CS 798: Digital Forensics and Incident Response

Lecture 9 - Deleted File Recovery and File Carving

Diogo Barradas
Winter 2025

University of Waterloo

We talked about file systems...

Application
Analysis

Database
Analysis

File System
Analysis

/

\Volume AnaIysis|

\ Physical Storage Media AnaIysis\ \Network Analysis

Source: ,File System Forensic Analysis”, Brian Carrier

e |s it possible to recover formerly deleted files?
e How to recover deleted files when no metadata is available?

2/45

1. Recovery of deleted files
2. File carving

3. Advanced file carving techniques

3/45

Recovery of deleted files

TSK provides analysis tools in each category

e Data evidence categories of the ExtX file system family

File System Layer Tools

These file system tools process general file system data, such as the layout, allocation
structures, and boot blocks

= fsstat: Shows file system details and statistics including layout, sizes, and labels.

File Name Layer Tools

These file system tools process the file name structures, which are typically located in
the parent directory.
= ffind: Finds allocated and unallocated file names that point to a given meta data
structure.
= fis: Lists allocated and deleted file names in a directory.

Meta Data Layer Tools

These file system tools process the meta data structures, which store the details about
afile. Examples of this structure include directory entries in FAT, MFT entries in NTFS,
and inodes in ExtX and UFS.
= icat: Extracts the ata units of a file, which is specified by its meta data address
(instead of the file name).
= ifind: Finds the meta data structure that has a given file name pointing to it or the
meta data structure that points to a given data unit.
= ils: Lists the meta data structures and their contents in a pipe elimited format.
= istat: Displays the statistics and details about a given meta data structure in an
easy to read format.

Data Unit Layer Tools

These file system tools process the data units where file content is stored. Examples of
this layer include clusters in FAT and NTFS and blocks and fragments in ExtX and

= blkcat: Extracts the contents of a given data unit.

= blkis: Lists the details about data units and can extract the unallocated space of the
file system.

= blkstat: Displays the statistics about a given ata unit in an easy 1o read format

= blkcalc: Calculates where data in the unallocated space image (from bikis) exists in
the original image. This is used when evidence is found in unallocated space.

File System Journal Tools

These file system tools process the journal that some file Systems have. The journal
records the metadata (and sometimes content) updates that are made. This could help
recover recently deleted data. Examples o file systems with journals include Ext3 and
NTFS.

= joat: Display the contents of a specific journal block.

= jls: List the entries i the file system journal.

https://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview

4/45

https://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview

Example: Deleted file identification and recovery

e The goal will be to identify and recover a deleted file from an
Ext2 FS image able2.dd using the file's unallocated inode

e List the current partition images using TSK's mmls tool

barry@forensicl:~/able2$ mmls able2.dd
DOS Partition Table

offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description
000: Meta 1 Primary Table (#0)
ee1: --—-——-—- 56 57 Unallocated

002: 000:000 0000000057 0000010259 0000010203 Linux (Ox83)

003: 000:001 0000010260 0000112859 0000102600 Linux (0x83)

004: 000:002 0000112860 0000178694 0000065835 Linux Swap / Solaris x86
(0x82)

005: 000:003 0000178695 0000675449 0000496755 Linux (0x83)

e We are looking for information on the root partition (/)
e Starts at sector 10260, numbered 03 in the mmls output

5/45

er information about the root partition

e Run fsstat with -0 10260
to gather file system
information at that offset

e This offset is where the root
partition is located

barry@forensicli:~/able2$ fsstat -o 10260 able2.dd | less
FILE SYSTEM INFORMATION

File System Type: Ext2

Volume Name:

Volume ID: 906e777080e09488d0116064dal8cOc4d

Last Written at: 2003-08-10 14:50:03 (EDT)
Last Checked at: 1997-02-11 00:20:09 (EST)

Last Mounted at: 1997-02-13 02:33:02 (EST)
Unmounted Improperly
Last mounted on:

Source 0S: Linux

Dynamic Structure

InCompat Features: Filetype,

Read Only Compat Features: Sparse Super,

METADATA INFORMATION
Inode Range: 1 - 12881
Root Directory: 2

Free Inodes: 5807

(CONTENT INFORMATION

Block Range: 0 - 51299

Block Size: 1024

Reserved Blocks Before Block Groups: 1
Free Blocks: 9512

6/45

List the contents of the root directory

e Run the f1s command with only the -o option and, by
default, it will run on the FS's root directory (inode 2)
e Would also work running: fls -o 10260 able2.dd 2

barry@forensicl:~/able2$ fls -0 10260 able2.dd
d/d 11: lost+found

d/d 3681: boot

d/d 7361: usr

d/d 3682: proc

d/d 7362: var

d/d 5521: tmp

d/d 7363: dev

d/d 9201: etc

d/d 1843: bin

d/d 1844: home

d/d 7368: lib

d/d 7369: mnt

d/d 7370: opt

d/d 1848: root

d/d 1849: shin

r/r 1042: .bash_history

d/d 11105: .001

d/d 12881: $OrphanFiles 7/45

A closer look at the root directory

File type in file directory

e .bash_history is a regular file in both File type in the inode entry

the file's directory and inode entry Inode number
. - File name
e Its inode is listed as 1042 l v
e All others are directories d/d 11: Lost+found

d/d 3681: boot
d/d 7361: usr

e $OrphanFiles is a virtual folder created d/d 3682: proc

by TSK and assigned a virtual inode d/d 7362: var

d/d 5521: tmp

e Contains virtual file entries that d/d 7363: dev

d/d 9201: etc

represent unallocated metadata d/d 1843: bin

tri h th d/d 1844: home

entries where there are no d/d T36s: 1ib

corresponding file names d/d 7369: mnt

. d/d 7370: opt

e Orphan files can be accessed by d/d 1848: root

0 o d/d 1849: sbin
specifying the metadata address but r/r 1042: .bash_history

d/d 11105: .001
d/d 12881: S$OrphanFiles

not through any file name

8/45

List deleted files

e By default f1s shows
both allocated and
unallocated files

e Use fls (-d) to see
inodes and file names
of deleted files only

e *: file was deleted

o (realloc): inode
reallocated

e orphan:
unallocated inodes

barry@forensicl:~/able2$
r/r * 11120(realloc):

r/r
r/r
r/r
r/r
r/r
r/r
r/r
r/r
d/r
r/r
1r
1/r
1/r
1/r
1/r
1/r
r/r
r/r
r/r
r/r
r/-
r/r
r/r
_/r
_/r
-/r
_/r
-/r
_/r

*

B T T T T e

fls -0 10260 -Frd able2.dd
var/lib/slocate/slocate.db.tmp
10063: var/log/xferlog.5
10063: var/lock/makewhatis.lock
6613: var/run/shutdown.pid
1046: var/tmp/rpm-tmp.64655
6609 (realloc): var/catman/catl/rdate.l.gz
6613: var/catman/catl/rdate.l.gz
6616: tmp/logrot2veQll
2139: dev/ttYzo/lrkn.tgz
10071 (realloc): dev/ttYzo/1rk3
6572 (realloc): etc/X11/fs/config-
1041 (realloc): etc/rc.d/rc0.d/K83ypbind

1042 (realloc): etc/rc.d/rcl.d/K83ypbind
6583 (realloc): etc/rc.d/rc2.d/K83ypbind
6584 (realloc): etc/rc.d/rc4.d/K83ypbind
1044: etc/rc.d/rc5.d/K83ypbind

6585 (realloc): etc/rc.d/rc6.d/K83ypbind
1044: etc/rc.d/rc.firewall~

6544 (realloc): etc/pam.d/passwd-

10055 (realloc): etc/mtab.tmp
10047 (realloc): etc/mtab~
[°H etc/.inetd.conf.swx

2138(realloc): root/lolit_pics.tar.gz
2139: root/lrkn.tgz

1055: $0rphanFiles/OrphanFile-1055

1056: $0rphanFiles/OrphanFile-1056

1057: $0rphanFiles/OrphanFile-1057

2141: $0rphanFiles/OrphanFile-2141

2142: $0rphanFiles/OrphanFile-2142

2143: $0rphanFiles/OrphanFile-2143 9/45

A deeper look at the deleted file entries

o All of the files listed have an * before the inode
e This indicates the file is deleted
e Some files are annotated with “realloc”

e The file is marked as deleted, but the inode is in use
e This means the inode may have been reallocated to a new file

r/r * 2138(realloc): root/lolit_pics.tar.gz]

e If “realloc” is not present, both the directory entry and the
inode allocated to the deleted file have been unallocated

e Orphan files point to former inode; directory entry reference is
not available

10/45

Gather information about a file based on inode

e Using metadata (inode) tools, we can learn more information

about a deleted file, e.g., root/1rkn.tgz

r/r * 2139: root/lrkn.tgz]

e Use istat to gather information about inode 2139

barry@forensicl:~/able2$ istat -o 10260 able2.dd 2139 | less
inode: 2139

Not Allocated

Group: 1

Generation Id: 3534950564

uid / gid: 0 / ©

mode: rrw-r-—-r--—

size: 3639016

num of links: ©

Inode Times:
Accessed: 2003-08-10 00:18:38 (EDT)

File Modified: 2003-08-10 00:08:32 (EDT)
Inode Modified: 2003-08-10 00:29:58 (EDT)
Deleted: 2003-08-10 00:29:58 (EDT)

Direct Blocks:

22811 22812 22813 22814 22815 22816 22817 22818
22819 22820 22821 22822 22824 22825 22826 22827 11/45

Extract and examine the deleted file

e Use icat to send the contents of the data blocks assigned to
inode 2139 to a file

barry@forensicl:~/able2$ dcat -o 10260 able2.dd 2139 > lrkn.tgz.2139

e Check if it really is a compressed archive tgz file

barry@forensicl:~/able2$ file lrkn.tgz.2139
1rkn.tgz.2139: gzip compressed data, was "lrkn.tar", last modified: Sat Oct 3
09:04:08 1998, from Unix

e List the contents of the archive
barry@forensicl:~/able2$ tar tzvf lrkn.tgz.2139 | less

drwxr-xr-x 1p/lp 0 1998-10-01 18:48 1rk3/
-rwxr-xr-x 1lp/1lp 742 1998-06-27 11:30 1rk3/1
-rw-r--r-- 1p/1lp 716 1996-11-02 16:38 1rk3/MCONFIG
-rw-r--r-- 1p/1p 6833 1998-10-03 05:02 1rk3/Makefile
-rw-r--r—- 1p/1p 6364 1996-12-27 22:01 1rk3/README
-rwxr-xr-x lp/lp 90 1998-06-27 12:53 1rk3/RUN

12/45

Summary: The general approach

e Start from higher to lower levels of abstraction:
e Obtain info about the file system (file system category)
e Obtain info about root folder & file names (file name category)
e Obtain info about file's inodes (meta data category)

Obtain info about file's blocks (content category)

13/45

File carving

Deleting a file on the Ext2 file system

e Inode bitmap is cleared, but block pointers on inode remain

unmodified
Inode: 23456
R MAC time.mtime File
Ausic.mp3 H ctime.dtime Content
Inode: 23456 USER & GROUP

Size: 56666bytes

Direct Block Poiners

Single Indirect

Single Indirect
Block Pointers

—

Double Indirect Block File
Block Pointers Pointers Content

Triple Indirect
Block Pointers File
Content

e As a result, we can fully recover the file from its inode

e Unless it has been reallocated to another file...

14/45

However, on Ext3 file deletion is different

e The block pointers are also zeroed!

Inode: 23456

- MAC time.mtime —
fusic.mp3 ctime.dtime Content

Inode: 23456 USER & GROUP

H

O size

o block point:

O indirect

O double indir Pointers Content

O triple indire File

Content

e As a result we can no longer recover the file by reading the
block pointers from the inode

15/45

Given a raw byte stream, how can we
extract the data of a particular file?

There is no metadata present in file system structures...

We can only operate in the content category

File System Category Application Category

File Name Metadata Content
Category Category Category

Content Data #1

Content Data #2

16/45

File carving

e File carving is a powerful technique because it can:

e Identify and recover files of interest from raw, deleted or
damaged file systems, memory, or swap space data

e Assist in recovering files and data that may not be accounted
for by the operating system and file system (e.g., when
metadata is no longer available, after volume reformatting)

e Carving is a general term for extracting
structured data out of raw data, based on
format specific characteristics present in
the structured data

17/45

Key insight: Leverage files’ internal structure

e Some file formats have predefined header and footer
e Include signatures aka “magic numbers” (i.e. byte sequences in
known positions)
e File formed by clusters between header and footer (e.g., GIF)
e Header: OxFF 0xD8
e Footer: 0xFF 0xD9

Hexdump of sample.jpg

ff d8 ff e0 00 10 4a 46 49 46 00 01 01 01 00 50 |...... JFIF..... P|
.. -\Data ...
28 a2\go 3f ff d9 <\ 1(..2..1

Begins here Ends here

18/45

Let’'s search for signatures in unallocated space

e Locate signatures matching the start and end of known file
types

e Commonly performed on unallocated space of a FS and allows
for recovering files w/o metadata structures pointing to them

Sector 901 _Sector 902 Sector 903 _Sector 904 _Sector 905 _Sector 906
0xffd8...

...0xffd9

e First, isolate the unallocated blocks from the volume (as seen
in the last class)
e dls: displays the contents of all unallocated units of an FS

Data
Units.

nonnnon
||

gimap [1][1]0]1]1]1JoJo[1]1]1]0

0||‘2‘3|4

19/45

Structure-based carving

Recover files based on the internal layout of a file

e E.g., identifier strings, header, footer, and size information
Known header and footers or maximum file size

e JPEG: OxFF 0xD8 header and 0xFF 0xD9 footer
e BMP: “BM" header but no footer

If the file format has no footer, a maximum file size is used

Popular carvers:

e Scalpel, Foremost and File finder (EnCase)

20/45

Examples of popular tools

e Scalpel

scalpel -c scalpel.conf -o lost_texfiles stick.dd.img

e Foremost

[foremost -t jpeg,png,zip,pdf,avi -i disk.img -o recov -v]

21/45

Content-based carving

e |dentify file content based on internal file contents

"empid": "SI011MS",

"personal":{
Imame"Smith Jones",
e Content structure B
"age": 28,
° Loose structure (HTML, XML) "address":
{
e Content characteristics et o 2 seet’
" "state": "NY",
e Text/Language recognition +postalcode” "10038"
e Statistical attributes Lo
. "profile”: {
o |nf0rmat|0n entropy "designation": "Deputy General",

"department”: "Finance"

22/45

Data carving is applicable beyond file systems

e Can carve any piece of data from raw data blob

e Examples:

Eile Edit View Go Cap
ee4dma

fiter:[fepstream eq 42

. Follow TGP Sweam

|

e Files from network
streams

e Individual packets from — EEEEER &t R
network traces

e Malware code from

compromised application

23/45

Advanced file carving techniques

Here's an example of a poorly carved image file

What happened?

24/45

Carving was supposed to be easy, right?

e Issue: Fragmentation
e Normally, files are broken up and stored into clusters
e For file B, carving clusters sequentially yields correct results

77% 7777
sy

W22/ A4
File B: B1+B2+B3

\\

e But data clusters may be out of order
Y Wy
5/ %;// %/% /E/%/ % . Z/ . / /é

/
/////////V///////V//////////////V///////////V/// //////7
File C: C1+C3

\\\\

e Or be interleaved with clusters of other files

Al A2 Bl B2 B3 C2 C1 C3 A3

File A: A1+A2+B1+B2+B3+C2+C1+C3+A3

25/45

Assuming cluster continuity is not sufficient

e File are generally not fragmented, but those that are most
likely to be are those that are forensically important:

e According to some studies, 16% of JPEGS, 17% of Word
Docs, 22% of AVI, 58% of MS Qutlook files

e Fragmentation becomes more of a problem when:

e The system is low on disk space
e Files are appended to

e Signature false positives

e Some files may have header signatures or the footer signatures
occurring perhaps several times within the file!

26/45

Exercise: Which files can be entirely recovered?

e Consider the following unallocated disk space containing
clusters of four deleted files.
e HTML files — FileA: Ag, A;
e JPEG files — File B: Bo, Bl, File C: Co, Cl, File D: D(), Dl, D2

[[Bo [Ao [A1 [Bi [Bs [[C [Co [Do [Di[Dz[|

e The following list provides relevant details about their file
formats:
e HTML: no header and no footer, content follows HTML syntax
e JPEG: header and footer, content must be decoded

27/45

The nature of the problem

e Assume randomized clusters containing file fragments
e How to extract the files?

e One way to solve it - try every piece with every other piece
e Not a very good (or tractable) idea
e O(nl)

28/45

Parallel Unique Path (PUP)

e Key insight behind the PUP algorithm

e Grow all files simultaneously, append best match at each step

e Initial state: assume all file clusters are randomized

0
O O

29/45

PUP first step: Locate file headers

e Identify headers using keywords / signatures
e Consider 3 JPEG files
e e.g., JPEG header is OxFF 0xD8

Headers
II O (|
] O [
O
B O
\XFF\XD8
ID X X D .
]]
[
wirwos [
|
O 0 [
\xFF\xD8
O

30/45

PUP steps: Assign weights

e For each header find best match (using matching metric)

o Choose the best overall match

O C o

0.75 0.96 0.60
L
B O
. O
0 O
O

31/45

PUP steps: Continue match finding

e Find best match for recently added node
e Choose the best overall match again

O O

0.75 0.60

-l

0.73 .

32/45

PUP steps: Paths may cross each other

e Repeat process
e Now a block is the best match for two files

e Choose the better of the two and continue

= C =

33/45

PUP steps: Finish the graph traversal

e Repeat until all files are built or no more nodes can be chosen

O 0

34/45

Example of a matching metric

e For images: look at the boundary formed by the addition of a
new block

e Example:

0,98\ 0,21

“

35/45

The bad

The good e Errors propagate in cascade

o Frelfere e An incorrect cluster leads

to the wrong
e Each cluster usually .)
. , reconstruction of two files

belongs to a unique file

) e Still slow in practice
o Effective P

, Weight tati
e 85% of files reconstructed e Fompu a2|on
complexity: O(n?log(n))

e Millions of clusters

36/45

Bifragment gap carving (BGC)

e One of the first carving techniques to efficiently recover data
from real-world data sets
e Leverage an observation that bifragmentation (two fragments
only) is the most common fragmentation type
e Although files fragmented into +three pieces are not

uncommon
Header Fragmentation Point Footer
5 6 7
? ? ?
Base-Fragment Clusters Fragment

e BGC's goal: try to match both fragments of each file

37/45

BGC's key insights

e How to locate the header and the footer?
e Use magic numbers for well know file formats
e How to ensure that header and footer fragments are properly
sequenced?
e Using fast object validation technique: verify if a file obeys the

structured rules of its file type
e Use consistency checks: error correction, size mismatch, etc.

e e.g., PNG format has CRC at the file ending
e Can use file-type specific decoders
e e.g., JPEG, MPEG, ZIP, etc.

38/45

Disadvantages of BGC

e BGC performs satisfactorily when the two
fragments are close to each other
e However, it has limitations in general case:
e |t only works for files of two fragments
e |t only works for files that can be validated
e E.g., plain texts and BMPs cannot be
recovered this way
e Correct validation does not mean
coherence/correctness

e e.g., images that use same codec
parameters

39/45

Concerns when designing a carving tool

e Carving quality
e Performance

e Memory and space efficiency

40/45

Tool quality: DFRWS 2006 dataset

e Quality metrics:

e Recall: What proportion of the available files is recovered?
e Precision: What proportion of the recovered files is correct?

Tool Carving Recall | Carving Precision
FTK 3.0 0 0.001
Scalpel 0.219 0.28
Encase 6.7 0.219 0.28
FTK 1.81 0.25 0.258
Foremost 0.281 0.36
Photorec 0.563 0.643
Revit 0.625 0.69

41/45

What does this mean in practice?

Encase on DFRWS 2006 Photorec on DFRWS 2006

1565 80m
coarse cale. sand

Carving encrypted volumes should be impossible!

e Tools such as TrueCrypt aim to make a volume look random

e Carvers can leverage this if the files are TOO random

e TrueCrypt volume analysis will reveal a
near perfect randomness

e Such randomness does not occur

naturally!

e Can classify truly random clusters as
“encrypted"!

43/45

e File carving is a file system analysis technique that faces many
challenges in order to identify and retrieve file content, mostly
due to data fragmentation issues

e Despite the considerable advances in data carving, there is still
a lot of room for improvement, being data carving amongst

the hottest topics in forensics research

44/45

e Textbook:
e Carrier — Chapter 8.7, Casey — Chapter 15.3.1
e Other resources:

e Anandabrata Pal and Nasir Memon. “The evolution of file
carving - the benefits and problems of forensics recovery".
IEEE Signal Processing Magazine, 26(2):59-71, March 2009

e Acknowledgements:

e Slides adapted from Nuno Santos’s Forensics Cyber-Security
course at Técnico Lisbon

45/45

https://ieeexplore.ieee.org/document/4806206
https://ieeexplore.ieee.org/document/4806206
https://ieeexplore.ieee.org/document/4806206
https://syssec.dpss.inesc-id.pt/people/Nuno_Santos.html

	Recovery of deleted files
	File carving
	Advanced file carving techniques

