CS 798: Digital Forensics and Incident Response

Lecture 5 - File Forensics

Diogo Barradas
Winter 2025

University of Waterloo

Recall evidence collection...

1. A primer on file formats
2. Syntatic analysis of files

3. Semantic analysis of files

3/50

Shifting our focus to Analysis

1. Assessment [2. Acquisition 4. Reporting

e How to analyze evidence from computers and networks?

4/50

~
=
Q
=
pr}
G
o
0
c
2
=
N
)
Q
~
T
9
[

10329A

B E TGA 1Co

abew!

[\
ORT

N
ODT

AN
RTF

AN
DOC

AN
TXT

133

Vi

VoC

AN
CDA

AN
AAC

oipne

AN
MoV

F

AN
QT

03pIA

AN

TCR

% N
o
) DIVU

N
LH
N
RERR

E X

N
ACE

AN
TAR

AN
JAR

anydIe

AN
PY

AN
XML

AN
CSS

FETIENT]

AN
S

N
PPT

AN

KEY

AN

n
b4
@

AN
OTF

N
TTF

AN
HLP

AN
DAT

=]
c
o
a

5/50

A primer on file formats

File formats and file forensics

e A file format is a standard way that information is encoded for
storage in a computer file

e In file forensics, we aim at recovering information from files by
decoding their raw data from storage
e There are two broad file format families:

e Text files: Essential to determine the text encoding scheme
and structure (if any)

e Binary files: Essential to determine the file format (including
endianess)

6/50

Text files

e Raw bytes represent characters using an encoding

e Some are printable,others non-printable
(e.g.,linefeed, end of file)

e ASCII and Unicode are the most common i piss et e Extenged gscll
encoding schemes B op BH 5 DH Dl
o 60 w11 5321 1) 81 51 |20 60 ¢ 1124 0 220 ¢ 1
PE M o e[S 2 0 BB RN ONR A N
388 Seane of deatinoli2 22 | 82 52 X ik 0t Ulafs of »)oat
. . 304 End of tehemic (3555 2| 82 52 0 |33 03 8[1%0 B3 B33 B«
e ASCII is the common code text representation $i6 Eniny HEER R A
o by, (B bl hnE flaeae
. . s EELEL BR(HRILERHE R
e American Standard Code for Information 5 g onizancal cah |32 25 3 30 50 Z (37 09 ¢)ins B nlit B o
R e ECBEINEEHR SR
Interchange 12 85 Eormeet e 12 20| 3250 2 1006 116 s Nt s 2
[g oy i ia7 28 qjess 22 B
. 3 H . [Fé 26 baca 1ink escape |43 3580 o (14395 215 B 3|33 ke o
e Proposed by ANSI in 1963, finalized in 1968 117 11 DevioecontrolT o0 32 2| 98 62 b [l1a5 91 mliod B 1237 ED &
9 13 Device control 3 180 d |[14?7 193 +{239
5 13 bouice concrod 352 32 d1a €3 d iar 23 o103 8 ~ley
. . 5 Bt 32 tos scinmusgpe |Ea e a2 o8 £ (11 s s 126 & T
e Assigns a numerical value to characters in b3 12 Enderans"lock |6 36 g 1a1 ca § Jist o7 ufiow Fﬁ
BR1d Concel oy |26 32 2165 82 152 28 43S 5 l2ea
. , Chnoir GRURR LR IEE
American English B 3¢ 2332 Somracer, |61 38 Siim 88 2 lase uc flame O Tt 1
B3 8 roup ecparacer o2 28 3310 o8 b [y o0 283 & pleds B9
- i 7 bi e Sl P HHEH sy b b R
e Originally, 1 character was encoded in 7 bits 55 45 B[113 25 « lie] no &0 Ck G2 k0
G5 12 |16 74 ¢ [[ie3 o2 &[3a0 DY =|3% FF "
e But limited, e.g., for European languages or % Elils 7 L [eananie e
_ R L EE by
mathematical symbols BESleR R H e
iz n clae
76 L[124 P %1217 T
75 48 N|ise 72 ~ 1175 a5 ¥[315 5]
o Extended ASCII Character Set R ki

e Extended ASCII uses 8-bits to encode a

single character
7/50

e ASCII is nice and simple if you use American English, but it is
quite limited for the rest of the world

e Their native symbols cannot be represented

e Unicode helps solve this problem by using more than 1 byte to
store the numerical version of a symbol

e The version 4.0 Unicode standard supports over 96,000
characters, which requires 4-bytes per character instead of the
1 byte that ASCII requires

8/50

Unicode encodings — UTF-32, UTF-16, UTF-8

e There are three ways of storing a Unicode character:
e UTF-32: uses a 4-byte value for each character
e UTF-16: most used chars. in 2-byte value, lesser-used 4-bytes
e UTF-8: uses 1, 2, or 4 bytes (most frequently used in 1 byte)

e Tradeoff between number of characters that can be
represented, and space and processing efficiency

e UTF-8 is frequently used because it has the least amount of
wasted space and because ASCII is a subset of UTF-8

Character | UTF-16 UTF-8

A 0041 4
c 0063 63
e} 00F6 C3B6
;] 4E9C E4BA 9C
é D834 DD1E FO 9D 84 9E

9/50

Text files can have structure

e Example: XML file

| =Pl version="1 _0"9>|’7XML declaration

| <IDOCTYPE car SYSTEM "automotive dtd"%— Document type declaration

Root
element_[<car=]
start tag
|<!-—Ii5t of parts for a convertible car—->|‘ Comment
|<part name="seat" quantity="2"=</part= Elements
_n " g Characters
|<part name="wheel" quantity="4"'> /
=part name="enging" quantity:”1">|low consumption engine|=!part>
Root <part‘name:“body“||quantity:”1“|>weight rmust be1200 kg=/part=
00
element -qcap)
end tag Attributes Entity

10/50

Binary files

In binary files, bytes represent custom data
e Binary files may contain both textual and custom binary data

e Binary file formats may include multiple types of data in the
same file, such as image, video, and audio data

e This data can be interpreted by supporting programs, but will
show up as garbled text in a text editor

Image Viewer Text Editor

® O O &2 flower.png @ 100% (RGB/8) 800 & flower.png

aPNG
0

IHDR QK pHYs50
OICCPPhotoshop ICC
profilexiSqTSE="IUBKAATKOR RBaAS&" Jal
“YQ[EErtaéeAaQa
Fhel¢6EEAE {Ek+TEO p0>A Uiizoe H3QSA
©BIEC/A% @A
p2alsH ~<<+", X MO 04"
AN 188KA@26BI@FAUDEST Acu P-ETAUTO{ME
- » 24Dh; ceVAEXOMK/9y-0IWH=3 ; (ES0Qa0)
{o##xNOFUW<O+EA X5 <TSIEAI-QWW.(CEI .
- +6280@.y02A 10ATE1ED XEAEESSS - v
1005 | @ le™bb. Ace'p@t-—./2AAm, ¢%

11/50

BMP image files

e BMP image: array of pixels, each encodes a specific color

e Binary files may contain both textual and custom binary data
e The resolution indicates width and height of image

e Ex: 750 x 491

12/50

Pixel color encoding

e 24-bit RGB image files
e Each pixel encoded by 3 byte values for red, green, and blue

RGB

Golor Red
Wheel Racpberrv 0-0 - Orange

255-0- 125 255-125-0

Yellow
255-255-0

Magenta
255-0-255

Spging Green

Vlnlet
125-255-0

125-0-: 255

Green
120°
0-255-0

fcean Turquoise
0-125-255 CYHII 3,520554 25
0-255-255 Dluelobsterart. com

13/50

BMP header format

e Signature:

0x42 0x4D

offset | 0 1 2 3 4 5 6 A B CcoD
00000000 | 42 4B F6 04 00 00 00 00 00 00
00000010 | 00 00 30700 AAafr=20m0 00 04 00
00000020 | 00 00 80 04 |SiZeT1270byles 0 00 00 00 00
00000030 | 00 00 00 00 00 00 00 00 00 00 00 00 80 00
00000040 | 00 00 00 80 80 00 80 00 00 00 80 00 80 00
00000050 | 00 00 CO CO CO 00 80 80 80 00 00 00 FF 00
00000060 | 00 00 00 FF FF 00 FF 00 00 00 FF 00 FF 00
00000070 | 00 00 FF FF FF 00 FF FF FF FF FF FF FF FF

A...A.8.88
. AAAAAAARAA

File header (14 Bytes)

Bitmap Information (40 Bytes)

Color Table (4*Bits/Pixel Bytes)

Signature (2
Fllasiza (2 Byles)

Resarved (4 bytes)
Dataoffset (4 byles)

Sizs (4 bytes)

Widlh (4 Bylas)
Haight (4 bytes)
Flanas 2 bytas|
B (2 ns)
Compression (4 bytes}
ImageSize (4 byles)
XPixalparM (4 bylss)
“YRinalpar (4 bylas)
GolossUsed (4 byles)
Colossimportant (4 bytas)

Image Data/Color Index Array

olar table (Only for 1.4, 8 bit Bitmap]

For 24 kit 1 Pixel stered in 3 bytes

24 Bits/
pixel
L0 00002 o003
For & bit Bitmap 1 Plxel Is stored In 1
and byte value pointe t5 color
index table
8 Bits/
pixel
oot o002 oaoos
2 pixels can be stored in 1 byie for
bits/pix blimap. Valus point "
table index
4 kgl an | ot
pixel
o001
8 pbxols can be storsd in Life for 1
bits/pix bitmap {monc me). Value
point to color table,
1Bitf
pixel
o000

Red (1 byle}
Green (1 byle)
Bl {1 bytes)
Fserved (1 byle)

inage Data (R,G.B Values of pixsls)

1004111 (1.2)
£0,0} (8.1} (0.2)

(1.}
(0N}

Bytes alligned
< to 32 bit >
boundary

14/50

PDF header format

10 obj << /Type /Catalog /Outlines 2 0 R /Pages 3 O R >> endobj
2 0 obj << /Type /Outlines /Count 0 >> endobj
3 0 obj << /Type /Pages /Kids [4 0 R] /Count 1 >> endobj
4.0 obj << [Type /Page /Parent 3 0 R /MediaBox [0 0 612 792]
/Contents 5 0 R /Resources << /ProcSet 6 0 R
/Font <</F17 0R >>>> >>endobj
500bj<< /Length 73 >> stream
BT /F1 24 Tf 100 100 Td (Hello World) TJET endstream endobj
600bj [/PDF /Text] endobj
7 0 obj << [Type /Font /Subtype /Typel /Name /F1
/BaseFont /Helvetica /Encoding /MacRomanEncoding >> endobj
xref
08
0000000000 65535

0000000009 00000 n
0000000074 00000 n 3: xref Table
0000000120 00000 n

0000000179 00000 n
0000000364 00000 n
0000000466 00000 n
0000000496 00000 n

trailer e
<< fsize 8 /Root 10 R>> } : trailer

startxref
625
%%EOF

2: Body

PDF

15/50

Executable file format

e Portable Executable (PE) format used to encode executable
files on Windows (.exe, .d11)

e Common sections are:

PE File
o .text (for code)
e .data (read/write data)
e .rdata (read-only data) Header
i
e .reloc (relocation data) o T
[.data Section } [.text Section]
_ [.rdata Section] [-bss Section]
E X E [.edata Section] [.reloc Section]
[.idata Section } [.rsrc Section]

16/50

Compressed file formats (e.g., ZIP)

e ZIP files store multiple files

ZIP file

e Signature: 0x50 Ox 4B - “PK" Local file header (a.txt)
e Phil Katz invented ZIP data for a.txt
Local file header (b.txt)

data for b.txt

Central directory header (a.txt)

Central directory header (b.txt)

End of central directory record ——

17/50

Common binary file formats

e Image file formats (JPG, GIF, BMP, PNG)

e Archive files (ZIP, TGZ)

o Filesystem images (EXT4)

e Packet captures (PCAP, PCAPNG)

e Memory dumps

e PDF

o Video (MKV, MP4) or Audio (WAV, MP3, FLAC)
e Microsoft Office formats (RTF, OLE, OOXML)

18/50

Binary to text encoding schemes

e Sometimes it is necessary to encode binary objects into text
e E.g., when shipping a binary file across the network, some
protocols could interpret byte sequences as control characters

e Baseb4 is a popular encoding scheme (but there are more...)

e 64 characters are present in most character sets
e Used to encode email attachments and certificates

~ Application to X.509 Certificate \
ASN.1 (abstract) DER (binary data) (x.690) BASEG64 (text data) (RFC 4648)

36 82 01 06 30 81 AC 62 01 02 30 OA 06 08 2A 86 MIIBBIC j

certificate 48 CE 3D 04 ©3 02 30 OF 31 6D 30 0B 06 03 55 04

(RFC 5280) 3 6C 04 6D 74 6C 73 30 1E 17 @D 31 38 31 30 31 SMASAGEGCC HKW90y 1MbnQZ3 33
38 3132 33 37 30 39 5A 17 0D 32 32 30 35 30 32 || /Au0S/COZWNSTLFAGVOLSIMuNET MBMCYIKOZ1ZJOEAWID

31 32 33 37 30 39 5A 30 OF 31 €D 30 68 06 03 55 SQAWRETRAPGRCIE+ i P

(X.680~X.683) |04 03 oC 04 6D 74 6C 73 30 59 30 13 06 7 2A 86 bU1J5GQgjwDS5vaUaK1LR5@Q2DMF FQi1L+5Y=

48 CE 3D 02 01 06 08 2A 86 48 CE 3D 03 01 07 03

42 00 04 D7 27 CB 1C 2A 57 A8 58 F1 @9 E1 C7 1C
C5 43 4D C2 EC 72 96 F4 EC A5 31 B9 D@ 66 38 C9
FC @8 B4 F3 F7 28 67 6C 52 EC B7 (O E2 F3 8B 4B
DS AE 9D E2 17 85 B1 86 SA FB 03 49 BD 20 1F A2
31 26 6F 30 OA 06 08 2A 86 48 CE 3D 04 03 02 03
49 00 30 46 02 21 00 FD 11 @B 51 3E BF 02 43 FC
3D 46 18 71 B3 BA B8 BE 86 55 7F 3E 94 04 29 35
94 55 E3 91 58 3F 37 02 21 00 E7 1D 9E 5D 93 95
6D 49 49 48 64 20 8F 0 F9 BD AS 1A 2A 52 D1 E7
44 36 6F 61 SF 42 30 4B F9 26

19/50

Base64 encoding mechanism

ASCII Text: H i
ASCII to Binary: 01001000 01101001
ASCII to Binary: 0100100001101001

— S

010010 000110 100100 000000

v v v v

S G K =

6-bit Base64

with padding:
Base64 Encoding

with padding:
(Anthony Critelli, CC BY-SA 4.0)

20/50

Base64 encoding mechanism

e To encode text to base64:

e To decode base64:

21/50

Base64 encoding mechanism

e To encode text to base64:

e To decode base64:

21/50

Syntatic analysis of files

Syntactic analysis

e The ability to parse the format of a file so as to identify its
internal structure and components
e Techniques:

e Raw file inspection

File format discovery
e String extraction

Encrypted file cracking

File header repairing

22/50

Inspection of a file’s raw bytes

e Use an hex editor to read file contents, e.g., WinHex, xxd

23/50

Remarks about the encoding scheme

e ASCII encoded file e UTF-8 encoded file

e Special non-printable character e Character “é’ = 0xc3a9

24/50

Inspecting a binary file

e Manual inspection
e Parse the file according to the file format specification

Image width and height.
| |

\ Ti\e file size which is 176 bytes.

The pcsm?n of the slan of the image data Which \5)54

FﬂﬁfUEQQEN N
0: fz 40 [BD O EID\EIEI of 00 00 36 OO
nn 0006 00 00 ool

00 00 00 00 OO0 1 0B 00 00 12 OB

8

85 00 00 D0 00

end of row padamg\ end of file padding

25/50

96R 82G 81B 138R 38G 00B

Remarks about endianess

e Numbers can be stored as a sequence of one or more bytes
e Endianness deals with the order in which bytes are stored
e We encounter two different approaches:

Ox1R34-667%

78|56 |34 |12

oxo ox3 oxo ox3

Liktktle endian

x86 and ARM make use of Little Endian.

26/50

Why do we care?

e In the sequence below, the two highlighted bytes represent a
16-bit integer (8 bit x 2 = 16 bits or 2 bytes)

Offset 0 12 3 45 6 7 8 9 &4 B CDEF
oooooooo [Ul 2300 00 00 OO OO OO OO0 OO OO OO OO 0O OO OO0
00000010 00 00 00 00 0O 00 OO OO 0O 0O 00 OO 00 0O 0O 0O
0oooopoz20 00 0O 0O OO OO OO OO OO 00 OO0 OO 0O 0O 00 00 OO0
oooooo30 00 OO OO OO OO OO OO OO 0O OO OO OO OO 0O OO0 OO0

e In a big-endian system, the value would be calculated as:
e Big-endian calculation: 0x0123 = 291

e In a little-endian system, the value would be calculated as:
e Little-endian calculation: 0x2301 = 8961

27/50

How to decode a file not knowing its format?

e Consider a file with the following byte sequence (hex):

[48 65 6¢ 6¢ 6f 20 57 6f 72 6¢c 64 Oa]

e s it a text file? ASCII? Base64?

(H; (e; (17 (17 (o) [4 b} (w; (o; (r) 417 (d) (\n)

e Or a binary file? Unsigned ints? Other format?

€18533° “‘27756° €28448° 223837 €29292° ‘25610’

28/50

numbers

e Look for magic numbers: consist of constant numerical or text
value used to identify a file format or protocol

e E.g., GIF files start with sequence: 0x47 49 46 38 39 61
e Remember the file utility?

GIF’s magic number
Actual Size Enlarged Bytes /
47 49 46 38 39 61 OA 00 OA 00 91 00 00 FF FF FF FF 00
-} 00 00 00 FF 00 00 00 21 F9 04 00 00 00 00 00 2Cc 00 00
00 00 OA 00 OA 00 00 02 16 8C 2D 99 87 2A 1C DC 33 A0
(10x10) 02 75 EC 95 FA A8 DE 60 8C 04 91 4C 01 00 3B
(100x100)

e Magic numbers of common file formats:

e http://www.garykessler.net/library/file_sigs.html

29/50

http://www.garykessler.net/library/file_sigs.html

Opening files with specialized programs

e After determining the file type, use
a corresponding program to open it

e E.g., examine file c.dat

e Remember the file utility? :
c.dat when opened in

GIMP

30/50

String extraction from files

e The strings utility: prints a file's

e Useful for looking at data fiedls without the originating
program, searching executables for strings, etc.

What if files are encrypted?

e Might be worth trying a password cracking software
e Essentially, a password cracker works by trial and error
e Cracking approaches:

e Brute force: try every possible key / password until succeeds
e Dictionary attacks: attempt to reduce the number of trials
required and will usually be attempted before brute force

e Examples of tools:

e For encrypted zip files: fcrackzip
e For encrypted pdf files: pdfcrack

32/50

What if files are corrupted?

e Specific metadata of a file may have been removed or
tampered with thereby preventing its decoding
e E.g., opening file badheader. jpg returns this error

/=)

The file “badheader.png” could

not be opened.

It may be damaged or use a file format
that Preview doesn't recognize.

(0],4

33/50

Repairing a corrupted file

e Check if file metadata is consistent with the file format spec

89 50 4E 47 OD OA 1A OA %PNG....
PNG Portable Network Graphics file
Trailer: 49 45 4E 44 AE 42 60 82 (IEND®B™,...)

34/50

Repairing a corrupted file

e Check if file metadata is consistent with the file format spec

89 50 4E 47 0D OA 1A 0A %PNG....
PNG Portable Network Graphics file
Trailer: 49 45 4E 44 AE 42 60 82 (IEND®B',...)

e Our header looks wrong: 89 50 4E 0D OA 1A OA ...

(X) B badheader.png

89504E46 ODOALAQA 0000000D 49484452 .PNF IHDR
000005B6 00000188 08060000 0OIDAOB6 5 5 o0
2F00000C 3F694343 50494343 2050726F / ?iCCPICC Pro
66696C65 00004889 95570758 53(9169E file H..W XS
5B929040 680104A4 84DE0491 1A404A08

2DFADE44 25240142 89311054 ECE8A282

6B170BD8 D@551105 2BCD8222 7616CSDE

170B2ACA BAS58B02B 6F5240D7 7DES7BF3

7D73E7BF 67CEFCA7 DCB977EE @14QED38

4724CA43 D501C817 168A6383 FDE9C929

A974D253 40065400 80177QE1 700B44CC

E8E87078 0786C6BF B777D701 221DAFD8

4BBOFE39 FF5F9B06 8F5FCQQ5 00898638

Signed Int le, dec

2573C bytes

34/50

Apply the fix

e Fix the wrong header byte

(X) B badheader.png

89504E47 ODOA1AQA 000000QD 49484452 0000Q5B6 .PNG IHDR
00000188 08060000 009DAGB6 2FO0ORAC 3F694343 5 soo/ HES
50494343 2050726F 66696(65 00004889 95570758 PICC Profile H..W X
53C9169E 5B929040 680104A4 84DE0491 1A404A08
2DF4DE44 25240142 89311054 ECE8A282 6B170BD8
D@551105 2BCD8222 7616CSDE 170B2ACA BAS8B02B
6F5240D7 7DES7BF3 7D73E7BF 67CEFCA7 DCB977EE
0140ED38 4724CA43 D501(C817 168A6383 FDE9C929

160 A974D253 40065400 801770E1l 700B44CC ESE87078

180 @786C6BF B777D701 221DAFD8 4BBOFE39 FF5F9BO6

200 8F5FCO@5 00898638 8357CQCD 87F82000 78155724

220 2E048028 959B4D29 144931EC 404BOC1D 8478A114

240 67C97195 1467C8F1 SE994E7C 2C@BE276 00945438

260 1C711600 AA97A@9C SEC4CD82 1CAAFD10 3BOA7902

280 21006A74 887DF2F3 27F1204E 87D81AEA 882096F2

300 33327EEQ C9FA1B67 (6302787 93358CES B1C89AS52

320 80A04094 C799F67F AGE37FB7 FC3CC990 0D4BD8SS5

Signed Int le,dec |71

B elected out of 0x25 bytes

e Verify the fix by reopening the file using the viewer
e This case was easy, but may require additional effort
35/50

Summary of tips for interpreting file content

Extension not entirely reliable

Open the file and check between (text / binary)

Look for known header and footer information

e Especially file format signatures (e.g., magic numbers)

Use tools that know how to interpret specific file format

If the file format is unknown, we analyze it manually

36/50

Semantic analysis of files

Semantic analysis

e The ability to interpret and acquire information from the data
content of a given file
e Presupposes the ability to parse the file's internal structures

e Some examples:

e Vulnerability analysis
e Image processing
e Provenance analysis

37/50

Image processing

e Forensic image processing involves the computer restoration
and enhancement of imagery

e |t aims to maximize information extraction from imagery that
is noisy, incomplete, or over/under exposed

e |t also involves measurement of objects pictured on images

38/50

Image processing

e Forensic image processing involves the computer restoration
and enhancement of imagery

e |t aims to maximize information extraction from imagery that
is noisy, incomplete, or over/under exposed

e |t also involves measurement of objects pictured on images

CSl-style “Enhance!”

38/50

Tampering detection

e In the context of digital imaging, tampering recalls the

intentional manipulation of images for malicious purposes

SPLICING COPY-MOVE REMOVAL
* « + ¥ .

)
=
<
=

39/50

Example of tampering detection technique

e Structural analysis: helps detect copy-move of an image region
e A structural analysis algorithm splits the image into segments
e A histogram is built count the number of matching segments
which are separated by the same distance
e The higher the number of pairs located at the same distance,
the higher is the probability that those pairs belong to copied
regions

Deepfake detection

e Deepfakes make image tampering detection difficult

Sport Mor

Ukraine Royals Life Style

The Telegraph ~

I'was ‘deepfaked’ committing a crime - here's why you
should be worried too

41/50

Provenance analysis

The Story Of Luka Magnotta

Don’t I With Cats tells the gripping story of one of Canada’s worst murderers,

Luka Magnotta.
In the three-part docuseries, we are introduced to Baudi Moovan (Deanna
Thompson) and John Green who recount everything that lead up to Luka’s eventual

demise.

You see, before Luka Magnotta was a murderer, he was an animal abuser. Back in

2010, a mystery man uploaded a video onto Youtube titled 7 boy 2 kittens. The video

featured a male in a hooded jacket, vacuum sealing two kittens until they suffocated

and died. The clip sparked outrage online and lead to Baudi and John creating the

‘Find the Kitten Vacuumer...for Great Justice’ Facebook group.

42/50

Provenance analysis

e Images & video frames: Tell one's location by looking at them

The Facebook group consisted of people from all over the world, determined to

uncover who the animal abuser was.

Together they analysed Luka’s video frame-by-frame. They looked at plug sockets

on the wall to narrow down the Killer’s location. They listened to background sounds

to determine the languages heard. The group even went so far as to find the online

sellers of blankets and vacuums seen in shots to find some clue of who the cat killer

was.

43/50

Metadata

e Image metadata can also give us a lot of information
e (If available)

Properties | Histogram
Artist

+ Image

= GPS
Version ID
Latitude Ref
Latitude
Longitude Ref
Longitude
Haltitude Ref
Haltitude
TimeStamp
Satellites
Map Datum

Nate Stamn

EXIF IPTC GPS Categories
Peter S Harris, Christchurch, NZ

2.2.0.0

South
43/1°32/1' 1.497
East

-84/1° 36/1 2.31"
Sea Level

9.00

21/1

0
WGS-84
2NNQ=N4=ND

General GPS TIFF

Aperture Value

Brightness Value

Color Space

Components Configuration
Date Time Digitized

Date Time Original

Exif Version

Exposure Bias Value
Exposure Mode

Exposure Program
Exposure Time

Flash

FlashPix Version

FNumber

Focal Length

Focal Length In 35mm Film
ISO Speed Ratings

Lens Make

Lens Model

2.526

1.671

sRGB

1,2,30

Dec 31, 2015, 3:10:13 PM
Dec 31, 2015, 3:10:13 PM
2.21

(-]

Auto exposure
Normal program
1/30

No flash function
1.0

2.4

1.85

35

250

Apple

iPhone 4S front camera 1.85mm /2.4

44/50

Source device identification

e In a court of law, the device used for
acquisition of a particular image can represent

crucial evidence

e Helpful clues on the source imaging device
might be found in the file's header (EXIF), or
by checking (if present) a watermark

e However, since this information can be easily
modified or removed, we may need to employ
blind techniques

45/50

Blind image forensics techniques

e Retrieve information on the source device at two levels:

e Try to distinguish between different camera models
e Try to distinguish between single devices, even different devices
using the same camera model — harder

e Examine the traces left by the different processing steps in the
image acquisition and storage phases

4650

Acquisition of artifacts produced by lenses

e Dirt / deformations
e Lens distortion

e Chromatic aberration

T

negative radial distortion nodistortion positive radial distortion
- barrel

‘pincushion

Radial
distortion

Chromatic aberration

Lioh - Z Red
ant a(eral chromatic
Opticalaxis_ _ _ _~ = aberration
Light
se Red
Light ffom outside Axial <hroq|a(k
the optical axis aberration
Sensor

47/50

More relevant sources of info for file provenance

Embedded cryptographic signatures

References to the program that modified the file

References about place and time of the file

References about the author of the file

Indirect references from other sources (e.g., logs)

Watermarks

48/50

e Interpretation of file contents is one of the first steps in a
typical forensic analysis procedure

e To interpret file contents it may be necessary to understand
how the data is represent in its raw form

e In addition, many files are structured according to a particular
layout, and thus it is necessary to learn its specific format in

order to properly interpret them

49/50

e Textbook
e Carrier — Chapter 2.1
e Other resources:
e A. Piva, “An Overview on Image Forensics’, ISRN Signal
Processing, January 2013
e Judith A. Redi et al. “Digital image forensics: a booklet for
beginners”, Multimedia Tools and Applications, 2010
e Acknowledgements:

e Slides adapted from Nuno Santos'’s Forensics Cyber-Security
course at Técnico Lisbon

50/50

https://www.hindawi.com/journals/isrn/2013/496701/
https://www.hindawi.com/journals/isrn/2013/496701/
https://link.springer.com/article/10.1007/s11042-010-0620-1
https://link.springer.com/article/10.1007/s11042-010-0620-1
https://syssec.dpss.inesc-id.pt/people/Nuno_Santos.html

	A primer on file formats
	Syntatic analysis of files
	Semantic analysis of files

