detection by state-of-the-art
traffic analysis attacks. We show that Protozoa is able to evade state-level censorship in China,
Russia, and India.
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4.1 Introduction

State-level censors are known to apply techniques to prevent free access to information on the
Internet. In fact, many countries have deployed a vast censorship apparatus to exercise control
over available content, namely China [94], Russia [160], Iran [5], Bangladesh [132], India [219],
Thailand [65], or Syria [37]. For instance, amidst the recent Coronavirus outbreak, the Chinese
government has shut down news websites [76] and instructed Chinese social media platforms to
censor references related to the infection [36, 170], in an attempt to handle the sharing of negative
coverage within and outside the country. This control can be enforced through various techniques,
such as keyword-based filters [218, 216], image filters [96], social platform monitoring [95, 78],
and even the entire blocking of Internet destinations [146] or selected protocols [55].

To evade censorship, many circumvention tools have been proposed for enabling users to
freely access/share information on the Internet [91, 192]. Typically, such tools rely on covert
channels to allow for the stealthy transmission of sensitive data through an apparently innocuous
carrier medium [91, 226], e.g., a multimedia streaming carrier application like Skype. The key
idea is to encode the covert data in such a way that an adversary capable of inspecting the full
packet exchange cannot distinguish between a legitimate transmission and one that subliminally
carries covert data. This approach, which we call multimedia covert streaming, can be achieved
in two ways: i) by entirely mimicking the carrier’s network-level protocols [129] (media protocol
mimicking), or ii) by embedding the covert data into the video (or audio signal) feed of the carrier
application in the course of a regular video call [82, 105, 121, 10, 97] (raw media tunneling).

Given that all the carrier’s traffic is encrypted, one way for an adversary to counter potential
covert channels is to blatantly block all traffic generated by the carrier application. This method,
however, can bring harmful side-effects even for a state-level adversary. In fact, considering
how instrumental many media streaming applications are for the tissue of economic and social
interactions within censored regions, the costs of shutting down popular applications can be
overwhelming and erode even further the state’s reputation in the eyes of its international peers.
Leveraging on essential streaming applications can then serve as a strong deterrent for the
enforcement of blocking policies, and constitutes the key insight that favors the effectiveness of
multimedia covert streaming [58].

Nevertheless, an adversary can employ a second class of techniques based on traffic analysis.
Essentially, it involves probing into the censored network region, inspecting the traffic generated
by a presumable carrier application, and looking for discrepancies in the traffic (e.g., abnormal
patterns) that might signal the presence of covert channels. Hence, it follows that an effective
tool for multimedia covert streaming must be able to resist these kinds of attacks by exhibiting
traffic patterns that will ideally be indistinguishable from legitimate traffic. In other words, when
picking from two sampled flows – one legitimate flow and one crafted flow containing covert data
– the adversary must not be able to distinguish them but by random guessing, i.e., with 50%
chance of success.

Unfortunately, the existing tooling support for multimedia covert streaming is quite bleak.
Several studies revealed that the presence of modulated covert traffic can be detected solely
based on the analysis of traffic features such as packet sizes and packet inter-arrival times [66, 12].
In fact, machine learning (ML)-based traffic analysis techniques can effectively detect small
changes in the packet frequency distributions caused by the embedding of covert data inside
carrier video streams, namely deviations in the packet sizes and inter-packet arrival times when
compared with legitimate traffic. Most existing tools fail this test and are prone to be detected
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Figure 4.1: Design space of multimedia covert streaming tools along two dimensions: covert
channel capacity (X-axis), and traffic analysis resistance (Y-axis). Darker shades indicate
increasing chances of detection, i.e., tools are more insecure. Protozoa outperforms the existing
systems in both dimensions. A detailed analysis of this plot is found in Section 4.9.1.

with high accuracy rates [12]. While some tools like DeltaShaper [10] can tolerate detection to
some degree, they do so at the expense of reducing the amount of covert data embedded into
the cover video stream, severely limiting the covert channel bandwidth capacity that can be
attained. For instance, in DeltaShaper, the maximum achievable throughput is only 7 Kbps,
which is clearly insufficient for sustaining the traffic generated by common Internet users, e.g.,
interactive web browsing, media streaming, or bulk data transfers.

This paper presents Protozoa, a new multimedia covert streaming tool that provides good
performance for the covert transmission of arbitrary IP traffic while featuring strong resistance
to detection when subjected to ML-based traffic analysis by a state-level adversary. In particular,
Protozoa allows an Internet user (client) located in a censored region to access blocked content
by leveraging the help of a trusted user in the free region who will act as a proxy on the client’s
behalf. Protozoa enables then to create a bidirectional covert tunnel between both endpoints.
Henceforth, the client can start browsing the web freely: the local IP traffic will be transparently
redirected through the covert tunnel to its final destination host in the free region, e.g., YouTube.
This local application is not restricted to a browser: Protozoa can tunnel IP traffic from arbitrary
unmodified applications, e.g., email or BitTorrent clients.

Protozoa advances the state-of-the-art by incorporating two new ideas in its design. First, to
enable the transmission of covert traffic, it uses web streaming applications based on WebRTC
which are very popular and widely disseminated. Concretely, to create a covert tunnel, all that
two users – client and proxy – need to do is to establish a video call using a WebRTC-enabled
web streaming website, such as Whereby (https://whereby.com). Protozoa uses the video call’s
associated WebRTC media stream to tunnel covert IP traffic between both endpoints. Second, to
encode the covert signal into the carrier stream, Protozoa introduces a technique named encoded
media tunneling, which allows for boosting the capacity of covert channels while offering strong
resistance to traffic analysis. It consists of embedding the covert data into encoded video frames,
i.e., right after the lossy compression has been applied by the video codec. This mechanism is
implemented by modifying the WebRTC stack of Protozoa’s Chromium browser component.

We extensively evaluated our Protozoa prototype both through a set of microbenchmarks
resorting to media sessions established over Whereby, and by testing it in various realistic usage
scenarios and workloads. Our results showed that, under normal network conditions, Protozoa
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Figure 4.2: System model of a multimedia covert streaming tool.

can deliver covert channel bandwidth capacities in the order of 1.4Mbps and channel efficiency
of 98.8%, while providing strong resistance to traffic analysis using state-of-the-art ML-based
techniques [12]. As illustrated in Figure 4.1, these results represent a significant departure over
existing media covert streaming techniques, dramatically improving the detection rate of the best
performing tool, i.e., Facet, from >99.0% to 55%-65%, i.e., from nearly perfect guess to very close
to random guess, while improving covert channel bandwidth by 3×. Additional experiments show
that Protozoa can withstand a number of active network perturbations without jeopardizing its
resistance against traffic analysis or breaking the covert channel connection.

To assess the portability of Protozoa, we also tested our system on alternative WebRTC
services: appr.tc and coderpad.io. Our results showed that it can consistently achieve similar
throughput and traffic analysis resistance properties when used over different applications, which
makes it useful in scenarios where specific applications are blocked (e.g., appr.tc is blocked
in China). Lastly, we deployed Protozoa in three regions that are known to enforce Internet
censorship through several means: the Great Firewall of China (GFW) apparatus in China, and
ISP censorship in Russia and India. We performed several experiments from servers deployed
in each of these regions. First, we accessed blacklisted content without using Protozoa, and
checked that it was indeed inaccessible. Then, using Protozoa, we were able to access this
content, showing that our system can successfully breach through existing censorship mechanisms
deployed in these regions, and provide free access to blocked Internet content.

4.2 Threat Model

The general system model of a multimedia covert streaming (MCS) tool is illustrated in
Figure 4.2. It represents two users, one acting as client (Alice), and a second acting as proxy
(Bob). The client is located in a censored region controlled by a state-level adversary, and the
proxy is based in a free Internet region. The adversary is able to observe, store, interfere with,
and analyze all the network flows within its jurisdiction, and block the generalized access to
remote Internet services, such as CNN, Facebook, or Twitter, by the residents in the censored
region. The censorship policies can be based on the IP address or the domain name of the target
destination, the protocol used in the communication (e.g., BitTorrent or Tor), or blacklisted
content (e.g., through keyword and image filtering).
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An MCS tool aims at enabling the client to overcome the communication restrictions enforced
by the adversary by leveraging (i) the cooperation of a proxy located in the free region operated
by a trusted Internet user (Bob), and (ii) a carrier application consisting of an encrypted video-
streaming service (e.g., Skype) whose traffic the adversary authorizes to cross the boundaries
of the censored region. Both users – client and proxy – must run the MCS software on their
local computers to create a covert tunnel through the media stream managed by the carrier
application. This tunnel allows the client to contact remote hosts on the open Internet.

To defeat an MCS tool, the adversary can use deep packet inspection for pinpointing traffic
indicators that lead to the detection of a covert channel. To increase its chances for successful
detection, it may apply statistical traffic analysis techniques over collected network traces [12].
The adversary may also launch indiscriminate active network attacks aimed at perturbing the
correct behavior of covert channels lurking under seemingly legitimate flows while ensuring that
legitimate flows maintain a reasonable quality.

However, the adversary will seek only to rapidly disrupt and tear down those flows which are
suspected of carrying covert channels, and it will refrain from blocking the carrier application
altogether if such an application is reckoned to provide an important service to the population.
The adversary is also deemed to be computationally bounded, and unable to decrypt encrypted
traffic generated by the carrier application. The adversary’s control is also limited to the network:
it has no access to the persistent or volatile state of clients, proxies, or carrier application provider,
and enjoys no privileges over the software that can be executed by each party.

4.3 Parasitizing on WebRTC Streams

In designing Protozoa, we elected WebRTC media streams as the carrier medium for deploying
practical, efficient, and secure covert channels. WebRTC [112] is a W3C standardization initiative
for protocols and APIs for enabling secure real-time communication between web browsers. All
major browsers have built-in WebRTC implementations enabling the generalized use of this
technology.

WebRTC creates new opportunities for building MCS services that can simultaneously be
widely available and easy to use. By acting at this layer, any WebRTC-powered application can
be transparently used for covert data transmission. WebRTC has been currently adopted by
numerous services that integrate real-time communication capabilities1. This integration has
been greatly facilitated by the simplicity of the JavaScript WebRTC API [67]. The generalized
usage of web conferencing for professional dealings, in particular, will make it very deterring for
a state-level adversary to block all WebRTC traffic due to the extensive collateral damage to
the country’s own sustainability [58]. This profusion of WebRTC services also gives Protozoa
users a great deal of flexibility and options to choose from when it comes to picking the carrier
medium for covert transmission. Creating covert sessions is in itself a user-friendly operation
since establishing a Protozoa connection is in no way different from making a video call on a web
streaming application (including the process of joining a chatroom URL).

1There are many different WebRTC-based web streaming applications, such as social applications like Whereby
or Facebook Messenger, the gaming-focused chat Discord, professional video conferencing services like Amazon
Chime and Slack, remote coding interview software like Coderpad, or even health monitoring through Vidyo.
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Given that a widely-used WebRTC stack is openly available (in the Chromium web browser),
we have full access to the WebRTC video streaming pipelines which allows us to develop a new
efficient and secure covert data encoding technique named encoded media tunneling. In existing
raw media tunneling tools, the covert data is encoded as pixels of the carrier video frames.
Unfortunately, given that the raw input signal undergoes lossy compression by the video codec
of the carrier application, a significant amount of redundancy must be included to enable the
covert data recovery by the receiver which degrades the utilization efficiency of the covert channel.
Moreover, using up all possible pixel area of the carrier frames for encoding covert data reduces
the video codec’s compression efficiency, which increases the network packet sizes and deforms
the packet size frequency distribution when compared to that of legitimate flows. Because this
discrepancy can be detected by an adversary, the covert channel tools must be parsimonious at
using up the video stream’s pixel area thereby throttling even further the bandwidth capacity of
the covert channel. Encoded media tunneling overcomes these limitations and allows for boosting
the capacity of covert channels while offering strong resistance to traffic analysis attacks. Next,
we describe our technique as we present Protozoa.

4.4 Protozoa

This section presents Protozoa, a system that provides covert channels over WebRTC media
sessions2. Next, we present its architecture and then describe its most relevant technical details.

4.4.1 Architecture

Figure 4.3 depicts the architecture of Protozoa. In Protozoa, the carrier application consists of
a web application that uses the WebRTC framework for providing a point-to-point live streaming
service between its users, e.g., Whereby. Typically, such an application consists of a backend
that handles the signaling and session establishment of video calls between participants, and
client-side JavaScript & HTML code that initiates video calls and manages the video transmission
via the WebRTC API provided by the browser. The resulting media stream will be used by
Protozoa as the carrier for a covert channel.

2“Protozoa” alludes to parasitic biological organisms which feed on other organisms.
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The MCS tool is materialized by the Protozoa software bundle which targets the Linux
platform, and it is set up differently to work as client or proxy by two participating parties.
The client will be able to execute unmodified IP applications whose traffic can seamlessly be
routed through the WebRTC covert channel by the proxy to destination hosts anywhere in the
free Internet region. Figure 4.3 shows Alice (client) executing a local application for accessing
cnn.com using Bob’s computer as proxy.

The Protozoa software bundle comprises four main components: gateway server, encoder
service, decoder service, and SOCKS proxy server. Both client and proxy run the gateway server
and the encoder and decoder services. The proxy also runs the SOCKS proxy server. Both
endpoints leverage network namespaces for transparent interception and manipulation of IP
packets. All these components cooperate in forwarding covert IP traffic by implementing three
cross-cutting functional layers. Next, we explain how these layers operate by introducing them
in a bottom-up fashion.

1. WebRTC layer: This layer is responsible for the setup and management of a point-to-point
WebRTC covert channel between two parties, and it is implemented by the gateway servers
running on each communication endpoint. The covert channel is piggybacked on a WebRTC
media stream instantiated by a carrier web streaming application. This channel supports full-
duplex bidirectional communication and exchanges Protozoa messages defined in a specific
format. These messages can contain arbitrary IP payload. The gateway server is built out of
a modified Chromium browser, and instrumented with the placement of two hooks – upstream
and downstream – in the WebRTC stack. We leverage Chromium’s functionality to provide a
web browsing UI and runtime environment which will allow for the execution of the client-side
WebRTC application code. The hooks intercept the WebRTC streams so as to replace the
payload of the WebRTC video frames with covert Protozoa messages. The gateway server opens
two pipes for receiving upstream and downstream messages from the codec layer.

2. Codec layer: This layer performs two complementary encoding and decoding operations.
The former is responsible for encoding streams of IP packets generated by local networked
applications. Packets are read from a libnetfilter queue [140], and encapsulated into Protozoa
messages, which are forwarded to the local gateway server and then delivered to the remote
endpoint. Decoding performs the reverse operation, i.e., reads incoming Protozoa messages from
the local gateway server, extracts the enclosed IP packets, and writes them to a raw socket
to be routed to their final destination. These operations are coordinated by the encoder and
decoder at both endpoints to sustain simultaneously two IP packet flows, i.e., upstream and
downstream. Internally, these components maintain packet and message queues, and implement
packet fragmentation and reassembly so as to efficiently use the covert channel capacity.

3. SOCKS layer: This layer enables the exchange of IP packets between the networked
applications running on the client, and a remote Internet host through a SOCKS v5 proxy
server running on the proxy. This is achieved by the use of Linux’s network namespaces and
configuration of iptables. Namespaces are implemented by the Linux kernel and allow for the
creation of virtual network interfaces. In our context, we use namespaces for creating a virtual
network environment for the client application and a second one for the SOCKS proxy server.
Each environment features a virtual network interface that is exposed to the local processes with
a specific IP address, e.g., 10.10.10.10, or 20.20.20.20, respectively (see Figure 4.3). Protozoa then
configures the local iptables so as to route all (upstream) IP packets with destination address
20.20.20.20 to the namespace of the proxy, and all (downstream) IP packets with destination
address 10.10.10.10 to the namespace of the client. Thus, by configuring a client application to use
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Figure 4.4: Covert session: gear symbol denotes user actions.

the IP address 20.20.20.20 as SOCKS proxy, all its IP connections will be transparently delivered
to the SOCKS server proxy, which in turn will deliver the packets to its remote destination. So,
for instance, the web request to cnn.com depicted in Figure 4.3 can be performed by running the
curl command on a Linux terminal as follows:

$ ip netns exec PROTOZOA_ENV_CLIENT
curl -x socks5h://20.20.20.20:1080 https://cnn.com

This means that, in order to use Protozoa’s covert tunnels, the user must configure the client
application to use a SOCKS proxy. For client applications that do not natively support the use
of SOCKS proxy servers, the user can use an additional tool, proxychains [166], which provides
the client application with SOCKS proxy support.

4.4.2 Execution Workflow

This section describes the execution workflow involved in a complete communication using
Protozoa covert tunnels. Using the example depicted in Figure 4.3, we describe the full message
exchange sequence that takes place in order for Alice to fetch a web page from cnn.com through a
WebRTC covert tunnel facilitated by Bob, who is an individual volunteer trusted by Alice. This
tunnel is created through a WebRTC video call between Alice and Bob using Whereby in the
course of a Protozoa covert session, which is divided into two stages: covert session establishment,
and covert data transmission. Figure 4.4 represents the messages exchanged.

1. Covert session establishment: The covert tunnel is set up between client and proxy,
requiring both participants to agree on a common rendezvous point for a WebRTC media
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connection. In our example, Alice and Bob use the web browsing interface of their Protozoa
gateway to join a common video chatroom. They begin by bootstrapping the Protozoa software:
Alice in client mode (A1), and Bob in proxy mode (B1). Then, Alice accesses whereby.com,
creates a password-protected chatroom, and obtains the chatroom URL (A2). Similarly to using
alternative MCS tools [10, 105], Alice uses an out-of-band channel, e.g., email, social network
web site, or mobile app (e.g., Whatsapp) to share the chatroom URL and password with Bob (A3
and B2). Both users can now join the chatroom (A4 and B3) and initiate a video call by feeding
a carrier video stream from their local cameras or (optionally) from a prerecorded video; this
video will be replaced by covert payload. As the WebRTC video stream is initiated, Protozoa
hooks into it, and sets up the covert tunnel.

2. Covert data transmission: Once the covert tunnel is ready, Alice can access remote
Internet services. For instance, to access cnn.com, Alice can simply run the curl command listed
in the section above to issue an HTTP GET request to cnn.com. The IP traffic generated from
this request will be transparently tunneled through the covert channel. Protozoa will continuously
stream video until the termination of the covert session, even when there is no covert traffic to
be transmitted; in this case, dummy payload (chaff) is sent.

4.4.3 Network-level Security of Covert Sessions

At covert data transmission, standard WebRTC ensures that all exchanged packets are
integrity-protected and the message payload containing sensitive video data is encrypted. Thus,
an adversary cannot read its content, or modify it without detection. Nevertheless, we must
ensure that the covert session has been securely established. In particular, an adversary may
attempt a man-in-the-middle or an impersonation attack during the session negotiation phase
(see Figure 4.4) enabling it to decrypt the message payload and inspect the covert data. To
prevent these attacks, Protozoa leverages the security mechanisms implemented by WebRTC
and by the carrier WebRTC web streaming application, namely the following ones:

a) HTTPS: Client and proxy run client-side code of the WebRTC web application which connects
to its backend servers through HTTPS. This means that all messages involving interactions with
the backend (i.e., A2, A4, B3) will be exchanged over TLS-enabled secure channels. In particular,
this prevents an adversary from obtaining the URL that would allow it to join the chatroom, or
to mount a MITM by advertising different URLs to client and proxy.

b) SIP / DTLS-SRTP: To establish a media session, WebRTC leverages the Session Initiation
Protocol (SIP) to signal one endpoint’s intention (e.g., the client’s) to connect to its correspond-
ing peer (e.g., the proxy). This protocol involves the communication between each endpoint
(client/proxy) and a SIP server run by the WebRTC application provider (see Figure 4.3). This
server is used to exchange media session parameters between endpoints, and it is combined with
the DTLS-SRTP protocol [118, 223] to perform an initial key exchange so as to offer protection
against man-in-the-middle attacks. The WebRTC application provider also runs a STUN server
which helps the endpoints located behind a NAT to determine their respective public (NAT’ed) IP
addresses, and share them with their peers. To ensure that the media sessions between endpoints
are not hijacked and pointed to different IP locations, the connection attempts to the IP addresses
of target endpoints are secured by a MAC, which is computed using the key exchanged in the
signaling channel [169]. Once a WebRTC session has been established, WebRTC leverages the
Secure Real-time Transport Protocol (SRTP) [17, 223] for encrypting and authenticating the
content of the media in transit.
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Figure 4.5: WebRTC software stack and Protozoa’s hooks.

4.4.4 Encoded Media Tunneling

Protozoa uses the video streams generated by client and proxy as a medium for carrying
covert IP packet data in both directions. To this end, we employ a new approach named encoded
media tunneling. Similar to existing raw media tunneling techniques [10, 105], our method
replaces carrier video information with a covert message. However, instead of replacing the pixels
of the raw input video, it replaces the bits of the encoded video signal, i.e., after the input video
has been compressed by the WebRTC video codec. This technique helps increase not only the
capacity of the channel but also its resistance to traffic analysis. In our system, it is implemented
by instrumenting the WebRTC stack of the Protozoa gateway.

Upstream and downstream hooks: Figure 4.5 illustrates the WebRTC stack as it is imple-
mented in the Protozoa gateway. It is based on the WebRTC stack bundled into the Chromium
browser. The WebRTC stack contains a built-in codec (VP8), which processes the video signal of
local web applications that use the WebRTC API. To access the video frames generated by the
WebRTC application and implement encoded media tunneling, the WebRTC stack includes two
hooks that can intercept the processing of the media stream in different directions, i.e., upstream
or downstream. The upstream hook intercepts outgoing frame data, i.e., from a local camera
device to the network. It is placed after the raw video signal has been processed by the video
engine, and right before the frame data is passed over to the transport layer where SRTP packets
are created, and sent to the network. The downstream hook intercepts incoming frame data, i.e.,
from the network to the local screen. It is placed right after the transport layer has finished
reconstructing an encoded frame sent in multiple network packets, and right before handing it
over to the video engine to be decoded and rendered on screen. We strategically placed hooks
in the WebRTC stack in order to manipulate a special data structure, named encoded frame
bitstream partitions (EFBP), where we can embed Protozoa messages.

Using EFBP as a covert data mule: To help understand how the covert data is embedded
into the carrier frame data, Figure 4.6 depicts the format of the SRTP packets, which is the
means through which video data is exchanged. The bulk of SRTP packet space is reserved for
the transmission of media payload in the field named encoded frame bitstream (EFB). This field
contains the bits of an encoded (compressed) video frame as it is generated by VP8, the default
WebRTC codec. An encoded frame contains a small (3-10 bytes) uncompressed header, and two
partitions which carry compressed bitstreams containing actual carrier video data. We call EFBP
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the contiguous space occupied by these partitions. The EFBP has five extremely interesting
properties for our problem domain:

1. The EFBP consists of a blob of bits that contains the actual video data of the carrier
stream. Since this information is irrelevant for us, we can effectively use this field for
carrying covert data by overwriting it with covert data.

2. The EFBP, once it is generated by VP8, is no longer modified by the WebRTC downstream
pipeline. This means that the covert data bits placed in this field are not going to be
corrupted, e.g., due to compression or other destructive operations, before being sent to
the network.

3. The EFBP will be used as payload of the SRTP packet, and contains no relevant metadata
that influences the transport layer logic, hence, modifying this field will not disturb the
normal functioning of packet transfer over the network.

4. The EFBP, prior to being assembled into SRTP packets, will be encrypted, and protected
with authentication markers. This means that covert data placed inside the EFBP will be
encrypted and integrity-protected for free.

5. The EFBP will be encrypted resorting to a stream cipher that preserves the plaintext size,
therefore, embedded covert messages do not change the size of encrypted EFBPs.

For all these reasons, we use the EFBP as a free storage space for transmitting covert data
in the form of Protozoa messages.

Protozoa message transmission: To embed covert IP packets inside an EFBP, Protozoa
uses the message format depicted in Figure 4.6. A single message consists of multiple segments
followed by a Terminator (i.e., a zero-length segment) which delimits the EFBP area occupied
by covert data. Each segment carries an entire IP packet or a packet fragment. IP packet
fragmentation may be required at the sender’s endpoint shall the next available IP packet be
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larger than the available EFBP space on the frame; this process will help to use the covert
channel in its maximal capacity. As a result, a covert IP packet can be transmitted in a single
segment or span across multiple segments. Each segment has a small header that allows the
receiving endpoint to reassemble IP packet fragments.

Message transmission works as follows. For every new frame generated by the video engine,
there is an opportunity for sending a new message, which causes the upstream hook to be
executed and given access to the encoded frame. The hook accesses the EFBP data structure,
checks its size, and tells the encoder service how much free space exists in the frame for sending
covert data. The hook waits for the encoder to assemble a new message containing locally
queued IP packets. Then, the hook copies it into the EFBP and returns, letting the WebRTC
pipeline to proceed with its normal execution until the resulting SRTP packets are transmitted.
At the receiving endpoint, the reverse operation is performed. Whenever an encoded frame is
reassembled, the downstream hook is executed and extracts the Protozoa message from the
EFBP field. This message is sent to the local decoder service, which reassembles the ingress IP
packets and forwards them to their rightful destination.

Prevent video decoding malfunction: While it is possible to fully replace the content of the
EFBP field, the undisciplined corruption of a frame bitstream can prevent the video decoder in
the WebRTC downstream pipeline from correctly decoding video frame data at the receiver’s
endpoint. In fact, we empirically verified that in such situations, WebRTC triggers congestion
control mechanisms in the downstream pipeline for ensuring the reception of video. In particular,
it advertises a Picture Loss Indication (PLI) in the accompanying RTCP control channel [163],
aimed at requesting the retransmission of a key frame upon being unable to decode the corrupted
frame data. In particular, VP8 produces two different types of encoded frames. Key frames can
be decoded without any reference to previous frames and provide seeking points within a video
stream. Delta frames are encoded with reference to the prior key frame and ensuing frames. By
advertising PLIs and sending key frames upon detecting corrupted frames, the resulting traffic
patterns produced by WebRTC applications would make Protozoa vulnerable to traffic analysis.

To overcome this problem, the downstream hook feeds the WebRTC video decoder with a
pre-recorded sequence of valid encoded frames instead of the corrupted frames received over the
network. Since the encoded frames may either be key frames or delta frames, the downstream
hook uses the uncompressed header information kept intact after covert data embedding (see
Figure 4.6) to decide which type of frame and corresponding resolution (e.g., 640x480) should be
provided to the native WebRTC video decoder. Then, it restores the corrupted bitstream with a
bitstream of a valid frame. This allows us to establish a covert channel where the size of egress
frames on the upstream pipeline is maintained, and to deliver the decoder valid data so that it
does not trigger congestion control.

4.4.5 Implementation and Optimizations

We developed a Protozoa prototype [8] by writing approximately 3,000 lines of C++ code.
This includes the instrumentation of the native WebRTC codebase of the Chromium browser
v79.0.3945.117, a stable release from January 2020. Protozoa requires the proper establishment
of a WebRTC video session for embedding data into encoded frames sent over the wire. To
this end, WebRTC must be able to access a video feed that can be directly obtained from the
physical camera device available in the system. Alternatively, it is possible to set up a camera
emulator by using the v4l2loopback kernel module [193] and feed recorded video with the help
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of the ffmpeg video library [57]. In Section 4.6, we leverage the latter method for evaluating
Protozoa in light of different video profiles.

Fine-tuning of IP packet queues: We performed an important optimization related to the
size of the packet queues maintained internally by Protozoa’s encoding service. Specifically, we
refer to the queue that holds intercepted IP packets generated in the upstream pipeline network
namespace. A typical rule-of-thumb for managing packet queues suggests the parameterization of
a buffer size according to the following formula: Buffer Size ≥ RTT * Channel Bandwidth [119].
According to our experimental results, we conservatively assume that each packet in the queue has
a size equal to the MTU. Additionally, we empirically verify that the round-trip-time experienced
by our system is ≈200ms when connected in a LAN network, i.e., when the latency between
WebRTC hosts is sub-millisecond. Configuring our packet queue with the above parameters
yields a queue size of 24 packets for the 200ms round-trip-time experienced by Protozoa and a
bandwidth of approximately 1.4Mbps achieved when sending video at 640x480 resolution.

4.5 Evaluation Methodology

This section describes our evaluation methodology for assessing the quality and performance
of our Protozoa prototype.

4.5.1 Evaluation Goals and Approach

The goal of our experiments is twofold: i) evaluate the performance of Protozoa’s covert
channel in face of different network conditions, and ii) assess the ability of our system to resist
against detection from an adversary able to perform statistical traffic analysis attacks.

To measure the performance of the covert IP flows tunneled by Protozoa covert WebRTC
session, we leverage iPerf. This enables us to stress the covert channel capacity.

When testing our system’s ability to resist traffic analysis attacks, we aim to reproduce the
ideal conditions for the adversary. Essentially, the attacker’s aim is to analyze the statistical
properties of WebRTC’s media (SRTP) and control (RTCP) packet flows so as to identify Protozoa
traffic among legitimate WebRTC media sessions. To this end, we apply a state-of-the-art traffic
classifier [12], which leverages two different sets of features: i) quantized packet size distributions,
and ii) summary statistics computed from packet size and inter-arrival time distributions. Then,
we collect a balanced dataset composed of legitimate and Protozoa WebRTC packet traces, and
measure the AUC achieved by the above classifier when performing binary classification using
10-fold cross-validation. Note that, in the wild, class imbalance is expected to be skewed towards
the abundance of legitimate streams and would likely make the adversary’s task harder than in
a controlled lab environment [38]. To ensure that the collected traces reflect realistic convert
traffic transmissions, we keep the channel busy by injecting artificial chaff into the covert tunnel
(using iPerf) while collecting these traces.

4.5.2 Experimental Testbed and Datasets

Our laboratory testbed, illustrated in Figure 4.7, is composed of four 64-bit Ubuntu 18.04.5
LTS virtual machines (VMs) provisioned with two virtual 2,3 GHz Intel Core i5 CPU cores and
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Figure 4.7: Laboratory setup.

16GB of RAM. VM1 and VM3 execute an instance of our prototype, operating as a Protozoa
client and proxy, respectively. VM2 acts as the gateway and router for the two Protozoa VMs, and
mimics the operation of a censor middlebox by collecting packet traces required for conducting
statistical traffic analysis. Finally, VM4 is used to pose as a server in the open Internet which
receives requests from the Protozoa proxy in VM3 acting on behalf of the client in VM1.

To conduct our experiments, we collected a total of 2000 YouTube video samples from four
different categories (500 videos each) labeled by hand. These categories focus different video
profiles assumed to be common in WebRTC services, and which we identify as Chat, Coding,
Gaming, and Sports. For generating packet traces pertaining to legitimate and Protozoa media
sessions, we split each of the four datasets (one for each video profile) in half. Then, we establish
250 legitimate WebRTC connections and 250 Protozoa connections while mirroring the video
transmitted on each side of the connection. This allows us to avoid the contamination of the
training data by mixing the same video samples in both legitimate and Protozoa connections.
Video is set to be transmitted at 30fps and at a 640x480 resolution over the whereby.com WebRTC
service, unless stated otherwise. Packet traces are collected for a duration of 30 seconds, a
time interval shown in prior work to be sufficient for accurate detection of MCS streams using
state-of-the-art statistical traffic analysis [12]. As described in Section 4.6, we validate that the
use of longer traces did not significantly affect our results.

4.5.3 Metrics

We adopt a set of metrics for evaluating Protozoa’s covert channel performance and resistance
against statistical traffic analysis:

Performance metrics: In order to be able to compare Protozoa to existing work, we leverage
throughput as the metric of performance of the covert channel. Additionally, we are interested
in measuring Protozoa’s covert channel efficiency, which provides the ratio between the total
amount of data transmitted in the covert channel and the total available space in encoded video
frame bitstreams.

Security metrics: Akin to earlier studies on the resistance of MCS systems to traffic analysis
attacks, we use the following metrics to evaluate Protozoa’s traffic analysis resistance capability:
true positive rate (TPR), false positive rate (FPR), and the area under the ROC curve (AUC).
The TPR measures the fraction of Protozoa flows that are correctly identified as such, while
the FPR measures the proportion of legitimate flows erroneously classified as Protozoa flows.
An adversary aims at obtaining a high TPR and a low FPR when performing covert traffic



4.6. EVALUATION USING MICROBENCHMARKS 87

0.0 0.2 0.4 0.6 0.8 1.0
a) False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

itiv
e 

Ra
te

RTT=50msRTT=50ms

Packet Length Dist. - AUC = 0.57
Sum. Stats. - AUC = 0.59

b)

Figure 4.8: Baseline traffic analysis and performance results.

classification. The Receiver Operating Characteristic (ROC) curve plots the TPR against the
FPR for the different possible cutout points for classifiers possessing adjustable internal thresholds.
The AUC [56] summarizes this trade-off. Note that an AUC of 0.5 is equivalent to random
guessing.

In the following sections, we evaluate our prototype by resorting to a set of microbenchmarks
and by conducting a number of experiments when deploying Protozoa in real-world scenarios.

4.6 Evaluation using Microbenchmarks

In this section, we evaluate Protozoa using a series of microbenchmarks. We test our system
on a baseline scenario and then study the effects of varying the network and carrier conditions.

4.6.1 Baseline Deployment

Protozoa can be evaluated in multiple scenarios that depend on many factors (e.g., carrier
video, carrier WebRTC application, or network conditions). Since validating all these dimensions
is a hard endeavor, we first present an analysis of Protozoa based on a baseline deployment which
gathers a set of conditions expected to be found in a real-world deployment of Protozoa.

Our baseline deployment encompasses the following configuration. First, we select Whereby,
a popular WebRTC application, as the carrier application for the Protozoa covert channel.
Second, we select the videos comprising the Chat dataset as carrier media. Third, we assume
that the round-trip-time (RTT) between Protozoa endpoints (VM1 - VM3) is in the order of
50ms, a typical value for connections established within the same continent [197, 147]. Lastly, we
assume a 15ms RTT from the Protozoa proxy to an open Internet service (VM3 - VM4). This
value is reasonable even when accessing foreign services due to the proliferation of CDN edge
servers which may be regionally co-located with a Protozoa proxy [147, 194].

4.6.2 Baseline Performance Results

We now evaluate Protozoa’s resistance against traffic analysis and assess the throughput
and efficiency of the covert channel in the baseline deployment presented in the previous section.
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Duration (s) 10 20 30 40 50 60

AUC 0.56 0.60 0.59 0.58 0.58 0.61

Table 4.1: Classifier’s AUC for varying trace durations.

Traffic analysis resistance: Figure 4.8a) depicts the ROC curve of the classifier when at-
tempting to identify Protozoa connections resorting to two sets of features: quantized packet
size distributions, and summary statistics. Firstly, we see that summary statistics provide a
better overall detection rate, enabling the classifier to obtain an AUC of 0.59 (for the remainder
of our evaluation, we will limit ourselves to present the results corresponding to the use of
summary statistics). Secondly, the ROC curve shows that a censor would incur in a large FPR
when blocking Protozoa flows resorting to the state-of-the-art classifier. Essentially, the FPR
represents the collateral damage that results from setting the TPR to a specific cutoff value. As
an example, if we assume that the censor would like to block 80% of all Protozoa flows (TPR =
0.8), it would erroneously flag approximately 60% of all legitimate flows as covert channels (FPR
= 0.6). Although the cutoff FPR value is determined in a discretionary fashion by each censor
(i.e., possibly withstanding different TPR/FPR tradeoffs), the figure shows that distinguishing
between Protozoa streams and legitimate media streams is close to random guessing.

To assess the robustness of Protozoa for packet traces of different durations, we repeated the
same set of experiments using trace lengths up to 60 seconds as depicted in Table 4.1. These
results suggest that the size of the traces has no meaningful impact on the AUC, given that the
measured AUCs exhibit small fluctuations between 0.56 and 0.61. Thus, in the interest of scaling
up our experiments, we conducted our remaining evaluation resorting to 30s traces.

Performance: Figure 4.8b) depicts a boxplot showing the throughput achieved by Protozoa’s
covert channels. We can observe that, under the baseline deployment conditions, Protozoa
achieves an average throughput of 1422 Kbps, while the 90th percentile sits at 1510 Kbps, and
the 75th percentile at 1480Kbps. This amounts to a throughput increase of 3× when compared
to Facet, and a 3-fold order of magnitude increase when compared to DeltaShaper.

Additionally, we analyzed the efficiency of Protozoa’s covert channel by measuring the ratio
between the data embedded in each outgoing frame and the size of the frame. When using iPerf
to stress the upstream covert channel link, we observed that Protozoa used 98.8% of the available
frame space to transmit covert data. This suggests that our packet encoding scheme can use the
majority of the encoded frame bitstream to transfer covert data.

Lastly, regarding resource consumption, the client and proxy VMs peaked at a 21.6% usage
of their total CPU and at 596MB of memory usage. These numbers suggest that Protozoa can
be executed on various commodity hardware platforms.

In the next sections, we evaluate our system beyond our baseline setup across multiple other
network deployment scenarios.

4.6.3 Varying Network Conditions

Assessing the security of our prototype in face of different network conditions is paramount
i) to understand whether Protozoa can remain undetectable in practical deployment scenarios,
and ii) to ascertain whether our system can withstand active network perturbations introduced
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Figure 4.9: Throughput of Protozoa’s covert channel on different network conditions.
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Figure 4.10: ROC AUC obtained when detecting Protozoa flows on different network conditions.

by a network adversary, aimed at disclosing the operation of the system or at breaking the
covert channel connection. To manipulate network conditions, we leveraged the traffic control
facility Linux NetEm [75] and varied the network conditions in the following dimensions: i)
latency, ii) bandwidth, and iii) packet loss. A recent study [86] reported that WebRTC connections
can withstand a limited range of network perturbations before being torn down due to QoS
constraints. We bound the network perturbations to inject in the network according to the
ranges suggested by this study. Next, we detail the results of our experiments.

Latency variation of the covert channel: We delay packets so as to achieve a round-trip-
time (RTT) of 15ms, 50ms, and 100ms between Protozoa endpoints (VM1 - VM3). These values
emulate regional, intra-continental, and inter-continental RTTs [197, 147], while being kept
within the bounds of 300ms, recommended for establishing real-time multimedia sessions with
acceptable quality [187].

Our results are as follows. Figure 4.9 a) illustrates the breakdown of throughput achieved
by our prototype as the RTT between Protozoa endpoints increases. It shows that the latency
introduced between endpoints does not impact the throughput obtained by Protozoa. In
particular, the throughput remains at an average of about 1420Kbps in the three configurations
tested. Figure 4.10 a) presents the ROC curves obtained by the classifier when attempting to
detect Protozoa in a network with different RTT configurations. We see that the classifier obtains
a maximum AUC of 0.59. Thus, irrespective of the latency introduced between endpoints, the
adversary does not obtain an advantage at distinguishing Protozoa flows.

Bandwidth variation of the covert channel: We symmetrically limit the bandwidth of
the link to 1500Kbps, 750Kbps, and 250Kbps, beyond the unrestricted bandwidth conditions
assumed in our baseline case. In these conditions, WebRTC streams use approximately 80% of
the available bandwidth, agreeing with other studies [86].
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Figure 4.9 b) shows that the achievable throughput tends to decrease as bandwidth is more
scarce. For instance, while Protozoa’s throughput averages 975Kbps when bandwidth is capped
at 1500Kbps, it drops to 460Kbps at 750Kbps, and attains an average 91Kbps when bandwidth
is only 250Kbps. This effect is expected since the constrained amount of bandwidth leads to the
decrease of frame rates and forces the downgrade of video resolution and encoded frame size,
thus reducing the available space for embedding covert data. For instance, a 250Kbps bandwidth
cap only allows a WebRTC stream to obtain ≈25 FPS at a low 480x270 resolution [86].

As for resistance to traffic analysis, Figure 4.10 b) reveals that the bandwidth variation does
not provide sufficient information for the classifier to accurately distinguish between legitimate
and Protozoa connections, peaking at 0.65 AUC when the bandwidth is limited to 1500Kbps.

Packet loss rate variation of the covert channel: We assess the properties of Protozoa
when the media channel is subjected to packet losses. Following the experiments of Jansen et
al. [86], we drop 2%, 5%, and 10% of the packets pertaining to WebRTC connections. Each of
these loss rates causes WebRTC to increase sending rate (2%), slowly increase sending rate (5%),
and converging data rate to values leading to the tear-down of the video stream (10%). Typical
recommendations for real-time media traffic sit at no more than 1% packet loss [187].

Figure 4.9 c) shows that while Protozoa’s throughput is negatively affected by increasing
packet loss rates, our prototype is still able to sustain an average throughput of 1130Kbps
for packet loss rates of 2% and of 360Kbps for a loss rate of 5%. While a 10% packet loss
substantially decreases the throughput to 160Kbps, we note that Protozoa’s covert channel
connections remained active and did not break for the duration of the experiment.

Lastly, Figure 4.10 c) shows that Protozoa preserves high-levels of traffic analysis resistance
when the network link between Protozoa endpoints is subject to variable packet loss rates.

Latency variation at the last mile: We now focus on the impact of the RTT between Proto-
zoa’s proxy (VM3) and open Internet services (VM4) to the network performance. Figure 4.11
b) shows the breakdown of throughput achieved by Protozoa when the RTT between VM1 and
VM2 endpoints is set to 50ms and the last leg of the connection to the Internet service ranges
from 15ms to 100ms.

Similarly to our earlier experiments when varying the latency between Protozoa endpoints,
the throughput is not compromised when latency increases between the Protozoa proxy and the
Internet service. The average throughput of our system is rather stable, at around 1410Kbps, for
the three tested configurations.

4.6.4 Varying Carrier Conditions

We also evaluate our system varying two carrier-specific conditions:

Varying video profiles: This experiment aims to test whether different video profiles used as
cover media affect the throughput of our system. Such a question arises since variable bitrate
video encoders, such as the ones used in WebRTC (e.g. VP8), adjust the amount of output data
according to the complexity of encoded video segments. To answer this question, we evaluate
the performance of the covert channel when established through the Chat, Coding, Gaming, and
Sports video profiles in our baseline deployment.

Performance-wise, Figure 4.12b) depicts the throughput achieved by Protozoa when using
different video profiles as cover media. We see that our system achieves a similar average
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Figure 4.11: Throughput and traffic analysis resistance obtained while varying the RTT between
VM3 and VM4.
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Figure 4.12: Throughput and traffic analysis resistance while using different video profiles.

throughput of approximately 1400Kbps for Chat, Gaming, and Sports media flows, while reaching
an average throughput of 530Kbps when transmitting Coding media. These results concur
to the observation that a large portion of video frames remain static in live coding videos.
Additionally, these numbers suggest that the throughput is consistent within each baseline,
achieving a maximum standard deviation of 157Kbps across the Chat, Gaming, and Sports
baselines.

In turn, Figure 4.12a) shows the ROC curves for the classifier when attempting to distinguish
Protozoa connections conducted over the different video profiles. The classifier achieves a similar
AUC for all profiles (≈0.6 AUC), suggesting that the resistance against traffic analysis is preserved
irrespective of the video profile used as cover.

Varying WebRTC services: To assess whether the properties of our system hold when media
calls are established over multiple WebRTC applications, we conducted further experiments over
two additional WebRTC services: a) coderpad.io – a live coding interview application – and b)
appr.tc – Google’s bare-bones demo application based on the simple WebRTC WebAPI.

Figure 4.13a) depicts the ROC curves for the classifier when inspecting Protozoa streams
established through coderpad.io and appr.tc. The results show that the classifier obtains an AUC
of 0.58 for streams established over coderpad.io and an AUC of 0.60 for streams established over
appr.tc. In both cases, we see that Protozoa remains undetectable by a network eavesdropper.
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Figure 4.13: Throughput and traffic analysis resistance obtained with other WebRTC services.

Application Protocol Workload

A. Curl HTTP, FTP Page transfer (16 MB) in 89s
B. Transmission BitTorrent File transfer (2GB) in 3h5m
C. Mutt SMTP Send email (1KB) in 5.5ms
D. Irssi IRC Send text message (80B) in 0.44ms
E. VLC HTTP Video streaming at 20/14 fps in 240p/480p
F. Firefox HTTP Web-surfing session

Table 4.2: Real application workloads over Protozoa.

As for the throughput when establishing a covert channel resorting to the two alternative
WebRTC applications, Figure 4.13b) shows that Protozoa achieves an average throughput of
1420Kbps for appr.tc and of 1388Kbps for coderpad.io, similar to what was obtained with
whereby.com, as presented previously in Section 4.6.2.

4.7 Testing in the Wild

In this section, we test our system in multiple real-world settings. First, we present the
results of an experiment comprising the execution of a set of typical workloads conducted by
Internet users, over Protozoa. Then, as proof of concept, we show that Protozoa is able to evade
the censorship apparatus of real-world adversaries by using it to access censored content in China,
Russia, and India.

4.7.1 Testing with Real Application Workloads

We tested Protozoa with multiple networked applications as depicted in Table 4.2. We used
the baseline setup presented in Section 4.6.2. To tunnel the traffic of applications that do not
natively support a SOCKS proxy, such as mutt, we leverage proxychains [166], a SOCKS proxy
wrapper, to redirect such traffic through Protozoa.

First, we used Curl (A) over the covert channel to download files with sizes ranging from 1KB
to 256MB using both the HTTP and FTP protocols. We also verified that Protozoa is able to
uniformly distribute the bandwidth of the covert channel among simultaneous Curl connections.
In order to test Protozoa’s covert channel on a different transport protocol, we configured the
Transmission BitTorrent client (B) to download a popular Linux distribution ISO. We also found
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Protozoa to be successful when operating email – Mutt (C) – and instant-messaging – Irssi IRC
chat client (D) – applications. Additionally, we tested the ability to stream video content over
VLC (E). Lastly, we ran Firefox (F) over Protozoa to navigate different web pages and to stream
videos from YouTube, confirming that Protozoa enables interactive web-surfing tasks.

Overall, the results of our experiments show that Protozoa is able to accommodate a number
of common Internet applications, including web-browsing, video streaming, or bulk data transfer.

4.7.2 Evading State-Level Adversaries

To test Protozoa’s ability to circumvent real-world censors, we ran Protozoa in three locations
known to be active targets of Internet censorship – China [22], Russia [160], and India [219].

First, we identified sets of web pages that are blocked for each country [149, 228, 188].
We selected web pages in several categories: gambling, pornography, news/politics, drug sale,
and circumvention tools. For each set, we verified that the web pages could not be directly
accessed (i.e., without using Protozoa) using Firefox running on a server physically deployed in
the respective country. Then, we repeated this access after setting up Protozoa covert sessions.
In each server, we configured a Protozoa client to establish a covert channel towards a Protozoa
proxy located in LA, USA, and used this channel to access the blocked web pages. To run our
experiments, we resorted to virtual private servers (VPSs) in Shanghai, Moscow, and Mumbai,
respectively, and deployed the Protozoa bundle amounting to a total of ≈150 MB.

Blocking policies: We observed that browsing blocked websites in Russia and India resulted
in ISP blockpages, whereas in China they would simply not load properly. A closer look at the
traffic traces produced when trying to access blocked web pages revealed that the GFW performs
packet drops on connections aimed at blacklisted hosts. This observation is consistent with the
behavior of the GFW [22]. Browsing a blocked website from within Russia and India showed that
blocking policies implemented within datacenters are less restrictive from those applied on typical
ISP connections, i.e., we could access websites which would trigger the return of ISP blockpages
when browsed over a VPN; therefore, given that our VPSes are located inside datacenters, for
ensuring a reliable Protozoa testing, in Russia and India we route all VPS traffic through a VPN
server hosted in the same country, where we obtain blockpages when visiting forbidden websites.
This differentiation, however, did not occur on the VPS within China, where the pages found to
be blocked when browsing over a VPN inside the country were also blocked when accessing from
our VPS in a datacenter.

Availability of WebRTC services: Paramount to the functioning of Protozoa is the ability
to connect to a foreign WebRTC service. Since Protozoa makes no assumption over the WebRTC
application used as a vehicle for the covert channel, it is only necessary to find one unblocked
application within the censored region. Table 4.3 shows that multiple WebRTC applications
are available in the countries focused in our evaluation. Importantly, the table shows that,
despite several WebRTC applications being blocked in China, a user still has plenty of alternative
WebRTC media applications that can be used as a carrier for Protozoa covert channels.

Reaching censored content: To reach our blocked page sets, we leveraged whereby.com to
establish Protozoa connections. We were able to access all such blocked websites in China, Russia,
and India.
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WebRTC Application Reachability
China Russia India

appr.tc - 3 3

aws.amazon.com/chime 3 3 3

codassium.com 3 3 3

coderpad.io 3 3 3

discordapp.com - 3 3

gotomeeting.com 3 3 3

hangouts.google.com - 3 3

messenger.com - 3 3

slack.com 3 3 3

whereby.com 3 3 3

Table 4.3: Reachability tests on popular WebRTC services.

4.7.3 Ethical Considerations

The experiments conducted in this section involve the access to censored content from a
number of vantage points within countries known to experience Internet censorship. These
accesses raise important ethical concerns since they risk triggering reprisals from local authorities.
We followed the best practices described in the Menlo report [49] to guide three major decisions
of our experimental design. First, we did not recruit volunteers for our experiments. Instead,
we rented VPSes from commercial VPS providers which understand the legal implications of
offering network and computing services in each country they operate. Second, albeit using the
signalling infrastructure of existing WebRTC applications, Protozoa does not compromise in
any way the integrity of such applications. Covert traffic is exclusively forwarded by replacing
user-generated video content. Lastly, we did not collect any sensitive user data.

4.8 Security Discussion

We now discuss some potential attacks to Protozoa and defenses:

Packet dropping: An adversary may instrumentally drop a small number of selected packets
of WebRTC media streams in an attempt to dramatically slow down the covert data transmission
or disrupt the functioning of Protozoa protocols causing, in either case, a denial of service. In
contrast to other systems [66, 80], Protozoa is robust against these attacks since it does not rely
on specific packets for managing covert channels. Moreover, Section 4.6.3 shows that applications
that use Protozoa’s covert channels are able to tolerate a large percentage of dropped packets
without terminating.

Active probing: Active probing attacks aim at identifying Protozoa proxies, e.g., by attempting
to join some chatroom and identify the transmission of corrupted video streams which telltale the
presence of covert channels. By selecting WebRTC chatrooms that implement member admission
controls, e.g., using passwords or contact list checks, Protozoa can evade this attack.

Fingerprinting of cover videos: If Protozoa is set up to stream a pre-recorded cover video,
an adversary may attempt to identify a particular user by using that video for fingerprinting
Protozoa covert channels. This threat can be countered by: i) rotating the pre-recorded video, ii)
or feeding a live video from the local camera.
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Long-term user profiling: An adversary may keep track of a user’s interactions with WebRTC
services so as to build a profile of interactions with multimedia applications. An accurate profile
may enable an adversary to indirectly detect the usage of Protozoa through connections with
out-of-ordinary duration or by detecting the placement of calls at unusual times of the day.
Assessing the feasibility of this threat is an interesting direction for future work.

4.9 Related Work

We now describe past approaches aimed at evading Internet censorship and locate Protozoa
in the spectrum of existing techniques.

4.9.1 Comparison with Similar Systems

Protozoa fits in the family of multimedia covert streaming systems. It stands out by
introducing a new technique – encoded media tunneling. Next, we compare our system against
two other branches of this family (Figure 4.1 puts all these systems in perspective.)

Media protocol mimicking: Previous systems have introduced traffic morphing [211] tech-
niques for the transmission of covert data by imitating multimedia protocols. For instance, by
entirely replacing the payload of media packets by encoded data, SkypeMorph [129] and Censor-
Spoofer [201] deliver a reasonable throughput of 344Kbps [129] and 64Kbps [201], respectively.
However, due to the difficulty in mimicking the complete behavior of multimedia protocols, these
systems are prone to be detected with 100% accuracy through a combination of passive and
active attacks [80]. In contrast, Protozoa provides not only strong resistance against traffic
analysis, but also higher throughput (around 1.4Mbps).

Raw media tunneling: Systems like FreeWave [82], Facet [105], DeltaShaper [10], and Covert-
Cast [121] modulate covert data in the audio/video input of multimedia applications. Some of
these systems can sustain a reasonable throughput. For instance, Facet can reach 471Kbps [105]
and CovertCast 168Kbps [121]. However, these systems are vulnerable to statistical traffic analy-
sis techniques [66, 12]: FreeWave, Facet, CovertCast are detected with over 99% accuracy, while
DeltaShaper between 85%-95% [66, 12]. Protozoa outperforms these systems both performance
and security wise.

4.9.2 Beyond Multimedia Covert Streaming

Protocol mimicking is a general technique for carrying covert data by imitating the behavior
of a carrier protocol. However, most solutions [204, 51, 52] suffer from the same limitations as
their multimedia protocol siblings and are prone to network attacks [80, 200].

Protocol tunneling has been used in other contexts. SWEET [233], CloudTransport [29], and
Castle [71] tunnel covert data through steganographically marked email, cloud storage services,
and real-time strategy games, respectively; meek [60, 178] leverages domain fronting to hide Tor
traffic inside HTTPS connections to allowed hosts. However, unlike Protozoa, some of these
systems have not been evaluated against state-of-the-art traffic analysis attacks, and others have
already been shown to be vulnerable to detection [200].
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There are many other related techniques. Ephemeral proxies like Snowflake [59, 58] (which
uses WebRTC connections) redirect traffic through short-lived proxies provided by volunteers;
however, unlike Protozoa, the covert traffic is fingerprintable and the presence of secret messages
can be detected through traffic analysis. Protocol randomization [46] transforms traffic into
random bytes to evade protocol blacklists, but it fails in the presence of protocol whitelisting and
is vulnerable to entropy analysis [200]. Refraction networking [63, 23, 24, 53, 64, 81, 90, 212, 213]
incorporates special traffic redirection routers inside cooperative ISPs which need to be carefully
placed, otherwise a censor can avoid network paths containing such routers [136, 138, 174]. In
contrast, Protozoa relies on trusted users located outside the censored region. Packet manipulation
strategies [92, 203, 101, 22] aim at invalidating the state of censors’ firewalls; Protozoa’s covert
channels can breach through such firewalls provided that WebRTC traffic is not blocked.

Lastly, some systems provide access to censored content cached in CDNs [79, 235]. Protozoa
provides access to any publicly available content accessible to the Protozoa proxies. Mass-
Browser [139] leverages cache browsing [79, 235] and volunteer proxies to reach censored content.
However, since the connections between clients and proxies are protected with a variant of
Obfsproxy [46], they are also affected by the limitations of protocol randomization.

4.10 Conclusions

This paper introduced Protozoa, the first multimedia-based censorship circumvention tool
which generates secure covert channels by instrumenting the innards of the WebRTC multimedia
framework. Our evaluation shows that Protozoa traffic cannot be distinguished from typical
WebRTC flows by state-of-the-art traffic analysis techniques. Further, the results of our evaluation
show that Protozoa enables an increase in throughput of up to three orders of magnitude when
compared against similar (and less secure) tunneling tools. Currently, Protozoa requires active
user support at the proxy’s end and demands users to find trusted proxies for exchanging covert
content. Devising a scalable solution for finding trusted proxies is an interesting direction for
future work.
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