
CS 798: Digital Forensics and Incident Response

Lecture 8 - File System Analysis

Diogo Barradas

Winter 2025

University of Waterloo

We talked about storage and volumes...

• Seen how to deal with / interpret volumes and partitions
• Studied the implications of storage technology in forensics

2/55

Outline

1. Evidence from file systems

2. File system analysis techniques

3/55

Evidence from file systems

Partitions have their own file systems

• A disk that is organized using DOS partitions has a Master
Boot Record (MBR) in the first 512-byte sector

• The MBR has a partition table with four entries, one for each
partition

• e.g., two partitions, each formatted to a different FS

4/55

Analysis of persistent storage

• To access overt content, e.g.:
• Folder and file contents
• Folder and file names
• Folder and file permissions, time

stamps

• To access deleted content, e.g.:
• Locate and recover deleted files
• Identify names of deleted files

• To access hidden content, e.g.:
• Data located inside file slack

space

5/55

FS evidence can be grouped into categories

6/55

Data categories of popular file systems

Category FAT FS EXTx NTFS
File System Boot sector Superblock, group $Boot, $Volume, descriptor, $AttrDef
Content Clusters, FAT Blocks, block bitmap Clusters, $Bitmap
Metadata Directory entries, FAT Inodes, inode bitmap $MFT,$DATA, $ATTRIBUTE_LIST
File Name Directory entries Directory entries $FILE_NAME, $IDX_ROOT, $BITMAP
Application N/A Journal Journal, disk quota

7/55

The ExtX file system family

• Ext2, Ext3, and Ext4 file systems (ExtX) are the default file
systems for many distributions of Linux

• Ext3 = Ext2 + journaling

• An ExtX file system manages the storage space of a given
partition

• Most space is used for storing files’ contents
• Some space used for ExtX metadata

8/55

A typical Linux file system structure

• Linux organizes its file system in a hierarchical structure,
similar to a tree

• The root directory, denoted as ’/’, is the topmost directory
and serves as the base for the entire file system.

9/55

Overview of main ExtX data structures

• File contents are stored inside blocks (e.g., 4KB)
• Each block has an address within the partition (0 up to max

#blocks -1)
• The blocks allocated to a file are kept by a record called inode

• ExtX keeps track of all inodes inside a table

• Directory entries associate the file name with the file’s inode

10/55

Overview of main ExtX data structures

Size (bytes) Name What is this field for?
2 mode Read/write/execute permissions
2 uid User ID of the file owner
4 size Size of the file in bytes
4 time Last access time
4 ctime Creation time
4 mtime Last modification time
4 dtime Deletion time
2 gid Group ID of the file
2 links_count Number of hard links pointing to this file
4 blocks Number of data blocks allocated to this file
4 flags File or directory indicator and other flags
60 block Pointers to data blocks (15 direct and indirect)

11/55

Inode block pointers

• Consider a file with size 4097 bytes
• Block size is 4 KB (4096 bytes)

12/55

Keeping track of inode and block allocation

• Using bitmaps: bit arrays, each bit indicates allocation status
• Inode bitmap: tells which inodes are allocated to files
• Block bitmap: tells which data blocks are allocated to files

13/55

Creating and deleting a file on Ext2

• Additional helper data structures
• Inode bitmap: tells which inodes are allocated to files
• Block bitmap: tells which data blocks are allocated to files

• Create a new file
• Allocate a new inode (inode bitmap is updated)
• Allocate required blocks (block bitmap is updated)
• Allocate entry in directory (entry points to inode)
• Update data blocks, inode, and directory entry

• Delete an existing file
• Update the inode and block bitmaps, unallocate directory entry
• Most contents of inode, data blocks, and directory entry

remain intact

14/55

Journaling: Maintaining consistency

• Many operations results in multiple, independent writes to the
file system

• Example: append a block to an existing file
1. Update the free data bitmap
2. Update the inode
3. Write the user data

• What if the computer crashes during this process?
• The file system may enter an inconsistent state

• Solution: Ext3 maintains a journal in inode 8 (typically)
• Journal records transactions of FS operations
• Typically implemented as circular buffers
• Only overwritten over time – provide recent history of updates

to file system and, potentially, forensic evidence!

15/55

On-disk organization of a ExtX file system

• Organized as sequence of logical blocks
• The block size is defined upon disk formatting; 1, 2, 4 or 8KB

are common
• Blocks are grouped into larger units called block groups

• All block groups have equal length possibly except the last one
• The first data block (aka boot block) is not used by the FS

• Has a fixed 1024 byte length and may contain bootstrap code

16/55

Group block internals

17/55

Group block internals: The superblock

• Superblock: contains fundamental info about the file system
• block size, total number of blocks, # of blocks per group...

• The superblock is replicated in all group blocks
• Copies of the superblock are in the first block of each block

group

18/55

Group block internals: The grup descriptor table

• Group descriptor table: array of descriptors for all block groups

• Provides the location of the inode bitmap and inode table,
block bitmap, number of free blocks and inodes, etc.

• The size of the descriptor table depends on how many groups
are defined

• Every block group descriptor table contains all info about all
block groups

19/55

On-disk organization of a ExtX file system

• Data evidence categories of the ExtX file system family

20/55

File system analysis techniques

TSK provides analysis tools in each category

• Data evidence categories of the ExtX file system family

https://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview

21/55

https://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview

File system evidence: Content category

22/55

Evidence in the content category

• Content category includes the storage locations allocated to
files: data units (e.g., named blocks in ExtX)

• A data unit is a set of consecutive sectors of the volume
• A sector has: physical address and a logical FS address

• In ExtX, evidence in this category includes: blocks and the
block bitmap

23/55

1. Data unit viewing

• Used when the investigator knows the direct address where
evidence may be located, e.g., a DU allocated to a specific file
or that has special meaning

• E.g, in many FAT32 file systems, sector 3 is not used and is all
zeros; viewing it shows if there are non-zero hidden data

24/55

Example of dcat

• Dump the content of block 1 from a Ext3 FS image

#dcat -f linux-ext3 ext3.dd 1 | xxd
0000000: 0200 0000 0300 0000 0400 0000 d610 7b3f
0000016: 0a00 0000 0000 0000 0000 0000 0000 0000
0000032: 0280 0000 0380 0000 0480 0000 0000 8e3f
0000048: 0100 0000 0000 0000 0000 0000 0000 0000
REMOVED

25/55

2. Logical file system-level searching

• We know what to look for, but not the place: a logical file
system search looks in each DU for specific values

• E.g., search for “forensics” or a specific file header value

• Note: if the value is located in two non-consecutive DUs of a
fragmented file, search will not find it

26/55

3. Unallocated data unit searching

• If we do not know the location of evidence, but we know that
it is unallocated, we can focus our attention there

• Some tools can extract all unallocated DUs to a separate file;
others restrict analysis to only the unallocated areas

• The definition of unallocated space may vary: you need to
know what your analysis tool considers unallocated data

• gparted shows drive space not assigned to any partition as
unnalocated

• In this class context, unnalocated means file system space not
currently assigned

27/55

4. Consistency checking

• Consistency checks allow us to determine if the file system is
in a suspicious state

• Example: orphans and double metadata entries

28/55

Summary of techniques in the content category

• Data unit viewing

• Logical file system-level searching

• Unallocated data unit searching

• Consistency analysis

• Data carving (next class)

29/55

File system evidence: Metadata category

30/55

Evidence in the metadata category

• The metadata category contain the descriptive data
• e.g., last accessed time, addresses of DUs allocated to a file

and each entry has an address

• Many metadata structures are stored in a fixed or
dynamic-length table, and each entry has an address

• In ExtX, evidence in this category includes: inodes and inode
bitmap

31/55

1. Metadata lookup

• We found the name of a file that points to a specific metadata
and we want to learn about the file

• We just need to locate the metadata and process it
• e.g., interpret metadata located in DU 371 and shows two

metadata entries: a deleted file, and an allocated directory

32/55

Example of istat

• Metadata of file associated
with inode #16

• The file is 10MB
• Required four indirect

blocks to point to all
the allocated blocks

#istat -f linux-ext3 ext3.dd 16
inode: 16 Allocated
Group: 0
Generation Id: 199922874
uid/gid: 500 / 500
mode: -rw-r–r–
size: 10240000
num of links: 1

Inode Times:
Accessed: Fri Aug 1 06:32:13 2003
File Modified: Fri Aug 1 06:24:01 2003
Inode Modified: Fri Aug 1 06:25:58 2003

Direct Blocks:
14380 14381 14382 14383 14384 14385 14386
14387
14388 14389 14390 14391 14393 14394 14395
14396
16880 16881 16882 16883

Indirect Blocks:
14392 15417 15418 16443

33/55

2. Logical file viewing

• After we look up the metadata for a file, we can view the file
contents by reading the DUs allocated to the file

• We do this when searching for evidence in the content of a file
• This process occurs in the metadata and content categories

• During this process, we need to keep slack space in mind

34/55

Example of icat

• The icat tool allows you to view the contents of the data
units that are allocated to a metadata structure

• If the -s flag is given, the slack space is shown
• If the -r flag is given, it attempts to recover deleted files

#icat -f linux-ext3 ext3.dd 69457 | xxd
0000000: 510f 0100 0c00 0102 2e00 0000 00d0 0000 Q...............
0000016: Oc00 0202 2e2e 0000 520f 0100 2800 0b01R...(...
0000032: 6162 6364 6566 672e 7478 7400 530f 0100 abcdefg.txt.S...
0000048: 1400 Oc01 6669 6c65 2074 776f 2e64 6174file two.dat
0000064: 540f 0100 1000 0702 7375 6264 6972 3100 T.......subdir1.
0000080: 550f 0100 b003 0801 5253 5455 5657 5859 U.......RSTUVWXY
0000096: 0000 0000 0000 0000 0000 0000 0000 0000

• Lists the raw contents of file associated with inode #69457
• This is a directory

35/55

DU’s slack space

• A file must allocate a full DU, even if it needs part of it
• The unused bytes in the last DU are called slack space

• If unused bytes are not wiped, they may contain data from
previous files (or memory)

36/55

3. Logical file searching

• Previous technique assumed you had a specific file to inspect
• Oftentimes, we need to find a file based on its content

• e.g., we want all files including the term “forensics”

• That is when we use a logical file search

37/55

4. (Un)allocated metadata analysis

• When searching for deleted content, your evidence could be
sitting in an unallocated metadata entry

• You cannot see it because it no longer has a name
• Some tools can list the unallocated entries for you

• The example below lists the allocated (-a) inodes within a
given range (grep to select directories only)

#ils -f linux-ext3 -m -a ext3-8.dd 32577-48864 | grep “Id”
<ext 3-8.dd-alive-32577>|0|32577|16893|drwxrwxr-x |4 |500|500|0|4096|
<ext3-8.dd-alive-32655>|0|32655|16893|drwxrwxr-x|2|500|500|0|4096|
<ext3-8.dd-alive-32660>|0|32660|16877|drwxr-xr-x |2|500|500|0|4096|

• Lists the raw contents of file associated with inode #69457
• This is a directory

38/55

Deleted file recovery

• In some cases, you might want to search
for evidence in deleted files

• A major method is metadata-based
• Metadata-based recovery works when

metadata from the deleted file still exists
• Does not work if the metadata was

wiped or reallocated to a new file

• Note: metadata and data units can
become out of sync because the data
units are allocated to new files

39/55

File system evidence: File name category

40/55

Evidence in the file name category

• Includes the names of files and allows the user to refer to a file
by its name instead of its metadata address

• In other words: we are analyzing directories

• In ExtX, evidence in this category includes: directory entries

• An important part of file name analysis is to determine where
the root directory is located, e.g., / in ExtX

• Each file system has its own way of defining the location of the
root directory

41/55

File system evidence: File name category

• With file name-based recovery, we use a deleted file name and
its corresponding metadata address to recover the file content

• The favorites.txt file is deleted, and its name points to an
unallocated metadata entry

• We can try to recover its contents using the metadata-based
recovery techniques

42/55

1. File name listing

• List the names of the files and directories when searching for
evidence based on name, path, or extension of a file

• First locate the root directory of the file system and metadata
• Then, obtain file list and corresponding metadata

43/55

2. File name searching

• Listing file names works well if we know what file we are
looking for

• If we don’t know the full file name, we can search for the part
that we do know

• e.g., based on the file’s extension

• The process required to search for a name is similar to what
we saw for file name listing

44/55

3. Consistency checking

• Consistency checks for the file name data include verifying that
all allocated names point to allocated metadata structures

• It is valid for some file systems to have multiple file names for
the same file, and many of them implement this functionality
by having more than one file name entry with the same
metadata address

45/55

Summary of techniques in file name category

• File name listing

• File name searching

• Consistency checking

46/55

File system evidence: File system category

47/55

Example of fsstat

• Output of fsstat applied to Ext3
file system image

#fsstat -f linux-ext3 ext3.dd
FILE SYSTEM INFORMATION
––––––––––––––––––––––
File System Type: Ext3
Volume Name:
Volume ID: e4636f48c4ec85946e489517a5067a07

Last Written at: Wed Aug 4 09:41:13 2004
Last Checked at: Thu Jun 12 10:35:54 2003
Last Mounted at: Wed Aug 4 09:41:13 2004
Source OS: Linux
Dynamic Structure
Compat Features: Journal,
InCompat Features: Filetype, Needs Recovery,
Read Only Compat Features: Sparse Super, Has
Large Files,

Journal ID: 00
Journal Inode: 8

METADATA INFORMATION
––––––––––––––––––––––
Inode Range: 1 - 1921984
Root Directory: 2
Free Inodes: 1917115

CONTENT INFORMATION
––––––––––––––––––––––
Block Range: 0-3841534
Block Size: 4096
Free Blocks: 663631

BLOCK GROUP INFORMATION
––––––––––––––––––––––
Number of Block Groups: 118
Inodes per group: 16288
Blocks per group: 32768
Group: 0:
Inode Range: 1 - 16288
Block Range: 0 - 32767
Layout:
Super Block: 0 - 0
Group Descriptor Table: 1 - 1
Data bitmap: 2 - 2
Inode bitmap: 3 - 3
Inode Table: 4 - 512
Data Blocks: 513 - 32767
Free Inodes: 16245 (99%)
Free Blocks : 0 (0%)
Total Directories: 11

Group: 1: ...

48/55

The volume slack

• The data structures in this category frequently have unused
values that can be used to hide small amounts of data

• A consistency check in this category is to compare the size of
the file system with the size of the volume in which it is located

• If the volume is larger, the sectors after the file system are
called volume slack and could be used to hide data

49/55

Evidence in damaged data units

• Older hard disks did not have the capability to handle errors:
writing data to bad sectors could result in data loss

• To prevent this, FS allow DUs to be marked as bad: The OS
marks bad DUs, and prevents their allocation to a file

• Modern hard disks can detect a bad sector and replace it with
a spare, so the FS functionality is not needed

• Still, it is a great place to hide data: a user could manually
add a DU to the damaged list and place data in it

50/55

File system evidence: Application category

51/55

Evidence in the application category

• Some file systems contain data that belongs in the application
category

• e.g., Acme Software decided that its OS would be faster if an
area of the FS were reserved for an address book

• These data are not essential to the FS, and exist as special FS
data instead of living inside a normal file

• One of the most common application category features is
called journaling

52/55

Summary of TSK tools

Tool Prefix Layer/Function Tools
disk (Disk Tools) disk_sreset, diskstat
img (Image File Tools) img_stat
mm (Media Management Tools) mmls
fs File System Layer fsstat
j (File System Journal Tools) jcat, jls
i Metadata/inode Layer ils, icat, istat, ifind
d Content/Data Layer dls, dcat, dstat, dcalc
f Human Interface/File Layer fls, ffind

53/55

Takeaways

• File systems play a fundamental role in preserving huge
amounts of evidence

• To analyze such evidence, there are several general techniques
that can be applied based on the data category of the file
system

• A real investigation normally requires chaining several of such
techniques

54/55

Pointers

• Textbook:
• Carrier – Chapter 8

• Acknowledgements:
• Slides adapted from Nuno Santos’s Forensics Cyber-Security

course at Técnico Lisbon

55/55

https://syssec.dpss.inesc-id.pt/people/Nuno_Santos.html

	Evidence from file systems
	File system analysis techniques

