
CS 798: Digital Forensics and Incident Response

Lecture 5 - File Forensics

Diogo Barradas

Winter 2025

University of Waterloo



Recall evidence collection...

2/50



Outline

1. A primer on file formats

2. Syntatic analysis of files

3. Semantic analysis of files

3/50



Shifting our focus to Analysis

1. Assessment 2. Acquisition 3. Analysis 4. Reporting

• How to analyze evidence from computers and networks?

4/50



Files! (bazillions of them)

5/50



A primer on file formats



File formats and file forensics

• A file format is a standard way that information is encoded for
storage in a computer file

• In file forensics, we aim at recovering information from files by
decoding their raw data from storage

• There are two broad file format families:
• Text files: Essential to determine the text encoding scheme

and structure (if any)
• Binary files: Essential to determine the file format (including

endianess)

6/50



Text files

• Raw bytes represent characters using an encoding

• Some are printable,others non-printable
(e.g.,linefeed, end of file)

• ASCII and Unicode are the most common
encoding schemes

• ASCII is the common code text representation

• American Standard Code for Information
Interchange

• Proposed by ANSI in 1963, finalized in 1968

• Assigns a numerical value to characters in

American English

• Originally, 1 character was encoded in 7 bits
• But limited, e.g., for European languages or

mathematical symbols

• Extended ASCII Character Set

• Extended ASCII uses 8-bits to encode a
single character

7/50



Unicode

• ASCII is nice and simple if you use American English, but it is
quite limited for the rest of the world

• Their native symbols cannot be represented

• Unicode helps solve this problem by using more than 1 byte to
store the numerical version of a symbol

• The version 4.0 Unicode standard supports over 96,000
characters, which requires 4-bytes per character instead of the
1 byte that ASCII requires

8/50



Unicode encodings – UTF-32, UTF-16, UTF-8

• There are three ways of storing a Unicode character:
• UTF-32: uses a 4-byte value for each character
• UTF-16: most used chars. in 2-byte value, lesser-used 4-bytes
• UTF-8: uses 1, 2, or 4 bytes (most frequently used in 1 byte)

• Tradeoff between number of characters that can be
represented, and space and processing efficiency

• UTF-8 is frequently used because it has the least amount of
wasted space and because ASCII is a subset of UTF-8

9/50



Text files can have structure

• Example: XML file

10/50



Binary files

• In binary files, bytes represent custom data
• Binary files may contain both textual and custom binary data

• Binary file formats may include multiple types of data in the
same file, such as image, video, and audio data

• This data can be interpreted by supporting programs, but will
show up as garbled text in a text editor

11/50



BMP image files

• BMP image: array of pixels, each encodes a specific color
• Binary files may contain both textual and custom binary data

• The resolution indicates width and height of image
• Ex: 750 × 491

12/50



Pixel color encoding

• 24-bit RGB image files
• Each pixel encoded by 3 byte values for red, green, and blue

13/50



BMP header format

• Signature: 0x42 0x4D – “BM”

14/50



PDF header format

• Adobe Portable Document Format spec: 1310 pages!

15/50



Executable file format

• Portable Executable (PE) format used to encode executable
files on Windows (.exe, .dll)

• Common sections are:
• .text (for code)
• .data (read/write data)
• .rdata (read-only data)
• .reloc (relocation data)

16/50



Compressed file formats (e.g., ZIP)

• ZIP files store multiple files

• Signature: 0x50 0x 4B – “PK”
• Phil Katz invented ZIP

17/50



Common binary file formats

• Image file formats (JPG, GIF, BMP, PNG)

• Archive files (ZIP, TGZ)

• Filesystem images (EXT4)

• Packet captures (PCAP, PCAPNG)

• Memory dumps

• PDF

• Video (MKV, MP4) or Audio (WAV, MP3, FLAC)

• Microsoft Office formats (RTF, OLE, OOXML)

18/50



Binary to text encoding schemes

• Sometimes it is necessary to encode binary objects into text
• E.g., when shipping a binary file across the network, some

protocols could interpret byte sequences as control characters

• Base64 is a popular encoding scheme (but there are more...)
• 64 characters are present in most character sets
• Used to encode email attachments and certificates

19/50



Base64 encoding mechanism

20/50



Base64 encoding mechanism

• To encode text to base64:

• To decode base64:

Recall that base64 is not an encryption algorithm!

21/50



Base64 encoding mechanism

• To encode text to base64:

• To decode base64:

Recall that base64 is not an encryption algorithm!

21/50



Syntatic analysis of files



Syntactic analysis

• The ability to parse the format of a file so as to identify its
internal structure and components

• Techniques:
• Raw file inspection
• File format discovery
• String extraction
• Encrypted file cracking
• File header repairing

22/50



Inspection of a file’s raw bytes

• Use an hex editor to read file contents, e.g., WinHex, xxd

• Use the file utility to match a file’s signature

23/50



Remarks about the encoding scheme

• ASCII encoded file

• Special non-printable character

• UTF-8 encoded file

• Character “é” = 0xc3a9

24/50



Inspecting a binary file

• Manual inspection
• Parse the file according to the file format specification

25/50



Remarks about endianess

• Numbers can be stored as a sequence of one or more bytes
• Endianness deals with the order in which bytes are stored

• We encounter two different approaches:

x86 and ARM make use of Little Endian.

26/50



Why do we care?

• In the sequence below, the two highlighted bytes represent a
16-bit integer (8 bit x 2 = 16 bits or 2 bytes)

• In a big-endian system, the value would be calculated as:
• Big-endian calculation: 0x0123 = 291

• In a little-endian system, the value would be calculated as:
• Little-endian calculation: 0x2301 = 8961

27/50



How to decode a file not knowing its format?

• Consider a file with the following byte sequence (hex):

48 65 6c 6c 6f 20 57 6f 72 6c 64 0a

• Is it a text file? ASCII? Base64?

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘ ’ ‘W’ ‘o’ ‘r’ ‘l’ ‘d’ ‘\n’

• Or a binary file? Unsigned ints? Other format?

‘18533’ ‘27756’ ‘28448’ ‘22383’ ‘29292’ ‘25610’

28/50



Magic numbers

• Look for magic numbers: consist of constant numerical or text
value used to identify a file format or protocol

• E.g., GIF files start with sequence: 0x47 49 46 38 39 61

• Remember the file utility?

• Magic numbers of common file formats:
• http://www.garykessler.net/library/file_sigs.html

29/50

http://www.garykessler.net/library/file_sigs.html


Opening files with specialized programs

• After determining the file type, use
a corresponding program to open it

• E.g., examine file c.dat

• Remember the file utility?
c.dat when opened in

GIMP

30/50



String extraction from files

• The strings utility: prints a file’s readable characters
• Useful for looking at data fiedls without the originating

program, searching executables for strings, etc.

31/50



What if files are encrypted?

• Might be worth trying a password cracking software
• Essentially, a password cracker works by trial and error

• Cracking approaches:
• Brute force: try every possible key / password until succeeds
• Dictionary attacks: attempt to reduce the number of trials

required and will usually be attempted before brute force

• Examples of tools:
• For encrypted zip files: fcrackzip
• For encrypted pdf files: pdfcrack

32/50



What if files are corrupted?

• Specific metadata of a file may have been removed or
tampered with thereby preventing its decoding

• E.g., opening file badheader.jpg returns this error

33/50



Repairing a corrupted file

• Check if file metadata is consistent with the file format spec

• Our header looks wrong: 89 50 4E 46 OD 0A 1A 0A ...

34/50



Repairing a corrupted file

• Check if file metadata is consistent with the file format spec

• Our header looks wrong: 89 50 4E 46 OD 0A 1A 0A ...

34/50



Apply the fix

• Fix the wrong header byte

• Verify the fix by reopening the file using the viewer
• This case was easy, but may require additional effort

35/50



Summary of tips for interpreting file content

• Extension not entirely reliable

• Open the file and check between (text / binary)

• Look for known header and footer information
• Especially file format signatures (e.g., magic numbers)

• Use tools that know how to interpret specific file format

• If the file format is unknown, we analyze it manually

36/50



Semantic analysis of files



Semantic analysis

• The ability to interpret and acquire information from the data
content of a given file

• Presupposes the ability to parse the file’s internal structures

• Some examples:
• Vulnerability analysis
• Image processing
• Provenance analysis

37/50



Image processing

• Forensic image processing involves the computer restoration
and enhancement of imagery

• It aims to maximize information extraction from imagery that
is noisy, incomplete, or over/under exposed

• It also involves measurement of objects pictured on images

CSI-style “Enhance!”

38/50



Image processing

• Forensic image processing involves the computer restoration
and enhancement of imagery

• It aims to maximize information extraction from imagery that
is noisy, incomplete, or over/under exposed

• It also involves measurement of objects pictured on images

CSI-style “Enhance!”
38/50



Tampering detection

• In the context of digital imaging, tampering recalls the
intentional manipulation of images for malicious purposes

39/50



Example of tampering detection technique

• Structural analysis: helps detect copy-move of an image region
• A structural analysis algorithm splits the image into segments
• A histogram is built count the number of matching segments

which are separated by the same distance
• The higher the number of pairs located at the same distance,

the higher is the probability that those pairs belong to copied
regions

40/50



Deepfake detection

• Deepfakes make image tampering detection difficult

41/50



Provenance analysis

42/50



Provenance analysis

• Images & video frames: Tell one’s location by looking at them

43/50



Metadata

• Image metadata can also give us a lot of information
• (If available)

44/50



Source device identification

• In a court of law, the device used for
acquisition of a particular image can represent
crucial evidence

• Helpful clues on the source imaging device
might be found in the file’s header (EXIF), or
by checking (if present) a watermark

• However, since this information can be easily
modified or removed, we may need to employ
blind techniques

45/50



Blind image forensics techniques

• Retrieve information on the source device at two levels:
• Try to distinguish between different camera models
• Try to distinguish between single devices, even different devices

using the same camera model – harder

• Examine the traces left by the different processing steps in the
image acquisition and storage phases

46/50



Acquisition of artifacts produced by lenses

• Dirt / deformations

• Lens distortion

• Chromatic aberration

47/50



More relevant sources of info for file provenance

• Embedded cryptographic signatures

• References to the program that modified the file

• References about place and time of the file

• References about the author of the file

• Indirect references from other sources (e.g., logs)

• Watermarks

• ...

48/50



Takeaways

• Interpretation of file contents is one of the first steps in a
typical forensic analysis procedure

• To interpret file contents it may be necessary to understand
how the data is represent in its raw form

• In addition, many files are structured according to a particular
layout, and thus it is necessary to learn its specific format in
order to properly interpret them

49/50



Pointers

• Textbook:
• Carrier – Chapter 2.1

• Other resources:
• A. Piva, “An Overview on Image Forensics”, ISRN Signal

Processing, January 2013
• Judith A. Redi et al. “Digital image forensics: a booklet for

beginners”, Multimedia Tools and Applications, 2010

• Acknowledgements:
• Slides adapted from Nuno Santos’s Forensics Cyber-Security

course at Técnico Lisbon

50/50

https://www.hindawi.com/journals/isrn/2013/496701/
https://www.hindawi.com/journals/isrn/2013/496701/
https://link.springer.com/article/10.1007/s11042-010-0620-1
https://link.springer.com/article/10.1007/s11042-010-0620-1
https://syssec.dpss.inesc-id.pt/people/Nuno_Santos.html

	A primer on file formats
	Syntatic analysis of files
	Semantic analysis of files

