
CS 798: Digital Forensics and Incident Response

Lecture 9 - Deleted File Recovery and File Carving

Diogo Barradas

Winter 2025

University of Waterloo

We talked about file systems...

• Is it possible to recover formerly deleted files?
• How to recover deleted files when no metadata is available?

2/45

Outline

1. Recovery of deleted files

2. File carving

3. Advanced file carving techniques

3/45

Recovery of deleted files

TSK provides analysis tools in each category

• Data evidence categories of the ExtX file system family

https://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview

4/45

https://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview

Example: Deleted file identification and recovery

• The goal will be to identify and recover a deleted file from an
Ext2 FS image able2.dd using the file’s unallocated inode

• List the current partition images using TSK’s mmls tool

• We are looking for information on the root partition (/)
• Starts at sector 10260, numbered 03 in the mmls output

5/45

Gather information about the root partition

• Run fsstat with -o 10260
to gather file system
information at that offset

• This offset is where the root
partition is located

6/45

List the contents of the root directory

• Run the fls command with only the -o option and, by
default, it will run on the FS’s root directory (inode 2)

• Would also work running: fls -o 10260 able2.dd 2

7/45

A closer look at the root directory

• .bash_history is a regular file in both
the file’s directory and inode entry

• Its inode is listed as 1042
• All others are directories

• $OrphanFiles is a virtual folder created
by TSK and assigned a virtual inode

• Contains virtual file entries that
represent unallocated metadata
entries where there are no
corresponding file names

• Orphan files can be accessed by
specifying the metadata address but
not through any file name

8/45

List deleted files

• By default fls shows
both allocated and
unallocated files

• Use fls (-d) to see
inodes and file names
of deleted files only

• *: file was deleted
• (realloc): inode

reallocated
• orphan:

unallocated inodes

9/45

A deeper look at the deleted file entries

• All of the files listed have an * before the inode
• This indicates the file is deleted

• Some files are annotated with “realloc”
• The file is marked as deleted, but the inode is in use
• This means the inode may have been reallocated to a new file

r/r * 2138(realloc): root/lolit_pics.tar.gz

• If “realloc” is not present, both the directory entry and the
inode allocated to the deleted file have been unallocated

• Orphan files point to former inode; directory entry reference is
not available

10/45

Gather information about a file based on inode

• Using metadata (inode) tools, we can learn more information
about a deleted file, e.g., root/lrkn.tgz

r/r * 2139: root/lrkn.tgz

• Use istat to gather information about inode 2139

11/45

Extract and examine the deleted file

• Use icat to send the contents of the data blocks assigned to
inode 2139 to a file

• Check if it really is a compressed archive tgz file

• List the contents of the archive

12/45

Summary: The general approach

• Start from higher to lower levels of abstraction:
• Obtain info about the file system (file system category)
• Obtain info about root folder & file names (file name category)
• Obtain info about file’s inodes (meta data category)
• Obtain info about file’s blocks (content category)

13/45

File carving

Deleting a file on the Ext2 file system

• Inode bitmap is cleared, but block pointers on inode remain
unmodified

• As a result, we can fully recover the file from its inode
• Unless it has been reallocated to another file...

14/45

However, on Ext3 file deletion is different

• The block pointers are also zeroed!

• As a result we can no longer recover the file by reading the
block pointers from the inode

15/45

Given a raw byte stream, how can we
extract the data of a particular file?

There is no metadata present in file system structures...

15/45

We can only operate in the content category

16/45

File carving

• File carving is a powerful technique because it can:
• Identify and recover files of interest from raw, deleted or

damaged file systems, memory, or swap space data
• Assist in recovering files and data that may not be accounted

for by the operating system and file system (e.g., when
metadata is no longer available, after volume reformatting)

• Carving is a general term for extracting
structured data out of raw data, based on
format specific characteristics present in
the structured data

17/45

Key insight: Leverage files’ internal structure

• Some file formats have predefined header and footer
• Include signatures aka “magic numbers” (i.e. byte sequences in

known positions)

• File formed by clusters between header and footer (e.g., GIF)
• Header: 0xFF 0xD8
• Footer: 0xFF 0xD9

18/45

Let’s search for signatures in unallocated space

• Locate signatures matching the start and end of known file
types

• Commonly performed on unallocated space of a FS and allows
for recovering files w/o metadata structures pointing to them

• First, isolate the unallocated blocks from the volume (as seen
in the last class)

• dls: displays the contents of all unallocated units of an FS

19/45

Structure-based carving

• Recover files based on the internal layout of a file
• E.g., identifier strings, header, footer, and size information

• Known header and footers or maximum file size
• JPEG: 0xFF 0xD8 header and 0xFF 0xD9 footer
• BMP: “BM” header but no footer

• If the file format has no footer, a maximum file size is used

• Popular carvers:
• Scalpel, Foremost and File finder (EnCase)

20/45

Examples of popular tools

• Scalpel

scalpel -c scalpel.conf -o lost_texfiles stick.dd.img

• Foremost

foremost -t jpeg,png,zip,pdf,avi -i disk.img -o recov -v

21/45

Content-based carving

• Identify file content based on internal file contents

• Content structure
• Loose structure (HTML, XML)

• Content characteristics
• Text/Language recognition
• Statistical attributes
• Information entropy

22/45

Data carving is applicable beyond file systems

• Can carve any piece of data from raw data blob

• Examples:
• Files from network

streams
• Individual packets from

network traces
• Malware code from

compromised application

23/45

Advanced file carving techniques

Here’s an example of a poorly carved image file

What happened?

24/45

Carving was supposed to be easy, right?

• Issue: Fragmentation
• Normally, files are broken up and stored into clusters

• For file B, carving clusters sequentially yields correct results

• But data clusters may be out of order

• Or be interleaved with clusters of other files

25/45

Assuming cluster continuity is not sufficient

• File are generally not fragmented, but those that are most
likely to be are those that are forensically important:

• According to some studies, 16% of JPEGS, 17% of Word
Docs, 22% of AVI, 58% of MS Outlook files

• Fragmentation becomes more of a problem when:
• The system is low on disk space
• Files are appended to

• Signature false positives
• Some files may have header signatures or the footer signatures

occurring perhaps several times within the file!

26/45

Exercise: Which files can be entirely recovered?

• Consider the following unallocated disk space containing
clusters of four deleted files.

• HTML files – FileA: A0, A1

• JPEG files – File B: B0, B1, File C: C0, C1, File D: D0, D1, D2

• The following list provides relevant details about their file
formats:

• HTML: no header and no footer, content follows HTML syntax
• JPEG: header and footer, content must be decoded

27/45

The nature of the problem

• Assume randomized clusters containing file fragments
• How to extract the files?

• One way to solve it - try every piece with every other piece
• Not a very good (or tractable) idea

• O(n!)

28/45

Parallel Unique Path (PUP)

• Key insight behind the PUP algorithm
• Grow all files simultaneously, append best match at each step

• Initial state: assume all file clusters are randomized

29/45

PUP first step: Locate file headers

• Identify headers using keywords / signatures
• Consider 3 JPEG files
• e.g., JPEG header is 0xFF 0xD8

30/45

PUP steps: Assign weights

• For each header find best match (using matching metric)
• Choose the best overall match

31/45

PUP steps: Continue match finding

• Find best match for recently added node
• Choose the best overall match again

32/45

PUP steps: Paths may cross each other

• Repeat process
• Now a block is the best match for two files
• Choose the better of the two and continue

33/45

PUP steps: Finish the graph traversal

• Repeat until all files are built or no more nodes can be chosen

34/45

Example of a matching metric

• For images: look at the boundary formed by the addition of a
new block

• Example:

35/45

PUP criticism

The good

• Realistic
• Each cluster usually

belongs to a unique file

• Effective
• 85% of files reconstructed

The bad

• Errors propagate in cascade
• An incorrect cluster leads

to the wrong
reconstruction of two files

• Still slow in practice
• Weight computation

complexity: O(n2log(n))
• Millions of clusters

36/45

Bifragment gap carving (BGC)

• One of the first carving techniques to efficiently recover data
from real-world data sets

• Leverage an observation that bifragmentation (two fragments
only) is the most common fragmentation type

• Although files fragmented into +three pieces are not
uncommon

• BGC’s goal: try to match both fragments of each file

37/45

BGC’s key insights

• How to locate the header and the footer?
• Use magic numbers for well know file formats

• How to ensure that header and footer fragments are properly
sequenced?

• Using fast object validation technique: verify if a file obeys the
structured rules of its file type

• Use consistency checks: error correction, size mismatch, etc.
• e.g., PNG format has CRC at the file ending

• Can use file-type specific decoders
• e.g., JPEG, MPEG, ZIP, etc.

38/45

Disadvantages of BGC

• BGC performs satisfactorily when the two
fragments are close to each other

• However, it has limitations in general case:
• It only works for files of two fragments
• It only works for files that can be validated

• E.g., plain texts and BMPs cannot be
recovered this way

• Correct validation does not mean
coherence/correctness

• e.g., images that use same codec
parameters

39/45

Concerns when designing a carving tool

• Carving quality

• Performance

• Memory and space efficiency

40/45

Tool quality: DFRWS 2006 dataset

• Quality metrics:
• Recall: What proportion of the available files is recovered?
• Precision: What proportion of the recovered files is correct?

Tool Carving Recall Carving Precision
FTK 3.0 0 0.001
Scalpel 0.219 0.28
Encase 6.7 0.219 0.28
FTK 1.81 0.25 0.258
Foremost 0.281 0.36
Photorec 0.563 0.643
Revit 0.625 0.69

41/45

What does this mean in practice?

Encase on DFRWS 2006 Photorec on DFRWS 2006

42/45

Carving encrypted volumes should be impossible!

• Tools such as TrueCrypt aim to make a volume look random

• Carvers can leverage this if the files are TOO random

• TrueCrypt volume analysis will reveal a
near perfect randomness

• Such randomness does not occur
naturally!

• Can classify truly random clusters as
“encrypted”!

43/45

Takeaways

• File carving is a file system analysis technique that faces many
challenges in order to identify and retrieve file content, mostly
due to data fragmentation issues

• Despite the considerable advances in data carving, there is still
a lot of room for improvement, being data carving amongst
the hottest topics in forensics research

44/45

Pointers

• Textbook:
• Carrier – Chapter 8.7, Casey – Chapter 15.3.1

• Other resources:
• Anandabrata Pal and Nasir Memon. “The evolution of file

carving - the benefits and problems of forensics recovery”.
IEEE Signal Processing Magazine, 26(2):59-71, March 2009

• Acknowledgements:
• Slides adapted from Nuno Santos’s Forensics Cyber-Security

course at Técnico Lisbon

45/45

https://ieeexplore.ieee.org/document/4806206
https://ieeexplore.ieee.org/document/4806206
https://ieeexplore.ieee.org/document/4806206
https://syssec.dpss.inesc-id.pt/people/Nuno_Santos.html

	Recovery of deleted files
	File carving
	Advanced file carving techniques

